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ABSTRACT

Adapting large language models (LLMs) to specialized domains typically requires
domain-specific corpora for continual pre-training to facilitate knowledge mem-
orization and related instructions for fine-tuning to apply this knowledge. How-
ever, this method may lead to inefficient knowledge memorization due to a lack
of awareness of knowledge utilization during the continual pre-training and de-
mands LLMs to simultaneously learn knowledge utilization and format alignment
with divergent training objectives during the fine-tuning. To enhance the domain
adaptation of LLMs, we revise this process and propose a new domain adaptation
framework including domain knowledge learning and general format alignment,
called Mix-CPT. Specifically, we first conduct a knowledge mixture continual pre-
training that concurrently focuses on knowledge memorization and utilization. To
avoid catastrophic forgetting, we further propose a logit swap self-distillation con-
straint. By leveraging the knowledge and capabilities acquired during continual
pre-training, we then efficiently perform instruction tuning and alignment with
a few general training samples to achieve format alignment. Extensive experi-
ments show that our proposed Mix-CPT framework can simultaneously improve
the task-solving capabilities of LLMs on the target and general domains.

1 INTRODUCTION

Large Language Models (LLMs) (Zhao et al., 2023) have revolutionized the field of natural language
processing (NLP) (OpenAI, 2023), showing exceptional capabilities such as instruction following
and complex reasoning (Wei et al., 2022). However, due to their limited exposure to relevant data,
such general LLMs still considerably lag behind in specific domains requiring professional knowl-
edge. This situation has necessitated the effective adaptation of general-purpose LLMs to specific
domains (e.g., mathematics and code), called domain adaptation of LLMs (Guo & Yu, 2022).

In essence, tailoring general LLMs to specific domains requires adaptation in two main aspects,
namely knowledge learning (acquiring and leveraging the necessary domain knowledge) and format
alignment (responding to the user in an expected output form) (Jiang et al., 2024; Zhou et al., 2023;
Hu et al., 2024b). Specially, knowledge learning can be further fulfilled via knowledge memoriza-
tion and utilization. In practice, domain adaptation of LLMs typically involves three consecutive
stages (Rozière et al., 2023; Azerbayev et al., 2023), i.e., pre-training, instruction tuning, and align-
ment, where the first stage is primarily aimed at knowledge memorization and the other two stages
are mainly focused on knowledge utilization and format alignment. However, at the pre-training
stage, knowledge memorization based on raw domain-specific corpora would be somehow ineffi-
cient without eliciting the acquired knowledge according to task goals (Jiang et al., 2024). Despite
that some studies incorporate instruction data for pre-training, they often rely on proprietary models
to synthesize high-quality instructions at scale (Cheng et al., 2024a; Wang et al., 2024), which may
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Figure 1: Comparison of traditional domain adaptation approaches (top) and our proposed Mix-CPT
paradigm (bottom). “[EOS]” is a special token representing the end of a document. “[ST]”, “[UT]”,
and “[AT]” denote the system, user, and assistant chat template, respectively.

not be that easy without extensive fine-tuning experiences. Another issue is that learning to master
knowledge utilization and format alignment in both instruction tuning and alignment stages might
lead to suboptimal performance, since the two goals can be divergent in model optimization (Ren
et al., 2024).

Considering the above issues, this paper explores a new domain adaptation approach that only uses
raw domain-specific corpora and general instruction or alignment data. Our hypothesis is that the
knowledge utilization capacity can be essentially learned from general instruction or alignment data,
which has also been evidenced by prior studies (Ouyang et al., 2022b). In this way, we can remove
the tedious instruction synthesis step from the training pipeline, since it is much easier to obtain
general or mixed domain instruction data from open resources. Another important attempt is to
enhance knowledge learning by jointly acquiring both memorization and utilization of knowledge.
Therefore, we schedule all the instruction and alignment data at the pre-training stage (with a suitable
format), then only reuse a minor proportion of instruction and alignment data for fine-tuning to
achieve format alignment. We give a comparison in Figure 1.

Specially, our approach for domain adaptation of LLMs consists of two main stages, i.e., domain
knowledge learning and general format alignment. In the first stage, we conduct knowledge mixture
continual pre-training (Mix-CPT) to integrate both knowledge memorization and utilization. In the
second stage, based on the knowledge and capabilities that are already acquired during pre-training,
we perform instruction tuning and alignment in an efficient manner to achieve format alignment.
For continual pre-training, we convert raw domain documents, general instructions, and alignment
data into a unified format. To avoid catastrophic forgetting, we propose Logit Swap Self-Distillation
(LSSD), which exchanges the predicted top-1 token logit with the logit of the ground-truth token,
serving as the surrogate target. In this way, LSSD maintains most probabilities of the original
distribution of LLMs, thereby preserving original capabilities. In instruction tuning and alignment,
we propose a novel format alignment score as criterion to select a small number of instructions from
the pre-training instruction set. These instructions have already been seen during pre-training, so
that the model can mainly focus on pure style or format learning for downstream tasks.

We conduct experiments on domain-specific and general tasks to verify the effectiveness of our Mix-
CPT method, including a total of seven distinctive capabilities based on 17 representative bench-
marks. For both base LLMs and chat LLMs, our approach can effectively improve their domain-
specific and general performance compared to traditional methods of first performing continual pre-
training, followed by instruction tuning and alignment.

