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Abstract

We study the implicit bias of optimization in robust empirical risk minimization
(robust ERM) and its connection with robust generalization. In classification
settings under adversarial perturbations with linear models, we study what type
of regularization should ideally be applied for a given perturbation set to improve
(robust) generalization. We then show that the implicit bias of optimization in
robust ERM can significantly affect the robustness of the model and identify two
ways this can happen; either through the optimization algorithm or the architecture.
We verify our predictions in simulations with synthetic data and experimentally
study the importance of implicit bias in robust ERM with deep neural networks.

1 Introduction

Robustness is a highly desired property of any machine learning system. Since the discovery of
adversarial examples in deep neural networks [Szegedy et al., 2014, Biggio et al., 2013], adversarial
robustness - the ability of a model to withstand small, adversarial, perturbations of the input at test
time - has received significant attention. A canonical way to obtain a robust model f , parameterized
by w, is to optimize it for robustness during training, i.e. given a set of training examples (xi, yi)

m
i=1,

optimize the empirical, worst-case, loss l, where worst-case refers to a predefined threat model ∆(·)
which encodes our notion of proximity for the task:

min
w

1

m

m∑
i=1

max
x′
i∈∆(xi)

l (f(x′
i;w), yi) . (1)

This method of robust Empirical Risk Minimization (robust ERM aka adversarial training [Madry
et al., 2018]) has been the workhorse in deep learning for optimizing robust models in the past few
years. However, despite the outstanding performance of deep networks in “standard” classification
settings, the same networks under robust ERM lag behind; progress, in terms of absolute performance,
has stagnated as measured on relevant benchmarks [Croce et al., 2021] and predicted by experimental
scaling laws for robustness [Debenedetti et al., 2023], and any advances mainly rely on extreme
amounts of synthetic data (see, e.g., [Wang et al., 2023]). Additionally, the (robust) generalization
gap of neural networks obtained with robust ERM is large and, during training, networks typically
exhibit overfitting [Rice et al., 2020]; (robust) test error goes up after initially going down, even
though (robust) train error continues to decrease. How can we reconcile all this with the modern
paradigm of deep learning, where overparameterized models interpolate their (even noisy) training
data and seamlessly generalize to new inputs [Belkin, 2021]? What is different in robust ERM?

In “standard” classification, it is now understood that the optimization procedure is responsible
for capacity control during ERM [Neyshabur et al., 2015] and this in turn permits generalization.
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Figure 1: The price of implicit bias in adversarially robust generalization. Top: An illustration of
the role of geometry in robust generalization: a separator that maximizes the ℓ2 distance between
the training points (circles) might suffer a large error for test points (stars) perturbed within ℓ∞
balls, while a separator that maximizes the ℓ∞ distance might generalize better. Bottom: Binary
classification of Gaussian data with (right) or without (left) ℓ∞ perturbations of the input in Rd using
linear models. We plot the (robust) generalization gap, i.e., (robust) train minus (robust) test accuracy,
of different learning algorithms versus the training size m. In standard ERM (ϵ = 0), the algorithms
generalize similarly. In robust ERM, however, the implicit bias of gradient descent is hurting the
robust generalization of the models, while the implicit bias of coordinate descent/gradient descent
with diagonal linear networks aids it. See Section 4 for details.

We use the term capacity control to refer to the way that our algorithm imposes constraints on the
hypotheses considered during learning; this can be achieved by means of either explicit (e.g. weight
decay [Krogh and Hertz, 1991]) or implicit regularization [Neyshabur et al., 2015] induced by the
optimization algorithm [Soudry et al., 2018, Gunasekar et al., 2018a], the loss function [Gunasekar
et al., 2018a], the architecture [Gunasekar et al., 2018b] and more. This implicit bias of optimization
towards empirical risk minimizers with small capacity (some kind of “norm”) is what allows them
to generalize, even in the absence of explicit regularization [Zhang et al., 2017], and can, at least
partially, explain why gradient descent returns well-generalizing solutions [Soudry et al., 2018].

Our contributions In this work, we explore the implicit bias of optimization in robust ERM and
study carefully how it affects the robust generalization of a model. In order to overcome the hurdles
of the bilevel optimization in the definition of robust ERM (eq. (1)), we seek to first understand the
situation in linear models, where the inner minimization problem admits a closed form solution. Prior
work [Yin et al., 2019, Awasthi et al., 2020] that studied generalization bounds for this class of models
for ℓp norm-constrained perturbations observed that the hypothesis class (class of linear predictors)
should better be constrained in its ℓr norm with r smaller than or equal to p⋆, where p⋆ is the dual of
the perturbation norm p, i.e 1

p + 1
p⋆ = 1. For instance, in the case of ℓ∞ perturbations, these works

postulated that searching for robust empirical risk minimizers with small ℓ1 norm is beneficial for
robust generalization. In Section 2, we further refine these arguments and demonstrate that there are
also other factors, namely the sparsity of the data and the magnitude of the perturbation, which can
influence the choice of the regularizer norm r. Nevertheless, in accordance with [Yin et al., 2019,
Awasthi et al., 2020], we do identify cases where insisting on a suboptimal type of regularization
makes generalization more difficult - much more difficult than in “standard” classification.
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This observation has significant implications for training robust models. The hidden gift of opti-
mization that allowed generalization in the context of ERM can now become a punishment in robust
ERM, if implicit bias and threat model happen to be “misaligned” with each other. We call this the
price of implicit bias in adversarially robust generalization and demonstrate two ways this price can
appear; either by varying the optimization algorithm or the architecture. In particular, we first focus
on robust ERM over the class of linear functions flin(x;w) = ⟨w,x⟩ with steepest descent with
respect to an ℓr norm, a class of algorithms which generalizes gradient descent to other geometries
besides the Euclidean (Section 3.1). In the case of separable data, we prove that robust ERM with
infinitesimal step size with the exponential loss asymptotically reaches a solution with minimum ℓr
norm that classifies the training points robustly (Theorem 3.3). Although this result is to be expected,
given that standard ERM with steepest descent also converges to a minimum norm solution (without
the robustness constraint, however) [Gunasekar et al., 2018a], it lets us argue that, in certain cases,
gradient descent-based robust ERM will generalize poorly despite the existence of better alternatives
- see Figure 1 (bottom). We then turn our attention to study the role of architecture in robust ERM. In
Section 3.2, we study the implicit bias of gradient descent-based robust ERM in models of the form
fdiag(x;u+,u−) =

〈
u2
+ − u2

−,x
〉
, commonly referred to as diagonal neural networks [Woodworth

et al., 2020]. These are just reparameterized linear models flin, and thus their expressive power does
not change. Yet, as we show, robust ERM drives them to solutions with very different properties
(Proposition 3.8) than those of flin, which can generalize robustly much better - see Figure 1 (bottom).

Finally, in Section 4, we perform extensive simulations with linear models over synthetic data which
illustrate the theoretical predictions and, then, investigate the importance of implicit bias in robust
ERM with deep neural networks over image classification problems. In analogy to situations we en-
countered in linear models, we find evidence that the choice of the algorithm and the induced implicit
bias affect the final robustness of the model more and more as the magnitude of the perturbation
increases.

Notation Let [m] = {1, . . . ,m}. The dual norm of a vector z is defined as ∥z∥⋆ = sup∥x∥≤1 ⟨z,x⟩.
The dual of an ℓp norm is the ℓp⋆ with 1

p + 1
p⋆ = 1. For a function f : Rd → R, we use ∂f(x)

to denote the set of subgradients of f at x: ∂f(x) =
{
g ∈ Rd : f(z) ≥ f(x) + ⟨g, z− x⟩

}
. We

denote by x2 ∈ Rd the element-wise square of x. We defer a full discussion of prior work to App. A.

2 Capacity Control in Adversarially Robust Classification

We begin by studying the connection between explicit regularization and robust generalization error
in linear models. In particular, we set out to understand how constraining the ℓr norm of a model
affects its robustness with respect to ℓp norm perturbations, i.e., how r interacts with p.

2.1 Generalization Bounds for Adversarially Robust Classification

We focus on binary classification with linear models over examples x ∈ X ⊆ Rd and labels y ∈ {±1}.
We denote by D an unknown distribution over X × {±1}. We assume access to m pairs from D,
S = {(x1, y1), . . . , (xm, ym)}. Let Hr be the class of linear hypotheses with a restricted ℓr norm:

Hr = {x 7→ ⟨w,x⟩ : ∥w∥r ≤ Wr}, (2)

where Wr > 0 is an arbitrary upper bound. We consider loss functions of the form l(h(x), y) =
l(yh(x)), by explicitly overloading the notation with l : R → [0, 1]. The quantity yh(x) is sometimes
referred to as the confidence margin of h on (x, y). We assume a threat model of ℓp balls of radius ϵ
centered around the original samples and we define Gr to be the class of functions that map samples
to their worst-case loss value, i.e. Gr = {(x, y) 7→ max∥x′−x∥p≤ϵ l(yh(x

′)) : h ∈ Hr}. We define
the (expected) risk and empirical risk of a hypothesis with respect to the worst-case loss as:

L̃D(h) = E(x,y)∼D

[
max

∥x′−x∥p≤ϵ
l(yh(x′))

]
and L̃S(h) =

1

m

m∑
i=1

max
∥x′

i−xi∥p≤ϵ
l (yih(x

′
i)) , (3)

respectively. Let us also define the robust 0-1 risk as: L̃D,01(h) =
E(x,y)∼D

[
max∥x′−x∥p≤ϵ 1{yh(x′) ≤ 0}

]
. Central to the analysis of the robust generaliza-
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tion error is the notion of the (empirical) Rademacher Complexity of the function class Gr:

R̂S(Gr) = Eσ

[
1

m
sup
g∈Gr

m∑
i=1

σig((xi, yi))

]
= Eσ

[
1

m
sup
h∈Hr

m∑
i=1

σi max
∥x′

i−xi∥p≤ϵ
l(yih(x

′
i))

]
, (4)

where the σi’s are Rademacher random variables. If, additionally, we consider decreasing, Lipschitz,
losses l(·), then, as observed by Yin et al. [2019], Awasthi et al. [2020], we can equivalently analyse the
following Rademacher Complexity R̂S(H̃r) = Eσ

[
1
m suph∈Hr

∑m
i=1 σi min∥x′

i−xi∥p≤ϵ yih(x
′
i)
]
,

and by taking the loss in L̃D(·), L̃S(·) in eq. (3) to be the ramp loss: l(u) =

min
(
1,max

(
0, 1− u

ρ

))
, ρ > 0, we arrive at the following margin-based generalization bound.

