Under review as a conference paper at ICLR 2026

ADOR: ATTENTION DILUTION AND OVERLAP
RESOLVER FOR COMPLEX PROMPTS IN TEXT-TO-
IMAGE DIFFUSION MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Text-to-image diffusion models have achieved remarkable progress, producing
high-quality and realistic images. Nevertheless, these models still encounter chal-
lenges with semantic misalignment, particularly when required to understand
complex prompts involving multiple objects and diverse attributes. Although sev-
eral approaches have been proposed to address these issues, investigation into the
causes of semantic misalignment has remained limited. In this work, we exam-
ine the behavior of cross-attention in text-to-image diffusion models and iden-
tify two key factors contributing to semantic misalignment: cross-attention over-
lap and cross-attention dilution. Building on these findings, we propose ADOR,
a training-free framework that mitigates semantic misalignment in a single for-
ward pass, without requiring external guidance. ADOR consists of two comple-
mentary modules: the Attention Overlap Disentangler (AO-Disentangler) and the
Attention Dilution Reviver (AD-Reviver). The AO-Disentangler reduces cross-
attention overlap between noun phrases via distance-based masking, thereby en-
hancing separation between object—attribute pairs. The AD-Reviver tackles the
issue of reduced average cross-attention intensity that arises with longer prompts
by applying L2-normalization or selective amplification. It ensures that semantic
concepts remain represented during generation. We evaluate ADOR on standard
benchmarks and demonstrate that it achieves state-of-the-art performance while
preserving efficiency through its training-free, single-pass design.

1 INTRODUCTION

Recent advances in text-to-image diffusion models (Rombach et al.| 2022} [Podell et al.| 2023} [Pee-
bles & Xie, 2023; Esser et al., [ 2024) have achieved remarkable progress in photorealistic generation
from natural language. These models demonstrate exceptional capability in generating intricate de-
tails of objects and nuanced stylistic variations, enabling diverse creative and practical applications.
For instance, they have been facilitating realistic scene rendering for virtual environments (Poole
et al.,2022), detailed illustrations for storytelling (Liu et al., [2024])), and personalized content gener-
ation (Ruiz et al.| [2023).

Despite remarkable progress, existing text-to-image models struggle to accurately render complex
prompts that specify multiple objects with diverse attributes (Feng et al., 2024} Meral et al.l |2023;
Yang et al.}|2024; |Wang et al., 2025)). This semantic misalignment arises when the generated visual
content fails to faithfully reflect the input semantics. It appears in various forms: object entangle-
ment, where distinct subjects are erroneously merged into a single entity (Rassin et al.,[2024;|Zhuang
et al.,[2024); improper attribute binding, where characteristics such as color or texture are incorrectly
assigned to objects (Li et al., [2024} |[Rassin et al., |2024; |Zhuang et al., 2024} Meral et al., [2023)); and
semantic neglect, where entities or their specified properties are entirely omitted from the generated
image (Marioriyad et al., 2025} |[Chefer et al., 2023} [Meral et al.,|2023}; Rassin et al.| 2024)).

Previous strategies to mitigate semantic misalignment include finetuning with additional datasets
(Jiang et al.l |2024; Hu et al.| |2024; Feng et al., [2024), optimizing latent representations during
inference (Chefer et al.|[2023} [Li et al., 2024} Meral et al.,[2023)), and incorporating spatial guidance
generated by large language models (Lian et al., 2024; Yang et al.| 2024; Wang et al.|, 2025). While
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effective to some extent, these methods often introduce considerable overhead, requiring additional
training, dependence on external modules, or significantly increased inference times. This raises the
critical challenge of how to resolve semantic misalignment effectively without external guidance or
prohibitive computational cost.

To address this challenge, we propose ADOR (Attention Dilution and Overlap Resolver), a frame-
work designed to mitigate the key causes of semantic misalignment in text-to-image diffusion mod-
els. ADOR is training-free, requires no external guidance, and avoids costly test-time optimization,
making it both efficient and widely accessible. It comprises two complementary modules. The AO-
Disentangler alleviates object entanglement and improper attribute binding by identifying attention
overlap regions and applying a locality-based masking strategy, which uses unambiguous regions
as anchors to ensure that only the correct object-attribute pairs contribute to the attention operation
within ambiguous areas. The AD-Reviver addresses semantic neglect arising from attention dilution
by rebalancing cross-attention maps, selectively amplifying the attention score of the corresponding
object-attribute pair. This independence from additional training and optimization leads to markedly
faster inference and improved usability compared to prior methods. Extensive experiments and abla-
tion studies demonstrate that ADOR achieves superior performance over existing approaches while
maintaining efficiency.

