

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ADOR: ATTENTION DILUTION AND OVERLAP RESOLVER FOR COMPLEX PROMPTS IN TEXT-TO- IMAGE DIFFUSION MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

Text-to-image diffusion models have achieved remarkable progress, producing high-quality and realistic images. Nevertheless, these models still encounter challenges with semantic misalignment, particularly when required to understand complex prompts involving multiple objects and diverse attributes. Although several approaches have been proposed to address these issues, investigation into the causes of semantic misalignment has remained limited. In this work, we examine the behavior of cross-attention in text-to-image diffusion models and identify two key factors contributing to semantic misalignment: cross-attention overlap and cross-attention dilution. Building on these findings, we propose ADOR, a training-free framework that mitigates semantic misalignment in a single forward pass, without requiring external guidance. ADOR consists of two complementary modules: the Attention Overlap Disentangler (AO-Disentangler) and the Attention Dilution Reviver (AD-Reviver). The AO-Disentangler reduces cross-attention overlap between noun phrases via distance-based masking, thereby enhancing separation between object–attribute pairs. The AD-Reviver tackles the issue of reduced average cross-attention intensity that arises with longer prompts by applying L2-normalization or selective amplification. It ensures that semantic concepts remain represented during generation. We evaluate ADOR on standard benchmarks and demonstrate that it achieves state-of-the-art performance while preserving efficiency through its training-free, single-pass design.

1 INTRODUCTION

Recent advances in text-to-image diffusion models (Rombach et al., 2022; Podell et al., 2023; Peebles & Xie, 2023; Esser et al., 2024) have achieved remarkable progress in photorealistic generation from natural language. These models demonstrate exceptional capability in generating intricate details of objects and nuanced stylistic variations, enabling diverse creative and practical applications. For instance, they have been facilitating realistic scene rendering for virtual environments (Poole et al., 2022), detailed illustrations for storytelling (Liu et al., 2024), and personalized content generation (Ruiz et al., 2023).

Despite remarkable progress, existing text-to-image models struggle to accurately render complex prompts that specify multiple objects with diverse attributes (Feng et al., 2024; Meral et al., 2023; Yang et al., 2024; Wang et al., 2025). This semantic misalignment arises when the generated visual content fails to faithfully reflect the input semantics. It appears in various forms: *object entanglement*, where distinct subjects are erroneously merged into a single entity (Rassin et al., 2024; Zhuang et al., 2024); *improper attribute binding*, where characteristics such as color or texture are incorrectly assigned to objects (Li et al., 2024; Rassin et al., 2024; Zhuang et al., 2024; Meral et al., 2023); and *semantic neglect*, where entities or their specified properties are entirely omitted from the generated image (Marioriyad et al., 2025; Chefer et al., 2023; Meral et al., 2023; Rassin et al., 2024).

Previous strategies to mitigate semantic misalignment include finetuning with additional datasets (Jiang et al., 2024; Hu et al., 2024; Feng et al., 2024), optimizing latent representations during inference (Chefer et al., 2023; Li et al., 2024; Meral et al., 2023), and incorporating spatial guidance generated by large language models (Lian et al., 2024; Yang et al., 2024; Wang et al., 2025). While

054 effective to some extent, these methods often introduce considerable overhead, requiring additional
 055 training, dependence on external modules, or significantly increased inference times. This raises the
 056 critical challenge of how to resolve semantic misalignment effectively without external guidance or
 057 prohibitive computational cost.

058 To address this challenge, we propose **ADOR** (Attention Dilution and Overlap Resolver), a frame-
 059 work designed to mitigate the key causes of semantic misalignment in text-to-image diffusion mod-
 060 els. ADOR is training-free, requires no external guidance, and avoids costly test-time optimization,
 061 making it both efficient and widely accessible. It comprises two complementary modules. The AO-
 062 Disentangler alleviates object entanglement and improper attribute binding by identifying attention
 063 overlap regions and applying a locality-based masking strategy, which uses unambiguous regions
 064 as anchors to ensure that only the correct object-attribute pairs contribute to the attention operation
 065 within ambiguous areas. The AD-Reviver addresses semantic neglect arising from attention dilution
 066 by rebalancing cross-attention maps, selectively amplifying the attention score of the corresponding
 067 object-attribute pair. This independence from additional training and optimization leads to markedly
 068 faster inference and improved usability compared to prior methods. Extensive experiments and abla-
 069 tion studies demonstrate that ADOR achieves superior performance over existing approaches while
 070 maintaining efficiency.

071 In summary, our contributions are as follows:

- 073 • We introduce **ADOR**, a training-free framework that mitigates semantic misalignment
 074 without requiring external guidance or test-time optimization.
- 075 • We are the first to identify and empirically validate the phenomenon of *attention dilution*
 076 in text-to-image diffusion models, establishing it as a key cause of semantic misalignment.
- 077 • We design two novel modules, the **AO-Disentangler** and **AD-Reviver**, which effectively
 078 address cross-attention overlap and cross-attention dilution, thereby removing the primary
 079 causes of semantic misalignment.
- 080 • We demonstrate that our method achieves state-of-the-art performance in T2I-CompBench
 081 (Huang et al., 2023; 2025).

084 2 RELATED WORKS

085 **Finetuning methods** (Feng et al., 2024; Jiang et al., 2024; Hu et al., 2024) optimize either the
 086 parameters of the pretrained model or those of auxiliary modules. ELLA (Hu et al., 2024) intro-
 087 duces a timestep-aware semantic connector module that bridges LLMs and pre-trained diffusion
 088 models, thereby leveraging the comprehensive language understanding capabilities of LLMs. Ranni
 089 (Feng et al., 2024) finetunes a text-to-image diffusion model on the LLMs-augmented semantic-
 090 panel dataset, which includes dense descriptions for each semantic object within an image. CoMat
 091 (Jiang et al., 2024) proposes an end-to-end finetune methodology for a text-to-image diffusion model
 092 that integrates a pretrained image-to-text model to enhance concept appearance consistency and a
 093 pretrained segmentation model to enforce proper attribute binding. While these methods enhance
 094 semantic alignment, they incur substantial computational and data costs due to the reliance on addi-
 095 tional datasets and extensive retraining.

096 **Inference-time optimization methods** (Chefer et al., 2023; Li et al., 2024; Zhuang et al., 2024;
 097 Meral et al., 2023; Zhang et al., 2025; Wang et al., 2025) refine the latent feature space by applying
 098 their own task-specific loss functions during inference. Attend-and-Excite (Chefer et al., 2023) in-
 099 troduces a loss that constrains the maximum values of the cross-attention maps for each object to be
 100 one, ensuring that all target objects are properly attended to in the generated image. Divide & Bind
 101 (Li et al., 2024) extends this idea by incorporating the Jensen-Shannon Divergence between object
 102 attention maps and their corresponding attribute attention maps to achieve proper attribute bind-
 103 ing. CONFORM (Meral et al., 2023) employs contrastive learning during the generation process,
 104 encouraging attention maps of matching object-attribute pairs to be closer together while pushing
 105 apart those of mismatched pairs. While these approaches sidestep the computational expense of
 106 model retraining, they suffer from the drawback of slow inference speed and substantial memory
 107 overhead.