2 APPROACH

To adapt general LLMs to specific domains (e.g., wiki, code), our core idea is to decouple knowledge
learning and format alignment, and propose an effective two-stage domain adaptation framework,
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Figure 2: Overall framework of our proposed rescheduled domain adaptation paradigm, Mix-CPT.
“[ST]”, “[UT]”, and “[AT]” denote the system, user, and assistant prompts, respectively.

i.e., first performing knowledge mixture continual pre-training (Section 2.1) and then performing
efficient format alignment (Section 2.2). We show the overall architecture in Figure 2.

2.1 KNOWLEDGE MIXTURE CONTINUAL PRE-TRAINING

Different from previous work that performs continual pre-training solely based on domain-specific
corpora (Que et al., 2024; Ke et al., 2022), we propose to mix domain-specific documents, general
instructions and alignment data as pre-training data. The QA-based instruction and alignment data
is useful to reflect how the knowledge will be accessed and utilized through questions, enhancing
the learning of new knowledge in domain-related documents. Besides, using general instructions
can facilitate LLMs to transfer the general knowledge utilization capability to specific domains
without relying on domain-related instructions in prior work (Jiang et al., 2024; Cheng et al., 2024a).
Specifically, we first transform raw domain documents, general instructions, and alignment data into
a unified format for continual pre-training. To avoid catastrophic forgetting, we further introduce a
logit swap self-distillation (LSSD) approach during the continual pre-training process.

2.1.1 UNIFIED KNOWLEDGE FORMAT

Typically, adapting LLMs to a specific domain involves three distinct and relatively independent
stages, each based on corresponding data in different formats. Specifically, the base model firstly
performs continual pre-training (CPT) on domain-specific corpora for learning new knowledge, then
conducts supervised fine-tuning (SFT) based on instructions for enhancing the instruction following
ability, and finally utilizes the preference data for human alignment. In this work, we adopt direct
preference optimization (DPO) as the alignment algorithm. Formally, we denote the domain-specific
corpus as DCPT = {di}nc

i=1, where di represents a raw domain document consisting of a sequence
of tokens. For the instructions used in SFT, we denote as DSFT = {⟨qi, ri⟩}ns

i=1, where qi and ri
represent the user query and the expected response, repectively. For alignment data used in DPO,
we denote by DDPO = {⟨qi, r+i , r

−
i ⟩}

nd
i=1, where qi, r+i , and r−i represent the user query, positive

response, and negative response, respectively.

In this paper, we propose to mix DCPT, DSFT and DDPO into a mixture dataset DMIX with a unified
text format, building upon which we further perform knowledge mixture continual pre-training on a
general LLM. Unlike previous work relying on synthesizing high-quality domain instructions (Jiang
et al., 2024; Cheng et al., 2024a), we empirically find that knowledge utilization is actually a general
capability that can be learned from general instructions, and we can further transfer such ability
to enhance the learning of domain knowledge. Specially, we remove any templates (e.g., [UT])
from instructions and alignment data to construct the mixture data, which consists of three kinds of
samples denoted by DMIX = {xcpt, xsft, xdpo}, where xcpt = di is the original domain document,
xsft = [qi; ri] denotes the concatenation of user query and expected response in the instruction, and
xdpo = [qi; r

+
i ] is the concatenation of user query and positive response in the alignment data.

Following existing pre-training methods (Touvron et al., 2023), we concatenate samples within each
kind of data (i.e., DCPT, DSFT and DDPO) and truncate the sequence when reaching the maximum
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input length of the LLM. Besides, we add an extra special symbol (i.e., [EOS]) at the end of each
sample to separate them. We repeat this process until concatenating all samples to obtain our final
knowledge mixture pre-training data DMIX.

Note that though we use general instruction data to derive the mixture data here, our approach can
be generally extended to incorporating domain-specific instruction data (Cheng et al., 2024a), which
often relies on specific data synthesis techniques.

2.1.2 LOGIT SWAP SELF-DISTILLATION

After obtaining the unified mixture data DMIX = {xcpt, xsft, xdpo}, we then perform continual pre-
training on the base LLM. For simplicity, we remove the subscript of each training sample in the
mixture data, denoted as x. We adopt the pre-training task of next token prediction (NTP). Specif-
ically, given an input x = {w1, w2, ..., wn}, we adopt the standard language modeling objective to
minimize the cross-entropy loss as follows:

LNTP = −
n∑

j=1

log Pr(wj |w<j ; Θ), (1)

where wj denotes the j-th token in the input, w<j is the previous tokens, and Θ denotes the model
parameters. During continual pre-training, the task of next-token prediction enables the base LLM
to learn domain knowledge, and the incorporation of general instructions and the alignment data
further transfers the general knowledge utilization capability to specific domains.

