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Abstract

Data-efficient image classification using deep neural
networks in settings, where only small amounts of labeled
data are available, has been an active research area in the
recent past. However, an objective comparison between
published methods is difficult, since existing works use dif-
ferent datasets for evaluation and often compare against un-
tuned baselines with default hyper-parameters. We design a
benchmark for data-efficient image classification consisting
of six diverse datasets spanning various domains (e.g., nat-
ural images, medical imagery, satellite data) and data types
(RGB, grayscale, multispectral). Using this benchmark, we
re-evaluate the standard cross-entropy baseline and eight
methods for data-efficient deep learning published between
2017 and 2021 at renowned venues. For a fair and realis-
tic comparison, we carefully tune the hyper-parameters of
all methods on each dataset. Surprisingly, we find that tun-
ing learning rate, weight decay, and batch size on a sepa-
rate validation split results in a highly competitive baseline,
which outperforms all but one specialized method and per-
forms competitively to the remaining one.

1. Introduction

Many recent advances in computer vision and machine
learning in general have been achieved by large-scale pre-
training on massive datasets [8, 7, 22]. As the amount
of data grows, the importance of methodological advances
vanishes. With the number of training samples approaching
infinity, a simple k-nearest neighbor classifier provides op-
timal performance [28]. The true hallmark of intelligence
is, therefore, the ability of learning generalizable concepts
from limited amounts of data.

The research area of deep learning from small data or
data-efficient deep learning has been receiving increasing
interest in the past couple of years [20, 1, 4, 5]. However, an
objective comparison of proposed methods is difficult due
to the lack of a common benchmark. Even if two works use
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Figure 1: Classification accuracy obtained with standard
cross-entropy on ciFAIR-10 with 1% of the training data
for different combinations of learning rate and weight de-
cay. Gray configurations led to divergence.

the same dataset for evaluation, their random sub-samples
of this dataset for simulating a small-data scenario will be
different and not directly comparable.

Fortunately, there recently have been activities to estab-
lish common benchmarks and organize challenges to fos-
ter direct competition between proposed methods [5]. Still,
they are often limited to a single dataset, e.g., ImageNet
[23], which comprises a different type of data than usually
encountered in a small-data scenario.

Moreover, most existing works compare their proposed
method against insufficiently tuned baselines [1] or base-
lines trained with default hyper-parameters [20, 30, 12, 26,
13], which makes it easy to outperform them. However,
careful tuning of hyper-parameters, as one would do in prac-
tice, is crucial and can have a considerable impact on the
final performance, as illustrated in Fig. 1. Here, we evalu-
ated the performance of several combinations of learning
rate and weight decay for a standard cross-entropy clas-
sifier with a Wide ResNet architecture [32] trained on as
few as 1% of the CIFAR-10 training data [14] and evalu-
ated on the ciFAIR-10 test set [2] (see Section 4 for de-
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tails on the training procedure). Typical default hyper-
parameters such as a learning rate of 0.1 and weight decay
of 1× 10−4 as used by [5] would achieve ~46% accuracy
in this scenario, which is entire 12 percentage points be-
low the optimal performance of ~58%. Even works that
do perform hyper-parameter tuning often only optimize the
learning rate and keep the weight decay fixed to some de-
fault from [1× 10−5, 1× 10−4]. Such a procedure results
in similarly suboptimal performance on this small training
dataset, which apparently requires much stronger regular-
ization. We can furthermore observe that the best perform-
ing hyper-parameter combinations are close to an area of
the search space that results in divergence of the training
procedure. This makes hyper-parameter optimization a par-
ticularly delicate endeavor.

In this work, we establish a direct, objective, and infor-
mative comparison by re-evaluating the state of the art in
data-efficient image classification. To this end, we intro-
duce a comprehensive benchmark consisting of six datasets
from a variety of domains: natural images of everyday ob-
jects, fine-grained classification, medical imagery, satellite
images, and handwritten documents. Two datasets con-
sist of non-RGB data, where the common large-scale pre-
training and fine-tuning procedure is not straightforward,
emphasizing the need for methods that can learn from lim-
ited amounts of data from scratch. We will publish the exact
dataset splits of our benchmark upon acceptance to facilitate
the evaluation of novel methods.

