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ABSTRACT

Local feature detection and description play an important role in many computer
vision tasks, which are designed to detect and describe keypoints in “any scene”
and “any downstream task”. Data-driven local feature learning methods need to
rely on pixel-level correspondence for training, which is challenging to acquire at
scale, thus hindering further improvements in performance. In this paper, we pro-
pose SAMFeat to introduce SAM (segment anything model), a foundation model
trained on 11 million images, as a teacher to guide local feature learning and
thus inspire higher performance on limited datasets. To do so, first, we construct
an auxiliary task of Pixel Semantic Relational Distillation (PSRD), which distil-
lates feature relations with category-agnostic semantic information learned by the
SAM encoder into a local feature learning network, to improve local feature de-
scription using semantic discrimination. Second, we develop a technique called
Weakly Supervised Contrastive Learning Based on Semantic Grouping (WSC),
which utilizes semantic groupings derived from SAM as weakly supervised sig-
nals, to optimize the metric space of local descriptors. Third, we design an Edge
Attention Guidance (EAG) to further improve the accuracy of local feature detec-
tion and description by prompting the network to pay more attention to the edge
region guided by SAM. SAMFeat’s performance on various tasks such as image
matching on HPatches, and long-term visual localization on Aachen Day-Night
showcases its superiority over previous local features. The release code is avail-
able at supplementary material.

1 INTRODUCTION

Local feature detection and description is a basic task of computer vision, which is widely used
in image matching (Balntas et al., 2017), structure from motion (SfM) (Schonberger & Frahm)
2016), simultaneous localization and mapping (SLAM) (Mur-Artal & Tardds, [2017), visual local-
ization (Sattler et al.,|2018a)), and image retrieval (Wang et al.,2019) tasks. Traditional schemes such
as SIFT (Lowe, 2004), and ORB (Rublee et al.,|2011) based hand-crafted heuristics are not able to
cope with drastic illumination and viewpoint changes (Balntas et al.| 2017). Under the wave of
deep learning, data-driven local feature learning methods (DeTone et al., 2018a; Tyszkiewicz et al.}
2020) have recently achieved excellent performance. These methods require training local descrip-
tors based on completely accurate and dense ground truth correspondences (Li & Snavely, [2018))
between image pairs, but this type of data is difficult to collect. In addition, since local features are
required to describe “any scenarios”, it is impossible to cover all scenarios with a limited dataset.
Recently, foundation models (Bommasani et al., 2021) have revolutionized the field of artificial
intelligence. These models, trained on billion-size datasets, presented strong zero-shot generaliza-
tion capabilities across a variety of downstream tasks. In this study, we advocate the integration of
SAM [Kirillov et al.| (2023)), a foundation model that is able to segment “anything” in “any scene”,
into the realm of local feature learning. This synergy enhances the robustness and enriches the
supervised signals available for local feature learning, encompassing high-level category-agnostic
semantics and detailed low-level edge structure information.

In recent years, several works have attempted to introduce pixel-level semantics of images (i.e.
semantic segmentation) into local feature learning-based visual localization. Some methods utilized
semantic information to filter keypoints (Xue et al.,[2022) and optimize matching (Schonberger et al.,
2018)), while other works utilized semantic information (Xue et al. [2023) to guide the learning
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Figure 1: (a): Difference between segment anything model and common semantic segmentation
model. (b): Schematic diagram of proposed SAMFeat.

of keypoints detection and improve the performance of the local descriptors in a specific visual
localization setting by using feature-level distillation. However, these methods based on visual
localization pipeline design are difficult to generalize to common feature matching tasks, as shown
in Fig.[I](a). On the one hand, semantic segmentation can only assign semantics to a few categories
(e.g. cars, streets, people) which is difficult to generalize to generic scenarios. On the other hand,
the semantic information for semantic segmentation is coarse-grained, e.g., pixels of wheels and
windows are given the same labels for a car. This is detrimental to mining the unique discriminative
properties of local features.