However, the traditional language modeling objective is prone to suffer from the issue of catas-
trophic forgetting for previously learned knowledge of LLMs. Therefore, we propose an auxiliary
training objective, i.e., Logit Swap Self-Distillation (LSSD), which serves as an extra constraint for
the standard language modeling objective. Specifically, we first utilize the original base LLM be-
fore continual pre-training (paramerized by Θori) to infer the output logits following the standard
language modeling objective yet without computing the loss:

hj = LLM(w<j ; Θori), (2)

lj = hjW
T
e , (3)

where We is the token embedding matrix, hj is the hidden state of the last transformer block, and lj
denotes the output logit at the j-th position. Then, we exchange the logit value of the top-1 predicted
token (i.e., w̃j) and the ground-truth token (i.e., wj) if they are not equal:

l̃j = Exchange(lj , Iw̃j
, Iwj ) if Iw̃j

̸= Iwj , (4)
where Iw̃j

and Iwj are indices of w̃j and wj in the vocabulary respectively, the function Exchange(·)
will exchange their logit values in lj . The swapped logit l̃j will be regarded as the teacher logit
in LSSD. In essence, LSSD only calibrates the prediction of ground-truth token for adapting to
the current domain knowledge while maintaining most originally learned knowledge of the LLM
(i.e., represented by the unchanged logit values in l̃j). Next, we can compute the teacher model’s
probability distribution for the j-th token with softmax function:

Pr(wj |w<j ; Θori) = softmax(l̃j). (5)
Finally, we compute the self-knowledge distillation objective and minimize the reverse Kullback-
Leibler divergence loss (Gu et al., 2023) between the current model’s probability distribution and
the teacher model’s probability distribution as follows:

LLSSD = −
n∑

j=1

Pr(wj |w<j ; Θ) log(
Pr(wj |w<j ; Θ)

Pr(wj |w<j ; Θori)
). (6)

In the knowledge mixture continual pre-training stage, the final total loss is the combination of next
token prediction loss and self-distillation loss, controlled by a co-efficient α as follows:

LCPT = α · LNTP + (1− α) · LLSSD. (7)

Due to the significant distributional differences between domain corpora and original training data,
traditional approach of using one-hot label can lead to substantial model updates, which may cause
catastrophic forgetting of the original knowledge after adaptation. In contrast, LSSD adopts the
prediction from the original model as a surrogate label by only modifying the logit of top-1 token.
This way can effectively maintain most previously learned knowledge but adapt to new domains.
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2.2 GENERAL FORMAT ALIGNMENT

In the domain knowledge learning stage, the LLM has simultaneously learned to memorize domain
knowledge and understand how to utilize the knowledge through our proposed knowledge mixture
continual pre-training. After that, during the format alignment stage, the LLM can be more efficiently
fine-tuned to master the task format with only a small number of alignment samples. Next, we first
introduce the selection of training samples and then perform efficient format alignment.

Alignment Sample Selection. Since we would like to decouple knowledge learning and format
alignment, we aim to select training samples from DSFT and DDPO that have been encountered during
continual pre-training, which can avoid introducing new knowledge in subsequent fine-tuning. The
selection criterion is based on the format alignment score (FAS), which estimates the difficulty of a
given SFT sample ⟨qi, ri⟩ by comparing the conditional loss with and without formatted instruction:

FAS(⟨qi, ri⟩) =
LNTP(ri|q̂i)
LNTP(ri)

, (8)

where q̂i denote the formatted query equipped with chat templates for interaction with humans. For
a DPO sample ⟨qi, r+i , r

−
i ⟩, FAS compares the conditional losses of positive response and negative

response given the formatted query:

FAS(⟨qi, r+i , r
−
i ⟩) =

LNTP(r
+
i |q̂i)

LNTP(r
−
i |q̂i)

. (9)

In essence, high FAS scores infer the difficulty of generating responses given a query with an inter-
action format and the significant disparity between positive and negative ones. Therefore, we finally
select top-K samples with the highest FAS scores to conduct supervised fine-tuning and direct pref-
erence optimization.

Efficient Format Alignment. After selecting very few training samples, we can utilize them to
conduct format alignment in an efficient manner. Firstly, we utilize the selected instruction samples
from DSFT to perform supervised fine-tuning following the standard way (Ouyang et al., 2022b),
which is to minimize the cross-entropy loss:

LSFT = −
n∑

j=1

log Pr(rj |q, r<j ; Θ), (10)

where rj and r<j denote the j-th token and its previous tokens in the response. Secondly, we utilize
the selected preference samples from DDPO to conduct direct preference optimization following
Rafailov et al. (2023b) as follows:

LDPO = − log σ

(
β log

π(r+|q; Θ)

π(r+|q; Θref)
− β log

π(r−|q; Θ)

π(r−|q; Θref)

)
, (11)

where σ denotes the sigmoid function, Θref denotes the parameters of the reference LLM (usually
the original LLM itself), and π denotes the product of the probabilities of all output tokens.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

In our experiments, we mainly focus on three popular domains for adapting general LLMs, i.e.,
encyclopedia, mathematics, and code. And select official Wikipedia dump1, AutoMathText (Zhang
et al., 2024), and StarCoder (Li et al., 2023) as the corresponding domain-specific corpus. For
general instruction datasets, we choose TULU-V2-mix (Ivison et al., 2023) and UltraFeedback (Cui
et al., 2023) for instruction tuning and alignment, respectively. We employ two prominent LLMs
as the base model, i.e., QWen2-7B (Yang et al., 2024) and Meta-Llama-3-8B (Dubey et al., 2024).
For comparative analysis, we consider official chat LLMs, reimplemented chat LLMs, and continual
pre-training augmented LLMs. We evaluate seven distinctive capabilities of LLMs in a total of 17
representative NLP datasets based on the OpenCompass platform (Contributors, 2023). We show
the details of our complete experimental setup in Appendix A.

1https://dumps.wikimedia.org/enwiki/20240301/
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Table 1: Evaluation results on three specialized domains and two general examinations. The
underline and bold fonts denote the best results in the target domain and the average results in
each domain adaptation group, respectively.