Using this benchmark, we re-evaluate eight selected
state-of-the-art methods for data-efficient image classifi-
cation. The hyper-parameters of all methods are care-
fully optimized for each dataset individually on a validation
split, while the final performance is evaluated on a sepa-
rate test split. Surprisingly and somewhat disillusioning,
we find that thorough hyper-parameter optimization results
in a strong baseline, which outperforms seven of the eight
specialized methods published in the recent literature.

In the following, we first introduce the datasets constitut-
ing our benchmark in Section 2. Then, we briefly describe
the methods selected for the comparison in Section 3. Our
experimental setup and training procedure are detailed in
Section 4 and the results are presented in Section 5. Sec-
tion 6 summarizes the conclusions from our study.

2. Datasets
Most works on deep learning from small datasets use

custom sub-sampled versions of popular standard image
classification benchmarks such as ImageNet [23] or CIFAR
[14]. This limited variety bears the risk of overfitting re-
search progress to individual datasets and the domain cov-
ered by them, in this case, photographs of natural scenes and
everyday objects. In particular, this is not the domain typi-
cally dealt with in a small-data scenario, where specialized

data that is difficult to obtain or annotate is in the focus.
Therefore, we compile a diverse benchmark consisting

of six datasets from a variety of domains and with differ-
ent data types and numbers of classes. We sub-sampled all
datasets to fit the small-data regime, with the exception of
CUB [31], which was already small enough. By default,
we aimed for 50 training images per class. This full train-
val split is only used for the final training and furthermore
split into a training (~60%) and a validation set (~40%) for
hyper-parameter optimization. For testing the final models
trained on the trainval split, we used official standard test
datasets where they existed. Only for two datasets, namely
EuroSAT [11] and ISIC 2018 [6], we had to create own test
splits. A summary of the dataset statistics is given in Ta-
ble 1. In the following, we briefly describe each individual
dataset used for our benchmark. Example images from all
datasets are shown in Fig. 2.

ImageNet-1k [23] has been the standard benchmark for
image classification for almost a decade now and also
served as a basis for challenge datasets for data-efficient
image classification [5]. It comprises images from 1,000
classes of everyday objects and natural scenes collected
from the web using image search engines. Due to the large
number of classes, a sub-sample of 50 images per class still
results in a rather large training dataset compared with the
rest of our benchmark.

ciFAIR-10 [2] is a variant of the popular CIFAR-10
dataset [14], which comprises low-resolution images of size
32 × 32 from 10 different classes of everyday objects. To
a large part, its popularity stems from the fact that the low
image resolution allows for fast training of neural networks
and hence rapid experimentation. However, the test dataset
of CIFAR-10 contains about 3.3% duplicates from the train-
ing set [2], which can potentially bias the evaluation. The
ciFAIR-10 dataset [2] provides a variant of the test set,
where these duplicates have been replaced with new images
from the same domain.

Caltech-UCSD Birds-200-2011 (CUB) [31] is a fine-
grained dataset of 200 bird species. Annotating this kind
of images typically requires a domain expert and is hence
costly. Therefore, the dataset is rather small and only com-
prises 30 training images per class. Pre-training on related
large-scale datasets is hence the de-facto standard for CUB
[7, 18, 24, 33], which makes it particularly interesting for
research on data-efficient methods closing the gap between
training from scratch and pre-training.

EuroSAT [11] is a multispectral image dataset based on
Sentinel-2 satellite images of size 64x64 covering 13 spec-
tral bands. Each image is annotated with one of ten land
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Dataset Classes Imgs/Class #Trainval #Test Problem Domain Data Type

ImageNet-1k [23] 1,000 50 50,000 50,000 Natural Images RGB

ciFAIR-10 [14, 2] 10 50 500 10,000 Natural Images RGB (32x32)

CUB [31] 200 30 5,994 5,794 Fine-Grained RGB

EuroSAT [11] 10 50 500 19,500 Remote Sensing Multispectral

ISIC 2018 [6] 7 80 560 1,944 Medical RGB

CLaMM [25] 12 50 600 2,000 Handwriting Grayscale

Table 1: Datasets constituting our benchmark. Except for CUB, we use sub-samples to simulate a small-data scenario.