In summary, our contributions are as follows:

* We introduce ADOR, a training-free framework that mitigates semantic misalignment
without requiring external guidance or test-time optimization.

* We are the first to identify and empirically validate the phenomenon of attention dilution
in text-to-image diffusion models, establishing it as a key cause of semantic misalignment.

* We design two novel modules, the AOQ-Disentangler and AD-Reviver, which effectively
address cross-attention overlap and cross-attention dilution, thereby removing the primary
causes of semantic misalignment.

* We demonstrate that our method achieves state-of-the-art performance in T2I-CompBench
(Huang et al.; 20235 2025).

2 RELATED WORKS

Finetuning methods (Feng et al., 2024} [Jiang et al., 2024} Hu et al.l [2024) optimize either the
parameters of the pretrained model or those of auxiliary modules. ELLA (Hu et al., [2024)) intro-
duces a timestep-aware semantic connector module that bridges LLMs and pre-trained diffusion
models, thereby leveraging the comprehensive language understanding capabilities of LLMs. Ranni
(Feng et al. [2024)) finetunes a text-to-image diffusion model on the LLMs-augmented semantic-
panel dataset, which includes dense descriptions for each semantic object within an image. CoMat
(Jiang et al.| [2024) proposes an end-to-end finetune methodology for a text-to-image diffusion model
that integrates a pretrained image-to-text model to enhance concept appearance consistency and a
pretrained segmentation model to enforce proper attribute binding. While these methods enhance
semantic alignment, they incur substantial computational and data costs due to the reliance on addi-
tional datasets and extensive retraining.

Inference-time optimization methods (Chefer et al., 2023} ILi et al., |2024; |[Zhuang et al. 2024;
Meral et al., [2023; Zhang et al.| 2025; Wang et al.| [2025) refine the latent feature space by applying
their own task-specific loss functions during inference. Attend-and-Excite (Chefer et al., 2023) in-
troduces a loss that constrains the maximum values of the cross-attention maps for each object to be
one, ensuring that all target objects are properly attended to in the generated image. Divide & Bind
(L1 et al.l [2024)) extends this idea by incorporating the Jensen-Shannon Divergence between object
attention maps and their corresponding attribute attention maps to achieve proper attribute bind-
ing. CONFORM (Meral et all 2023) employs contrastive learning during the generation process,
encouraging attention maps of matching object-attribute pairs to be closer together while pushing
apart those of mismatched pairs. While these approaches sidestep the computational expense of
model retraining, they suffer from the drawback of slow inference speed and substantial memory
overhead.
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Object Entanglement Improper attribute binding
SANA SANA w/ ours SANA SANA w/ ours
IoU (0.17) ToU (0.0002) ToU (0.11) ToU (0.0001)
“a brown backpack and a blue cow” “a black hat and a red scarf”

(a) Attention overlap. IoU values measure attention overlap between conflicting semantic tokens.
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(b) Attention dilution. The x-axis and y-axis represent the number of concepts and attention score, respectively.

Figure 1: Analysis of semantic misalignment. (a) Comparison between base model and our method,
with cross-attention heatmaps and IoU metrics highlighting object entanglement and incorrect at-
tribute binding. (b) Example of semantic neglect, where key concepts are omitted; attention scores
for “tire” (left) and “blue” (right) decline as prompt complexity increases.

LLMs-based methods (Lian et al., 2024} [Yang et al|, 2024} [Chen et al] [2024) leverage large lan-
guage models (LLMs) to extract additional conditional information from complex text prompts,
thereby enabling more effective conditional image generation. LMD (Lian et al. proposes a
two-stage pipeline which LLM generates an explicit layout including object locations and attributes
and layout-to-image generation by controlling the diffusion model’s attention maps. Self-Coherence
Guidance dynamically controls the cross-attention map through a mask obtained
in the previous step, using ratios determined by machine learning. However, the additional priors
generated by LLMs without consideration of initial noise characteristics can lead to conflicts be-

tween generated elements, resulting in degraded image quality (Ban et al 2024} [Xu et all, 2025}
[Dahary et al, 2025} [Battash et al.l [2024).

Despite the promising advances made by these prior methods, they each introduce distinct limi-
tations, such as extensive retraining, slow inference speed, or reliance on external guidance that
disregards the inherent characteristics of latent representations. To overcome these challenges, we
propose a framework that effectively addresses semantic misalignment by capturing and mitigating
attention conflicts at risk of semantic misalignment on the fly.