Model Wiki Math Code English
Examination

Chinese
Examination Average

LLaMA3-8B-Base 53.81 33.62 42.31 51.02 46.69 45.92

Wiki
+ CPT 54.20 34.07 37.42 52.97 46.07 45.64
+ Mix-CPT (w/o KD) 55.81 38.96 41.62 52.19 47.44 47.68
+ Mix-CPT 55.47 37.91 42.37 52.55 49.93 47.91

Math
+ CPT 54.14 34.80 28.95 50.47 49.02 43.62
+ Mix-CPT (w/o KD) 55.55 37.99 42.43 46.16 48.60 45.90
+ Mix-CPT 55.11 37.71 45.14 51.54 49.89 48.04

Code
+ CPT 50.98 34.19 35.64 51.14 47.92 44.29
+ Mix-CPT (w/o KD) 54.93 39.38 42.35 46.31 47.91 46.02
+ Mix-CPT 55.50 38.15 42.82 51.55 48.50 47.61

QWen2-7B-Base 46.37 62.33 60.02 46.56 82.90 56.00

Wiki
+ CPT 47.20 59.48 29.45 52.32 81.92 51.12
+ Mix-CPT (w/o KD) 46.65 58.54 58.67 48.03 80.86 55.27
+ Mix-CPT 46.88 59.77 62.06 48.78 81.84 56.56

Math
+ CPT 46.22 58.60 48.13 44.42 82.51 52.17
+ Mix-CPT (w/o KD) 46.19 59.42 59.93 46.12 82.70 55.21
+ Mix-CPT 46.42 60.58 61.40 45.60 82.25 55.58

Code
+ CPT 41.37 60.02 41.93 42.05 82.97 49.58
+ Mix-CPT (w/o KD) 45.29 59.40 58.53 48.36 81.68 55.32
+ Mix-CPT 45.50 59.20 60.21 48.18 82.94 55.73

3.2 MAIN RESULTS

Table 1 and Table 2 display the evaluation results for base and chat LLMs respectively, comparing
our proposed Mix-CPT method and other baselines.

3.2.1 RESULTS OF BASE LLMS

We initially assess the effectiveness of our proposed Mix-CPT framework for base LLMs in miti-
gating catastrophic forgetting and facilitating the knowledge learning during continual pre-training,
especially the logit swap self-distillation constraint. To better observe the impact of knowledge mix-
ture continual pre-training on the performance in target domains and general capabilities, we select
domain-specific tasks and general examination tasks. We show the evaluation results in Table 1.

First, we can see that traditional continual pre-training (i.e., + CPT) does not necessarily enhance the
performance of base LLMs in the target domain, and may instead impair their performance therein.
Besides, this method inevitably leads to a certain degree of catastrophic forgetting, thereby damaging
the overall performance of the base LLM. For example, compared to the LLaMA3-8B-Base model,
typical CPT leads to observed improvements in math (i.e., 33.62 → 34.80) but diminishes overall
performance (i.e., 45.92 → 43.62). The phenomenon has been reported in existing work (Lin et al.,
2024). We notice that the performance of the QWen2-7B-Base in math and code domains declines
after undergoing either traditional continual pre-training or Mix-CPT. We speculate that this may be
due to the significant discrepancy between the distribution of the continual pre-training data and the
data used in the final stage of original pre-training (e.g., annealing) (Yang et al., 2024; Dubey et al.,
2024). Besides, the model might have already been trained on these two datasets, and further training
leads to overfitting. For example, the typical CPT method shows a decline in the math domain (i.e.,
62.33 → 58.60) and the overall result (i.e., 56.00 → 52.17). By contrast, Mix-CPT significantly
alleviates such a decline and better maintains general performance (i.e., 56.00 → 55.58). This
demonstrates that our framework can effectively mitigate the impact of knowledge forgetting caused
by traditional incremental training processes. This is highly beneficial in real-world scenarios where
the training data proportion and distribution of the model are usually unknown.
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Table 2: Evaluation results on three specialized domains and four general capabilities (i.e., Reading
Comprehension, Complex Reasoning, EXamination, and Instruction Following). The “CSD” de-
notes the typical domain adaptation method of conducting CPT, SFT, and DPO. The underline and
bold fonts denote the same meaning as Table 1.

Model
Specialized Domain General Domain

Average
Wiki Math Code RC CR EX IF

LLaMA3
8B-Base

Official Chat 46.97 50.88 63.29 77.03 78.21 62.02 80.40 64.96
Reimplemented Chat 33.72 30.88 41.96 74.19 77.42 57.62 69.55 55.86

Wiki + CSD 28.27 30.67 43.47 72.61 73.74 55.82 66.51 53.82
+ Mix-CPT (ours) 33.21 30.21 47.22 72.60 71.36 58.65 68.88 55.25

Math + CSD 27.88 39.48 50.95 74.89 76.90 60.90 69.89 58.16
+ Mix-CPT (ours) 32.12 39.40 51.21 73.36 77.00 60.68 71.81 58.61

Code + CSD 27.64 39.27 51.75 75.04 77.44 62.34 70.88 58.75
+ Mix-CPT (ours) 31.98 38.30 52.67 73.33 74.86 60.71 72.11 58.25