(a) ImageNet (b) ciFAIR-10 (c) CUB

(d) EuroSAT (e) ISIC 2018 (f) CLaMM

Figure 2: Example images from the datasets included in our benchmark. For EuroSAT, we only show the RGB bands.

cover classes. This dataset does not only exhibit a substan-
tial domain shift compared to standard pre-training datasets
such as ImageNet but also a different number of input chan-
nels. This scenario renders the standard pre-training and
fine-tuning procedure impossible.

Nevertheless, Helber et al. [11] adhere to this procedure
by fine-tuning a CNN pre-trained on RGB images using dif-
ferent combinations of three out of the 13 channels of Eu-
roSAT. Unsurprisingly, they find that the combination of the
R, G, and B channel provides the best performance in this
setting. This limitation to three channels due to pre-training
is a waste of data and potential. In our experiments on a
smaller subset of EuroSAT, we found that using all 13 chan-
nels increases the classification accuracy by 9.5% compared
to the three RGB channels when training from scratch.

ISIC 2018 [6] is a medical dataset consisting of dermo-
scopic skin lesion images, annotated with one of seven pos-
sible skin disease types. Since medical data usually re-
quires costly expert annotations, this domain is important
to be covered by a benchmark on data-efficient deep learn-
ing. Due to the small number of classes, we increase the
number of images per class to 80 for this dataset, so that the
size of the training set is more similar to our other datasets.

CLaMM [25] is a dataset for Classification of Latin
Medieval Manuscripts. It was originally used in the ICFHR
2016 Competition for Script Classification, where the task
was to classify grayscale images of Latin scripts from hand-
written books dated 500 C.E. to 1600 C.E. into one of
twelve script style classes such as Humanistic Cursive,

3
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Praegothica etc. This domain is quite different from that
of typical pre-training datasets such as ImageNet and one
can barely expect any useful knowledge to be extracted
from ImageNet about medieval documents. In addition, the
standard pre-training and fine-tuning procedure would re-
quire the grayscale images to be converted to RGB for be-
ing passed through the pre-trained network, which incurs a
waste of parameters.

3. Methods
In this section, we present the methods whose perfor-

mance has been re-evaluated on our benchmark using the
original code, where available. We selected approaches for
which the authors performed experiments on sub-sampled
versions of standard computer vision datasets to prove their
effectiveness for learning from small datasets.

Cross-entropy loss is the widely used standard loss func-
tion for classification. We use it as a baseline with standard
network architectures and optimization algorithms.

Deep hybrid networks (DHN) represent one of the first
attempts to incorporate pre-defined geometric priors via a
hybrid approach of combining pre-defined and learned rep-
resentations [20, 21]. According to the authors, decreas-
ing the number of parameters to learn could make deep net-
works more data-efficient, especially in settings where the
scarcity of data would not allow the learning of low-level
feature extractors. Deep hybrid networks first perform a
scattering transform on the input image generating feature
maps and then apply standard convolutional blocks. The
spatial scale of the scattering transform is controlled by the
parameter J ∈ N.

Orthogonal low-rank embedding (OLÉ) is a geomet-
ric loss for deep networks that was proposed in [15] to re-
duce intra-class variance and enforce inter-class margins.
This method collapses deep features into a learned linear
subspace, or union of them, and inter-class subspaces are
pushed to be as orthogonal as possible. The contribution of
the low-rank embedding to the overall loss is weighted by
the hyper-parameter λole.

Grad-`2 penalty is a regularization strategy tested in the
context of improving generalization on small datasets in
[3]. The `2 (squared) gradient norm is computed with re-
spect to the input samples and used as a penalty in the loss
weighted by parameter λgrad. Among many regularization
approaches evaluated in [3], we have chosen the grad-`2
penalty because it was among the best performing meth-
ods in the experiments with ResNet and sub-sampled ver-
sions of CIFAR-10. Since the grad-`2 penalty is proposed as

an alternative to weight decay, we disable weight decay for
this method. Moreover, differently from the original imple-
mentation, we enabled the use of batch normalization since,
without this component, we obtained extremely low results
in preliminary experiments.