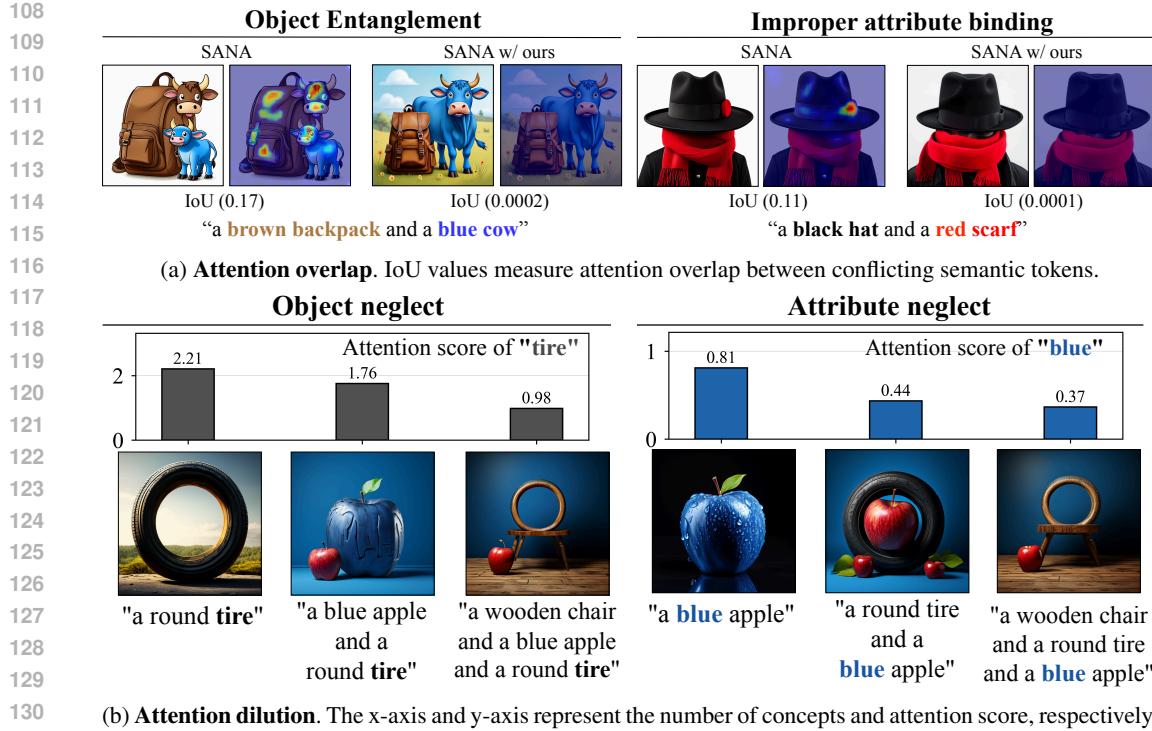


Figure 1: Analysis of semantic misalignment. (a) Comparison between base model and our method, with cross-attention heatmaps and IoU metrics highlighting *object entanglement* and *incorrect attribute binding*. (b) Example of *semantic neglect*, where key concepts are omitted; attention scores for “tire” (left) and “blue” (right) decline as prompt complexity increases.

LLMs-based methods (Lian et al., 2024; Yang et al., 2024; Chen et al., 2024) leverage large language models (LLMs) to extract additional conditional information from complex text prompts, thereby enabling more effective conditional image generation. LMD (Lian et al., 2024) proposes a two-stage pipeline which LLM generates an explicit layout including object locations and attributes and layout-to-image generation by controlling the diffusion model’s attention maps. Self-Coherence Guidance (Wang et al., 2025) dynamically controls the cross-attention map through a mask obtained in the previous step, using ratios determined by machine learning. However, the additional priors generated by LLMs without consideration of initial noise characteristics can lead to conflicts between generated elements, resulting in degraded image quality (Ban et al., 2024; Xu et al., 2025; Dahary et al., 2025; Battash et al., 2024).

Despite the promising advances made by these prior methods, they each introduce distinct limitations, such as extensive retraining, slow inference speed, or reliance on external guidance that disregards the inherent characteristics of latent representations. To overcome these challenges, we propose a framework that effectively addresses semantic misalignment by capturing and mitigating attention conflicts at risk of semantic misalignment on the fly.

3 METHOD

3.1 OBSERVATION

Attention overlap Our analysis identifies two critical failure modes in cross-attention: object entanglement and improper attribute binding. To investigate these, we visualize attention heatmaps in Figure 1a, constructed by aggregating the intersections of the top 5% high-attention regions for semantically conflicting text tokens across all denoising steps and layers. For quantitative evaluation, we compute the average Intersection-over-Union (IoU) of the top 5% high-attention regions for these conflicting tokens across all denoising steps and layers. In both failure modes, we observe consis-

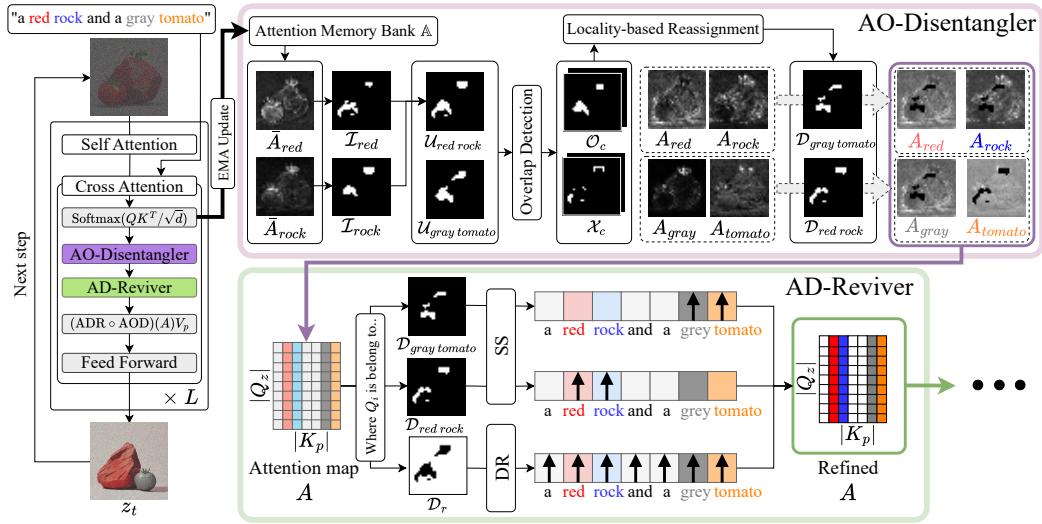


Figure 2: **Overview of the proposed ADOR framework.** ADOR modifies L cross-attention layers using two components: the Attention-Overlap Disentangler (AO-Disentangler) and the Attention-Dilution Reviver (AD-Reviver). Initially, attention maps for each object and attribute token are extracted from each cross attention and do an EMA update to an attention memory bank \mathbb{A} . The **AO-Disentangler** then leverages \mathbb{A} to detect overlapping regions between attribute-object pairs (e.g., “red rock” and “gray tomato”) and performs a locality-based reassignment to create disentangled masks for each attribute-object pair. Subsequently, the **AD-Reviver** reinforces diluted attention scores for visual queries Q_i . For queries within the disentangled regions ($D_{gray\ tomato}$ and $D_{red\ rock}$), it applies selective strengthening (SS) to enhance attribute-object binding. For all remaining regions D_r , it performs dilution-aware rescaling (DR) to uniformly enhance attention across all text tokens, thereby mitigating semantic neglect.

tently high IoU values, indicating that a single visual token often exhibits strong correlations with unrelated text tokens. For instance, object entanglement arises when attention for distinct objects like a “brown backpack” and a “blue cow” incorrectly overlaps, while improper attribute binding occurs when attention from an attribute-object pair like “red scarf” spills onto “black hat.”

Attention dilution We also observe a complementary issue, which we term *semantic neglect*. When multiple concepts are appended in a prompt, certain text tokens are overlooked during the denoising process, as shown in Figure 1b. This issue frequently occurs when a single visual token is forced to aggregate information from multiple semantic tokens, leading to weak or flattened correlations. The phenomenon mirrors attention dilution, a well-known problem in natural language processing, where increasing text length leads to progressively flattened attention scores (Zhang et al., 2024; Xu et al., 2024; Liu et al., 2023a). The root cause lies in the softmax operation, which enforces that attention weights sum to one. To quantify this phenomenon, we compute the sum of the top 5% of the highest attention scores for a given token within its attention map and then average across all denoising steps and cross-attention layers. As the number of key tokens increases, the attention weight multiplied by each value token tends to decrease, as illustrated in the graphs in Figure 1b.