QWen2
7B-Base

Official Chat 37.39 67.05 72.31 85.79 82.08 73.48 82.63 71.74
Reimplemented Chat 28.10 58.12 61.22 84.35 81.86 71.08 75.40 66.80

Wiki + CSD 30.29 56.75 61.78 82.61 81.66 71.23 75.92 66.79
+ Mix-CPT (ours) 34.55 56.74 64.66 83.93 80.61 72.66 74.73 67.94

Math + CSD 28.58 56.78 60.85 83.11 81.83 70.79 75.87 66.45
+ Mix-CPT (ours) 33.81 57.48 67.38 83.29 80.88 72.44 76.27 68.29

Code + CSD 29.41 56.87 62.74 83.58 81.77 70.94 76.79 66.94
+ Mix-CPT (ours) 36.05 55.07 64.84 83.42 80.57 73.65 76.77 68.24

Second, when mixing the domain raw data with the additional instructions and alignment data (i.e.,
Mix-CPT w/o KD), the domain-specific capability can be further improved, which indicates that
the mixed instruction data can benefit the learning of the domain knowledge during continual pre-
training. At the same time, it can mitigate the effect of other general capabilities and reduce the
degradation of the overall performance. For example, compared to the traditional CPT, mixing do-
main corpus with additional instruction data (Mix-CPT w/o KD) can almost consistently improve the
domain capability and overall average performance (i.e., 41.93 → 58.53 and 49.58 → 55.32 for the
QWen2-7B-Base model in the target Code domain and overall average performance respectively).

Finally, through applying the logit swap self-distillation strategy to the knowledge mixture continual
pre-training process (i.e., Mix-CPT), we can further reduce the impact on the pre-learned knowledge
while maintaining the domain capability improvement, thereby mitigating the degradation of the
general capabilities of LLMs. Therefore, these results demonstrate that the Mix-CPT framework
with the logit swap self-distillation constraint can indeed promote knowledge learning and alleviate
the issue of catastrophic forgetting to some extent.

3.2.2 RESULTS OF CHAT LLM

Subsequently, we assess the performance of final chat LLMs after instruction tuning and alignment
for achieving format alignment. We show the evaluation results in Table 2.

First, the typical domain adaptation method of conducting CPT, SFT, and DPO (called CSD) faces
challenges in simultaneously enhancing domains-specific capabilities while preserving general ca-
pabilities, in contrast to reimplemented chat models that do not utilize domain-specific raw data. For
example, compared to reproduced LLaMA3-8B chat model, traditional CSD method not only de-
creases the factual question answering performance in Wiki (i.e., 33.72 → 28.27) but also hurts the
average performance (i.e., 55.86 → 53.82). This phenomenon indicates that conventional domain
adaptation methods may cause catastrophic forgetting and merely focus on knowledge memorization
without considering how to utilize them, which might suffer from a memorization trap.

Second, with the same instruction data and alignment data, our method can successfully improve the
performance on the target domain while maintaining the general capability compared to the reim-
plemented models. Compared to the reimplemented chat LLM with large-scale closed-source pre-
training data but using the same instruction and alignment data, our proposed method can achieve
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Figure 3: (Left) Pass@K and Average results w.r.t. Proportion of
code data. (Right) Accuracy and Average results w.r.t. Quality
score of math data.
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lection strategy.

better performance on the target domain (e.g., 41.96 → 52.67 in the code domain for LLaMA3-8B-
Base), which indicates the effectiveness of our method.

Finally, our proposed Mix-CPT method can simultaneously improve the performance of the target
domains and the general capability. The main reasons are two fold. On one hand, based on the logit
swap self-knowledge distillation constraint, the LLM can effectively memorize the raw domain data
while maintaining its originally learned knowledge. On the other hand, by mixing the raw domain
data with the general instructions and alignment data (removing any templates), the model can learn
the general knowledge utilization capability and transfer to specific domains. In this way, the model
can perform efficient format alignment with only a few formatted samples to better utilize both target
domain knowledge and other general knowledge.

3.3 DETAILED ANALYSIS

In this section, we conduct a detailed analysis of the proposed method with LLaMA3-8B, using the
same benchmarks as those presented in Table 2.

Effect of Quantity and Quality of Raw Domain Data. We first utilize the StarCoder dataset to
explore the effect of the number of domain documents on domain-specific and general capabilities
with consistent quality. Then, we adopt the AutoMathText dataset to explore the effect of the quality
of raw domain data on LLMs’ performance by leveraging the annotated quality scores. Specifically,
we conduct two group experiments as follows:

• Proportion of Code Data: This group aims to compare the variants using different proportions of
the StarCoder, including 10%, 30%, 50%, and 70%, while maintaining constancy in other variables.

• Quality of Math Data: This group aims to compare variants by employing various AutoMath-
Text, each characterized by distinct quality scores with thresholds exceeding 0.5, 0.6, 0.7, and 0.8
respectively, while maintaining constancy in other variables.

We show the results in Figure 3. We can see that increasing the amount of raw domain documents
can indeed further enhance the target domain performance under the same quality. However, even
though using a larger number of raw domain data (e.g., more math texts with ≥ 0.5 score than those
with ≥ 0.7 score), the low quality of raw data can also decrease the LLMs’ performance regardless
of the target domain or general domain, which indicates the quality of domain data is a priority over
its amount when performing continual pre-training. The final decline is due to that there are much
less math texts with ≥ 0.8 score (i.e., only 10% of math texts with ≥ 0.7 score).