Cosine loss was proposed in [1] to decrease overfitting in
problems with scarce data. Thanks to an `2 normalization of
the learned feature space, the cosine loss is invariant against
scaling of the network output and solely focuses on the di-
rections of feature vectors instead of their magnitude. In
contrast to the softmax function used with the cross-entropy
loss, the cosine loss does not push the activations of the true
class towards infinity, which is commonly considered as a
cause of overfitting [27, 10]. Moreover, a further increase
of performance was obtained by combining the cosine with
the cross-entropy loss after an additional layer on top of the
embeddings learned with the cosine loss.

Harmonic networks (HN) use a set of preset filters based
on windowed cosine transform at several frequencies which
are combined by learnable weights [29, 30]. Similar to hy-
brid networks, the idea of the harmonic block is to have
a useful geometric prior that can help to avoid overfitting.
Harmonic networks use Discrete Cosine Transform filters
which have excellent energy compaction properties and are
widely used for image compression.

Full convolution (F-Conv) was proposed in [12] to im-
prove translation invariance of convolutional filters. Stan-
dard CNNs exploit image boundary effects and learn filters
that can exploit the absolute spatial locations of objects in
images. In contrast, full convolution applies each value in
the filter on all values in the image. According to [12],
improving translation invariance strengthens the visual in-
ductive prior of convolution, leading to increased data effi-
ciency in the small-data setting.

Dual Selective kernel networks have been proposed and
designed in [26] to be more data-efficient. The standard
residual block is modified, keeping the skip connection,
with two forward branches that use 1 × 1 convolutions,
selective kernels [17] and an anti-aliasing module. To fur-
ther regularize training, only one of the two branches is ran-
domly selected in the forward and backward passes, while
at inference, the two paths are weighted equally.

Besides the specialized network architecture, the orig-
inal work uses a combination of three custom loss func-
tions [26]. Despite best efforts, we were unable to derive
the correct implementation from the ambiguous description
of these loss functions in the paper. Therefore, we only use
the DSK network architecture with cross-entropy loss.
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T-vMF Similarity is a generalization of the cosine sim-
ilarity that was recently presented in [13] to make modern
CNNs more robust to some realistic learning situations such
as class imbalance, few training samples, and noisy labels.
As the name suggests, this similarity is mainly based on the
von Mises-Fisher distribution of directional statistics and
built on top of the heavy-tailed student-t distribution. The
combination of these two ingredients provides high com-
pactness in high-similarity regions and low similarity in
heavy-tailed ones. The degree of compactness/dispersion
of the similarity is controlled by the parameter κ.

4. Experimental setup
In this section, we give an overview of the experimental

pipeline that we followed for a fair evaluation of the afore-
mentioned methods on the six datasets that constitute our
benchmark.

4.1. Evaluation metrics

In our benchmark, we evaluate each method on each
dataset with the widely used balanced classification accu-
racy. This metric is defined as the average per-class accu-
racy, i.e., the average of the diagonal in the confusion ma-
trix. We turned our attention toward this metric since some
datasets in our benchmark do not have balanced testing sets.
In any case, for balanced testing sets, the balanced accuracy
corresponds to the standard classification accuracy.

Since our benchmark contains multiple datasets it is hard
to directly make a comparison between two methods with-
out computing an overall ranking. Therefore, we provide
a clearer picture of the relative order of methods by com-
puting the average rank for each one. More precisely, for
each dataset, the methods are ranked by their performance.
So, the best-performing one ranks first, the next second
etc. Then, the ranks are averaged over all datasets for each
method to obtain the average rank per method.

4.2. Data pre-processing and augmentation

All input images were normalized by subtracting the
channel-wise mean and dividing by the standard deviation
computed on the trainval split. We applied standard data
augmentation policies with slightly varying configurations,
adapted to the specific characteristics of each dataset and
problem domain.