The recent SAM (Kirillov et al.} [2023)) is a visual foundation model trained on 11 million images
that can segment any objects based on prompt input. Compared to semantic segmentation models,
SAM has three unique properties that can be used to fuel local feature learning. i) SAM is trained on
a large amount of data, and therefore, can segment any object and can be adapted to any scene rather
than being limited to street view. ii) SAM can obtain fine-grained part-level semantic segmentation
results, thus allowing for more accurate modeling of semantic relationships between pixels. In ad-
dition, SAM can derive fine-grained category-agnostic semantic masks that can be used as semantic
groupings of pixels to guide local feature learning. iii) SAM can detect more detailed edges, whereas
edge regions tend to be more prone to keypoints and contain more distinguishing information. In
our SAMFeat, we propose three special strategies to boost the performance of local feature learning
based on these three properties of SAM. First, we construct an auxiliary task of Pixel Semantic Re-
lational Distillation (PSRD) for distilling category-agnostic pixel semantic relations learned by the
SAM encoder into a local feature learning network, thus using semantic discriminative to improve
local feature description. Second, we develop a technique called Weakly Supervised Contrastive
Learning Based on Semantic Grouping (WSC) to optimize the metric space of local descriptors
using SAM-derived semantic groupings as weakly supervised signals. Third, we design an Edge
Attention Guidance (EAG) to further improve the localization accuracy and description ability of
local features by prompting the network to pay more attention to the edge region. Since the SAM
model is only used as a teacher during training, our SAMFeat can efficiently extract local features
during inference without burdening the computational consumption of the SAM encoder.

2 RELATED WORK

Local Features and Beyond. Early hand-crafted local features have been investigated for decades
and are comprehensively evaluated in (Mikolajczyk & Schmid, [2005)). In the wave of deep learn-
ing, many data-driven learnable local features have been proposed for improving detectors based

on different focuses on (Mishkin et al.| 2018; [Barroso-Laguna et al.,2019), descriptors
2017} Mishchuk et al. [2017a; [Tian et al. [2019; |Luo et al.l 2019), and end-to-end detection and




Under review as a conference paper at ICLR 2024

description (Y1 et al., [2016; Ono et al.l 2018a; [DeTone et al.| [2018bj, Revaud et al., |2019a} Dus-
manu et al., [2019a; Revaud et al., 2019a; [Luo et al., [2020a; [Wang et al., [2022). Beyond localized
features, some learnable advanced matchers have recently been developed to replace the traditional
nearest neighbor matcher (NN) to get more accurate matching results. Sparse matchers such as
SuperGlue (Sarlin et al.l 2020) and LightGlue (Lindenberger et al., 2023) take off-the-shelf local
features as input to predict matches using a GNN or Transformer, however, their time complexity
scales quadratically with the number of keypoints. Dense matchers (Sun et al., 2021} Yu et al., 2023
compute the correspondence between pixels end-to-end based on the correlation volume, while they
spend more memory and space consumption than sparse matchers (Xue et al.| 2023). Our work
centers on enhancing the efficiency and performance of an end-to-end generalized local feature
learning approach. We aim to achieve performance comparable to advanced matchers while only
using nearest-neighbor matching across various downstream tasks. This is particularly crucial in
resource-constrained scenarios demanding high operational efficiency.

Segment Anything Model. Segment Anything Model (SAM) (Kirillov et al,2023) has made sig-
nificant progress in breaking the boundaries of segmentation, greatly promoting the development of
foundation models for computer vision. SAM incorporates prompt learning techniques in the field
of NLP to flexibly implement model building and builds an image engine through interactive annota-
tions, which performs better in techniques such as instance analysis, edge detection, object proposal,
and text-to-mask. SAM is specifically designed to address the challenge of segmenting a wide range
of objects in complex visual scenes. Unlike traditional approaches that focus on segmenting specific
object classes, SAM’s primary objective is to segment anything, providing a versatile solution for
diverse and challenging scenarios. Many works (He et al.,|2023}; Kristan et al.,|2021)) now build upon
SAM for downstream vision tasks such as medical imaging, video, data annotation, etc (Zhang et al.,
2023)). Unlike them, we advocate for the application of SAM to local feature learning. To the best of
our knowledge, our work is the first to apply SAM to segmentation-independent vision tasks. Since
local feature learning has high operational efficiency requirements, it is not feasible to incorporate
SAM directly into the pipeline, so we treat SAM as a teacher to bootstrap local feature learning, thus
using SAM only in the training phase.