3 METHOD

3.1 OBSERVATION

Attention overlap Our analysis identifies two critical failure modes in cross-attention: object en-
tanglement and improper attribute binding. To investigate these, we visualize attention heatmaps in
Figure 1al constructed by aggregating the intersections of the top 5% high-attention regions for se-
mantically conflicting text tokens across all denoising steps and layers. For quantitative evaluation,
we compute the average Intersection-over-Union (IoU) of the top 5% high-attention regions for these
conflicting tokens across all denoising steps and layers. In both failure modes, we observe consis-
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Figure 2: Overview of the proposed ADOR framework. ADOR modifies L cross-attention layers
using two components: the Attention-Overlap Disentangler (AO-Disentangler) and the Attention-
Dilution Reviver (AD-Reviver). Initially, attention maps for each object and attribute token are
extracted from each cross attention and do an EMA update to an attention memory bank A. The
AO-Disentangler then leverages A to detect overlapping regions between attribute-object pairs
(e.g., “red rock” and “gray tomato”) and performs a locality-based reassignment to create disen-
tangled masks for each attribute-object pair. Subsequently, the AD-Reviver reinforces diluted at-
tention scores for visual queries ;. For queries within the disentangled regions (Dy,ay tomato and
Dired rock)s it applies selective strengthening (SS) to enhance attribute-object binding. For all remain-
ing regions D)., it performs dilution-aware rescaling (DR) to uniformly enhance attention across all
text tokens, thereby mitigating semantic neglect.

tently high IoU values, indicating that a single visual token often exhibits strong correlations with
unrelated text tokens. For instance, object entanglement arises when attention for distinct objects
like a “brown backpack” and a “blue cow” incorrectly overlaps, while improper attribute binding
occurs when attention from an attribute-object pair like “red scarf” spills onto “black hat.”

Attention dilution We also observe a complementary issue, which we term semantic neglect. When
multiple concepts are appended in a prompt, certain text tokens are overlooked during the denoising
process, as shown in This issue frequently occurs when a single visual token is forced
to aggregate information from multiple semantic tokens, leading to weak or flattened correlations.
The phenomenon mirrors attention dilution, a well-known problem in natural language processing,
where increasing text length leads to progressively flattened attention scores (Zhang et al.| 2024; Xu
et al.l 2024} [Liu et al., |2023a). The root cause lies in the softmax operation, which enforces that
attention weights sum to one. To quantify this phenomenon, we compute the sum of the top 5%
of the highest attention scores for a given token within its attention map and then average across
all denoising steps and cross-attention layers. As the number of key tokens increases, the attention
weight multiplied by each value token tends to decrease, as illustrated in the graphs in

3.2 OVERVIEW

As illustrated in our proposed method, ADOR, is a training-free, single-pass procedure
that modifies cross-attention within each denoising step. The standard cross-attention mechanism,

with attention map A € R!Q=IXIK»| s defined as
CA(Q., K,,V,) = A-V,, A= softmax (QZKPT/\/&) : 1)

where 2z denotes the latent representation being iteratively denoised, and p denotes the textual prompt
that guides the generation process. The query matrix Q. € R!Q=1%? js derived from the latent
feature, while the key and value matrices, K, V), € RIE»! xd are obtained from the prompt p.
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To enhance the semantic alignment with a given text prompt p, we first perform syntactic parsing
with an NLP library, such as spaCy (Honnibal & Montani, |2017). This syntactic information is then
used to categorizes the sequence of text tokens E, = {pi,...,ps} into three groups: a set of N
object tokens E, = {o1,...,on}, their corresponding attribute tokens E, = Ufil{ai, @iy s
where M; is the number of attributes associated with an object o;; and a set of R remaining tokens
E.={ri,....,Tr}.

ADOR modifies the attention map A through the integration of AO-Disentangler (AOD) in
and AD-Reviver (ADR) in[Section 3.4] defined as
ADOR(Q:, K,,V,) = (ADR o AOD) (A)V,. ()

The AO-Disentangler addresses issues of object entanglement and improper attribute binding, while
the AD-Reviver specifically focuses on semantic neglect. In the following sections, we provide a
detailed description of two components, explaining how each component is designed to resolve
these specific semantic failures.