For datasets with a small, fixed image resolution, i.e.,
ciFAIR-10 and EuroSAT, we perform random shifting by
12.5% of the image size and horizontal flipping in 50% of
the cases. For all other datasets, we apply scale augmenta-
tion using the RandomResizedCrop transform from Py-
Torch1 as follows: A crop with a random aspect ratio drawn

1https://pytorch.org/vision/stable/transforms.
html#torchvision.transforms.RandomResizedCrop

from [ 34 ,
4
3 ] and an area betweenAmin and 100% of the orig-

inal image area is extracted from the image and then resized
to 224×224 pixels. The minimum fractionAmin of the area
was determined based on preliminary experiments to ensure
that a sufficient part of the image remains visible. It there-
fore varies depending on the dataset: We use Amin = 10%
for ImageNet, Amin = 20% for CLaMM and Amin = 40%
for CUB and ISIC 2018.

For ISIC 2018 and EuroSAT, we furthermore perform
random vertical flipping in addition to horizontal flipping,
since these datasets are completely rotation-invariant and
vertical reflection augments the training sets without drift-
ing them away from the test distributions. On CLaMM, in
contrast, we do not perform any flipping, since handwritten
scripts are not invariant even against horizontal flipping.

4.3. Architecture and optimizer

To perform a fair comparison, we use the same back-
bone CNN architecture for all methods. For ciFAIR-10,
we employ a Wide Residual Network (WRN) [32], pre-
cisely WRN-16-8, which is widely used in the existing liter-
ature for data-efficient classification on CIFAR. For all other
cases, the popular and well-established ResNet-50 (RN50)
architecture [9] is used. Due to the high popularity of resid-
ual networks, the majority of the selected approaches were
originally tested with a RN/WRN backbone. This fact al-
lows us to perform a straightforward porting of the network
setup, when necessary.

We furthermore employ a common optimizer and train-
ing schedule across all methods and datasets to avoid any
kind of optimization bias. We use standard stochastic gra-
dient descent (SGD) with a momentum of 0.9 and weight
decay and a cosine annealing learning rate schedule [19],
which reduces the learning rate smoothly during the train-
ing process. The initial learning rate and the weight decay
factor are optimized for each method and dataset individu-
ally together with any method-specific hyper-parameters as
detailed in the next subsection. The total number of training
epochs for each dataset was chosen according to prelimi-
nary experiments.

4.4. Hyper-parameter optimization

As we have discussed in Section 1 and shown in Fig. 1,
the choice of hyper-parameters can have a substantial ef-
fect on the classification performance that should in no case
be underestimated. Careful hyper-parameter optimization
(HPO) is therefore not only crucial for applying deep learn-
ing techniques in practice but also for a fair comparison be-
tween different methods, so that each can obtain its optimal
performance. Comparing against an untuned baseline with
default hyper-parameters is as good as no comparison at all.

For our benchmark, we hence first tune the hyper-
parameters of each method on each individual dataset us-
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Hyper-Parameter ImageNet ciFAIR-10 CUB EuroSAT ISIC 2018 CLaMM

Learning Rate loguniform(1e-4, 0.1)

Weight Decay loguniform(1e-5, 0.1)

Batch Size {8, 16, 32} {10, 25, 50} {8, 16, 32} {10, 25, 50} {8, 16, 32} {8, 16, 32}
Epochs 200 (500) 500 200 500 500 500

HPO Trials 100 250 100 250 100 100

Grace Period 10 50 10 25 25 25

Table 2: Summary of hyper-parameters searched/used with ASHA [16]. Method specific hyper-parameters were included in
the search space but not included in this table due to space limitations. An epoch number in parentheses means that a higher
number of epochs was used for the final training than for the hyper-parameter optimization.

ing a training and a validation split, which are disjoint from
the test set used for final performance evaluation (see Sec-
tion 2). For any method, we tune the initial learning rate
and weight decay, sampled from a log-uniform space, as
well as the batch size, chosen from a pre-defined set. De-
tails about the search space are provided in Table 2. In addi-
tion to these general hyper-parameters, any method-specific
hyper-parameters are tuned as well simultaneously, consid-
ering the boundaries used in the original paper, if applica-
ble, or lower and upper bounds estimated by ourselves.