Semantics in Local Feature Learning. Prior to our work, semantics had only been introduced in
the visual localization task to alleviate the limitations of low-level local features when dealing with
severe image variations. Some early works incorporated semantic segmentation into the visual local-
ization pipeline for filtering matching points (Huang et al., 2021} Hu et al., 2020)), improving 2D-3D
matching (Toft et al.,[2018;|Shi et al.||2020), and estimating camera position (Toft et al.,2017)). Some
recent works (Fan et al., 2022; |Xue et al., 2023) have attempted to introduce semantics into local
feature learning to improve the performance of visual localization. Based on the assumption that
high-level semantics are insensitive to photometric and geometric, they enhance the robustness of
local descriptors on semantic categories by distilling features or outputs from semantic segmentation
networks. However, semantic segmentation tasks can only segment certain specific categories (e.g.,
visual localization-related street scenes), preventing such approaches from generalizing to open-
world scenarios and making them effective only on visual localization tasks. In contrast, we intro-
duce SAM for segmenting any scene as a distillation object and propose the category-agnostic Pixel
Semantic Relational Distillation (PSRD) scheme to enable local feature learning to enjoy semantic
information in scenes beyond visual localization. In addition, we also propose Weakly Supervised
Contrastive Learning Based on Semantic Grouping (WSC) and Edge Attention Guidance (EAG) to
further motivate the performance of local features based on the special properties of SAM. Based
on the above improvements, our SAMFeat makes it possible for local feature learning to more fully
utilize semantic information and benefit in a wider range of scenarios.

3 METHODOLOGY

3.1 PRELIMINARY

Segment Anything Model (SAM). SAM (Kirillov et al.,[2023) is a newly released visual foundation
model for segmenting any objects and has strong zero-shoot generalization due to the fact that it is
trained using 11 million images and 1.1 billion masks. Due to its scale, model distillation (Hinton
et al} 2015) is deployed in this work. We freeze the weights of SAM and use its output as pseudo-
ground truth to guide more accurate and robust local feature learning.
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Figure 2: The overview of SAMFeat. Notice that SAM is only applied in the training phase, while
there is no computational cost in the inference phase.

Baseline. To enhance clarity and simplicity, our SAMFeat takes the classic SuperPoint’s (DeTone
et al., |2018a) VGG-styled backbone and attention-weighted descriptor loss from its latest variant
MTLDesc (Wang et al., 2022) as the baseline. The detailed network structure is shown in Fig-
ure 2] Specifically, we use a lightweight eight-layer VGG-style backbone network to extract fea-
ture maps. For a image I with size  x W , we concatenate multiscale feature map outputs
€y € RHXW><647 Cy € R%HX%WXGZL’ Cs € R%HxinlQS’ C, € R%HxémeS) delivered to
the keypoint detection head (det head), edge head (edge head), attention head (att head), and de-
scriptor head (des head). In addition, we add a distillation head to distill the semantic representation
of SAM to enhance the Cy feature map. Each head consists of a lightweight 3 x 3 convolutional
layer. We adopt SuperPoint’s paradigm of using pseudo-labeled keypoints to train keypoint detection
and using metric learning to optimize local descriptors. In particular, we adopt the attention-based
descriptor optimization paradigm (i.e. L., in Figure2)) proposed in the recent MTLDesc for local
descriptor learning.

3.2 GIFTS FROM SAM

Shown in Figure@ we input the image I into the SAM (Kirillov et al.| [2023)) with frozen parameters
and then simply processed to produce the following three outputs for guided local feature learning.

Pixel-wise Representations Relationship: SAM’s image encoder trained from 11 million images
is used to extract image representations for assigning semantic labels. The representation of the
encoder outputs implies a valuable semantic correspondence, i.e., pixels of the same semantic
object are closer together. To eliminate the effect of specific semantic categories on generaliz-
ability, we adopt relations between representations as distillation targets. SAM’s encoder outputs
F € ReHsWxC where C is the channel number for feature map. The pixel-wise representations

relationship can be defined as R € Rs#sWxsHsW where R(i, j) = %

Semantic Grouping: We use the automatically generating masks functionﬂ of SAM to obtain fine-
grained semantic groupings. Specifically, it works by sampling single-point input prompts in a grid
over the image, and SAM can predict multiple masks from each of them. Then, masks are filtered
for quality and deduplicated using non-maximal suppression (Kirillov et al., 2023). The semantic
grouping of the output can be defined as G € RT*WXN where N is the number of semantic
groupings. Notice that semantic grouping differs from semantic segmentation in that each grouping
does not correspond to a specific semantic category (e.g. buildings, car, and person).