3.2 OVERVIEW

As illustrated in Figure 2, our proposed method, ADOR, is a training-free, single-pass procedure that modifies cross-attention within each denoising step. The standard cross-attention mechanism, with attention map $A \in \mathbb{R}^{|Q_z| \times |K_p|}$, is defined as

$$CA(Q_z, K_p, V_p) = A \cdot V_p, \quad A = \text{softmax} \left(Q_z K_p^\top / \sqrt{d} \right), \quad (1)$$

where z denotes the latent representation being iteratively denoised, and p denotes the textual prompt that guides the generation process. The query matrix $Q_z \in \mathbb{R}^{|Q_z| \times d}$ is derived from the latent feature, while the key and value matrices, $K_p, V_p \in \mathbb{R}^{|K_p| \times d}$, are obtained from the prompt p .

To enhance the semantic alignment with a given text prompt p , we first perform syntactic parsing with an NLP library, such as spaCy (Honnibal & Montani, 2017). This syntactic information is then used to categorize the sequence of text tokens $\mathbb{E}_p = \{p_1, \dots, p_S\}$ into three groups: a set of N object tokens $\mathbb{E}_o = \{o_1, \dots, o_N\}$, their corresponding attribute tokens $\mathbb{E}_a = \bigcup_{i=1}^N \{a_1^i, \dots, a_{M_i}^i\}$, where M_i is the number of attributes associated with an object o_i ; and a set of R remaining tokens $\mathbb{E}_r = \{r_1, \dots, r_R\}$.

ADOR modifies the attention map A through the integration of AO-Disentangler (AOD) in Section 3.3 and AD-Reviver (ADR) in Section 3.4, defined as

$$\text{ADOR}(Q_z, K_p, V_p) = (\text{ADR} \circ \text{AOD})(A)V_p. \quad (2)$$

The AO-Disentangler addresses issues of *object entanglement* and *improper attribute binding*, while the AD-Reviver specifically focuses on *semantic neglect*. In the following sections, we provide a detailed description of two components, explaining how each component is designed to resolve these specific semantic failures.

3.3 AO-DISENTANGLER

The AO-Disentangler is designed to resolve attention overlap that arises when multiple object-attribute concepts compete for the same visual regions. Its pipeline consists of three main stages: (i) constructing an attention memory bank to stabilize identification of attention overlap region, (ii) performing attention overlap detection to identify ambiguous and exclusive regions for each concept, and (iii) applying a locality-based reassignment strategy to ensure that the visual token is uniquely assigned to the most relevant object-attribute concept.

Attention memory bank To stabilize identification and minimize noise-induced overfitting, we build an attention memory bank $\mathbb{A} := \{\bar{A}_e\}$, where $e \in \mathbb{E}_o \cup \mathbb{E}_a$. The accumulated attention map $\bar{A}_e \in \mathbb{R}^{H \times W}$ is updated at every cross attention layer via an exponential moving average (EMA):

$$\bar{A}_e \leftarrow (1 - \alpha)\bar{A}_e + \alpha A_e, \quad (3)$$

where $A_e \in \mathbb{R}^{H \times W}$ is the current layer’s attention map for that token and $\alpha \in (0, 1]$ is the EMA rate. Here, H and W denote the height and width of the latent representation z , respectively.

Attention overlap detection To identify attention overlap, we define object-attribute concepts $\mathcal{C} = \{c_i\}_{i=1}^N$, where $c_i = \{o_i, a_1^i, \dots, a_{M_i}^i\}$ and its high-correlated region \mathcal{U}_{c_i} as follows:

$$\mathcal{U}_{c_i} = \mathcal{I}_{o_i} \cup \bigcup_{j=1}^{M_i} \mathcal{I}_{a_j^i}, \quad \mathcal{I}_e := \left\{ (h, w) \mid [\bar{A}_e]_{h,w} \geq \text{Percentile}(\bar{A}_e, \beta) \right\} \quad (4)$$

where \mathcal{I}_e is the set of spatial indices from the attention map \bar{A}_e corresponding to a score above the β percentile threshold. Given the object-attribute concept region \mathcal{U}_c , we can compute the exclusive attention region \mathcal{X}_c and the attention overlap region \mathcal{O}_c as follows:

$$\mathcal{X}_{c_i} = \mathcal{U}_{c_i} \setminus \bigcup_{j \neq i} \mathcal{U}_{c_j}, \quad \mathcal{O}_{c_i} = \mathcal{U}_{c_i} \setminus \mathcal{X}_{c_i}, \quad (5)$$

where \mathcal{X}_c represents the unambiguous anchor regions exclusively associated with a single object-attribute concept, whereas \mathcal{O}_c represents the semantically conflicted regions that must be reassigned.

Locality-based reassignment To resolve ambiguity in the overlap regions \mathcal{O}_c , we construct the disentangled region \mathcal{D}_c by reassigning each ambiguous point to a single concept among the set of competing concepts based on spatial proximity:

$$\mathcal{D}_{c_i} := \mathcal{X}_{c_i} \cup \left\{ \mathbf{x} \mid \mathbf{x} \in \mathcal{O}_{c_i} \text{ and } c_i = \arg \min_{c_k \in C(\mathbf{x})} D(\mathbf{x}, \mathcal{X}_{c_k}) \right\}, \quad (6)$$

where $C(\mathbf{x}) = \{c_k \mid \mathbf{x} \in \mathcal{O}_{c_k}\}$ represents the collection of all concepts whose ambiguous overlap regions contain the spatial point $\mathbf{x} = (h, w)$. Proximity is measured by the point-to-set distance,

$$D(\mathbf{x}, \mathcal{X}_{c_k}) = \min_{\mathbf{y} \in \mathcal{X}_{c_k}} \|\mathbf{x} - \mathbf{y}\|_2, \quad (7)$$

270 which computes the minimum Euclidean distance from a point to any location within an exclusive
 271 region. Given \mathcal{D}_c , we apply a mask $M \in \mathbb{B}^{|Q_z| \times |K_p|}$ that filters attention from tokens which belong
 272 to the other disentangled regions to the attention map A :

$$274 \quad \text{AOD}(A) = M \odot A, \quad M_{i,j} = \begin{cases} 0 & \text{if } p_j \in \mathbb{E}_o \cup \mathbb{E}_a \text{ and } \mathbf{x}_i \in \bigcup_{c \in \mathcal{C} \setminus \kappa(p_j)} \mathcal{D}_c \\ 1 & \text{otherwise} \end{cases}, \quad (8)$$

277 where $\mathbf{x}_i = (h_i, w_i)$ are the 2D latent coordinates for the query index i , where h_i and w_i correspond
 278 to its position in the latent feature grid. \odot represents the elementwise product and the function $\kappa(p_j)$
 279 denotes the object-attribute concept which contains the token p_j . By doing so, the AO-Disentangler
 280 ensures that each ambiguous visual token is uniquely assigned to the most semantically and spatially
 281 relevant object-attribute concept, effectively resolving the semantic conflict.

282 3.4 AD-REVIVER

284 Building on the observation discussed in Section 3.1, we propose the AD-Reviver, an adaptive attention
 285 rescaling strategy to resolve attention dilution. It consists of two complementary components:
 286 dilution-aware rescaling, which globally stabilizes attention distributions, and selective strengthening,
 287 which locally reinforces semantically relevant tokens. Formally, we define

$$289 \quad \text{ADR}(A)_{i,k} = \begin{cases} \text{SS}(A)_{i,k} & \text{if } p_j \in \mathbb{E}_o \cup \mathbb{E}_a \text{ and } \mathbf{x}_i \in \mathcal{D}_{\kappa(p_j)} \\ \text{DR}(A)_{i,k} & \text{otherwise} \end{cases}, \quad (9)$$

291 where SS denotes selective strengthening and DR denotes dilution-aware rescaling. In this manner,
 292 AD-Reviver enhances semantically relevant regions while mitigating attention dilution across dis-
 293 persed distributions, thereby ensuring that the contribution of each semantic token is not diminished.