For selecting hyper-parameters to be tested and schedul-
ing experiments, we employ Asynchronous HyperBand
with Successive Halving (ASHA) [16] as implemented in
the Ray library2. This search algorithm exploits parallelism
and aggressive early-stopping to tackle large-scale hyper-
parameter optimization problems. Trials are evaluated and
stopped based on their accuracy on the validation split.

Two main parameters need to be configured for the
ASHA algorithm: the number of trials and the grace pe-
riod. The former controls the number of hyper-parameter
configurations tried in total while the latter the minimum
time after which a trial can be stopped. Since the number of
trials corresponds to the time budget available for HPO, we
choose larger values for smaller datasets, where training is
faster. The grace period, on the other hand, should be large
enough to allow for a sufficient number of training iterations
before comparing trials. Therefore, we choose larger grace
periods for smaller datasets, where a single epoch com-
prises fewer training iterations. The exact values for each
dataset as well as the total number of training epochs can be
found in Table 2. These values were determined based on
preliminary experiments with the cross-entropy baseline.

4.5. Final training and evaluation

After optimal hyper-parameters have been found using
the procedure described above, we train the classifier with

2https://docs.ray.io/en/master/tune/

the determined configuration on the combined training and
validation split and evaluate the balanced classification ac-
curacy on the test split. To account for the effect of random
initialization, this training is repeated ten times and we re-
port the balanced average accuracy.

5. Results
In the following, we first present the results of re-

evaluating the eight methods described in Section 3 and the
baseline on our diverse data-efficient image classification
benchmark introduced in Section 2, after carefully tuning
all methods on each dataset. Then, we compare the perfor-
mance obtained by our re-implementations, including the
baseline, with other values published in the literature.

5.1. Data-efficient image classification benchmark

Table 3 presents the average balanced classification ac-
curacy over 10 runs with different random initializations
for all methods and datasets. We performed Welch’s t-
test to assess the significance of the advantage of the best
method for each dataset in comparison to all others. Most
results are significantly worse on a level of 5% than the best
method on the respective dataset, with only two exceptions:
T-vMF Similarity on ciFAIR-10 and Harmonic Networks
on CLaMM perform similar to the best method on these
datasets, which is the baseline in both cases.

This leads us to the main surprising finding of this bench-
mark: When tuned carefully, the standard cross-entropy
baseline is very competitive with the published methods
specialized for deep learning from small datasets. On
ciFAIR-10 and CLaMM, it actually is the best performing
method. It obtains the second rank on CUB and ISIC 2018,
the third rank on ImageNet, and the fourth on EuroSAT.
This amounts to an average rank of 2.3 for the baseline,
which beats all other methods except Harmonic Networks
by a large margin (the next best average rank is only 5.0).

Harmonic Networks are the overall champion of our
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Method ImageNet ciFAIR-10 CUB EuroSAT ISIC 2018 CLaMM Avg. Rank

Cross-Entropy Baseline 44.97 58.22 71.44 90.27 67.19 75.34 2.3

Deep Hybrid Networks [20, 21] 38.69 54.21 52.54 91.15 59.64 65.74 7.0

OLÉ [15] 43.05 54.92 63.32 89.29 62.89 71.42 5.5

Grad-`2 Penalty [3] 25.21 51.03 51.94 79.33 60.21 65.10 9.5

Cosine Loss [1] 37.22 52.39 66.94 88.53 62.42 68.89 7.2

Cosine Loss + Cross-Entropy [1] 44.39 51.74 70.80 88.77 64.52 69.29 5.5

Harmonic Networks [29, 30] 46.36 56.50 72.26 92.09 70.42 74.59 1.5
Full Convolution [12] 36.58 55.00 64.90 90.82 61.70 63.33 6.8

Dual Selective Kernel Networks [26] 45.21 54.06 71.02 91.25 64.78 61.51 4.7

T-vMF Similarity [13] 42.79 57.50 67.43 88.53 65.37 66.40 5.0

Table 3: Average balanced classification accuracy in % over 10 runs and average rank of methods. The best value per dataset
is highlighted in bold font. Numbers in italic font indicate that the result is not significantly worse than the best one on a
significance level of 5%.

benchmark, with an average rank of 1.5. On the four
datasets where they outperform the baseline, however, they
only surpass it by 1%-5%.