3.3 AO-DISENTANGLER

The AO-Disentangler is designed to resolve attention overlap that arises when multiple object-
attribute concepts compete for the same visual regions. Its pipeline consists of three main stages:
(i) constructing an attention memory bank to stabilize identification of attention overlap region, (ii)
performing attention overlap detection to identify ambiguous and exclusive regions for each concept,
and (iii) applying a locality-based reassignment strategy to ensure that the visual token is uniquely
assigned to the most relevant object-attribute concept.

Attention memory bank To stabilize identification and minimize noise-induced overfitting, we
build an attention memory bank A := {A.}, where e € E, UE,. The accumulated attention map

A, € REXW jsupdated at every cross attention layer via an exponential moving average (EMA):
A, (1—a)A. +aA,, 3)

where A, € RT*W is the current layer’s attention map for that token and o € (0, 1] is the EMA
rate. Here, H and W denote the height and width of the latent representation z, respectively.

Attention overlap detection To identify attention overlap, we define object-attribute concepts
C ={c:}L . where ¢; = {0, al, ...,a%, } and its high-correlated region U, as follows:

M;
U, = I, U U Zyis Lo = {(h,w) ‘ [Ae}h > Percentile(fie,ﬂ)} “4)
hadl :

where Z, is the set of spatial indices from the attention map A, corresponding to a score above the
B percentile threshold. Given the object-attribute concept region U, we can compute the exclusive
attention region X, and the attention overlap region O, as follows:

Koy =Ue \JUe,: O, = U\ Xy, 5)

J#i
where X, represents the unambiguous anchor regions exclusively associated with a single object-
attribute concept, whereas O, represents the semantically conflicted regions that must be reassigned.

Locality-based reassignment To resolve ambiguity in the overlap regions O, we construct the

disentangled region D, by reassigning each ambiguous point to a single concept among the set of
competing concepts based on spatial proximity:

D, = &, U {X

x € O, and ¢; = argmin D(x, X, ) 7, (6)
cr€C(x)

where C(x) = {¢; | x € O, } represents the collection of all concepts whose ambiguous overlap
regions contain the spatial point x = (h, w). Proximity is measured by the point-to-set distance,

D(X7Xck) :yrél/i\,n HX_YH27 (7)
ck
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which computes the minimum Euclidean distance from a point to any location within an exclusive
region. Given D,., we apply a mask M € BIQ=|XIX» that filters attention from tokens which belong
to the other disentangled regions to the attention map A:

0 ifp]' eE,UE, and x; € U D,
AOD(A) = M ® A, Mi,j = CEC\H(P]') s (8)
1 otherwise

where x; = (h;, w;) are the 2D latent coordinates for the query index ¢, where h; and w; correspond
to its position in the latent feature grid. ® represents the elementwise product and the function «(p;)
denotes the object-attribute concept which contains the token p;. By doing so, the AO-Disentangler
ensures that each ambiguous visual token is uniquely assigned to the most semantically and spatially
relevant object-attribute concept, effectively resolving the semantic conflict.

3.4 AD-REVIVER

Building on the observation discussed in[Section 3.1] we propose the AD-Reviver, an adaptive atten-
tion rescaling strategy to resolve attention dilution. It consists of two complementary components:
dilution-aware rescaling, which globally stabilizes attention distributions, and selective strengthen-
ing, which locally reinforces semantically relevant tokens. Formally, we define

SS(A)LJ@ ifpj cE,UE, and x; € ,Dm(pj)
DR(A); otherwise ’
where SS denotes selective strengthening and DR denotes dilution-aware rescaling. In this manner,

AD-Reviver enhances semantically relevant regions while mitigating attention dilution across dis-
persed distributions, thereby ensuring that the contribution of each semantic token is not diminished.

ADR(A)ik = )

Dilution-aware rescaling To mitigate attention dilution, we rescale the cross-attention map A on
a per-query basis. Let A’ denote the query-wise normalized attention map, obtained by dividing each
row by >, A; .. The rescaled map is then defined as

A/

ik
DR(A); = ——,
(145 112
This normalization prevents divergence of the inverse of ¢5 norm, regardless of whether attention
masking is applied. The vector A/, € RI%»| represents the normalized attention scores associated
with the ¢-th query token. We adopt the inverse ¢, norm as the scahng factor due to its adaptive be-
havior. Specifically, for a concentrated attention vector, the factor remains close to one. This minimal
adjustment preserves the original scores, ensuring stable generation for these well-defined concepts.
In contrast, for a dispersed (diluted) vector, the factor is close to /| K|, substantially amplifying
the scores and alleviating semantic neglect.