294 **Dilution-aware rescaling** To mitigate attention dilution, we rescale the cross-attention map A on
 295 a per-query basis. Let A' denote the query-wise normalized attention map, obtained by dividing each
 296 row by $\sum_k A_{i,k}$. The rescaled map is then defined as

$$298 \quad \text{DR}(A)_{i,k} = \frac{A'_{i,k}}{\|A'_{i,:}\|_2}, \quad (10)$$

300 This normalization prevents divergence of the inverse of ℓ_2 norm, regardless of whether attention
 301 masking is applied. The vector $A'_{i,:} \in \mathbb{R}^{|K_p|}$ represents the normalized attention scores associated
 302 with the i -th query token. We adopt the inverse ℓ_2 norm as the scaling factor due to its adaptive be-
 303 havior. Specifically, for a concentrated attention vector, the factor remains close to one. This minimal
 304 adjustment preserves the original scores, ensuring stable generation for these well-defined concepts.
 305 In contrast, for a dispersed (diluted) vector, the factor is close to $\sqrt{|K_p|}$, substantially amplifying
 306 the scores and alleviating semantic neglect.

308 **Selective strengthening** For queries corresponding to the disentangled region \mathcal{D}_c , we selectively
 309 enhance the concept tokens associated with the most relevant concept. The rescaling is defined as

$$311 \quad \text{SS}(A)_{i,k} = \begin{cases} \lambda_{i,j} A_{i,j} & \text{if } p_j \in \mathbb{E}_o \cup \mathbb{E}_a \text{ and } \mathbf{x}_i \in \mathcal{D}_{\kappa(p_j)} \\ A_{i,j} & \text{otherwise} \end{cases},$$

$$313 \quad \lambda_{i,j} = \left(1 + \frac{\sum_j^{|K_t|} \text{DR}(A)_{i,j} - \sum_j^{|K_t|} A_{i,j}}{\sum_{p_k \in \kappa(p_j)} A_{i,k}} \right).$$

316 This formulation adaptively strengthens the concept tokens in proportion to their original attention
 317 scores.

318 4 EXPERIMENT

321 4.1 EXPERIMENTAL SETTINGS

323 **Implementation details.** Our experiments utilize Sana (Xie et al., 2024) and PixArt- α (Chen et al.,
 324 2023) as base models. We generate images with 20 diffusion steps for Sana (Xie et al., 2024) and

324 Table 1: Quantitative comparison of models on T2I-CompBench benchmark, evaluating performance
 325 on color, shape, texture, 2D/3D spatial reasoning, non-spatial, and numeracy, in addition to
 326 inference speed, and resolution. The best scores in T2I-CompBench are highlighted in **bold**. Results
 327 marked with \dagger are from (Huang et al., 2025) and \ddagger are from (Feng et al., 2024). All other results
 328 are measured using the official codebases.

330 Model	331 Base	332 Color \uparrow	333 Shape \uparrow	334 Texture \uparrow	335 T2I-CompBench				336 Speed (sec/image) \downarrow	337 Resolution
338	339	340	341	342	2D-spatial \uparrow	3D-spatial \uparrow	343 Non-spatial \uparrow	344 Numeracy \uparrow	345	346
347 SD2 \dagger	348 none	349 0.5065	350 0.4221	351 0.4922	352 0.1342	353 0.3300	354 0.3127	355 0.4582	356 2.36	357 512 \times 512
348 Composable \dagger	349 SD2	350 0.4063	351 0.3299	352 0.3645	353 0.0800	354 0.2847	355 0.2980	356 0.4272	357 11.88	358 512 \times 512
348 A&E \dagger	349 SD2	350 0.6400	351 0.4517	352 0.5963	353 0.1455	354 0.3222	355 0.3109	356 0.4773	357 10.77	358 512 \times 512
348 Ranni \ddagger	349 SD2	350 0.6893	351 0.4934	352 0.6325	353 0.3167	354 –	355 –	356 –	357 20.24	358 768 \times 768
347 PixArt- α	348 none	349 0.3964	350 0.4062	351 0.4696	352 0.1994	353 0.3421	354 0.3081	355 0.4971	356 2.74	357 512 \times 512
347 SCG	348 PixArt- α	349 0.5538	350 0.4115	351 0.4633	352 0.1921	353 0.3444	354 0.3094	355 0.5021	356 8.08	357 512 \times 512
347 Ours	348 PixArt- α	349 0.6817	350 0.5425	351 0.6339	352 0.2190	353 0.3706	354 0.3104	355 0.5451	356 8.59	357 512 \times 512
347 Sana	348 none	349 0.7703	350 0.5405	351 0.6744	352 0.3794	353 0.4128	354 0.3137	355 0.6096	356 9.57	357 1024 \times 1024
347 Ours	348 Sana	349 0.8240	350 0.6143	351 0.7425	352 0.3862	353 0.4180	354 0.3149	355 0.6398	356 14.71	357 1024 \times 1024

339 50 diffusion steps for PixArt- α (Chen et al., 2023). In both configurations, our framework employs
 340 an exponential moving average (EMA) rate of 0.5, a percentile- β rate of 0.05, and a classifier-free
 341 guidance scale of 4.5 (Ho & Salimans, 2022). All experiments are conducted using a single NVIDIA
 342 GeForce RTX 3090 GPU.

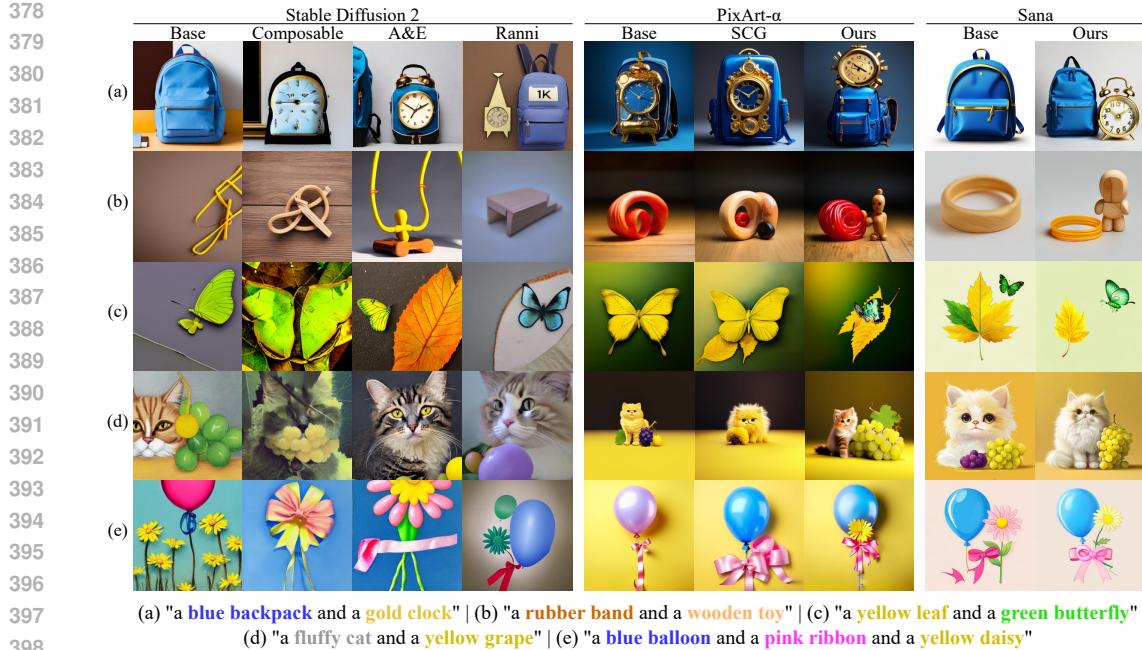
343 **Evaluation metrics.** The T2I-CompBench (Huang et al., 2023; 2025) evaluates three main categories: attribute binding (color, shape, texture), object relationships (2D-spatial, 3D-spatial, non-spatial), and numeracy. For attribute binding, the BLIP model (Li et al., 2022) is employed to assess whether attributes such as color, shape, and texture are correctly associated with their respective objects in the generated image. The evaluation of 2D/3D spatial relationships and numeracy employs the UniDet model (Zhou et al., 2022). This model detects objects to compare their positions—using bounding box coordinates for 2D relationships and depth estimation for 3D relationships—and to verify that the number of generated objects matches the prompt. Non-spatial relationships are evaluated using CLIPScore (Radford et al., 2021; Hessel et al., 2021), which measures the alignment between the generated image and the provided text prompt by calculating the cosine similarity between their feature representations.