Overall, the finding that the vast majority of recent meth-
ods for data-efficient image classification does not even
achieve the same performance as the baseline is sobering.
We attribute this to the fact that the importance of hyper-
parameter optimization is immensely underestimated, re-
sulting in misleading comparisons of novel approaches with
weak and underperforming baselines.

5.2. Published baselines are underperforming

We show further evidence of why tuning the hyper-
parameters and not neglecting the baseline in scenarios with
small datasets is fundamental to perform a fair comparison
between different methods.

We analyzed the original results reported for the meth-
ods considered in our study and selected those that shared a
similar setup. Note that due to the lack of a standard bench-
mark and the common practice of randomly sub-sampling
large datasets, we are unable to conduct a fair comparison
with the same dataset split, training procedure, etc. Still,
our benchmark shares the base dataset and network archi-
tecture with the selected cases. Therefore, we believe that
this analysis is suitable for supporting our point regarding
the common practice of comparing tuned proposed meth-
ods with underperforming baselines.

The results of this analysis are shown in Table 4. Deep
Hybrid Networks and Harmonic Networks were originally
tested with a WRN-16-8 on CIFAR-10 while Full Convolu-
tion employed RN50 on ImageNet. In both cases, training
sets were comprised of 50 images per class. Our baseline

clearly outperforms the original baselines by large margins
(Table 4, left part). More precisely, our models surpass the
reported ones by ~12, ~6, and ~18 percentage points on the
CIFAR and ImageNet setups. Recall also that the ciFAIR-
10 test set is slightly harder than the CIFAR-10 one due to
the removal of duplicates [2].

On the contrary, for the case of the proposed methods
(Table 4, right part), the difference between ours and orig-
inal results is sharply less evident. Our DHN and HN
slightly underperform the original ones by a ~0.5 and ~2
percentage points, respectively. However, this was expected
due to the higher difficulty of ciFAIR-10. On ImageNet in-
stead, our F-Conv model outperforms the original one by ~5
percentage points, confirming once again that careful HPO
can further boost the performance.

From this analysis it seems clear that proposed methods
are usually tuned to obtain an optimal or near-optimal result
while baselines are trained with default hyper-parameters
that have been found useful for large datasets but do not
necessarily generalize to smaller ones.

5.3. Optimal hyper-parameters

For reproducibility, but also to gain further insights into
hyper-parameter optimization for small datasets, we show
the best hyper-parameter combinations found during our
search for the cross-entropy baseline in Fig. 3.

We can observe that small batch sizes seem to be ben-
eficial, despite the use of batch normalization. While the
learning rate exhibits a rather small range of values from
0.7× 10−3 to 7.4× 10−3 across datasets and spans only
one order of magnitude, weight decay varies within a range
of two orders of magnitude from 4.1× 10−4 to 1.8× 10−2.
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Cross-Entropy Baseline Other Methods

Publication Dataset Network Accuracy Method Dataset Network Accuracy

[20] CIFAR-10 WRN-16-8 46.5 ± 1.4 DHN [20] CIFAR-10 WRN-16-8 54.7 ± 0.6

[30] CIFAR-10 WRN-16-8 52.2 ± 1.8 DHN (Ours) ciFAIR-10 WRN-16-8 54.21 ± 0.4

Ours ciFAIR-10 WRN-16-8 58.22 ± 0.9 HN [30] CIFAR-10 WRN-16-8 58.4 ± 0.9

[12] ImageNet RN50 26.39 HN (Ours) ciFAIR-10 WRN-16-8 56.50 ± 0.5

Ours ImageNet RN50 44.97 ± 0.3 F-Conv [12] ImageNet RN50 31.1

F-Conv (Ours) ImageNet RN50 36.58 ± 0.4

Table 4: Summary of ours/published results of the cross-entropy baseline (left) and other methods (right) on similar setups.