(10)

Selective strengthening For queries corresponding to the disentangled region D., we selectively
enhance the concept tokens associated with the most relevant concept. The rescaling is defined as

SS(A) . >‘i7in7j if p; e E, UE, and x; € Dn(pj)
bk A; otherwise ’
| Ko K| (1
( > DR(A)i; — > A J)
Xij =1+ VI )
ZpkEH(pj) ik

This formulation adaptively strengthens the concept tokens in proportion to their original attention
scores.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Implementation details. Our experiments utilize Sana (Xie et al., 2024) and PixArt-« (Chen et al.}
2023) as base models. We generate images with 20 diffusion steps for Sana (Xie et al., 2024) and
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Table 1: Quantitative comparison of models on T2I-CompBench benchmark, evaluating perfor-
mance on color, shape, texture, 2D/3D spatial reasoning, non-spatial, and numeracy, in addition to
inference speed, and resolution. The best scores in T2I-CompBench are highlighted in bold. Results
marked with { are from (Huang et al.l [2025)) and {7 are from (Feng et al., 2024). All other results
are measured using the official codebases.

Model Base T2I-CompBench Speed Resolution
Color T Shape 1 Texture t 2D-spatial T 3D-spatial T Non-spatial T Numeracy T | (sec/image) | ”
SD2* none 0.5065  0.4221 0.4922 0.1342 0.3300 0.3127 0.4582 2.36 512x512
Composable”  SD2 0.4063  0.3299 0.3645 0.0800 0.2847 0.2980 0.4272 11.88 512x512
A&E? SD2 0.6400  0.4517 0.5963 0.1455 0.3222 0.3109 0.4773 10.77 512x512
Ranni’™ SD2 0.6893  0.4934 0.6325 0.3167 - - - 20.24 768 %768
PixArt-a none 0.3964  0.4062 0.4696 0.1994 0.3421 0.3081 0.4971 2.74 512x512
SCG PixArt-a | 0.5538  0.4115 0.4633 0.1921 0.3444 0.3094 0.5021 8.08 512x512
Ours PixArt-a | 0.6817  0.5425 0.6339 0.2190 0.3706 0.3104 0.5451 8.59 512x512
Sana none 0.7703  0.5405 0.6744 0.3794 0.4128 0.3137 0.6096 9.57 1024 x 1024
Ours Sana 0.8240  0.6143 0.7425 0.3862 0.4180 0.3149 0.6398 14.71 1024 x 1024

50 diffusion steps for PixArt-a (Chen et al., 2023)). In both configurations, our framework employs
an exponential moving average (EMA) rate of 0.5, a percentile-g rate of 0.05, and a classifier-free
guidance scale of 4.5 (Ho & Salimans| [2022). All experiments are conducted using a single NVIDIA
GeForce RTX 3090 GPU.

Evaluation metrics. The T2I-CompBench (Huang et al., 2023} |2025) evaluates three main cate-
gories: attribute binding (color, shape, texture), object relationships (2D-spatial, 3D-spatial, non-
spatial), and numeracy. For attribute binding, the BLIP model (Li et al.,[2022) is employed to assess
whether attributes such as color, shape, and texture are correctly associated with their respective ob-
jects in the generated image. The evaluation of 2D/3D spatial relationships and numeracy employs
the UniDet model (Zhou et al.| 2022)). This model detects objects to compare their positions—using
bounding box coordinates for 2D relationships and depth estimation for 3D relationships—and to
verify that the number of generated objects matches the prompt. Non-spatial relationships are eval-
vated using CLIPScore (Radford et al.l [2021; Hessel et al.| [2021)), which measures the alignment
between the generated image and the provided text prompt by calculating the cosine similarity be-
tween their feature representations.

Baselines. We evaluate our method against a comprehensive set of baseline models that represent
different approaches to compositional generation. Our comparison includes inference-time opti-
mization methods such as Attend-and-Excite (A&E) (Rombach et al.| [2022)) and Composable Dif-
fusion (Composable) (Liu et al.l [2023b). Additionally, we include Ranni (Feng et al., |2024) and
self-coherence guidance (SCG) (Wang et al.l 2025) for comparison with a fine-tuning and LLM-
based approach, respectively.