354 **Baselines.** We evaluate our method against a comprehensive set of baseline models that represent
 355 different approaches to compositional generation. Our comparison includes inference-time optimi-
 356 zation methods such as Attend-and-Excite (A&E) (Rombach et al., 2022) and Composable Diffusion
 357 (Composable) (Liu et al., 2023b). Additionally, we include Ranni (Feng et al., 2024) and self-coherence
 358 guidance (SCG) (Wang et al., 2025) for comparison with a fine-tuning and LLM-based approach,
 359 respectively.

360 361 4.2 COMPARISON WITH OTHER MODELS ON T2I-COMPBENCH

362 **Quantitative results.** As shown in Table 1, we evaluate baseline performance on T2I-CompBench
 363 (Huang et al., 2023; 2025). When applied to Sana (Xie et al., 2024), our method achieves state-
 364 of-the-art results with consistent improvements across all categories. Notably, the performance
 365 gains are most pronounced for attribute types such as color (+7.0%), shape (+13.6%), and texture
 366 (+10.1%). We attribute this significant improvement to our method’s targeted mitigation of a
 367 critical vulnerability in cross-attention: its tendency to incorrectly bind or dilute semantic signals
 368 across multiple concepts in complex prompts. On 512 \times 512 generation, our PixArt- α implemen-
 369 tation demonstrates strong efficiency (8.59 sec/image) while outperforming SD2-based Composable
 370 Diffusion (11.88 sec/image) and A&E (10.77 sec/image) in both speed and accuracy. Although SCG
 371 achieves marginally faster inference (8.08 sec/image), our model achieves substantially higher accu-
 372 racy, with improvements of +23.1% for color and +36.8% for texture, indicating that the modest
 373 computational overhead yields significant performance gains. Collectively, these results demon-
 374 strate robust improvements across semantic alignment benchmarks, particularly in attribute binding, while
 375 maintaining competitive computational efficiency.

376 **Qualitative results.** Figure 3 presents a qualitative comparison between baseline models and our
 377 proposed method. Across all prompts, the generated images reveal that semantic misalignment con-
 378 stitutes a persistent challenge for existing approaches. For prompts (a) and (b), the base models



378
379 (a) "a **blue backpack** and a **gold clock**" | (b) "a **rubber band** and a **wooden toy**" | (c) "a **yellow leaf** and a **green butterfly**"
380 (d) "a **fluffy cat** and a **yellow grape**" | (e) "a **blue balloon** and a **pink ribbon** and a **yellow daisy**"
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

397 Figure 3: Qualitative comparison with other models.
398
399
400
401

402 exhibit object neglect or entanglement, and even previous methods fail to resolve these issues fully.
403 In contrast, our method successfully separates "backpack" and "clock" as well as "band" and "toy",
404 while preserving their semantic independence. For prompts (c) and (d), the base models suffer from
405 either improper attribute binding or attribute neglect. Alternative approaches still fall short of fully
406 addressing these challenges. In contrast, our extensions correctly match attributes and objects across
407 pairs, ensuring that none of these concepts are neglected and that their semantics are faithfully pre-
408 served in the generated results. For prompt (e), which includes more concepts, baseline models
409 show compounded semantic misalignment. In contrast, our method separates objects and correctly
410 binds attributes, representing all concepts. Collectively, these results demonstrate that our approach
411 effectively mitigates semantic misalignment, yielding outputs that are more faithfully aligned with
412 compositional prompts.
413
414

4.3 ABLATION ON AO-DISENTANGLER AND AD-REVIVER

415 **Quantitative results.** As summarized in Table 2, we assess the AO-
416 Disentangler (AOD) and AD-Reviver (ADR) via selective ablations while
417 holding all other conditions fixed. For
418 BLIP-VQA, AOD provides noticeable improvements, which become even larger when ADR is added on top (e.g., PixArt- α : +9.1% vs. +22.4% in shape). This trend is even stronger in PixArt- α , highlighting the role of ADR in reducing dilution effects caused by diverse text tokens in cross-attention. In contrast, AOD demonstrates a dominant contribution to numeracy performance, with substantially larger improvements compared to ADR. This suggests that attention overlaps become more probable when the semantic number of objects increases through numerical expression (e.g., changing "one bear and one horse" to "two bears and three horses"), making AOD especially effective. Overall, ADR and AOD serve distinct but complementary roles, and their combination consistently yields the strongest performance across all categories.
419
420
421
422
423
424
425
426
427
428
429
430
431

432 Table 2: Ablation studies on the proposed method. AOD and ADR denote AO-Disentangler and AD-Reviver, respectively. **Bold** denotes the best performance.
433
434

Baseline	AOD	ADR	BLIP-VQA			Numeracy \uparrow
			Color \uparrow	Shape \uparrow	Texture \uparrow	
Sana	\times	\times	0.7703	0.5405	0.6744	0.6096
	\checkmark	\times	0.7843	0.5550	0.7076	0.6397
	\checkmark	\checkmark	0.8240	0.6143	0.7425	0.6398
PixArt- α	\times	\times	0.3964	0.4062	0.4696	0.4971
	\checkmark	\times	0.4952	0.4432	0.5296	0.5289
	\checkmark	\checkmark	0.6817	0.5425	0.6339	0.5451

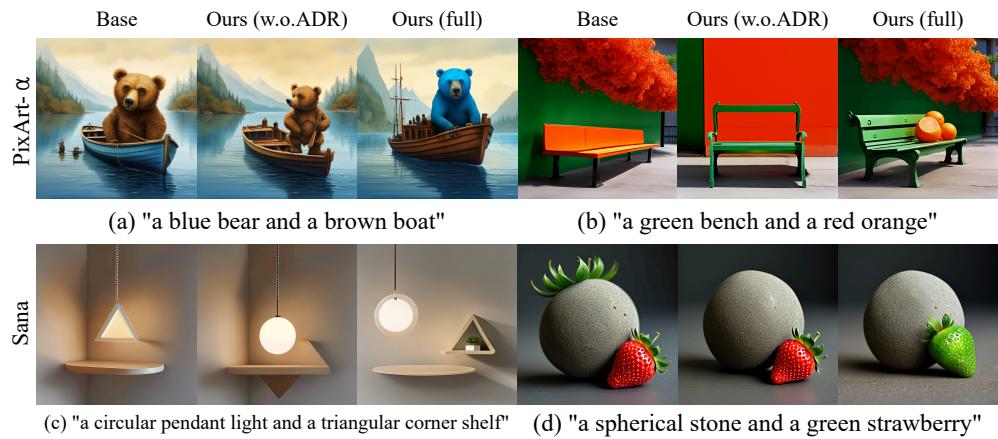


Figure 4: Ablation studies on our method.

Qualitative results. Figure 4 presents a qualitative ablation study highlighting the contributions of our key modules. Images generated by the base models consistently exhibit semantic misalignment. For example, in prompt (a), the attribute “blue” is incorrectly assigned to “boat” rather than “bear”, while “bear” itself appears in “brown”, reflecting both attribute neglect and improper binding. In prompt (b), the object “orange” is omitted, and “bench” is rendered with an incorrect color. Prompt (c) demonstrates improper attribute binding of “triangular” to “pendant light” instead of “corner shelf”. Finally, in prompt (d), “stone” and “strawberry” are entangled into a single incoherent object, and “green” is insufficient from the strawberry. When the AOD module is added to the base, these issues are partially alleviated. Improper attribute binding is corrected across prompts (a), (b), and (c), while object entanglement is resolved in prompt (d). This indicates that AOD effectively disentangles mixed concepts and prevents attributes from being incorrectly matched. Nevertheless, certain deficiencies remain: “bear” and “strawberry” still lack their intended colors, and the object “orange” continues to be neglected. With the subsequent inclusion of ADR, forming our full model, these shortcomings are largely addressed. Prompts (a), (c), and (d) show attributes correctly emphasized on their respective objects. For instance, “blue” is properly bound to “bear”, “triangular” to “corner shelf”, and “green” to “strawberry”. Moreover, ADR revives previously neglected elements, ensuring that missing objects and attributes are faithfully generated. Together, these results demonstrate that AOD and ADR complement one another, each targeting distinct sources of semantic misalignment, and that their integration is critical for achieving faithful compositional alignment.