Edge Map: The binary edge map £ € R¥*Wx1 ig derived directly E| from the segmentation results
of SAM, which highlights the fine-grained object boundaries.

"https://github.com/facebookresearch/segment-anything
Zhttps://github.com/ymgw55/segment-anything-edge-detection
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3.2.1 SAMFEAT

Thanks to the gifts of the foundation model, SAM, we are able to consider SAM as a knowledge-
able teacher with intermediate products and outputs to guide the learning of local features. First,
we employ Pixel Semantic Relational Distillation (PSRD) to distill the category-agnostic semantic
relations in the SAM encoder into SAMFeat, thereby enhancing the expressive power of local fea-
tures by introducing semantic distinctiveness. Second, we utilize the high-level semantic grouping
of SAM outputs to construct Weakly Supervised Contrastive Learning Based on Semantic Group-
ing (WCS), which provides cheap and valuable supervision for local descriptor learning. Third,
we design an Edge Attention Guidance (EAG) to utilize the low-level edge structure discovered by
SAM to guide the network to pay more attention to these edge regions, which are more likely to
be detected as keypoints and rich in discriminative information during local feature detection and
description.

Pixel Semantic Relational Distillation. SAM aims to obtain the corresponding semantic masks
based on the prompt, so the encoder output representation of SAM is rich in semantic discriminative
information. Unlike semantic segmentation, SAM does not project pixels to a specified semantic
category, so we resort to distilling the semantics contained in the encoder by exploiting the rela-
tive relationship between pixels (i.e., pixel representations of the same object are closer together).
For SAM, we derive the rela-

tion matrix R using the features object B

1.0 0.9 0.2 0.1 1.0 0.9 03 0.1

extracted by the fixed-parameter 0o 10 02 03 i 0 10 02 03
SAM encoder as described in SR < R
Section 3.2. For our SAM- 0202 1.0 08 0302 1.0 0.7
Feat, CY is exported from Conv7 §o.1 03 08 1.0 0010307 10
layer and then imported into the . : :

AOE . d object A X X R . . .
distillation head to get C§ € Relationship matrix Relationship matrix

1 1 . !
ReHx§Wx256 Followmg the R from SAM R from SAMFeat

operations reported in Sec. [3.2] Figure 3: Schematic diagram of Pixel Semantic Relational Dis-
the semantic relation matrix of tillation.

C¢ can be defined as R'. See ap-

pendix section 1.5 for more details. As shown in Figure [3] we distill the semantic relation matrix
by imposing L1 loss in order to obtain semantic discriminativeness for C§. R’ and R are the
corresponding student (SAMFeat) and teacher (SAM) relation matrix. Pixel semantic relational
distillation loss L4; can be defined as:

/

(2]
N Y

(FHXEW),(3Hx W)
Zi,j |R’LJ -R

Edz’s =

)

where N is the number of matrix elements, i.e., (5 H x §W)x (3 H x §W). Since PSRD is category-
agnostic, it is possible to generalize local feature distillation semantic information to generic scenar-

Weakly Supervised Contrastive Learning Based on
Semantic Grouping. As shown in Figure ] we use
semantic groupings derived from SAM to construct
weakly supervised contrastive learning to optimize the
description space of local features. Our motivation is
very intuitive: i.e., pixels belonging to the same se-
mantic grouping should be closer in the description
space, and on the contrary pixels of different group-
ings should be kept at a distance in the description
space. However, since two pixels belonging to the
same grouping do not imply that their descriptors are
the closest pair, forcing them to align will impair the
discriminative properties of pixels within the same
grouping. Therefore, semantic grouping can only pro-
vide weakly supervised constraints, and we maintain the discriminatory nature within the semantic
grouping by setting a margin in optimization. Given the sampling points set P € R¥, the positive

Different colored stars represent sampling
points in different semantic groupings.
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sample average distance D, can be defined as:

J
1
Dpos = > > " dis(P;, Py), where G(i) = G(j) and i # j. 2)
i,
Here dis(P;, P;) means calculate the Euclidean distance between the local descriptors corresponding
to the two sampling points P; and P;. G(-) denotes the indexed semantic grouping category. J
denotes the number of positive samples, noting that since J is not consistent for each image, we take

the average to denote the positive sample distance. Similarly, the negative sample average distance
D4 can be defined as:

K
1 . ) )
Dipeg = e Zdls(PZ-7 Pj), where G(i) # G(j), 3)
i,
where K denotes the number of negative samples. Thus, the final £,,s. loss can be defined as:
exp(max(Dpos, M)/T)

Luwse = — log(exp(max(Dpom M) + Dieg)/T)

), 4)

where M is a margin parameter used to protect distinctiveness within semantic groupings, and T
means the temperature coefficient.

transpose Edge Attention Guidance Module

E F 1 HxWxC
k X

out

HxWxC

Figure 5: Details of Edge Attention Guidance Module.

Edge Attention Guidance. Edge regions are more worthy of the network’s attention than mundane
regions. On one hand, corner and edge points in the edge region are more likely to be detected as
keypoints. On the other hand, the edge region contains rich information about the geometric struc-
ture thus contributing more to the discriminative nature of the local descriptor. To enable the network
to better capture the details of edge areas and improve the robustness of descriptors, we propose the
Edge Attention Guidance Module, which can guide the network to focus on edge regions. As shown
in Figure |[2| we first set up an edge head to predict the edge map E' and use the SAM output of the
edge map for supervision. The edge loss L.q4. is denoted as

HxW

Leage = Z B — Ej). (5)

We then fuse the predicted edge map F " into the local feature detection and description pipeline to
bootstrap the network.

1) Local Feature Detection: As shown in Figure 2| we concat feature maps {C1, Cs, C3, Cy}
from different scales and then feed into the detection head to predict the heatmap for local feature
detection. In particular, we enhance C'3 when performing the concat operation, i.e., we pixel-wise
dot product the edge map E’ into Cj3, due to the fact that C3 coincides with the shape of the edge
map E’.

2) Local Feature Description: We filter the edge features by the predicted edge map and model the
features of the edge region by a self-attention mechanism to encourage the network to capture the
information of the edge region. Specifically, the predicted edge map E’ from the edge head, and the
multi-scale feature maps Fj,, extracted from the backbone are fed into the Edge Attention Guidance
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Module. As shown in Figure [5| we first fuse £ and F},, by applying a pixel-wise dot product to
obtain an edge-oriented feature map F,4.. Then we apply different convolutional transformations to
the given Fiq4. to get query g, key k, and value v respectively. We then calculate the attention score
using the dot product between query and key. Next, we use the softmax function on the attention
score to obtain the attention weight, which is used to calculate the edge-enhanced feature maps with
the value feature vector. Finally, the edge-enhanced feature maps and the Fj, are added to obtain
the output feature maps F,,;.

Total Loss. The total loss £ can be defined as:
L= Edet + Edes + Edis + Eedge + ['wsc~ (6)

Lagis, Ledge and L, sc are defined in section while L4 is the cross entropy loss for supervised
keypoint detection and L. is the attention weighted triplet loss from MTLDesc (Wang et al.,2022)
for optimizing the local descriptors. Individual weights for each loss are not assigned: each loss
shares equal weights. This independence from hyper-parameters, again, shows the robustness of
SAMFeat.
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Figure 6: Comparisons on HPatches dataset with different thresholds Mean Matching Accuracy.
Our SAMFeat achieves higher average local feature matching accuracy than other state-of-the-art at
all thresholds.

4 EXPERIMENTS

Implementation. To generate our training data with dense pixel-wise correspondences, we rely on
the MegaDepth dataset (Li & Snavely, [2018), a rich resource containing image pairs with known
pose and depth information from 196 diverse scenes. Specifically, we use MTLDesc (Wang et al.,
2022) E| released megedepth image and the correspondence ground truth for training. In our ex-
periment, we meticulously configured the parameters to establish a consistent and efficient training
process. Hyper-parameters are set as follows. The learning rate of 0.001 enables gradual parameter
updates, and the weight decay of 0.0001 helps control model complexity and mitigate overfitting.
With a batch size of 14, our model processes 14 samples per iteration, striking a balance between
computational efficiency and convergence. M and T are set to 0.07 and 5. Training spans 30 epochs
to ensure comprehensive exposure to the data, with a total training time of 3.5 hours. By meticu-
lously defining these parameters and configurations, we establish a robust experimental setup that
ensures replicability and accurate evaluation of our model’s performance. More detailed information
about parameter tuning and ablation experiments can be found in the supplementary material.