Theorem 2.1. [Mohri et al., 2012, Awasthi et al., 2020] Fix ρ > 0. For any δ > 0, with probability
at least 1− δ over the draw of the dataset S, for all h ∈ Hr with Hr defined as in eq. (2), it holds:

L̃D(h) ≤ L̃S(h) +
2

ρ
R̂S(H̃r) + 3

√
log 2/δ

2m
. (5)

Margin bounds of this kind are attractive, since they promise that, if the empirical margin risk L̃S

is small for a large ρ then the second term in the RHS will shrink, and expected and empirical risk
will be close. As shown in [Awasthi et al., 2020], the above Rademacher complexity admits an upper
bound (and a matching lower bound) of the form:

R̂S(H̃r) ≤ R̂S(Hr) + ϵ
Wr

2
√
m

max
(
d

1
p⋆

− 1
r , 1

)
, (6)

where R̂S(Hr) is the “standard” Rademacher complexity. As pointed out in [Awasthi et al., 2020],
there is a dimension dependence appearing in this bound, that is not present in the “standard" case
of ϵ = 0, and, thus, it makes sense to choose r so that we eliminate that term. One such choice is
of course r = p⋆, the dual of p. This made the works of Yin et al. [2019], Awasthi et al. [2020] to
advocate for an ℓp⋆ regularization during training, in order to minimize the complexity term and,
hence, the robust generalization error. However, the factor Wr that appears in the RHS of eq. (6)
might also depend on r (and potentially d) so it is not entirely clear what the optimal choice of r is
for a problem at hand.

2.2 Optimal Regularization Depends on Sparsity of Data

To illustrate the previous point, we place ourselves in the realizable setting, where there exists a linear
“teacher” which labels the samples robustly. That is, there is a vector w⋆ ∈ Rd which labels points
and their neighbors with the same label: y = sgn (⟨w⋆,x′⟩) for all x′ ∈ {z ∈ Rd : ∥z− x∥p ≤ ϵ}.
Let us specialize to hypothesis classes with bounded ℓ1 or ℓ2 norm, i.e. H1,H2. Since the data are
assumed to be labeled by a robust “teacher”, the robust empirical risk that corresponds to the ramp
loss can be driven to zero with a sufficiently large hypothesis class. The next Proposition provides a
bound on the robust generalization of predictors who belong to such a class.
Proposition 2.2. (Generalization bound for robust interpolators) Consider a distribution D
over Rd × {±1} with P(x,y)∼D [y = sgn(⟨w⋆,x⟩), ∀x′ : ∥x′ − x∥p ≤ ϵ] = 1 for some w⋆ ∈
Rd. Let S ∼ Dm be a draw of a random dataset S = {(x1, y1), . . . , (xm, ym)} and let

H′
r =

{
x 7→ ⟨w,x⟩ : ∥w∥r ≤ ∥w⋆∥r ∧ w ∈ argmax∥u∥r≤1 mini∈[m] min∥x′

i−x∥p≤ϵ yi ⟨u,x′
i⟩
}

be a hypothesis class of maximizers of the robust margin. Then, for any δ > 0, with probability at
least 1− δ over the draw of the random dataset S, for all h ∈ H′

r, it holds:

L̃D,01(h) ≤


1

2
√
m

(
maxi ∥xi∥∞∥w⋆∥1

√
2 log(2d) + ϵ∥w⋆∥1

)
+ 3

√
log 2/δ
2m , r = 1

1
2
√
m

(
maxi ∥xi∥2∥w⋆∥2 + ϵ∥w⋆∥2dmax( 1

p⋆
− 1

2 ,0)
)
+ 3

√
log 2/δ
2m , r = 2.

(7)

The proof appears in Appendix B and follows from standard arguments based on the properties of the
ramp loss and standard Rademacher complexity bounds. Notice that eq. (7) depends on the various
norms of w⋆ and x, so we can consider specific cases in order to probe its behaviour in different
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regimes. In particular, we assume that all the entries of the vectors are normalized to be O(1). We
call a vector z ∈ Rd “dense” when it satisfies ∥z∥1 = Θ(d) and ∥z∥2 = Θ(

√
d), while we call it

“k-sparse” if ∥z∥1 = Θ(k) and ∥z∥2 = Θ(
√
k) for k < d. Let us also specialize to p = ∞. We

enumerate the cases:

1. Dense, Dense: If both the ground truth vector w⋆ and the samples x (with probability 1)
are dense, then the bounds evaluate to Θ

(
1√
m
(d
√
log d+ ϵd)

)
and Θ

(
1√
m
(d+ ϵd)

)
for

r = 1 and r = 2, respectively. In particular, for ϵ = 0, the r = 2 bound is smaller only by a
logarithmic factor, and as ϵ increases the bounds should behave the same. So, we expect an
ℓ2 regularization to yield smaller generalization error for ϵ = 0, while for larger ϵ, ℓ2 and ℓ1
regularization should perform roughly similarly.

2. k-Sparse, Dense: If the ground truth vector is k-sparse and the samples are dense, then
the bounds yield Θ

(
1√
m
(k
√
log d+ ϵk)

)
and Θ

(
1√
m
(
√
d
√
k + ϵ

√
k
√
d)
)

for r = 1 and
r = 2, respectively. For k = O(1), ℓ1 regularization is expected to generalize better than
ℓ2 already for ϵ = 0. As ϵ increases, ℓ2 regularized solutions should continue generalizing
worse, as the “worst-case” dimension-dependent term makes its appearance.

3. Dense, k-Sparse: If w⋆ is dense and the samples x are k-sparse, then we get
Θ
(

1√
m
(d
√
log d+ ϵd)

)
and Θ

(
1√
m
(
√
k
√
d+ ϵd)

)
for r = 1 and r = 2, respectively.

The r = 2 bounds provides more favorable guarantees in this case, even for ϵ > 0.

4. k-Sparse, k-Sparse: If both w⋆ and x are k-sparse, then we have Θ
(

1√
m
(k
√
log d+ ϵk)

)
and Θ

(
1√
m
(k + ϵ

√
k
√
d)
)

for r = 1 and r = 2, respectively. For ϵ = 0, ℓ1 and ℓ2

regularization should behave similarly, but, as ϵ increases, ℓ2 regularization starts “paying”
the “worst-case” dimension-dependent term, making the ℓ1 solution more appealing.

Notice how the “price” of robustness especially manifests itself in Case 4, where our input is
“embedded” in a k-dimensional space: the bounds are very similar for ϵ = 0, but as soon as ϵ becomes
positive, the extra penalty of ℓ2 solutions over ℓ1 grows with dimension. Moreover, Case 3 highlights
that an ℓ1 regularization is not always optimal for ℓ∞ perturbations. To summarize, we see that the
optimal choice of regularization depends not only on the choice of norm p and the value of ϵ, but
also on the sparsity of the data-generating process (see also Table 1 for a summary). In particular, in
order for the dimension-dependent term to appear in the r = 2 bound, the model w⋆ itself needs to
be sparse.

3 Implicit Biases in Robust ERM

In the previous section, we saw that the way we choose to constrain our hypothesis class can
significantly affect the robust generalization error. In this section, we connect this with the implicit
bias of optimization during robust ERM and demonstrate cases where the implicit regularization is
either working in favor of robust generalization or against it. The term implicit bias refers to the
tendency of optimization methods to infuse their solutions with properties that were not explicitly
“encoded” in the loss function. It usually describes the asymptotic behavior of the algorithm. We
study two ways that an implicit bias can affect robustness in robust ERM: through the optimization
algorithm and through the parameterization of the model.

3.1 Price of Implicit Bias from the Optimization Algorithm

In this section, we study the implicit bias of robust ERM in linear models with steepest descent, a
family of algorithms which generalizes gradient descent to other than the Euclidean geometries. We
focus on minimizing the worst-case exponential loss, which has the same asymptotic properties as
the logistic or cross-entropy loss (see e.g. [Telgarsky, 2013, Soudry et al., 2018, Lyu and Li, 2020]):

L̃S(h) := L̃S(w) =

m∑
i=1

max
∥x′

i−xi∥p≤ϵ
exp(−yi ⟨w,x′

i⟩) =
m∑
i=1

exp(−yi ⟨w,xi⟩+ ϵ∥w∥p⋆). (8)
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The above corresponds to choosing l(u) = exp (−u) in the definition of eq. (3). We first proceed
with some definitions about the margin and the separability of a dataset.

Definition 3.1. We call ℓp-margin of a dataset {xi, yi}mi=1 the quantity maxw ̸=0 mini∈[m]
yi⟨w,xi⟩
∥w∥p⋆

.

Definition 3.2. A dataset {xi, yi}mi=1 is (ϵ, p)-linearly separable if maxw ̸=0 mini∈[m]
yi⟨w,xi⟩
∥w∥p⋆

≥ ϵ.