4.2 COMPARISON WITH OTHER MODELS ON T2I-COMPBENCH

Quantitative results. As shown in we evaluate baseline performance on T2I-CompBench
(Huang et al., 2023} |2025). When applied to Sana (Xie et al.l 2024), our method achieves state-
of-the-art results with consistent improvements across all categories. Notably, the performance
gains are most pronounced for attribute types such as color (+7.0%), shape (+13.6%), and tex-
ture (+10.1%). We attribute this significant improvement to our method’s targeted mitigation of a
critical vulnerability in cross-attention: its tendency to incorrectly bind or dilute semantic signals
across multiple concepts in complex prompts. On 512x512 generation, our PixArt-o implementa-
tion demonstrates strong efficiency (8.59 sec/image) while outperforming SD2-based Composable
Diffusion (11.88 sec/image) and A&E (10.77 sec/image) in both speed and accuracy. Although SCG
achieves marginally faster inference (8.08 sec/image), our model achieves substantially higher ac-
curacy, with improvements of +23.1% for color and +36.8% for texture, indicating that the modest
computational overhead yields significant performance gains. Collectively, these results demonstrate
robust improvements across semantic alignment benchmarks, particularly in attribute binding, while
maintaining competitive computational efficiency.

Qualitative results. presents a qualitative comparison between baseline models and our
proposed method. Across all prompts, the generated images reveal that semantic misalignment con-
stitutes a persistent challenge for existing approaches. For prompts (a) and (b), the base models
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Stable Diffusion 2 PixArt-a Sana
Composable A&E Ranni

Base Ours

(a) "a blue backpack and a " | (b) "a rubber band and a "l(c)"a and a green butterfly"
(d) "a fluffy cat and a " | (e) "a blue balloon and a pink ribbon and a "

Figure 3: Qualitative comparison with other models.

exhibit object neglect or entanglement, and even previous methods fail to resolve these issues fully.
In contrast, our method successfully separates “backpack” and “clock” as well as “band” and “toy”,
while preserving their semantic independence. For prompts (c) and (d), the base models suffer from
either improper attribute binding or attribute neglect. Alternative approaches still fall short of fully
addressing these challenges. In contrast, our extensions correctly match attributes and objects across
pairs, ensuring that none of these concepts are neglected and that their semantics are faithfully pre-
served in the generated results. For prompt (e), which includes more concepts, baseline models
show compounded semantic misalignment. In contrast, our method separates objects and correctly
binds attributes, representing all concepts. Collectively, these results demonstrate that our approach
effectively mitigates semantic misalignment, yielding outputs that are more faithfully aligned with
compositional prompts.

4.3 ABLATION ON AO-DISENTANGLER AND AD-REVIVER

Quantitative results. As summa- Table 2: Ablation studies on the proposed method. AOD
rized in we assess the AO- and ADR denote AO-Disentangler and AD-Reviver, respec-
Disentangler (AOD) and AD-Reviver tively. Bold denotes the best performance.

(ADR) via selective ablations while
holding all other conditions fixed. For

BLIP-VQA

Baseline ‘ AOD ADR ‘ ‘ Numeracy T

BLIP-VQA, AOD provides notice- \ | Color1 Shape ! Texture 1 |

able improvements, which become 07703 05405  0.6744 0.6096
even larger when ADR is added  Sama 0.7843  0.5550  0.7076 0.6397
on top (e.g., PixArt-a: +9.1% vs. 0.8240  0.6143  0.7425 0.6398

+22.4% in shape). This trend is even
stronger in PixArt-c, highlighting the
role of ADR in reducing dilution ef-
fects caused by diverse text tokens in cross-attention. In contrast, AOD demonstrates a dominant
contribution to numeracy performance, with substantially larger improvements compared to ADR.
This suggests that attention overlaps become more probable when the semantic number of objects
increases through numerical expression (e.g., changing “one bear and one horse” to “two bears and
three horses”), making AOD especially effective. Overall, ADR and AOD serve distinct but com-
plementary roles, and their combination consistently yields the strongest performance across all
categories.

04952  0.4432 0.5296 0.5289
0.6817  0.5425 0.6339 0.5451

PixArt-«

NSUX | NS\ x
WX x|\ %%

0.3964  0.4062 0.4696 0.4971
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Base Ours (w.0.ADR) Ours (full) Base Ours (w.0.ADR) Ours (full)

PixArt- o

Sana

(c) "a circular pendant light and a triangular corner shelf"  (d) "a spherical stone and a green strawberry"

Figure 4: Ablation studies on our method.