Image Matching. We evaluate the performance of our method in the image-matching tasks on the
most popular feature learning matching benchmark: HPatches (Balntas et al.,[2017). The HPatches
dataset consists of 116 sequences of image patches extracted from a diverse range of scenes and
objects. Each image patch is associated with ground truth annotations, including key point loca-
tions, descriptors, and corresponding homographies. We follow the same evaluation protocol as in

3https://github.com/vignywang/MTLDesc
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Table 1: Image Matching Performance Comparison on HPatches dataset.

Methods MMA @3 AUC @5
SIFT ;jcv2012 (Lindeberg:2012) 50.1 49.6
HardNet newrrps2017 (Mishchuk et al.| 2017b) 62.1 56.9
DELF ;ccva017 (Noh et al.| [2017) 50.7 49.7
SuperPoint ¢y priwv201s (DeTone et al.,2018a)) 65.7 59.0
Lf-net yeurrps201s (Ono et al., 2018b) 53.2 48.7
ContextDesc ¢y pr2o19 (Luo et al.,[2019) 63.2 58.3
D2Net ¢v pr2o19 (Dusmanu et al.| 2019b) 40.3 37.8
R2D2 newrrps2019 (Revaud et al., [2019b)) 72.1 64.1
DISK NeurIP.S2020 (Tyszkiewicz et al., 2020) 72.2 69.8
ASLFeat ¢y proo2o (Luo et al., 2020b) 72.2 66.9
LLF w acv2021 (Suwanwimolkul et al., [2021)) 74.0 66.8
Key.Net 7p anrr2022 (Barroso-Laguna & Mikolajczyk, 2022) 72.1 56.0
ALIKE 75702022 (Zhao et al.| 2022) 70.5 69.0
MTLDesc 44 Ar2022 (Wang et al., 2022) 78.7 71.4
PoSFeat ¢y progos (Li et al. 2022) 75.3 69.2
SFD2 v pragas (Xue et al., 2023) 70.6 64.8
TPR cv pRr2o2s (Wang et al., 2023) 79.8 73.0
SAMFeat (Ours) 82.1 74.4

D2-Net (Dusmanu et al., 2019b)), where eight unreliable scenes are excluded. To ensure an equitable
comparison, we align the features extracted by each method through nearest-neighbor matching. A
match is deemed accurate if its estimated reprojection error is lower than a predetermined matching
threshold. The threshold is systematically varied from 1 to 10 pixels, and the mean matching ac-
curacy (MMA) across all pairs is recorded, indicating the proportion of correct matches relative to
potential matches. Subsequently, the area under the curve (AUC) is computed at 5px based on the
MMA. The comparison between SAMFeat and other state-of-the-art methods on HPatches image
matching is visualized in Figure[6] The MMA @3 threshold against other state-of-the-art methods
under each threshold is listed in Table[l] SAMFeat achieved the highest MMA @3 even compared
to the most updated feature learning model in 2023 top-tier conferences.

Visual Localization. To further validate the efficacy of our approach when dealing with intricate
tasks, we assess its performance in the area of visual localization. This task involves estimating the
camera’s position within a scene using an image sequence and serves as an evaluation benchmark
for local feature performance in long-term localization scenarios, without requiring a dedicated lo-
calization pipeline. We utilize the Aachen Day-Night v1.1 dataset (Sattler et al.,|2018b)) to showcase
the impact on visual localization tasks. All methodologies are objectively compared on the official
evaluation server to ensure fairness in the assessment. The assessment is carried out through The
Visual Localization Benchmark, employing a predetermined visual localization framework rooted
in COMLAP (Schonberger & Frahm| 2016). We tally the number of accurately localized images
under three distinct error thresholds, namely (0.25m, 2°), (0.5m, 5°), and (5m, 10°), signifying the
maximum allowable position error in both meters and degrees. We employ the Nearest Neighbors’
matcher for a justifiable and equitable comparison among all methods. Referring to Table[2] we cate-
gorize current state-of-the-art methods into two categories: G contains methods that are designed for
general feature learning tasks; L contains methods that are designed, tuned, and tested specifically
for localization tasks, and they typically perform poorly outside of specific localization scenarios, as
shown in Table [l SAMFeat achieved the top performance among all general methods, while also
revealing a competitive performance among methods that are designed specifically for visualization.