Geometrically, the ℓp-margin of a dataset captures the largest possible ℓp-distance of a decision
boundary to their closest data point xi (see Lemma C.8 for completeness). Requiring separability is a
natural starting point for understanding training methods that succeed in fitting their training data and
has been widely adopted in prior work [Soudry et al., 2018, Li et al., 2020, Lyu and Li, 2020]).

Steepest Descent (Normalized) steepest descent is an optimization method which updates the
variables with a vector which has unit norm, for some choice of norm, and aligns maximally with
minus the gradient of the objective function [Boyd and Vandenberghe, 2014]. Formally, the update
for normalized steepest descent with respect to a norm ∥·∥ for a loss LS(w) is given by:

wt+1 = wt + ηt∆wt, where ∆wt satisfies
∆wt ∈ argmin

∥u∥≤1

⟨u,∇LS(wt)⟩ . (9)

Unnormalized steepest descent, or simply steepest descent, further scales the magnitude of the update
by ∥∇LS(wt)∥⋆, where ∥·∥⋆ denotes the dual norm of ∥·∥. The case ∥·∥ = ∥·∥2 corresponds to
familiar gradient descent. We will be interested in understanding the steepest descent trajectory, when
minimizing L̃S from eq. (8), in the limit of infinitesimal stepsize, i.e. steepest flow dynamics:

dw

dt
∈

{
v ∈ Rd : v ∈ argmin

u∈Rd:∥u∥≤∥g∥⋆

⟨u,g⟩ ,g ∈ ∂L̃S

}
. (10)

Notice that loss L̃S is not differentiable everywhere (due to the norm in the exponent), but we
can consider subgradients ∂L̃S in our analysis. We are ready to state our result for the asymptotic
behavior of steepest flow in minimizing the worst-case exponential loss.
Theorem 3.3. For any (ϵ, p)-linearly separable dataset and any initialization w0, consider steep-
est flow with respect to the ℓr norm, r ≥ 1, on the worst-case exponential loss L̃S(w) =∑m

i=1 max∥x′
i−xi∥p≤ϵ exp(−yi ⟨w,x′

i⟩). Then, the iterates wt satisfy:

lim
t→∞

min
i

min
∥x′

i−xi∥p≤ϵ

yi ⟨wt,x
′
i⟩

∥wt∥r
= max

w ̸=0
min
i

min
∥x′

i−xi∥p≤ϵ

yi ⟨w,x′
i⟩

∥w∥r
. (11)

Theorem 3.3 can be seen as a generalization of the results of Gunasekar et al. [2018a] to robust
ERM (for any ℓp perturbation norm), modulo our continuous time analysis. The choice of analyzing
continuous-time dynamics was made to avoid many technical issues related to the non-differentiability
of the norm, which do not affect the asymptotic behavior of the algorithm. Li et al. [2020] studied the
implicit bias of gradient descent in robust ERM, and showed that it converges to the minimum ℓ2
solution that classifies the training points robustly, which agrees with the special case of r = 2 in
Theorem 3.3. For the proof, we need to lower bound the margin at all times t with a quantity that
asymptotically goes to the maximum margin. This requires a duality lemma that relates the (sub)
gradient of the loss with the maximum margin, and generalizes previous results that only apply to
either gradient descent, or the unperturbed loss, but not to both. The proof appears in Appendix C.
Remark 3.4. The right hand side of eq. (11) is equivalent to:

min
w

∥w∥r s.t. min
∥x′

i−xi∥p≤ϵ
yi ⟨w,x′

i⟩ ≥ 1, ∀i ∈ [m]. (12)

Thus, the solution converges, in direction, to the hyperplane with the smallest ℓr norm which classifies
the training points correctly (and robustly). As a result, we can leverage Proposition 2.2 to reason
about the robust generalization of the solution returned by steepest descent. An equivalent viewpoint
of (12), first observed by Li et al. [2020] about a version of this result for gradient descent (r = 2), is
the following:

min
w

∥w∥r + λ(ϵ,m)∥w∥p⋆ s.t. yi ⟨w,xi⟩ ≥ 1, ∀i ∈ [m], (13)

6



for some λ(ϵ,m) > 0. Thus, the problem can be understood as performing norm minimization for a
norm which is a linear combination of the algorithm norm r and the dual of the perturbation norm p⋆.
The coefficient of the latter increases with ϵ, which, hereby, means that the bias induced from the
perturbation starts to dominate over the bias of the algorithm with increasing ϵ.

In light of Section 2 and Proposition 2.2, we see that the implications of this result are twofold. First,
on the negative side, Theorem 3.3 implies that robust ERM with gradient descent (ℓ2) can harm the
robust generalization error if p = ∞. For instance, as we saw in Cases 2 and 4 in Section 2.2, gradient
descent will suffer dimension dependent statistical overheads. On the positive side, Theorem 3.3
supplies us with an algorithm that can achieve the desired regularization. In Cases 2 and 4 this would
correspond to steepest descent with respect to r = 1. In general, we have the following corollary:
Corollary 3.5. Minimizing the loss of eq. (8) with steepest flow with respect to the ℓp⋆ norm (on (ϵ, p)
separable data) convergences to a minimum ℓp⋆ norm solution that classifies all the points correctly.

The notable case of steepest descent w.r.t. the ℓ1 norm is called coordinate descent. It amounts
to updating at each step only the coordinate that corresponds to the largest absolute value of the
gradient (Appendix D). In Section 4.1, we demonstrate how robust ERM w.r.t. ℓ∞ perturbations with
coordinate descent, can enjoy much smaller robust generalization error than gradient descent.

Finally, although the perturbation magnitude ϵ did not influence the conversation so far in terms of
the choice of the algorithm, it is important to note that, as ϵ increases, the max-margin solution will
look similar for any choice of norm. In fact, in the limiting case of the largest possible ϵ that does not
violate the separability assumption, all max-margin separators are the same - see Lemma C.7 - so the
type of implicit bias will cease to be important for generalization.

3.2 Price of Implicit Bias from Parameterization

We reasoned in the previous section that robust ERM with gradient descent over the class of linear
functions of the form flin(x;w) = ⟨w,x⟩ can result in excessive (robust) test error for ℓ∞ pertur-
bations. We now demonstrate how the same algorithm, but applied to a different architecture, can
induce much more robust models. In particular, consider the following architecture:

fdiag(x;u) =
〈
u2
+ − u2

−,x
〉
,u = [u+,u−] ∈ R2d,x ∈ Rd, (14)

which consists of a reparameterization of flin. In terms of expressive power, the two architectures
are the same. However, optimizing them can result in very different predictors. In fact, this class
of homogeneous models, known as diagonal linear networks, have been the subject of case studies
before for understanding feature learning in deep networks, because, whilst linear in the input, they
can exhibit non-trivial behaviors of feature learning [Woodworth et al., 2020]. In order to study the
implicit bias of robust ERM with gradient descent on fdiag, we leverage a result by [Lyu and Zhu,
2022] which shows that, under certain conditions, the implicit bias of gradient flow based robust
ERM for homogeneous networks, is towards solutions with small ℓ2 norm.
Theorem 3.6 (Paraphrased Theorem 5 in [Lyu and Zhu, 2022]). Consider gradient flow minimizing
a worst-case exponential loss L̃S(u) =

1
m

∑m
i=1 max∥xi−x′

i∥p≤ϵ e
−yif(x

′
i;u), for a homogeneous,

locally Lipschitz, network f(x; ·) : Rp → R, and assume that for all times t > 0 and for each point
xi the perturbation argmax∥xi−x′

i∥p≤ϵ e
−yif(x

′
i;u) is scale invariant and that the loss gets minimized,

i.e. L̃S(u)
t→∞→ 0. Then, u converges in direction to a KKT point of the following optimization

problem:

min
u

1

2
∥u∥22 s.t. min

∥x′
i−xi∥p≤ϵ

yif(x
′
i;u) ≥ 1, ∀i ∈ [m]. (15)

As we show, fdiag satisfies the conditions of Theorem 3.6, and, thus, we get the following description
of its asymptotic behavior.

Corollary 3.7. Consider gradient flow on the worst-case exponential loss L̃S(u) =
1
m

∑m
i=1 max∥xi−x′

i∥p≤ϵ e
−yifdiag(x

′
i;u) and assume that L̃S(u) → 0. Then, u converges in di-

rection to a KKT point of the following optimization problem:

min
u+∈Rd,u−∈Rd

1

2

(
∥u+∥22 + ∥u−∥22

)
s.t. min

∥x′
i−xi∥p≤ϵ

yi
〈
u2
+ − u2

−,x
′
i

〉
≥ 1, ∀i ∈ [m]. (16)
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However, the optimization problem of eq. (16), which is over R2d is nothing but a disguised ℓ1
minimization problem, when viewed in the prediction (Rd) space.
Proposition 3.8. Problem (16) has the same optimal value as the following constrained opt. problem:

min
w∈Rd

∥w∥1 s.t. min
∥x′

i−xi∥p≤ϵ
yi ⟨w,x′

i⟩ ≥ 1, ∀i ∈ [m]. (17)

The proofs appear in Appendix C.4. These results suggest that the bias of gradient-descent based
robust ERM over diagonal networks is towards minimum ℓ1 solutions, which as we argued in the
previous section can have very different robust error compared to ℓ2 solutions, which are returned
by gradient-descent based robust ERM over linear models. We verify this in the simulations of
Section 4.1.
Remark 3.9. Technically, Corollary 3.7 only proves convergence to a first order (KKT) point, so
we cannot conclude equivalence with the minimum of the ℓ1 problem in eq. 17. Yet, we believe
that global optimality, under the condition of (ϵ, p) separability, can be proven by extending the
techniques of [Moroshko et al., 2020] in robust ERM.

4 Experiments

In this section, we explore with simulations how the implicit bias of optimization in robust ERM is
affecting the (robust) generalization of the models. Appendix F contains full experimental details.