5 CONCLUSION

We presented ADOR, a training-free framework that tackles the root causes of semantic misalignment in text-to-image diffusion models. Building on analysis and prior studies, we identified cross-attention overlap and cross-attention dilution as two key factors responsible for object entanglement, improper attribute binding, and neglect of visual concepts. To mitigate these issues, we designed two complementary modules. AO-Disentangler separates overlapped cross-attention signals via distance-based masking, while AD-Reviver restores balanced attention strength through normalization and selective amplification. Extensive experiments demonstrated that ADOR consistently improves semantic alignment, delivering more faithful object–attribute correspondences while preserving efficiency through a single forward pass and avoiding additional training or external guidance. These results highlight the importance of understanding and controlling cross-attention behavior as a pathway to more reliable generative modeling. Looking forward, our work opens promising avenues for attention-aware inference strategies and the extension of training-free alignment techniques to broader multimodal generation tasks, including video synthesis and text-conditioned 3D generation. By addressing the mechanisms behind semantic misalignment, ADOR offers a practical and effective step toward more semantically faithful image generation.

486 REFERENCES
487

488 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
489 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
490 report. *arXiv preprint arXiv:2303.08774*, 2023.

491 Yuanhao Ban, Ruochen Wang, Tianyi Zhou, Boqing Gong, Cho-Jui Hsieh, and Minhao Cheng. The
492 crystal ball hypothesis in diffusion models: Anticipating object positions from initial noise, 2024.
493 URL <https://arxiv.org/abs/2406.01970>.

494 Barak Battash, Amit Rozner, Lior Wolf, and Ofir Lindenbaum. Obtaining favorable layouts for
495 multiple object generation, 2024. URL <https://arxiv.org/abs/2405.00791>.

496 Hila Chefer, Yuval Alaluf, Yael Vinker, Lior Wolf, and Daniel Cohen-Or. Attend-and-excite:
497 Attention-based semantic guidance for text-to-image diffusion models, 2023. URL <https://arxiv.org/abs/2301.13826>.

498 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang, James
499 Kwok, Ping Luo, Huchuan Lu, and Zhenguo Li. Pixart- α : Fast training of diffusion transformer
500 for photorealistic text-to-image synthesis, 2023. URL <https://arxiv.org/abs/2310.00426>.

501 Zhennan Chen, Yajie Li, Haofan Wang, Zhibo Chen, Zhengkai Jiang, Jun Li, Qian Wang, Jian Yang,
502 and Ying Tai. Region-aware text-to-image generation via hard binding and soft refinement, 2024.
503 URL <https://arxiv.org/abs/2411.06558>.

504 Omer Dahary, Yehonathan Cohen, Or Patashnik, Kfir Aberman, and Daniel Cohen-Or. Be decisive:
505 Noise-induced layouts for multi-subject generation, 2025. URL <https://arxiv.org/abs/2505.21488>.

506 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
507 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, Dustin Podell, Tim Dockhorn, Zion En-
508 glish, Kyle Lacey, Alex Goodwin, Yannik Marek, and Robin Rombach. Scaling rectified flow
509 transformers for high-resolution image synthesis, 2024. URL <https://arxiv.org/abs/2403.03206>.

510 Yutong Feng, Biao Gong, Di Chen, Yujun Shen, Yu Liu, and Jingren Zhou. Ranni: Taming text-to-
511 image diffusion for accurate instruction following, 2024. URL <https://arxiv.org/abs/2311.17002>.

512 Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A
513 reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*, 2021.

514 Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. *arXiv preprint
515 arXiv:2207.12598*, 2022.

516 Matthew Honnibal and Ines Montani. spacy 2: Natural language understanding with bloom embed-
517 dings, convolutional neural networks and incremental parsing. *To appear*, 2017.

518 Xiwei Hu, Rui Wang, Yixiao Fang, Bin Fu, Pei Cheng, and Gang Yu. Ella: Equip diffusion models
519 with llm for enhanced semantic alignment, 2024. URL <https://arxiv.org/abs/2403.05135>.

520 Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A comprehensive
521 benchmark for open-world compositional text-to-image generation. *Advances in Neural Infor-
522 mation Processing Systems*, 36:78723–78747, 2023.

523 Kaiyi Huang, Chengqi Duan, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench++:
524 An enhanced and comprehensive benchmark for compositional text-to-image generation. *IEEE
525 Transactions on Pattern Analysis and Machine Intelligence*, 2025.

526 Dongzhi Jiang, Guanglu Song, Xiaoshi Wu, Renrui Zhang, Dazhong Shen, Zhuofan Zong, Yu Liu,
527 and Hongsheng Li. Comat: Aligning text-to-image diffusion model with image-to-text concept
528 matching, 2024. URL <https://arxiv.org/abs/2404.03653>.

540 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 541 training for unified vision-language understanding and generation. In *International conference on*
 542 *machine learning*, pp. 12888–12900. PMLR, 2022.

543

544 Yumeng Li, Margret Keuper, Dan Zhang, and Anna Khoreva. Divide bind your attention for im-
 545 proved generative semantic nursing, 2024. URL <https://arxiv.org/abs/2307.10864>.

546 Long Lian, Boyi Li, Adam Yala, and Trevor Darrell. Llm-grounded diffusion: Enhancing prompt
 547 understanding of text-to-image diffusion models with large language models, 2024. URL
 548 <https://arxiv.org/abs/2305.13655>.

549

550 Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing attention
 551 glitches with flip-flop language modeling. *Advances in Neural Information Processing Systems*,
 552 36:25549–25583, 2023a.

553 Chang Liu, Haoning Wu, Yujie Zhong, Xiaoyun Zhang, Yanfeng Wang, and Weidi Xie. Intelligent
 554 grimm - open-ended visual storytelling via latent diffusion models. In *Proceedings of the*
 555 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 6190–6200,
 556 June 2024.

557

558 Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B. Tenenbaum. Compositional vi-
 559 sual generation with composable diffusion models, 2023b. URL <https://arxiv.org/abs/2206.01714>.

560

561 Arash Marioriyad, Mohammadali Banayeeanzade, Reza Abbasi, Mohammad Hossein Rohban, and
 562 Mahdieh Soleymani Baghshah. Attention overlap is responsible for the entity missing problem in
 563 text-to-image diffusion models!, 2025. URL <https://arxiv.org/abs/2410.20972>.

564

565 Tuna Han Salih Meral, Enis Simsar, Federico Tombari, and Pinar Yanardag. Conform: Contrast is
 566 all you need for high-fidelity text-to-image diffusion models, 2023. URL <https://arxiv.org/abs/2312.06059>.

567

568 William Peebles and Saining Xie. Scalable diffusion models with transformers, 2023. URL <https://arxiv.org/abs/2212.09748>.

569

570 Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
 571 Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
 572 synthesis, 2023. URL <https://arxiv.org/abs/2307.01952>.

573

574 Ben Poole, Ajay Jain, Jonathan T. Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
 575 diffusion, 2022. URL <https://arxiv.org/abs/2209.14988>.

576

577 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 578 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 579 models from natural language supervision. In *International conference on machine learning*, pp.
 580 8748–8763. PMLR, 2021.

581

582 Royi Rassin, Eran Hirsch, Daniel Glickman, Shauli Ravfogel, Yoav Goldberg, and Gal Chechik.
 583 Linguistic binding in diffusion models: Enhancing attribute correspondence through attention map
 584 alignment, 2024. URL <https://arxiv.org/abs/2306.08877>.

585

586 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 587 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 588 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

589

590 Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
 591 Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation, 2023.
 592 URL <https://arxiv.org/abs/2208.12242>.