Effect of Format Alignment Data Selection. We conduct a further ablation study to explore the
impact of different sample selection strategies for format alignment data, which consists of the dif-
ficulty and amount of selected data. Specifically, we conduct two groups of experiments including:

• Difficulty of Samples for SFT and DPO: This group compares four distinct selection strategies:
random selection (Rand), easiest samples with the lowest FAS scores (Low), hardest samples with
the highest FAS scores (High), and half easiest samples and half hardest samples (Half).
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Table 3: Evaluation results on medicine and general domains with LLaMA3-8B-Base model when
adapting to medicine domain. The underline and bold fonts denote the same meaning as Table 1.

Model
Medicine Domain General Domain

RCT PubMedQA MQP Avg MATH MBPP MMLU CEVAL Avg

LLaMA3-8B-Base 73.6 59.8 66.2 60.1 18.0 57.9 65.9 49.3 47.8
+ CPT 70.6 56.7 55.4 55.7 5.9 57.0 63.2 48.6 43.7
+ Mix-CPT 71.0 63.4 79.2 63.4 16.6 58.0 66.2 49.7 47.6
+ Mix-CPT (Half) 71.2 64.1 83.0 64.7 16.0 57.7 65.5 50.3 47.4

Figure 5: Accuracy on math and Average results w.r.t. Amount of
SFT data (Left) and Amount of DPO data (Right).
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Figure 6: Accuracy on Math
and Average results w.r.t. dis-
tillation and normalization.

• Amout of Samples for SFT and DPO: This involves four variants using different quantities of
easiest samples from the TULU-V2-mix dataset (i.e., 10K, 20K, 40K, and 80K) and from the Ultra-
Feedback dataset (i.e., 5K, 10K, 20K, and 40K).

We show the results in Figure 4 and Figure 5. Firstly, we can see that, by using the samples with the
highest FAS scores can balance the domain and general capability best compared to other selection
strategies. Then, it enhances both domain and general abilities simultaneously to a certain extent by
increasing the amount of SFT training samples. Conversely, when increasing the amount of DPO
training samples, the results remain fluctuating, which might be due to the alignment tax.

Effect of Knowledge Distillation. To examine the effectiveness of our proposed logit swap self-
distillation (LSSD), we compare our method to two distillation and normalization methods:

• w/ LSSD: this is our Mix-CPT model using LSSD.

• w/ KD: this replaces LSSD with a typical knowledge distillation method without logits swapping.

• w/ L2: this replaces LSSD with L2 normalization.

The results are shown in Figure 6. We can see that compared to directly using L2 regularization
to constrain the changes in model parameter weights, KD method can better preserve general capa-
bilities when learning domain capabilities. Through logits swapping, our proposed LSSD method
refines the inconsistencies with the gold label in KD method, further enhancing the learning of
domain-specific capabilities. Finally, LSSD achieves the best balance among the three methods.

Performance on Medicine Domain. Here, we further explore the performance of Mix-CPT and
traditional CPT in the medical domain. Specifically, following the existing work (Cheng et al.,
2024b), we select the PubMed dataset as the domain-specific corpus and choose RCT (Dernoncourt
& Lee, 2017), PubMedQA (Jin et al., 2019), and MQP McCreery et al. (2020) as the domain-
related evaluation collections. For the general domain evaluation benchmarks, we select MATH,
MBPP, MMLU, and CEVAL from the aforementioned experimental settings. We show the results
in Table 3. We observe that compared to traditional CPT methods, our proposed Mix-CPT approach
more effectively facilitates the learning of domain-specific skills and better maintains the general
capabilities, indicating the effectiveness and generalizability of our method.

Computational Efficiency of Mix-CPT. We have discussed the additional overhead of our method
in Appendix A.5. Here, we further conduct additional experiments by only randomly employing
50% pre-training data for performing the logit swap self-distillation, i.e., Mix-CPT (Half), which

9



Published as a conference paper at ICLR 2025

further reduce half of the costs introduced by self-distillation. We conduct the experiment on the
medical domain with the LLaMA3-8B-Base model and evaluate its performance on domain-specific
and general tasks as before. We show the results in Table 3. We find that compared to distilling
the entire dataset, reducing the data by half further enhances the model’s performance on domain-
specific tasks, with only a slight decrease in general capabilities. This suggests that exploring even
lower distillation ratios in the future could achieve a greater tradeoff between cost and performance.

4 RELATED WORK

Domain Adaptation of LLMs. Our work is closely related to efforts in adapting general LLMs to
specific domains (Yildiz et al., 2024; Ke et al., 2022; Scialom et al., 2022). Due to the increasing
scale and complexity of LLMs, training domain-specific LLMs from scratch involves significantly
high financial and ecological costs (Luccioni et al., 2023). To address this issue, recent work has
been devoted to studying efficient approaches like continual pre-training, which involves incremen-
tally training general LLMs based on new domain corpora (Que et al., 2024; Ke et al., 2022), and
continual fine-tuning, aiming to fine-tune general LLMs on a series of downstream tasks related to
target domains (Razdaibiedina et al., 2023; Scialom et al., 2022; Luo et al., 2023a). However, these
approaches might result in catastrophic forgetting and performance degradation in general language
tasks (Kar et al., 2022; Mehta et al., 2023). Another line of work has explored conducting instruc-
tion fine-tuning by synthesizing domain-related instructions (Cheng et al., 2024a; Jiang et al., 2024).
Nevertheless, these studies require additional models to synthesize amounts of instructions highly
related to specific domains, resulting in high computational costs. It is noted that our method differs
from these works in several ways. Firstly, we disentangle domain adaptation into knowledge memo-
rization and capability elicitation, focusing on learning domain-specific knowledge and solving do-
main tasks with learned knowledge, respectively. Secondly, we employ token swap self-distillation
in the mixture pre-training to retain general knowledge and avoid catastrophic forgetting.