Ablation Study. Table [3] demonstrates the efficacy of the components within our network as we
progressively incorporate Pixel Semantic Relational Distillation (PSRD), Weakly Supervised Con-
trastive Learning Based on Semantic Grouping (WCS), and Edge Attention Guidance (EAG). The
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Table 2: Visual Localization Performance Comparison on Aachen V1.1. Category “L” means local
feature methods specifically designed for visual localization tasks, and “G” means generalized local
feature methods.

Accuracy @ Thresholds (%) 1
Day Night
0.25m,2°/0.5m,5°/5m,10°

Category Method

SeLF 77pogos (Fan et al., [2022)

L SFD2 CV PR2023 (Xue et al., 2023)

88.2/96.0/98.7

75.0/86.8/97.6
78.0/92.1/99.5

SIFT I1JCV2012 (LOWC, 2004)
SuperPoint oy prw2018 (DeTone et al., [2018b)
D2-Net ¢v pr2o19 (Dusmanu et al., [2019al)
R2D2 newrrps2019 (Revaud et al.l [2019al)
ASLFeat v progoo (Luo et al., [2020a)

CAPS gccva020 (Wang et al.||2020)

72.2178.4/81.7
87.9/93.6/96.8
84.1/91.0/95.5
88.8/953/97.8
88.0/95.4/98.2
82.4/91.3/959

19.4/23.0/27.2
70.2/84.8/93.7
63.4/83.8/92.1
72.3/88.5/94.2
70.7/84.3/94.2
61.3/83.8/95.3

LISRD gccvao2o (Pautrat et al.| 2020) —
DISK neuwrrps2022 (Tyszkiewicz et al., [2020) —
PoSFeat ¢y progoe (Li et al.| [2022) —
MTLDesc 44412022 (Wang et al.,[2022) —
TR cv pRr2023 (Wang et al.,[2023)
SAMFeat (Ours)

73.3/86.9/97.9
73.8/86.2/97.4
73.8/87.4/98.4
74.3/86.9/96.9
74.3/89.0/98.4

90.2/96.0/98.5 75.9/89.5/95.8

effectiveness of each component is reflected by the Mean Matching Accuracy at the pixel three
threshold on the HPatches Image Matching task. Our baseline is trained using SuperPoint’s (DeTone
et al., 2018a) VGG-styled backbone along with its detector supervision and attention-weighted
triplet loss (Wang et al.l 2022)) for descriptor learning. Following the addition of the PSRD, the
model’s performance notably improves due to better image feature learning. The introduction of
the WCS further enhances accuracy by augmenting the discriminative power of descriptors with
semantics. It demonstrates superior performance as it better preserves the inner diversity of objects
by optimizing sample ranks. Lastly, the inclusion of the EAG bolsters the network’s capability to
embed object edge and boundary information, resulting in further enhancements in accuracy.

Table 3: Ablation Study on SAMFeat. v'means denotes applied components.

PSRD EAG WCS MMA @3
75.7
v 78.6
v v 80.9
v v v 82.1

5 CONCLUSION

In this study, We introduce SAMFeat, a local feature learning method that harnesses the power
of the Segment Anything Model (SAM). SAMFeat encompasses three innovations. Firstly, we
introduce Pixel Semantic Relational Distillation (PSRD), an auxiliary task aimed at distilling the
category-agnostic semantic information acquired by the SAM encoder into the local feature learn-
ing network. Secondly, we present Weakly Supervised Contrastive Learning Based on Semantic
Grouping (WSC), a technique that leverages the semantic groupings derived from SAM as weakly
supervised signals to optimize the metric space of local descriptors. Furthermore, we engineer the
Edge Attention Guidance (EAG) mechanism to elevate the accuracy of local feature detection and
description. Our comprehensive evaluation of tasks such as image matching on HPatches and long-
term visual localization on Aachen Day-Night consistently underscores the remarkable performance
of SAMFeat, surpassing previous methods.
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