593

594 Shulei Wang, Wang Lin, Hai Huang, Hanting Wang, Sihang Cai, WenKang Han, Tao Jin, Jingyuan
 595 Chen, Jiacheng Sun, Jieming Zhu, and Zhou Zhao. Towards transformer-based aligned generation
 596 with self-coherence guidance, 2025. URL <https://arxiv.org/abs/2503.17675>.

594 Enze Xie, Junsong Chen, Junyu Chen, Han Cai, Haotian Tang, Yujun Lin, Zhekai Zhang, Muyang
 595 Li, Ligeng Zhu, Yao Lu, and Song Han. Sana: Efficient high-resolution image synthesis with
 596 linear diffusion transformers, 2024. URL <https://arxiv.org/abs/2410.10629>.

597 Katherine Xu, Lingzhi Zhang, and Jianbo Shi. Good seed makes a good crop: Discovering se-
 598 cret seeds in text-to-image diffusion models, 2025. URL <https://arxiv.org/abs/2405.14828>.

600 Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
 601 large language models. *arXiv preprint arXiv:2401.11817*, 2024.

602 Ling Yang, Zhaochen Yu, Chenlin Meng, Minkai Xu, Stefano Ermon, and Bin Cui. Mastering text-
 603 to-image diffusion: Recaptioning, planning, and generating with multimodal llms, 2024. URL
 604 <https://arxiv.org/abs/2401.11708>.

605 Xuechen Zhang, Xiangyu Chang, Mingchen Li, Amit Roy-Chowdhury, Jiasi Chen, and Samet Oy-
 606 mak. Selective attention: Enhancing transformer through principled context control. *Advances in
 607 Neural Information Processing Systems*, 37:11061–11086, 2024.

608 Yang Zhang, Rui Zhang, Xuecheng Nie, Haochen Li, Jikun Chen, Yifan Hao, Xin Zhang, Luoqi Liu,
 609 and Ling Li. Spdiffusion: Semantic protection diffusion models for multi-concept text-to-image
 610 generation, 2025. URL <https://arxiv.org/abs/2409.01327>.

611 Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Simple multi-dataset detection. In *Pro-
 612 ceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 7571–7580,
 613 2022.

614 Chenyi Zhuang, Ying Hu, and Pan Gao. Magnet: We never know how text-to-image diffusion models
 615 work, until we learn how vision-language models function, 2024. URL <https://arxiv.org/abs/2409.19967>.

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

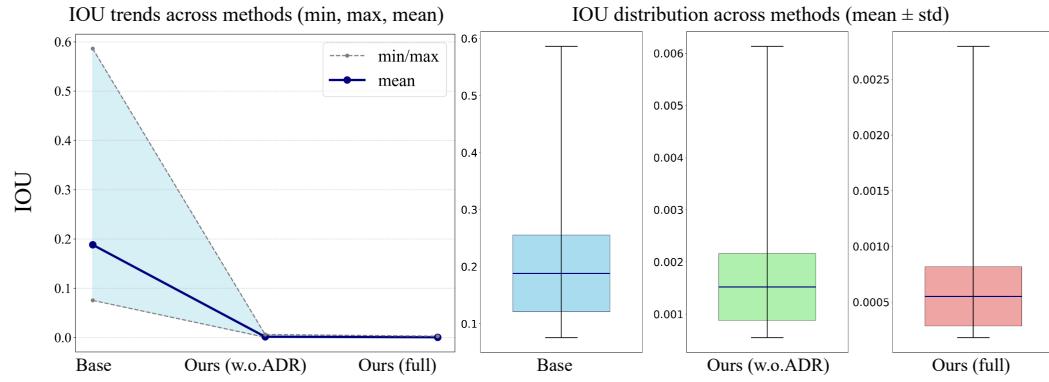
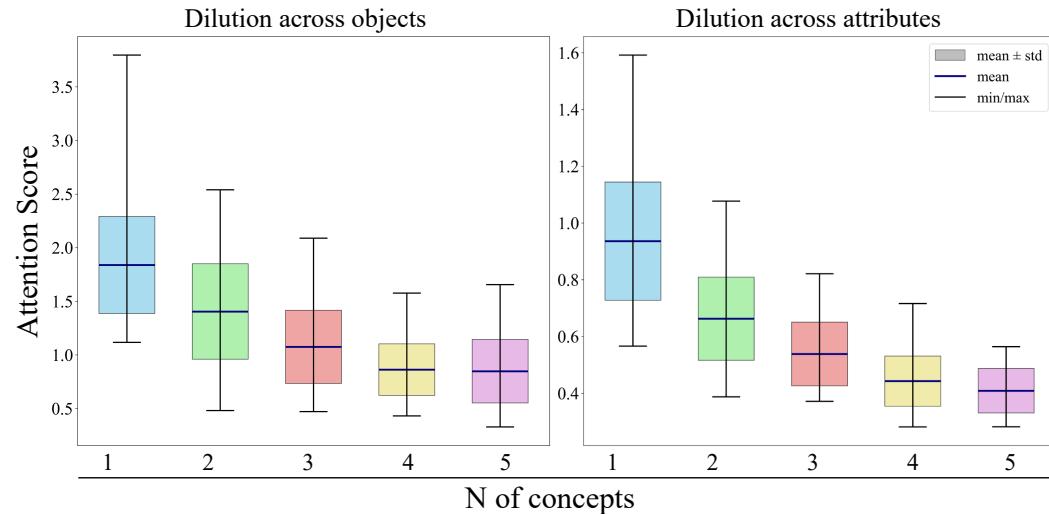
648 A STATISTICAL ANALYSIS ON OBSERVATION
649650 We extend the experiments presented in Section 3.1 with quantitative analysis.
651652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Figure 5: IOU comparison between base model and our variants. Left: a line plot summarizing IOU per method, with the solid line indicating the mean, dashed lines marking the minimum and maximum, and the shaded band spanning the min–max range. Right: per-method distributions shown as box-style, where the box reflects the mean ± 1 standard deviation and whiskers denote the full range.

Attention overlap In Section 3.1, comparisons are restricted to the base model (Sana (Xie et al., 2024)) and our Sana variants. Here, we explicitly compare three methods: (1) the base Sana, (2) Sana without ADR (Sana + AOD), and (3) Sana with full modules (Sana + AOD + ADR). We evaluate on 800 prompts from T2I-CompBench (Huang et al., 2025) of the form “a/an ⟨attribute1⟩⟨object1⟩ and a/an ⟨attribute2⟩⟨object2⟩”. Figure Figure 5 shows that adding AOD alone leads to a sharp reduction in overlap: the average IoU across the 800 prompts drops from 0.18818 to 0.00152, a 99.2% decrease. Building on this, ADR—by selectively enhancing features within the separated regions—further reduces overlap: relative to Sana + AOD, the average IoU decreases from 0.00152 to 0.00055, a 63.8% reduction. These results indicate that AOD effectively separates the attention regions corresponding to each concept, and ADR further reinforces this effect.

698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
1001000
1001001
1001002
1001003
1001004
1001005
1001006
1001007
1001008
1001009
1001010
1001011
1001012
1001013
1001014
1001015
1001016
1001017
1001018
1001019
1001020
1001021
1001022
1001023
1001024
1001025
1001026
1001027
1001028
1001029
1001030
1001031
1001032
1001033
1001034
1001035
1001036
1001037
1001038
1001039
1001040<br

Attention dilution In Section 3.1, we examine attention dilution with up to three attribute–object pairs (i.e., up to three concepts) and a limited set of prompts. We expand this to up to five concepts and construct 100 prompts for each concept cardinality. For example, a single-concept prompt is “a/an \langle attribute \rangle \langle object \rangle ”, and a three-concept prompt is “a/an \langle attribute1 \rangle \langle object1 \rangle and a/an \langle attribute2 \rangle \langle object2 \rangle and a/an \langle attribute3 \rangle \langle object3 \rangle ”. Following this template, we manually create prompts with assistance from a large language model such as GPT (Achiam et al., 2023). For each prompt, we measure the attention scores associated with the first attribute and the first object, and summarize the mean, minimum, maximum, and standard deviation in Figure 6. For both objects and attributes, the mean attention score decreases as the number of concepts increases, following an approximately logarithmic trend. Specifically, increasing the number of concepts from 1 to 2 in attributes reduces the mean from 0.93301 to 0.66255, a 29% reduction. Overall, the results indicate that within the cross-attention mechanism of text-to-image diffusion models, increasing the number of non-padding text tokens dilutes the information allocated to each token.