4.1 Linear models

Setup We compare different steepest descent methods in minimizing a worst-case loss with either
linear models or diagonal neural networks on synthetic data, and study their robust generalization
error. In accordance with Section 2.2, we consider distributions that come from a “teacher” w⋆ with
y = sgn(⟨w⋆,x⟩) that can have sparse or dense x,w⋆. We denote by kW and kX the expected
number of non-zero entries of the ground truth w⋆ and the samples x, respectively. We train linear
models flin(x;w) = ⟨w,x⟩ with steepest descent with respect to either the ℓ1 (coordinate descent
- CD) or the ℓ2 norm (gradient descent - GD), and diagonal neural networks fdiag(x;u+,u+) =〈
u2
+ − u2

−,x
〉

with gradient descent (diag-net-GD). We consider ℓ∞ perturbations. We design the
following experiment: first, we fit the training data with CD for ϵ = 0 and we obtain the value of
the ℓ∞ margin of the dataset (denoted as ϵ⋆) at the end of training2. This supplies us with an upper
bound on the value of ϵ for our robust ERM experiments, i.e. we know there exists a linear model
with 100% robust train accuracy for ϵ less than or equal to this ϵ⋆ margin. We then perform robust
ERM with (full batch) GD/CD/diag-net-GD for various values of ϵ less than ϵ⋆. We repeat the above
for multiple values of dataset size m (and draws of the dataset), and aggregate the results.

Results We plot the (robust) generalization gap of the three learning algorithms versus the dataset
size for (kW , kX )=(512, 512) (Dense, Dense) and (kW , kX )=(4, 512) (4-Sparse, Dense) in Figures 1
(bottom) and 2 (left), respectively. In each figure, we show the performance of the methods both
in ERM (no perturbations during training) and robust ERM. The evaluation is w.r.t. the ϵ used in
training. For both distributions, we observe a significant change in the relative performance of the
methods, when we pass from ERM to robust ERM. For data with a sparse teacher (Figure 2), CD
and diag-net-GD already outperform GD in terms of generalization when implementing ERM, as a
result of their bias towards minimum ℓ1 (sparse solutions). However, in agreement with the bounds
of Section 2.2, the interval between the algorithms grows when performing robust ERM as a result of
their different biases. In the case of Dense, Dense data (Figure 1), the effect of robust ERM is more
dramatic, as the algorithms generalize similarly when implementing ERM, yet their gap between
their robust generalization in robust ERM exceeds 20% in the case of few training data! Notice that
the bounds in Section 2.2 were less optimistic than the experiments show for the performance of CD
and diag-net-GD in this case. Plots with other distributions appear in Figure 5.

To get a fine-grained understanding of the interactions between the hyperparameters of the learning
problem, we measure the average difference of (robust) generalization gaps between GD and CD. In par-
ticular, for each different combination of sparsities (kW , kX ) and perturbation ϵ, we summarize curves

2Running this algorithm to convergence is guaranteed to result in the largest possible ℓ∞ separator of the
training data [Gunasekar et al., 2018a]. Recall that the ℓ∞-margin is maxw ̸=0 mini∈[m] yi

⟨xi,w⟩
∥w∥1

.

8



26 27 28 29 210
0

20

40

60

80

Ge
ne

ra
liz

at
io

n 
Ga

p
%

m = d

ERM (d = 512, = 0, k = 4, k = 512)

26 27 28 29 210

m

0

20

40

60

80

Ro
bu

st
Ge

ne
ra

liz
at

io
n 

Ga
p

%

m = d

Robust ERM (d = 512, = 4 , k = 4, k = 512)

logd 2logd d d

0

4

2

Pe
rtu

rb
at

io
n 

k = (d)

logd 2logd d d

0

4

2

k = ( d )

logd 2logd d d
k

0

4

2

Pe
rtu

rb
at

io
n 

k = (2logd)

logd 2logd d d
k

0

4

2

k = (logd)

0% 5% 10% 15% 20%CD GD diag-net-GD

Figure 2: Left: Binary classification of data coming from a sparse teacher w⋆ and dense x, with
(bottom) or without (top) ℓ∞ perturbations of the input in Rd using linear models. We plot the (robust)
generalization gap, i.e., (robust) train minus (robust) test accuracy, of different learning algorithms
versus the training size m. For robust ERM, ϵ is set to be 1

4 of the largest permissible value ϵ⋆. The
gap between the methods grows when we pass from ERM to robust ERM. Right: Average benefit of
CD over GD (in terms of generalization gap) for different values of teacher sparsity kW , data sparsity
kX and magnitude of ℓ∞ perturbation ϵ.

of the form of Figure 2 (left) into one number, by calculating: 1
210−26

∫ 210

26
(GD(m)− CD(m)) dm.

The results are shown in Figure 2 (right). Notice that, as argued in Section 2.2, there are cases with
ϵ > 0 where CD does not outperform GD (kW = Θ(d), kX = Θ(log d)), because the learning problem
is much more “skewed” towards dense solutions. We also observe that when ϵ goes from 0 to ϵ⋆

4 the
edge of CD over GD grows. Past a certain threshold of ϵ, the two methods will start to perform the
same, since for ϵ = ϵ⋆ the algorithms return the same solution (Lemma C.7). See also Appendix E
and Figure 6 for the average difference of “clean” generalization gaps between GD and CD.

4.2 Neural networks

Our discussion has focused so far on linear (with respect to the input) models, where a closed form
solution for the worst-case loss allowed us to obtain precise answers for the connection between
generalization and optimization bias in robust ERM. Such a characterization for general models is
too optimistic at this point, because, even for a kernelized model f(x;w) = ⟨w, ϕ(x)⟩, it is not clear
how to compute the right notion of margin that arises from min∥x′−x∥p≤ϵ ⟨w, ϕ(x′)⟩ without making
further assumptions about ϕ(·). As such, it is difficult to reason that one set of optimization choices
will lead to better suited implicit bias than another. We assess, however, experimentally, what effect
(if any) the choice of the optimization algorithm has on the robustness of a non-linear model. To
this end, we train neural networks with two optimization algorithms, gradient descent (GD) and sign
(gradient) descent (SD) for various values of perturbation magnitude ϵ, focusing on ℓ∞ perturbations.
SD corresponds to steepest descent with respect to the ℓ∞ norm and is expected to obtain a minimum
with very different properties than the one obtained with GD (Appendix D). In practice, we found it
easier to train neural networks with SD than with any other steepest descent algorithm (besides GD).

Fully Connected NNs We first focus on ReLU networks with 1 hidden layer without a bias term:
f(x) =

∑k
j=1 ujσ(Wjx), where σ(u) = max(0, u) is applied elementwise. For this class of

homogeneous networks, we expect very different implicit biases when performing (robust) ERM
with GD versus SD (see Appendix D for details). In Figure 3, we plot the accuracy of models trained
on random subsets of MNIST [LeCun et al., 1998] with “standard” ERM (ϵ = 0) and robust ERM
(ϵ = 0.2). We observe that in ERM (top), the choice of the algorithm does not affect the generalization
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Figure 3: Left: Comparison of two optimization algorithms, gradient descent and sign gradient
descent, in ERM and robust ERM on a subset of MNIST (digits 2 vs 7) with 1 hidden layer ReLU
nets. Train and test accuracy correspond to the magnitude of perturbation ϵ used during training.
We observe that in robust ERM the gap between the generalization of the two algorithms increases.
Right: Gap in (robust) test accuracy (with respect to the ϵ used in training) of CNNs trained with GD
and SD (GD accuracy minus SD accuracy) on subsets of MNIST (all classes) for various of ϵ and m.

error much. But, for ϵ = 0.2 (bottom), SD significantly outperforms GD (4.11% mean difference
over 3 random seeds), even though both algorithms reach 100% robust train accuracy. Notably, in
this case, robust ERM with SD not only achieves smaller robust generalization error, but also avoids
robust overfitting during training, in contrast to GD. It is plausible that robust overfitting, which gets
observed during the late phase of training [Rice et al., 2020]), is due to (or attenuated by) the implicit
bias of an algorithm kicking in late during robust ERM. This bias can either aid or harm the robust
generalization of the model and perhaps this is why the two algorithms exhibit different behavior. It
would be interesting for future work to further study this connection. See Appendix E for plots with
different values of ϵ and m.

Convolutional NNs Departing from the homogeneous setting, where the implicit bias of robust
ERM is known or can be “guessed”, we now train convolutional neural networks (with bias terms).
As a result, we do not have direct control over which biases our optimization choices will elicit,
but changing the optimization algorithm should still yield biases towards minima with different
properties. In Figure 3, we plot the mean difference (over 3 random seeds) between the generalization
of the converged models. We see that the harder the problem is (fewer samples m, request for larger
robustness ϵ), the bigger the price of implicit bias becomes. Note that for this architecture it turns out
that the implicit bias of GD is better “aligned” with our learning problem and GD generalizes better
than SD, despite facing the opposite situation in homogeneous networks. This should not be entirely
surprising, since we saw already in linear models that a reparameterization can drastically change the
induced bias of the same algorithm.

5 Conclusion

In this work, we studied from the perspective of learning theory the issue of the large generalization
gap when training robust models and identified the implicit bias of optimization as a contributing
factor. Our findings seem to suggest that optimizing models for robust generalization is challenging
because it is tricky to do capacity control “right” in robust machine learning. The experiments of
Section 4 seem to suggest searching for different first-order optimization algorithms (besides gradient
descent) for robust ERM (adversarial training) as a promising avenue for future work.
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A Related work

Most relevant to our work Yin et al. [2019], Awasthi et al. [2020] derived generalization bounds
for adversarially robust classification for linear models and simple neural networks, based on the
notion of Rademacher Complexity [Koltchinskii and Panchenko, 2002], and form the starting point of
our work (Section 2). Gunasekar et al. [2018a] studied the implicit bias of steepest descent in ERM
for linear models, while Li et al. [2020] analyzed the implicit bias of gradient descent in robust ERM.
Theorem 3.3 can be seen as a generalization of these results. In Section 3.2, we analyze robust ERM
with gradient descent in diagonal neural networks, which were introduced in [Woodworth et al., 2020]
as a model of feature learning in deep neural networks. The work of Faghri et al. [2021] discusses the
connection between optimization bias and adversarial robustness, yet with a very different focus than
ours; the authors identify conditions where “standard” ERM produces maximally robust classifiers,
and, leveraging results on the implicit bias of CNNs [Gunasekar et al., 2018b], they design a new
adversarial attack that operates in the frequency domain.