Qualitative results. [Figure 4] presents a qualitative ablation study highlighting the contributions of
our key modules. Images generated by the base models consistently exhibit semantic misalignment.
For example, in prompt (a), the attribute “blue” is incorrectly assigned to “boat” rather than “bear”,
while “bear” itself appears in “brown”, reflecting both attribute neglect and improper binding. In
prompt (b), the object “orange” is omitted, and “bench” is rendered with an incorrect color. Prompt
(c) demonstrates improper attribute binding of “triangular” to “pendant light” instead of “corner
shelf”. Finally, in prompt (d), “stone” and “strawberry” are entangled into a single incoherent ob-
ject, and “green” is insufficient from the strawberry. When the AOD module is added to the base,
these issues are partially alleviated. Improper attribute binding is corrected across prompts (a), (b),
and (c), while object entanglement is resolved in prompt (d). This indicates that AOD effectively
disentangles mixed concepts and prevents attributes from being incorrectly matched. Nevertheless,
certain deficiencies remain: “bear” and “strawberry” still lack their intended colors, and the object
“orange” continues to be neglected. With the subsequent inclusion of ADR, forming our full model,
these shortcomings are largely addressed. Prompts (a), (c), and (d) show attributes correctly empha-
sized on their respective objects. For instance, “blue” is properly bound to “bear”, “triangular” to
“corner shelf”, and “green” to “strawberry”. Moreover, ADR revives previously neglected elements,
ensuring that missing objects and attributes are faithfully generated. Together, these results demon-
strate that AOD and ADR complement one another, each targeting distinct sources of semantic
misalignment, and that their integration is critical for achieving faithful compositional alignment.

5 CONCLUSION

We presented ADOR, a training-free framework that tackles the root causes of semantic misalign-
ment in text-to-image diffusion models. Building on analysis and prior studies, we identified cross-
attention overlap and cross-attention dilution as two key factors responsible for object entangle-
ment, improper attribute binding, and neglect of visual concepts. To mitigate these issues, we de-
signed two complementary modules. AO-Disentangler separates overlapped cross-attention signals
via distance-based masking, while AD-Reviver restores balanced attention strength through normal-
ization and selective amplification. Extensive experiments demonstrated that ADOR consistently
improves semantic alignment, delivering more faithful object—attribute correspondences while pre-
serving efficiency through a single forward pass and avoiding additional training or external guid-
ance. These results highlight the importance of understanding and controlling cross-attention behav-
ior as a pathway to more reliable generative modeling. Looking forward, our work opens promising
avenues for attention-aware inference strategies and the extension of training-free alignment tech-
niques to broader multimodal generation tasks, including video synthesis and text-conditioned 3D
generation. By addressing the mechanisms behind semantic misalignment, ADOR offers a practical
and effective step toward more semantically faithful image generation.
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A STATISTICAL ANALYSIS ON OBSERVATION

We extend the experiments presented in[Section 3.1 with quantitative analysis.
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Figure 5: IOU comparison between base model and our variants. Left: a line plot summarizing
IOU per method, with the solid line indicating the mean, dashed lines marking the minimum and
maximum, and the shaded band spanning the min—max range. Right: per-method distributions shown
as box-style, where the box reflects the mean +1 standard deviation and whiskers denote the full
range.

Attention overlap In comparisons are restricted to the base model (Sana (Xie et al.
2024))) and our Sana variants. Here, we explicitly compare three methods: (1) the base Sana, (2)
Sana without ADR (Sana + AOD), and (3) Sana with full modules (Sana + AOD + ADR). We
evaluate on 800 prompts from T2I-CompBench (Huang et al., 2025)) of the form “a/an (attributel
)(object1) and a/an (attribute2)(object2)”. Figure[Figure 5[shows that adding AOD alone leads to a
sharp reduction in overlap: the average IoU across the 800 prompts drops from 0.18818 to 0.00152,
a 99.2% decrease. Building on this, ADR—by selectively enhancing features within the separated
regions—further reduces overlap: relative to Sana + AOD, the average loU decreases from 0.00152
to 0.00055, a 63.8% reduction. These results indicate that AOD effectively separates the attention
regions corresponding to each concept, and ADR further reinforces this effect.
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Figure 6: Attention dilution as the number of concepts increases. Left: objects; right: attributes. For
each concept count (x-axis), attention scores (y-axis) are summarized with box-style plots: the box
denotes mean *1 standard deviation, the central line marks the mean, and whiskers indicate the
minimum and maximum.
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Attention dilution In we examine attention dilution with up to three attribute—object
pairs (i.e., up to three concepts) and a limited set of prompts. We expand this to up to five con-
cepts and construct 100 prompts for each concept cardinality. For example, a single-concept prompt
is “a/an (attribute)(object)”, and a three-concept prompt is “a/an (attributel){objectl) and a/an
(attribute2)(object2) and a/an (attribute3)(object3)”. Following this template, we manually create
prompts with assistance from a large language model such as GPT (Achiam et al., |2023). For each
prompt, we measure the attention scores associated with the first attribute and the first object, and
summarize the mean, minimum, maximum, and standard deviation in For both objects
and attributes, the mean attention score decreases as the number of concepts increases, following
an approximately logarithmic trend. Specifically, increasing the number of concepts from 1 to 2 in
attributes reduces the mean from 0.93301 to 0.66255, a 29% reduction. Overall, the results indicate
that within the cross-attention mechanism of text-to-image diffusion models, increasing the number
of non-padding text tokens dilutes the information allocated to each token.