Instruction Tuning and Alignment. Instruction tuning (also known as supervised fine-tuning)
employs human-annotated instructions (Sanh et al., 2022; Mishra et al., 2022; Köpf et al., 2023; Sun
et al., 2023) or synthetic instructions by proprietary models (Taori et al., 2023; Chiang et al., 2023;
Wang et al., 2023) to fine-tune LLMs. Besides, alignment with reinforcement learning from human
feedback (RLHF) (Ouyang et al., 2022a) or direct preference optimization (DPO) (Rafailov et al.,
2023a) aims to align LLMs with human preference. Both instruction tuning and alignment are able
to elicit knowledge from LLMs and improve their capabilities to solve downstream tasks. Recent
work (Zhou et al., 2023) has demonstrated that LLMs mainly learn the style or format for interacting
with users through simple instruction tuning and alignment, by leveraging their prior knowledge and
capabilities already acquired during the pre-training stage. Furthermore, by comparing the token
distribution before and after alignment, recent work (Lin et al., 2023) found that the most significant
distribution shifts appear dominantly in stylistic tokens such as transitional phrases and discourse
markers instead of contextual words that involve rich knowledge for solving downstream tasks.
Inspired by these studies, we propose to expose knowledge memorization and capability elicitation
from instruction tuning and alignment. Unlike these studies which typically focused on instruction
tuning or alignment, we differ in that we unify the three stages of training LLMs (i.e., continual
pre-training, instruction tuning, and alignment) and conduct a knowledge mixture pre-training to
mainly focus on learning new domain knowledge while maintaining general knowledge.

5 CONCLUSION

In this work, we proposed a two-stage domain adaptation approach, termed Mix-CPT, which en-
compasses both domain knowledge learning and general format alignment. Mix-CPT employed
knowledge mixture continual pre-training to learn domain knowledge by integrating domain-specific
raw data with general instructions and alignment data. Besides, we proposed Logit Swap Self-
Distillation (LSSD) to relieve catastrophic forgetting. Based on the knowledge and capabilities
acquired during pre-training, we then selected a small number of easy instructions to make the LLM
to learn the style or format for interacting with human. Extensive experiments on three benchmark
datasets showed that our proposed Mix-CPT outperforms the traditional method, obtaining improve-
ments on both the domain and general capabilities.
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Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez,
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APPENDIX

A EXPERIMENTAL SETUP

A.1 DOMAIN-SPECIFIC CORPUS

In our experiments, we mainly focus on three popular domains for adapting general-purpose LLMs,
i.e., encyclopedia, mathematics, and code. For the encyclopedia domain, we select Wikipedia as
the primary corpus, which is collaboratively developed by volunteers globally and can be freely
accessed online. To enable LLMs to learn knowledge from new documents, we utilize the official
2024/03/01 Wikipedia dump2 and conduct necessary data cleaning and filtering processes such as
deduplication, resulting in approximately 4B tokens in raw Wikipedia documents. For the domain of
mathematics, we opt for AutoMathText (Zhang et al., 2024), a carefully curated corpus derived from
various sources including websites, arXiv, and GitHub. Each sample in this corpus has been labeled
with a quality score from 0.0 (“the poorest”) to 1.0 (“the best”), reflecting its relevance, quality,
and educational value in the context of mathematical intelligence. Following previous work (Zhou
et al., 2024), we specifically select those samples with scores higher than 0.7, containing about 0.7B
tokens. For the field of code, we select the StarCoder (Li et al., 2023) corpus, which is widely rec-
ognized and employed in several studies (Luo et al., 2023b). It contains 86 programming languages,
and we select the Python subset with approximately 1B tokens.

A.2 GENERAL INSTRUCTION DATASETS

For general instruction datasets, we choose TULU-V2-mix (Ivison et al., 2023) and UltraFeed-
back (Cui et al., 2023) for instruction tuning and alignment, respectively. Specifically, each sample
in TULU-V2-mix is either manually curated for quality or generated from GPT models to encour-
age complexity and diversity. We utilize the entire dataset of TULU-V2-mix (about 326K samples)
mixed with domain-specific corpus for knowledge mixture continual pre-training (Section 2.1), and
then select easy samples with the top-K1 lowest perplexity score for subsequent instruction tuning.
In addition, UltraFeedback is a widely-used diverse human preference alignment dataset, containing
approximately 64K preference pairs. Similarly, we employ the whole dataset of UltraFeedback for
knowledge mixture continual pre-training and then downsample easy pairs with the top-K2 lowest
perplexity score for alignment. It is noted that our TULU-V2-mix and UltraFeedback datasets are
open-source and widely used in previous work (Meng et al., 2024; Hu et al., 2024a), ensuring a high
level of transparency and facilitating fair experimental comparisons.