Adversarial Robustness Our discussion is focused on so-called white-box robustness (where an
adversary has access to any information about the model) - see [Papernot et al., 2016] for a taxonomy
of threat models. Adversarial examples in machine learning were first studied in [Biggio et al.,
2013] for simple models and in [Szegedy et al., 2014] for deep neural networks deployed in image
classification tasks. The adversarial vulnerability of neural networks is ubiquitous [Papernot et al.,
2016] and it has been observed in many settings and several modalities (see, for instance, [Kurakin
et al., 2017a, Jia and Liang, 2017, Zou et al., 2023]). The reasons for that still remain unclear -
explanations in the past have entertained hypotheses such as high dimensionality of input space
[Fawzi et al., 2018, Gilmer et al., 2018, Shafahi et al., 2019a], presence of spurious features in natural
data [Ilyas et al., 2019, Tsipras et al., 2019, Tsilivis and Kempe, 2022], limited model complexity
[Nakkiran, 2019], fundamental computational limits of learning algorithms [Bubeck et al., 2019],
and the implicit bias of standard (non-robust) algorithms [Frei et al., 2023, Vardi et al., 2022]. Many
empirical methods for defending neural networks have been proposed, but most of them failed to
conclusively solve the issue [Carlini and Wagner, 2017, Athalye et al., 2018]. The only mechanism
that can be adapted to any threat model and has passed the test of time is Adversarial Training [Madry
et al., 2018, Goodfellow et al., 2015, Kurakin et al., 2017b, Shaham et al., 2018], i.e., robust ERM.
For neural network training, this translates to calculating at each step adversarial examples with
(projected) gradient ascent (or some variant), and then updating the weights with gradient descent
(using the gradient of the loss evaluated on the adversarial points). There have been many attempts
on improving this method, either computationally by reducing the amount of gradient calculations
[Shafahi et al., 2019b, Zhang et al., 2019a, Wong et al., 2020], or statistically by modifying the loss
function [Zhang et al., 2019b, Awasthi et al., 2023]. A common pitfall of all these methods is large
(robust) generalization gap [Croce et al., 2021] and (robust) overfitting during training [Rice et al.,
2020]; towards the end of training, the robust test error increases even though the robust training
error continues to decrease. Vast amounts of synthetic training data have been shown to help on both
accounts, alleviating the need for early stopping during training [Wang et al., 2023].

Margin-based Generalization bounds The idea of (confidence) margin has been central in the
development of many machine learning methods [Vapnik, 1998, Taskar et al., 2003, Rudin et al.,
2005] and it has been used in several contexts for justifying their empirical success [Cortes and
Vapnik, 1995, Schapire et al., 1997, Koltchinskii and Panchenko, 2002]. In linear models and kernel
methods, it is closely related to the notion of geometric margin, and margin-based generalization
bounds can explain the strong generalization performance in high-dimensions [Vapnik, 1998, Mohri
et al., 2012, Shalev-Shwartz and Ben-David, 2014]. For neural networks, they are still the object of
active research [Bartlett et al., 2017, Neyshabur et al., 2018, Long and Sedghi, 2020, Cortes et al.,
2021]. For these kind of bounds, the Rademacher complexity of the hypothesis class plays a central
role [Koltchinskii, 2001]. Rademacher complexity-type analyses have been shown to subsume other
similar frameworks [Kakade et al., 2008, Foster et al., 2019], such as the PAC-Bayes one [McAllester,
1998], and in many cases they can provide the finest known guarantees. Yin et al. [2019] and Awasthi
et al. [2020] recently derived margin-based bounds for adversarially robust classification - see also
Mustafa et al. [2022] for non-additive perturbations.

Implicit Bias of Optimization Algorithms The implicit bias (or regularization) of optimization
algorithms refers to the tendency of gradient methods to induce properties to the solution that were
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not explicitly specified. It is believed to be beneficial for generalization in learning [Neyshabur et al.,
2015]. The implicit bias of gradient descent towards margin maximization/norm minimization has
been studied in many learning setups including matrix factorization [Arora et al., 2019, Gunasekar
et al., 2017], learning with linear models [Soudry et al., 2018, Ji and Telgarsky, 2019b], deep linear
[Ji and Telgarsky, 2019a] and convolutional networks [Gunasekar et al., 2018b], and homogeneous
models [Lyu and Li, 2020, Nacson et al., 2019]. Telgarsky [2013] and Gunasekar et al. [2018a]
have analyzed implicit biases beyond ℓ2-like margin maximization for other optimization algorithms;
namely Adaboost and Steepest (and Mirror) Descent, respectively. See Vardi [2023] for a compre-
hensive survey of the area. The importance of sparsity (min-ℓ1 solutions) in binary classification
has been studied in [Ng, 2004]. In the context of adversarial training, Li et al. [2020] analyzed the
implicit bias of optimizing a worst-case loss with gradient descent in linear models, and Lyu and Zhu
[2022] extended these results to deep models.

B Generalization Bounds for Robust Interpolators

In this Section, we provide the proof of Proposition 2.2, which we now restate for convenience.
Proposition B.1. (Generalization bound for robust interpolators) Consider a distribution D
over Rd × {±1} with P(x,y)∼D [y = sgn(⟨w⋆,x⟩), ∀x′ : ∥x′ − x∥p ≤ ϵ] = 1 for some w⋆ ∈
Rd. Let S ∼ Dm be a draw of a random dataset S = {(x1, y1), . . . , (xm, ym)} and let

H′
r =

{
x 7→ ⟨w,x⟩ : ∥w∥r ≤ ∥w⋆∥r ∧ w ∈ argmax∥u∥r≤1 mini∈[m] min∥x′

i−x∥p≤ϵ yi ⟨u,x′
i⟩
}

be a hypothesis class of maximizers of the robust margin. Then, for any δ > 0, with probability at
least 1− δ over the draw of the random dataset S, for all h ∈ H′

r, it holds:

L̃D,01(h) ≤


2√
m

(
maxi ∥xi∥∞∥w⋆∥1

√
2 log(2d) + ϵ∥w⋆∥1

)
+ 3

√
log 2/δ
2m , r = 1

2√
m

(
maxi ∥xi∥2∥w⋆∥2 + ϵ∥w⋆∥2dmax( 1

p⋆
− 1

2 ,0)
)
+ 3

√
log 2/δ
2m , r = 2.

(18)

Proof. First, notice that H′
r ⊆ Hr, so, by the definition of the Rademacher complexity, it holds:

R̂S(H′
r) ≤ R̂S(Hr). Thus, from Theorem 2.1, we have for all h ∈ H′

r and for ρ > 0 with probability
1− δ:

L̃D(h) ≤ L̃S(h) +
2

ρ
R̂S(H̃r) + 3

√
log 2/δ

2m
. (19)

Observe that the ramp loss lρ(u) = min(1,max(0, 1− u
ρ )), ρ > 0 is an upper bound on the 0-1 loss,

thus we readily get a bound for the 0-1 robust risk:

L̃D,01(h) ≤ L̃S(h) +
2

ρ
R̂S(H̃r) + 3

√
log 2/δ

2m
. (20)

Now, let us specialize the ramp loss for ρ = 1 (a stronger version of this Proposition can be obtained
for a ρ that depends on the data - see, for instance, the techniques in Theorem 5.9 in [Mohri et al.,
2012]). Then, the bound becomes:

L̃D,01(h) ≤
1

m

m∑
i=1

max
∥x′

i−xi∥p≤ϵ
min(1,max(0, 1− yi ⟨w,x′

i⟩)) + 2 R̂S(H̃r) + 3

√
log 2/δ

2m
. (21)

But, notice that for all h ∈ H′
r and their corresponding w, the empirical loss

1
m

∑m
i=1 max∥x′

i−xi∥p≤ϵ min(1,max(0, 1− yi ⟨w,x′
i⟩)) is 0, since:

argmax
w:∥w∥r≤1

min
i∈[m]

min
∥x′

i−xi∥p≤ϵ
yi ⟨w,x′

i⟩ = argmax
w∈Rd

w ̸=0

min
i∈[m]

min
∥x′

i−xi∥p≤ϵ

yi ⟨w,x′
i⟩

∥w∥r

= argmax
w∈Rd,w ̸=0:

mini∈[m] min∥x′
i
−xi∥p≤ϵ yi⟨w,x′

i⟩=1

1

∥w∥r

= argmin
w∈Rd,w ̸=0:

min∥x′
i
−xi∥p≤ϵ yi⟨w,x′

i⟩≥1 ∀i∈[m]

∥w∥r.

(22)
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Figure 4: An illustration of the model selection problem we are facing in Section 2. We depict
hypothesis classes which correspond to Hr = {x 7→ ⟨w,x⟩ : ∥w∥r ≤ W} for r = 1, 2,∞ (notice
that here, for illustration purposes, we keep W constant and not dependent on r). Increasing the
order r of Hr can decrease the approximation error of the class, but it might increase the complexity
captured by the worst-case Rademacher Complexity term of eq. (6).