B ABLATION ON HYPERPARAMETERS

We investigate the influence of two key hyperparameters in our framework: the EMA rate and the Percentile- β rate. As shown in Figure 7, we conduct systematic variations of each hyperparameter while holding all other conditions fixed. This analysis highlights how different choices affect performance beyond the default setting and provides practical guidance for selecting stable operating ranges.

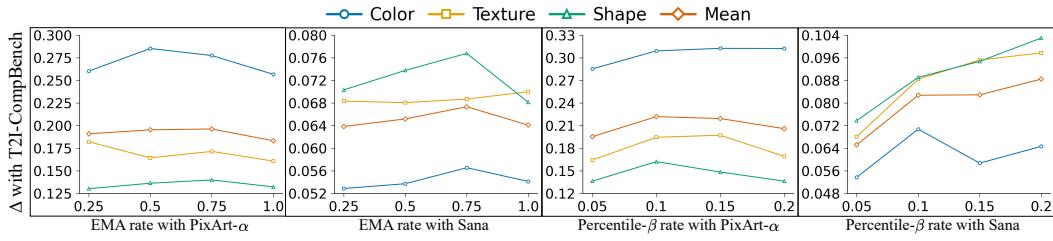
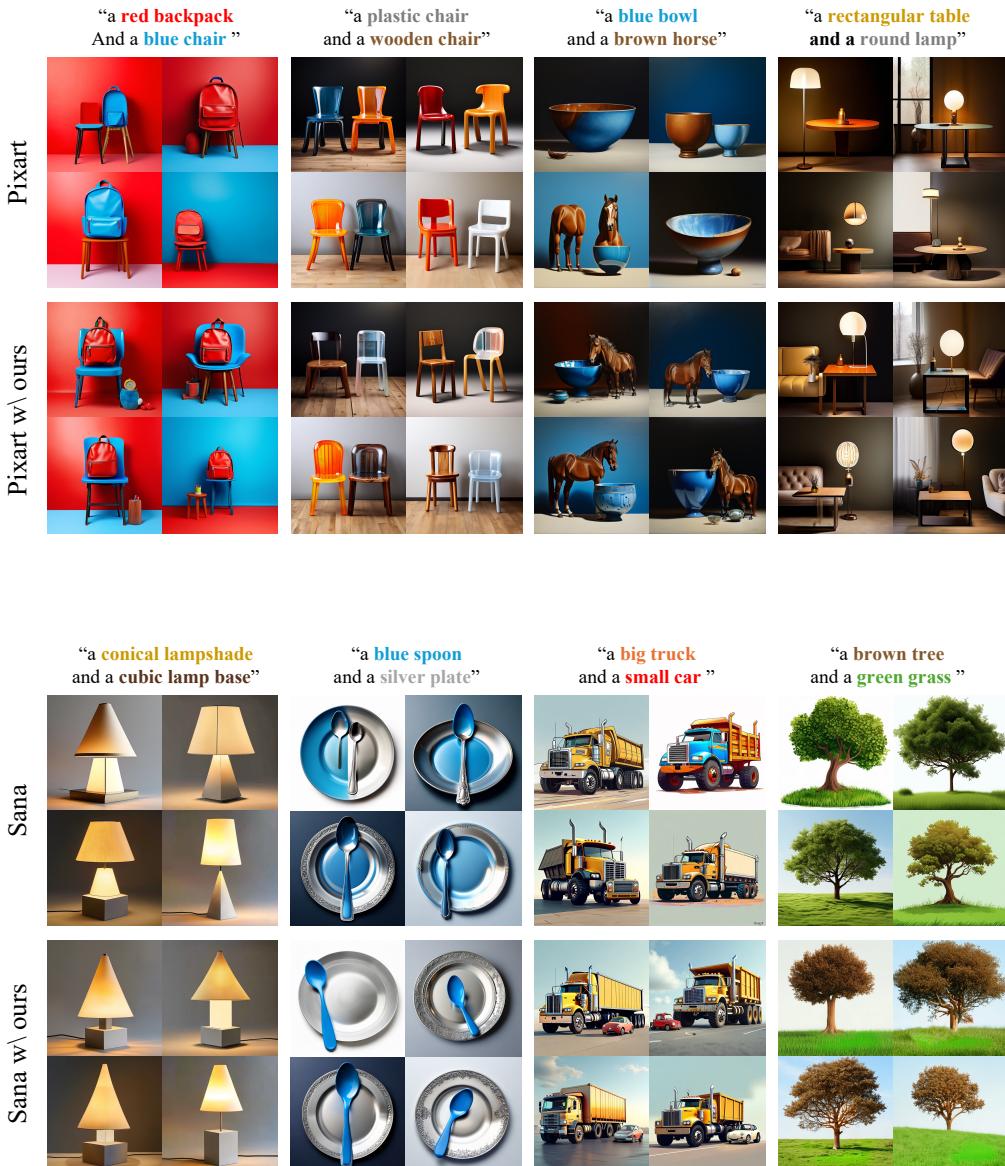


Figure 7: Effect of EMA rate and Percentile- β rate on T2I-CompBench performance. The y-axis label indicates improvement over the corresponding base models. Results are shown for PixArt- α and Sana across Color, Texture, Shape, and their Mean performance.

EMA rate. We investigate the effect of the EMA rate while fixing the percentile- β parameter at 0.05, varying the EMA rate over 0.25, 0.5, 0.75, 1.0. The EMA rate controls the sensitivity of the moving average: lower values dampen responsiveness to recent cross-attention signals, whereas higher values place greater weight on them. An EMA rate of 1.0 corresponds to using only the current cross-attention value (i.e., no averaging). Except for Sana in shape, both models are robust to the choice of EMA rate, showing minimal difference across categories. Overall, these findings indicate that moderate EMA rates provide the most effective balance, supporting better semantic alignment while avoiding the limitations of excessively small or overly large values.

Percentile- β rate. We investigate the effect of the percentile- β rate by fixing the EMA rate to 0.5 and varying the percentile- β rate across 0.05, 0.1, 0.15, 0.2. The percentile- β rate specifies a threshold for selecting indices from the EMA cross-attention weights of each text token. Based on this threshold, indices with the highest attention values are chosen in descending order. Higher percentile- β rates result in more indices being extracted per token, while lower rates restrict the selection to fewer indices. PixArt- α achieves its strongest results on average at 0.1 and 0.15, with a slight decline at 0.2, while Sana continues to improve consistently except for the color category. Since larger percentile- β rates entail extracting more indices per token and thus increase computational cost, we adopt 0.05 as the default setting.

Overall, the ablation results demonstrate that both hyperparameters yield consistent benefits and that our framework maintains stable performance without demanding fine-grained tuning. The integration of EMA and percentile- β , therefore, proves essential for mitigating semantic misalignment.

756 C ADDITIONAL QUALITATIVE RESULTS
757758 We provide additional samples below. Figure 8 demonstrates improved performance over the base
759 model, and Figure 9 shows that our method mitigates semantic misalignment more effectively than
760 competing models.
761800 Figure 8: Additional semantically aligned images generated by our method, applied to the PixArt-
801 α (top two rows) (Chen et al., 2023) and SANA (bottom two rows) (Xie et al., 2024) base models.
802 Results are shown for two random seeds for each baseline. Zooming in is recommended for a detailed
803 view.
804
805
806
807
808
809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Figure 9: Additional quantitative comparison of our method against competing approaches. Results are shown for two random seeds per prompt. Zooming in is recommended for a detailed view.

864 **D ETHICS STATEMENT**
865

866 Following ICLR 2026 guidelines, we disclose that a Large Language Model (LLM) was utilized
867 for assistance with grammar correction, text polishing, and the generation of prompts for additional
868 experiments. All research contributions, experimental results, and scientific claims are entirely the
869 work and responsibility of the authors.

870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917