A.3 BASELINES

In our experiments, we employ two prominent LLMs as the base model, i.e., QWen2-7B (Yang
et al., 2024) and Meta-Llama-3-8B (Dubey et al., 2024). For comparative analysis, we consider the
following three types of baseline methods:

• Official Chat LLMs consist of the official Chat LLMs that have undergone both instruction tun-
ing and preference alignment using closed-source data. Here, we select two official chat LLMs
corresponding to our selected base models, including QWen2-7B-Chat and Llama-3-8B-Instruct.

• Reimplemented Chat LLMs are developed by us following the processes of instruction tuning and
alignment. Based on our selected three base LLMs, we conduct supervised fine-tuning (SFT) using
TULU-V2-mix, followed by direct preference optimization (DPO) with UltraFeedback.

• Continual Pre-training Augmented LLMs include domain knowledge-enhanced Chat LLMs which
initially undergo continual pre-training (CPT) with our domain-specific corpus, followed by the
same implementation of supervised fine-tuning (SFT) and direct preference optimization (DPO)
using TULU-V2-mix and UltraFeedback as open-source chat LLMs.

2https://dumps.wikimedia.org/enwiki/20240301/
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Table 4: The categorization of the evaluation benchmarks

Specialized
Domain

Wiki NQ, TQ

Math GSM8K, MATH

Code MBPP, HumanEval

General
Domain

Reading
Comprehension RACE-Hard, OpenBookQA

Complex
Reasoning HellaSwag, CSQA, PIQA

Examination MMLU, BBH, ARC-Challenge, C-EVAL

Instruction
Following MT-Bench

A.4 EVALUATION BENCHMARKS AND METRICS

For a comprehensive evaluation, we evaluate seven distinctive capabilities of LLMs based on a total
of 16 representative NLP datasets:

• Factual Question Answering assesses the factual knowledge of LLMs in the Wikipedia domain.
We employ NaturalQuestion (NQ) (Kwiatkowski et al., 2019) and TrivialQA (TQ) (Joshi et al.,
2017) datasets and use the Exact Match (EM) metric to determine if the prediction is the same as the
gold answer.

• Math Reasoning tests the LLMs’ ability to solve mathematical problems. We use the
GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021b) datasets, and evaluate predictions
using the Accuracy metric.

• Code Reasoning tests the LLMs’ ability to solve programming problems. We use MBPP (Austin
et al., 2021) and HumanEval (Chen et al., 2021) datasets, with the Pass@K metric assessing the
likelihood that at least one of the top-K generated code samples for a problem passes the unit tests.

• Reading Comprehension measures the LLMs’ ability to comprehend a passage and answer related
questions. We use the RACE-Hard (Lai et al., 2017) and OpenBookQA (Mihaylov et al., 2018)
datasets, and employ the Exact Match (EM) metric.

• Commonsense Reasoning evaluates the ability to answer questions using commonsense knowl-
edge. We use the HellaSwag (Zellers et al., 2019), CSQA (Talmor et al., 2019), and PIQA (Bisk
et al., 2020) datasets, and employ the Accuracy metric.

• Examination includes comprehensive and challenging benchmarks designed to assess problem-
solving ability across various domains. We use MMLU (Hendrycks et al., 2021a), BBH (Suzgun
et al., 2023), and ARC-Challenge (Bhakthavatsalam et al., 2021) for English examinations and C-
EVAL (Huang et al., 2023) for Chinese. Both benchmarks are evaluated using the Accuracy metric.

• Instruction Following assesses the LLMs’ ability to engage in coherent, informative, and engaging
conversations. We use the MT-Bench (Zheng et al., 2023) datasets. For evaluation, we utilize the
GPT-4-turbo 3 as the judging model following the OpenCompass settings, assigning a score ranging
from 1 to 10 to the answer. We multiply this score by ten, resulting in a final score of 100.

Specifically, we evaluate the above datasets based on the OpenCompass framework (Contributors,
2023), which is a one-stop platform for large model evaluation, aiming to provide a fair, open, and
reproducible benchmark for large model evaluation. We summarize the datasets in Table 4

A.5 IMPLEMENTATION DETAILS

For both models, we conduct the mixed continual pre-training with the same hyper-parameters.
Specifically, we set the batch size as 1920, the maximal sequence length as 2048, the maximal and
minimal learning rate as 2e-5 and 5e-6, and the co-efficient α as 0.8. Then, for LLaMA3-8B model,
we select the top 10,000 samples and 10,000 samples for SFT and DPO, respectively. For the SFT

3https://platform.openai.com/docs/models
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stage, we perform 2 epochs of training with a learning rate of 5e-6 and a batch size of 128. For the
DPO stage, we perform 2 epochs of training with a learning rate of 5e-7, a batch size of 128, and
a β of 0.01. For the QWen2-7B model, we select the top 10,000 samples and 10,000 samples for
SFT and DPO, respectively. For the SFT stage, we perform 2 epochs of training with a learning
rate of 5e-7 and a batch size of 128. For the DPO stage, we perform 2 epochs of training with a
learning rate of 1e-7, a batch size of 128, and a β of 0.1. When evaluating, we set the temperature
as 0.3 and top-p as 0.9 for MT-Bench according to the official guideline and set the temperature as
0 for other benchmarks to control the randomness. As for the computational cost, the additional
overhead introduced by the instruction and alignment data may be negligible, which only introduces
approximately 0.09B tokens in continual pre-training and 0.008B tokens for totally selected 20K
pairs in the format alignment stage.
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