Note that the set of solutions is not empty, since w⋆ satisfies the constraints with probability 1. As a
result, for all h ∈ H′

r we obtain:

L̃D,01(h) ≤ 2 R̂S(H̃r) + 3

√
log 2/δ

2m
. (23)

Combining this with the upper bound of the adversarial Rademacher complexity of eq. (6), together
with the standard Rademacher complexity bounds for r = 1, 2 [Kakade et al., 2008]:

R̂S(Hr) ≤

O
(

maxi∈[m] ∥xi∥∞W1

√
2 log 2d√

m

)
, r = 1,

O
(

maxi∈[m] ∥xi∥2W2√
m

)
, r = 2.

(24)

we obtain the result.

w
x Sparse Dense

Sparse ℓ1, ℓ2 similar as ϵ → 0, ℓ1 better as
ϵ ↑ 0

ℓ1 better as ϵ → 0, ϵ ↑ 0

Dense ℓ2 better as ϵ → 0, ϵ ↑ 0 ℓ1, ℓ2 similar as ϵ → 0, ϵ ↑ 0

Table 1: A summary of the expected generalization behavior for the various distributions of Sec-
tion 2.2. ϵ denotes the strength of ℓ∞ perturbations and ℓ1, ℓ2 denote the type of regularization
applied to the solution.

C Implicit Biases in Robust ERM

C.1 Robust ERM over Linear Models with Steepest Flow

First, we provide the proof of Theorem 3.3. Recall that we are interested in analyzing the implicit
bias of steepest descent algorithms with infinitesimal step size when minimizing a worst case loss.

The steepest flow update with respect to a norm ∥·∥ is written as follows:

dw

dt
∈

{
v ∈ Rd : v ∈ argmin

u∈Rd:∥u∥≤∥g∥⋆

⟨u,g⟩ ,g ∈ ∂L̃S

}
:= S, (25)

where recall ∂L̃S is the set of subgradients of L̃S .

We restate Theorem 3.3.
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Theorem C.1. For any (ϵ, p)-linearly separable dataset and any initialization w0, steepest
flow with respect to the ℓr norm, r ≥ 1, on the worst-case exponential loss L̃S(w) =∑m

i=1 max∥x′
i−xi∥p≤ϵ exp(−yi ⟨w,x′

i⟩) satisfies:

lim
t→∞

min
i

min
∥x′

i−xi∥p≤ϵ

yi ⟨wt,x
′
i⟩

∥wt∥r
= max

w ̸=0
min
i

min
∥x′

i−xi∥p≤ϵ

yi ⟨w,x′
i⟩

∥w∥r
. (26)

Proof. Throughout the proof, we suppress the dependence of w on time. Let us define the maximum,
worst-case, margin:

γ̃r⋆ = max
w ̸=0

min
i∈[m]

min
∥x′

i−xi∥p≤ϵ

yi ⟨w,x′
i⟩

∥w∥r
. (27)

We use the subscript r⋆, because γ̃r⋆ maximizes distance with respect to the ℓr⋆ norm. Recall that
the loss function is given as:

L̃S(w) =

m∑
i=1

max
∥x′

i−xi∥p≤ϵ
exp(−yi ⟨w,x′

i⟩) =
m∑
i=1

exp(−yi ⟨w,xi⟩+ ϵ∥w∥p⋆). (28)

By the definition of the loss function, we have for any t > 0:

L̃S(w) =

m∑
i=1

exp(−yi ⟨w,xi⟩+ ϵ∥w∥p⋆) ≥ max
i∈[m]

exp(−yi ⟨w,xi⟩+ ϵ∥w∥p⋆). (29)

Thus, we obtain the following relation between the loss and the current margin:

min
i∈[m]

yi ⟨w,xi⟩ − ϵ∥w∥p⋆ ≥ log
1

L̃S(w)
, (30)

so the goal will be to lower bound the RHS. For that we need the following Lemma, which consists
of the core of the proof and quantifies the relation between maximum margin and loss (sub) gradients.
This Lemma generalizes Lemma C.1 in [Li et al., 2020] that applies to gradient descent. We will
overload notation and denote by ∂f any subgradient of f .

Lemma C.2. For any w ∈ Rd, it holds:

γ̃r⋆ ≤ ∥∂L̃S(w)∥r⋆
L̃S(w)

. (31)

Proof. Let ũr⋆ be a vector that attains γ̃r⋆ , i.e. ũr⋆ is a worst-case ℓr⋆ maximum margin separator:

ũr⋆ ∈ argmax
w ̸=0

min
i∈[m]

min
x′
i∈Bp

ϵ (x)

yi ⟨w,x′
i⟩

∥w∥r
. (32)

Then, we have (since L̃S is convex, the “chain rule” holds):〈
ũr⋆ ,−∂L̃S(w)

〉
=

m∑
i=1

⟨ũr⋆ , yixi − ϵ∂∥w∥p⋆⟩ e−yi⟨w,xi⟩+ϵ∥w∥p⋆

=

m∑
i=1

∥ũr⋆∥r
⟨ũr⋆ , yixi⟩ − ϵ ⟨ũr⋆ , ∂∥w∥p⋆⟩

∥ũr⋆∥r
e−yi⟨w,xi⟩+ϵ∥w∥p⋆ .

(33)

But, by the definition of the dual norm and of the subgradient, we have ⟨ũr⋆ , ∂∥w∥p⋆⟩ ≤
∥ũr⋆∥p⋆∥∂∥w∥p⋆∥p = ∥ũr⋆∥p⋆ , so eq. (33) becomes:〈

ũr⋆ ,−∂L̃S(w)
〉
≥

m∑
i=1

∥ũr⋆∥rγ̃r⋆e−yi⟨w,xi⟩+ϵ∥w∥p⋆ , (34)

which by rearranging can be written as:〈
ũr⋆

∥ũr⋆∥r
,−∂L̃S(w)

〉
≥ γ̃r⋆L̃S(w). (35)

Finally, again, by the definition of the dual norm, we get the desired result:

∥∂L̃S(w)∥r⋆ ≥ γ̃r⋆L̃S(w). (36)
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In light of this Lemma, we can lower bound the derivative of the RHS of eq. (30) as follows:

d log 1

L̃S

dt
= − 1

L̃S

dL̃S

dt

= − 1

L̃S

〈
∂L̃S ,

dw

dt

〉
(Chain rule)

=
∥∂L̃S∥r⋆

∥∥dw
dt

∥∥
r

L̃S

(Def. of steepest flow)

≥ γ̃r⋆

∥∥∥∥dwdt
∥∥∥∥
r

(Lemma C.2).

(37)

Thus, eq. (30) becomes:

min
i∈[m]

yi ⟨w,xi⟩ − ϵ∥w∥p⋆

∥w∥r
≥ γ̃r⋆

∫ t

0

∥∥dw
ds

∥∥
r
ds

∥w∥r
(from Eq. (37))

≥ γ̃r⋆

∥∥∥∫ t

0
dw
ds ds

∥∥∥
r

∥w∥r

= γ̃r⋆
∥w −w0∥

∥w∥r

= γ̃r⋆

∥∥∥∥ w

∥w∥r
− w0

∥w∥r

∥∥∥∥
r

→ γ̃r⋆ ,

(38)

since L̃S → 0 (dL̃S

dt ≤ 0 - see Lemma C.3 - and L̃S is bounded from below) and hence it must be
∥w∥ → ∞.

Lemma C.3. For any convex L, the steepest flow of eq. (25) satisfies

dL

dt
≤ 0 and

dw

dt
∈

{
argmin

u∈Rd:∥u∥≤∥g∥⋆

⟨u,g⋆⟩ : g⋆ ∈ argmin
g∈∂L̃S

∥g∥

}
∀t > 0. (39)

Proof. Since L is convex, the “chain rule holds”, that is, for all g ∈ ∂L we have:

dL

dt
=

〈
g,

dw

dt

〉
. (40)

First, apply this to the element of ∂L, g, that corresponds to dw
dt , then, by the definition of S and that

of a dual norm, we have:
dL

dt
= −

∥∥∥∥dwdt
∥∥∥∥2 . (41)

Now, apply the “chain rule” for g⋆ = argming∈∂L ∥g∥⋆:

dL

dt
=

〈
g⋆,

dw

dt

〉
≥ −∥g⋆∥⋆

∥∥∥∥dwdt
∥∥∥∥ , (42)

Equating dL
dt from (41), (42), we get

∥∥dw
dt

∥∥ ≤ ∥g⋆∥⋆.

C.2 Existence of Steepest Descent Flows

In this section, we prove that C1 steepest descent flows exist for certain norms when the initialization
has sufficiently small robust risk (see Theorem C.6 below). This criterion applies to r-norms with
r ∈ (1,∞), but not r = 1 or r = ∞.

Lemma C.4. If the norm ∥·∥ is strictly convex and x ̸= 0, then there a unique minimizer to
u 7→ ⟨u,x⟩ over the ball BM (0) = {u : ∥u∥ ≤ M} for any M > 0.
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Proof. We’ll show this statement via a proof by contrapositive.

Let u1, u2 be any two minimizers of ⟨u,x⟩ over BM (0). Then because this function is linear,
u1, u2 cannot be in the interior of BM (0). Due to the convexity of the ball BM (0), the linear
combination tu1 + (1− t)u2 is not in the interior of the ball BM (0), and thus the norm ∥·∥ is not
strictly convex.

This result implies that whenever the norm ∥·∥ is strictly convex, the function P : Rd − {0} → Rd

defined by
P(x) = argmax

∥u∥≤∥x∥∗

⟨u,x⟩ (43)

is well-defined.

This observation together with classical results from ODE theory can be leveraged to proved the
existence of well behaved steepest descent flows. See Theorem 1.2 [Coddington and Levinson, 1955,
pages 6 and 19] for Peano’s existence theorem:

Theorem C.5 (Peano’s existence theorem). Consider the ODE

x′(t) = f(t,x(t))

with initial condition x(τ) = ξ. If f : R× Rd → Rd is continuous on a rectangle containing (τ, ξ),
then there is a C1 solution for |t− τ | ≤ α, for some α > 0.