B ABLATION ON HYPERPARAMETERS

We investigate the influence of two key hyperparameters in our framework: the EMA rate and the
Percentile-3 rate. As shown in we conduct systematic variations of each hyperparameter
while holding all other conditions fixed. This analysis highlights how different choices affect per-
formance beyond the default setting and provides practical guidance for selecting stable operating
ranges.
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Figure 7: Effect of EMA rate and Percentile-3 rate on T2I-CompBench performance. The y-axis
label indicates improvement over the corresponding base models. Results are shown for PixArt-a
and Sana across Color, Texture, Shape, and their Mean performance.

EMA rate. We investigate the effect of the EMA rate while fixing the percentile-/3 parameter at
0.05, varying the EMA rate over 0.25, 0.5, 0.75, 1.0. The EMA rate controls the sensitivity of
the moving average: lower values dampen responsiveness to recent cross-attention signals, whereas
higher values place greater weight on them. An EMA rate of 1.0 corresponds to using only the
current cross-attention value (i.e., no averaging). Except for Sana in shape, both models are robust
to the choice of EMA rate, showing minimal difference across categories. Overall, these findings
indicate that moderate EMA rates provide the most effective balance, supporting better semantic
alignment while avoiding the limitations of excessively small or overly large values.

Percentile-/3 rate. We investigate the effect of the percentile-/3 rate by fixing the EMA rate to 0.5 and
varying the percentile-/3 rate across 0.05, 0.1, 0.15, 0.2. The percentile- 3 rate specifies a threshold for
selecting indices from the EMA cross-attention weights of each text token. Based on this threshold,
indices with the highest attention values are chosen in descending order. Higher percentile-£ rates
result in more indices being extracted per token, while lower rates restrict the selection to fewer
indices. PixArt-a achieves its strongest results on average at 0.1 and 0.15, with a slight decline
at 0.2, while Sana continues to improve consistently except for the color category. Since larger
percentile-/3 rates entail extracting more indices per token and thus increase computational cost, we
adopt 0.05 as the default setting.

Overall, the ablation results demonstrate that both hyperparameters yield consistent benefits and that
our framework maintains stable performance without demanding fine-grained tuning. The integra-
tion of EMA and percentile-(, therefore, proves essential for mitigating semantic misalignment.
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C ADDITIONAL QUALITATIVE RESULTS

We provide additional samples below. demonstrates improved performance over the base
model, and [Figure 9 shows that our method mitigates semantic misalignment more effectively than
competing models.

“a red backpack “a plastic chair “a blue bowl “a rectangular table
And a blue chair ” and a wooden chair” and a brown horse” and a round lamp”

Pixart

Pixart w\ ours

“a conical lampshade “a blue spoon “a big truck “a brown tree
and a cubic lamp base” and a ”? and a small car ” and a green grass ”

Sana

Sana w\ ours

Figure 8: Additional semantically aligned images generated by our method, applied to the PixArt-

«a (top two rows) 2023) and SANA (bottom two rows) [2024) base models.

Results are shown for two random seeds for each baseline. Zooming in is recommended for a detailed
view.

15



Under review as a conference paper at ICLR 2026

“a brown squirrel “a blue suitcase “a brown horse “a small block
and a black nut” and a red vase” and a red orange” and a cylindrical soda can”

PixArt-a
Sana \w ours SCG PixArt-a Ranni A&E Composable SD2

Sana
\w ours

Figure 9: Additional quantitative comparison of our method against competing approaches. Results
are shown for two random seeds per prompt. Zooming in is recommended for a detailed view.
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