Figure 3: Hyper-parameters found with ASHA [16] for the
cross-entropy baseline. BS = batch size, LR = learning rate,
WD = weight decay.

Furthermore, learning rate and weight decay appear to
be negatively correlated. Higher learning rates are usually
accompanied by smaller weight decay factors. The same
correlation can be observed in Fig. 1. A quantitative anal-
ysis over the hyper-parameters of all methods used in our
study instead of only the baseline yields a correlation of
r = −.28, p = .02. After taking the logarithm of learn-
ing rate and weight decay, the correlation is strengthened to
r = −.58, p < .01.

6. Conclusions

In this paper, we laid the foundation for fair and ap-
propriate comparisons among modern data-efficient image
classifiers. The motivations that brought us to our work
are mainly two-fold: the lack of a common evaluation
benchmark with fixed datasets, architectures, and training
pipelines; and the experimental evidence of weak assess-
ments of baselines due to a lack of careful tuning.

The re-evaluation of eight selected state-of-the-art meth-

ods guided us to the surprising and sobering conclusion that
the standard cross-entropy loss ranks second in our bench-
mark only behind Harmonic Networks and, competes with
or outperforms the remaining methods.

With these results in mind, we conclude that the impor-
tance of hyper-parameter optimization is immensely under-
valued and should be taken into account in future studies
to elude misleading comparisons of new approaches with
weak and underperforming baselines. The publication of
our benchmark heads towards this direction and is consid-
ered by ourselves an important contribution for the commu-
nity of data-efficient image classification.
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[3] Alberto Bietti, Grégoire Mialon, Dexiong Chen, and Julien
Mairal. A kernel perspective for regularizing deep neural
networks. In International Conference on Machine Learning
(ICML), 2019. 4, 7

[4] Lorenzo Brigato and Luca Iocchi. A close look at deep learn-
ing with small data. In 2020 25th International Conference
on Pattern Recognition (ICPR), 2021. 1

[5] Robert-Jan Bruintjes, Attila Lengyel, Marcos Baptista Rios,
Osman Semih Kayhan, and Jan van Gemert. VIPriors 1:
Visual inductive priors for data-efficient deep learning chal-
lenges. arXiv preprint arXiv:2103.03768, 2021. 1, 2

[6] Noel Codella, Veronica Rotemberg, Philipp Tschandl,
M Emre Celebi, Stephen Dusza, David Gutman, Brian
Helba, Aadi Kalloo, Konstantinos Liopyris, Michael
Marchetti, et al. Skin lesion analysis toward melanoma
detection 2018: A challenge hosted by the interna-
tional skin imaging collaboration (ISIC). arXiv preprint
arXiv:1902.03368, 2019. 2, 3

8



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

ICCV
#****

ICCV
#****

ICCV 2021 Submission #****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[7] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and
Serge Belongie. Large scale fine-grained categorization and
domain-specific transfer learning. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4109–4118, 2018. 1, 2

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representa-
tions (ICLR), 2021. 1

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016. 5

[10] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-
yuan Xie, and Mu Li. Bag of tricks for image classification
with convolutional neural networks. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
June 2019. 4

[11] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. EuroSAT: A novel dataset and deep learn-
ing benchmark for land use and land cover classification.
IEEE Journal of Selected Topics in Applied Earth Observa-
tions and Remote Sensing, 12(7):2217–2226, 2019. 2, 3

[12] Osman Semih Kayhan and Jan C van Gemert. On translation
invariance in CNNs: Convolutional layers can exploit abso-
lute spatial location. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020. 1, 4, 7, 8

[13] Takumi Kobayashi. T-vMF similarity for regularizing intra-
class feature distribution. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2021. 1, 5, 7

[14] Alex Krizhevsky. Learning multiple layers of features from
tiny images. 2009. 1, 2, 3

[15] José Lezama, Qiang Qiu, Pablo Musé, and Guillermo Sapiro.
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