This result states that if the map f is sufficiently well-behaved, then there is a solution to the ODE for
sufficiently small time. Below, we prove that there exists a steepest descent flow for all times t by
“stitching together" small time intervals for which there exists local solutions. We also require the
initial point to satisfy a certain condition so that we avoid the singularity at zero in the map P.

Theorem C.6. Let ∥·∥ be a strictly convex norm for which the function defined by (43) is continuous.
Then if the initial point w0 satisfies LS(w0) < LS(0) then there exists a C1 steepest descent flow
for the equation

dw

dt
= −P (∇LS(w(t))) .

Proof. Theorem C.5 proves the existence of a C1 local solution for small times t. Now let

T = sup{s : w(s) ̸= 0, or there exists a C1 solution for all t < s}

For contradiction, we will assume that T < ∞. First, notice that

d

dt
LS(w(t)) = −P (∇LS(w(t))) · ∇LS(w(t)) = −∥∇LS(w(t))∥2∗

Thus LS(w(T )) ≤ LS(w0)) < LS(w(0)), and consequently, w(T ) ̸= 0. Therefore, Peano’s
existence theorem again implies the existence of a local solution starting from w(T ). Thus the
solution can be extended past time T , which contradicts the definition of T .

One can show that if ∥·∥ is the r-norm for r ∈ (1,∞), then the corresponding function P defined by
(43) is

P(x) = ∥x∥
r−2
r−1

r∗ sign(x)|x∥
1

r−1

and this function is continuous in x on the domain Rd − {0}.

Consequently, there exists a steepest descent flow for the r-norm for r ∈ (1,∞) so long as the
initialization satisfies LS(w0) < LS(0).

C.3 Equivalence of max-margin solutions

Lemma C.7. Let {(xi, yi)}mi=1 be a dataset with ℓp margin equal to ϵ⋆. Any hyperplane that
separates

{{
x′
i ∈ Rd : ∥x′

i − xi∥p ≤ ϵ⋆
}
, yi)

}m

i=1
is an ℓr max-margin separator for any r.
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This result informs us that any choice of algorithm in robust ERM (w.r.t to ℓp perturbations) for ϵ
equal to the ℓp margin of the dataset will produce the same solutions.

We provide the proof of Lemma C.7. First, one can calculate the margin of a point x with respect to a
linear separator w:
Lemma C.8. The ℓp margin of a linear hyperplane w at a datapoint (x, y) is y⟨w,x⟩/∥w∥p∗ .

Proof. We want to find the largest c for which ⟨w,x+ ch⟩ ≥ 0 for all ∥h∥p ≤ 1.

for all h with ∥h∥p ≤ 1 Taking an infimum over h results in

⟨w,x⟩ − c∥w∥p∗ ≥ 0

and thus c = ⟨w,x⟩/∥w∥p∗ .

Next, this lemma allows one to calculate the margin of a ball around a point. We denote by Bp
ϵ (x) the

ℓp ball around x, i.e. Bp
ϵ (x) = {x′ : ∥x′ − x∥p ≤ ϵ}.

Lemma C.9. The ℓr-margin of the set Bp
ϵ (x) with label y is

yw · x− ϵ∥w∥p∗

∥w∥r∗

Proof. We want to find the largest constant c for which

y(w · (x+ h1 + h2)) ≥ 0

for all h1 ∈ Bp
ϵ (0) and h2 ∈ Br

c (0). Taking an infimum over all possible h1 and h2 results in

yw · x− ϵ∥w∥p∗ − c∥w∥r∗ ≥ 0

Therefore, the largest such possible c is

c =
yw · x− ϵ∥w∥r∗

∥w∥r∗

This result immediately implies Lemma C.7:

Proof of Lemma C.7. Let w∗ be the ℓr max-margin hyperplane separating the {(Bp
ϵ (xi), yi)}mi=1. If

the ℓp-margin of the dataset is ϵ, then Lemma C.8 implies that

min
i∈[1,m]

yw∗ · x− ϵ∥w∥p∗

∥w∥r∗
= 0

and therefore Lemma C.9 implies that the ℓr max-margin hyperplane has margin 0. On the other
hand, any separating hyperplane for {(Bp

ϵ (xi), yi)}mi=1 has a separation margin that is at worst zero.
Therefore, any separating hyperplane is an ℓr max-margin hyperplane.

C.4 Robust ERM over Diagonal Networks

We first show Corollary 3.7.

Proof. A diagonal neural network fdiag(x;u) is 2-homogeneous, since for any c > 0, it holds:

fdiag(x; cu) =
〈
(cu+)

2 − (cu−)
2,x

〉
= c2

〈
u2
+ − u2

−,x
〉
. (44)

Furthermore, for any x, the optimal perturbation is scale invariant as it is:
argmin∥δ∥∞≤ϵ

〈
u2
+ − u2

−,x+ δ
〉

= −ϵsign(u2
+ − u2

−), which is scale invariant, i.e.,
sign((αu+)

2 − (αu−)
2) = sign(u2

+ − u2
−) for any α > 0. Thus, fdiag satisfies the condi-

tions of Theorem 3.6.
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Now, we provide the proof of Proposition 3.8, which states that ℓ2 minimization in parameter space
is equivalent to ℓ1 minimization in predictor space for robust ERM in diagonal networks.

Proof. Let us recall the two optimization problems:

min
u+∈Rd,u−∈Rd

1

2

(
∥u+∥22 + ∥u−∥22

)
s.t. min

∥x′
i−xi∥p≤ϵ

yi
〈
u2
+ − u2

−,x
′
i

〉
≥ 1, ∀i ∈ [m],

(45)

and

min
w

1

2
∥w∥1

s.t. min
∥x′

i−xi∥p≤ϵ
yi ⟨w,x′

i⟩ ≥ 1, ∀i ∈ [m].
(46)

We will show that the two problems share the same optimal value OPT . Let (ũ+, ũ−),w
⋆ be

optimal solutions of (45) and (46), respectively, with corresponding values OPTA, OPTB .

• First, we show that OPTB ≤ OPTA. Let ŵ = ũ2
+ − ũ2

−, then ŵ satisfy the constraints
of (46) and:

∥ŵ∥1 = ∥ũ2
+ − ũ2

−∥1 =

d∑
j=1

|ũ+,j − ũ−,j | |ũ+,j + ũ−,j |

≤ 1

4

d∑
j=1

(ũ+,j − ũ−,j)
2
+ (ũ+,j + ũ−,j)

2

=
1

2

(
∥ũ+∥22 + ∥ũ−∥22

)
= OPTA.

(47)

As ŵ is a feasible point of (46), it is OPTB ≤ ∥ŵ∥1 and we deduce OPTB ≤ OPTA.

• Now, we prove the reverse relation. We decompose w⋆ to its positive and negative part,
i.e w⋆ = û2

+ − û2
−, where, observe, the supports (set of indices with non-zero values) of

û+, û− do not overlap. Then, (û+, û−) satisfy the constraints of (45) and, furthermore:

1

2

(
∥û+∥22 + ∥û−∥22

)
=

1

2
∥w⋆∥1 ≤ OPTB . (48)

Since (û+, û−) is a feasible point of (45), we deduce that OPTA ≤ OPTB .

D Cases of Steepest Descent & Implicit Bias

Coordinate Descent In coordinate descent, at each step we only update the coordinate with the
largest absolute value of the gradient. Formally, its update is given by:

∆wt ∈ conv

{
−∂L(wt)

∂wt[i]
ei : i = argmax

j∈[d]

∣∣∣∣∂L(wt)

∂wt[j]

∣∣∣∣
}
, (49)

where ei, i ∈ [d], denotes the standard basis and conv (·) stands for the convex hull. Coordinate
descent has long been studied for its connection with the ℓ1 regularized exponential loss and Adaboost.
It corresponds to Steepest Descent with respect to the ℓ1 norm, and at each step it holds: ∥∆w∥1 =
∥∇L∥∞. In our experiments, we found it difficult to run robust ERM with coordinate descent for
large values of perturbation ϵ, both in linear models and neural networks. Also, it is computationally
challenging to scale coordinate descent to large models, since only one coordinate gets updated at
a time. These are the main reasons why we chose to experiment with Sign (Gradient) Descent in
Section 4.2.
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Figure 5: Binary classification of data coming from a dense teacher w⋆ and sparse data x (top) and
from a sparse w⋆ and sparse data x (bottom). We compare performance of different algorithms with
(right) or without (left) ℓ∞ perturbations of the input in Rd using linear models. We plot the (robust)
generalization gap, i.e., (robust) train minus (robust) test accuracy, of different learning algorithms
versus the training size m. For robust ERM, ϵ is set to be 1

4 of the largest permissible value ϵ⋆. In
accordance to the bounds of Section 2.2, it can still be the case that ℓ2 solutions will generalize better
in robust ERM, due to the significant advantage of them in ERM.

Sign (Gradient) Descent In Sign (Gradient) Descent, we only use the sign of the gradient to update
the iterates, i.e.

∆wt = −sign(∇L(wt)). (50)

It corresponds to steepest descent with respect to the ℓ∞ norm. Its connection with popular adaptive
optimizers has made it an interesting algorithm to study for deep learning applications.

Implicit bias in homogeneous networks From the results of [Lyu and Li, 2020], we know that,
for homogeneous networks, gradient descent converges in direction to a KKT point of a maximum
margin optimization problem defined by the ℓ2 norm. For steepest descent, on the other hand, there is
no such characterization, yet we expect a similar result to hold; namely, we expect running ERM with
steepest descent to converge in direction to a point that has some relation to the maximum margin
optimization problem defined by the norm of the algorithm. By making a leap of faith, we expect
something similar to hold for robust ERM. Since the promotion of a margin in one norm can have
very different properties from the promotion of a margin in a different norm, we expect robust ERM
with gradient descent and sign descent to yield solutions with different properties.

E Additional Experiments

Linear models We plot (robust) generalization gaps vs dataset size m for distributions with
(kW , kX ) equal to (512, 4) (Dense, Sparse) and (kW , kX ) equal to (4, 4) (Sparse, Sparse) on the top
and the bottom of Figure 5, respectively. In accordance to the bounds of Section 2.2, it can still be the
case that ℓ2 solutions will generalize better in robust ERM, due to the significant advantage of them
in ERM. In Figure 6, we produce heatmaps similar to those of Figure 2, but the benefit of CD over GD
is measured with respect to “clean” generalization (ϵ = 0), no matter what value of ϵ was used during
training. In particular, for each combination of data/weight sparsity and perturbation ϵ used at training,
we compute clean generalization gaps of CD and GD solutions for various values of dataset size m.
We then aggregate the results over m and compute 1

210−26

∫ 210

26
(GD(m)− CD(m)) dm, whereas in

Section 4.1 the curves GD(m), CD(m) referred to the robust error (w.r.t. the value of ϵ used during
training). We observe that there are cases such as the Dense, Dense one with kW = kX = d = 512
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Figure 6: Average benefit, i.e. 1
210−26

∫ 210

26
(GD(m)− CD(m)) dm, of CD over GD (in terms of “clean”

generalization gap) for different values of teacher sparsity kW , data sparsity kX and magnitude of
perturbation ϵ used during training (evaluation here is always with respect to ϵ = 0 - “standard”
generalization). The dimension d is fixed to be 512.

that for ϵ > 0 (in particular equal to ϵ⋆/2 - bottom right corner in top left subplot), GD generalizes
better than CD in terms of clean error, even though it is the other way around for robustness - see
Figure 2, Figure 1 (bottom right). This suggests that even if we nail the optimization bias in robust
ERM, we might still incur a tradeoff between robustness and accuracy [Tsipras et al., 2019]. However,
this need not always be the case; for example for Sparse, Dense data, no such tradeoff is observed.

Fully-Connected Neural Networks In Figure 7, we plot (robust) accuracy during training in ERM
and robust ERM (ϵ = 0.2, 0.3) for 1 hidden layer ReLU networks trained on a subset of 100 images
(randomly drawn in each seed) of digits 2 and 7 from the MNIST dataset. We observe that the gap
between the performance of gradient descent and steepest descent in larger in robust ERM than in
ERM.

Convolutional Neural Networks In Figure 8, we plot the (robust) train and test accuracy during
training for various combinations of dataset size and perturbation magnitude. The main observation,
summarized also in Figure 3 (left) in the main text, is that when there are little available data m,
the implicit bias in robust ERM affects generalization more than in “standard” ERM (row-wise
comparison in the Figure). Notice that the artifact of the light-ish bottom right corner in Figure 3 (non-
trivial gap between GD and SD for m = 10, 000 and ϵ = 0) is due to the fact that SD becomes unstable
at that time near convergence. Reducing the learning rate would have allievated this “anomaly”.

F Experimental details

In this Section, we provide more details about our experimental setup. All experiments are im-
plemented in PyTorch and were run either on multiple CPUs (experiments with linear models) or
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GPUs. Estimated GPU hours: 200. Link to github repository: https://github.com/Tsili42/
price-imp-bias/tree/main.

F.1 Experiments with synthetic data
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Figure 7: Accuracy during training in ERM (top)
and robust ERM for ϵ = 0.2 (center) and ϵ = 0.3
(bottom). Setting: 1 hidden layer ReLU networks
trained on a subset of MNIST. Mean over 3 ran-
dom seeds - randomness affects initialization and
draw of random dataset. The gap between the gen-
eralization of the algorithms is more significant in
robust ERM.

We consider the following distributions:

1. Dense, Dense: We sample points
xi ∼ N (0, Id), i ∈ [m], and a ground
truth vector w⋆ ∼ N (0, Id) that la-
bels each of the m points with yi =
sgn(⟨w⋆,xi⟩).

2. k-Sparse, Dense: We sample points
xi ∼ {−1, 0,+1} , i ∈ [m], with
corresponding probabilities { k

2d , 1 −
k
d ,

k
2d} (so expected number of non-

zero entries is k) and a ground truth
vector w⋆ ∼ N (0, Id) that labels
each of the m points with yi =
sgn(⟨w⋆,xi⟩).

3. Dense, k-Sparse: Same as before, but
now x is dense and w⋆ is k-sparse
(with high probability).

4. k-Sparse, k-Sparse: We sample points
xi ∼ N (0, Id), i ∈ [m], and a ground
truth vector w⋆ ∼ {−1, 0,+1} with
corresponding probabilities { k

2d , 1 −
k
d ,

k
2d} (so expected number of non-

zero entries is k) that labels each of
the m points with yi = sgn(⟨w⋆,xi⟩).

Linear models For the experiments with lin-
ear models f(x;w) = ⟨w,x⟩, we train with the
exponential loss and we use an (adaptive) learning rate schedule ηt = min{η+, 1

(B+ϵ)2L̃(wt)
}, where

η+ is a finite upper bound (105 in our experiments) and B is the largest ℓ∞ norm of the train data.
This type of learning rate schedule can be derived by a discrete-time analysis of robust ERM over
linear models (the direct analogue of Theorem 3.3). A similar learning rate schedule appears in the
works of Gunasekar et al. [2018a], Lyu and Li [2020]. To allow a fair comparison between the two
algorithms, we stop their execution when they reach the same training loss value3 (10−3). We start
from the all-zero, w = 0, initialization.

Diagonal neural networks For the experiments with the diagonal linear network f(x;w) = ⟨w,x⟩,
with w = u2

+−u2
−, we use a constant, small, learning rate 2× 10−3 and we adopt the same stopping

criterion as with the “vanilla” linear models. We initialize u+,u− with a constant value of α√
2d

(where α is the initialization scale and d the input dimension) which has been standard in prior works
with diagonal networks. We set α = 10−3 to promote “feature” learning, i.e. to induce the implicit
bias “faster” - see [Woodworth et al., 2020].

For all the runs with the various models/algorithms, we sample d2 independent points and use them as
a test set (one draw per dimension, i.e. same test dataset across the different values of m and ϵ). The
maximum value of perturbation, ϵ⋆, is estimated by running ERM with coordinate descent for 105
iterations. Notice that this results to a different ϵ⋆ for each different draw of the dataset. The robust
test accuracy is efficiently calculated, since the adversarial points can be calculated in closed form for
linear models. Our experimental protocol tried to ensure that we reach 100% (robust) train accuracy
in all runs. This is true in all cases but the distributions with sparse data, where we found that for

3If the algorithm has not reached this value after 2× 105 iterations, we stop at that epoch.
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Figure 8: Training curves of CNNs trained on subsets of MNIST for various combinations of dataset
size m and perturbation magnitude ϵ.

training datasets of cardinality m = 2d, the margin of the dataset was small and, thus, convergence
was very slow. In these cases, the robust train accuracy approached 100%, but it was not exactly
equal to it.

F.2 Experiments with neural networks

In all the experiments with the various values of ϵ and m, we train with 3 random seeds which
correspond to a different set of samples drawn from the full dataset and a different initialization.

Fully Connected Neural Networks We run GD and SD with the same set of hyperparameters;
constant learning rate equal to 10−5, batch size equal to the whole available data (the amount varies
across different experiments), and, when ϵ > 0, we estimate robustness by calculating perturbations
with (projected) gradient descent (PGD). We use 10 iterations of PGD with step size α = ϵ

5 . The
initialization of the networks is scaled down by a factor of 10−2 to promote feature learning and
faster margin maximization. We use the exponential loss.

Convolutional Neural Networks We use a standard architecture from [Madry et al., 2018] consist-
ing of convolutional, max-pooling and fully connected layers. The fully connected layers contain
biases, so the network is not homogeneous. We start from PyTorch’s default initialization. We used
a constant learning rate equal to 0.1 for GD and equal to 0.0001 for SD (SD would diverge during
training with larger learning rates that we tried). In Figure 3 (right) in the main text, we report the
difference between accuracies obtained after convergence of train error to 0. In order to standardize
the evaluation of the two algorithms, the reporting time corresponds to the first epoch hitting a certain
train loss threshold, i.e. 10−3. For more challenging training regimes (i.e. large ϵ), this threshold
was set larger (10−1), as we found it difficult to optimize to very small train loss values. In the
experiments with CNNs, we used the cross entropy loss during training. When ϵ > 0, we use 10
iterations of PGD with step size α = ϵ

5 .
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made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We are very explicit that out theoretical results hold for linear models. In
Section 4.2, we discuss why it is not straightfoward to reason about nonlinear models.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All assumptions are clearly stated in the theorems. The proofs appear in the
Appendix. Any Lemmata that are useful for the main theorems are proven there.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a comprehensive description of our experimental setup in Section F.
We describe our data distributions (for the experiments with synthetic data), our models and
our algorithms.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: A github repository is linked.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Everything is described in detail in Section F (hyperparameters, reasons they
were chosen this way etc).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Figures that compare the performance of different algorithms show the mean
value and the standard deviation over 3 random seeds. The seeds control draw of the
dataset/initialization. We use numpy for calculating the error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments were run on both CPUs and GPUs, and a description exists in
Section F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The endgoal of our line of research is to train safer and more robust models.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We do not think that it is appropriate to discuss the societal impact of our work
in a mainly theoretical paper, as it risks misdirecting the attention of a reader.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Data are synthetic and/or publicly available online.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the creators of the dataset that we use (MNIST).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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