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Abstract

Deep neural networks have been shown vulnerable to adversarial examples. Even1

though many defence methods have been proposed to enhance the robustness, it2

is still a long way toward providing an attack-free method to build a trustworthy3

machine learning system. In this paper, instead of enhancing the robustness, we4

take the investigator’s perspective and propose a new framework to trace the first5

compromised model in a forensic investigation manner. Specifically, we focus6

on the following setting: the machine learning service provider provides models7

for a set of customers. However, one of the customers conducted adversarial8

attacks to fool the system. The investigator’s objective is then to identify the first9

compromised model by collecting and analyzing evidence from only available10

adversarial examples. To make the tracing viable, we design a random mask11

watermarking mechanism to differentiate adversarial examples from different12

models. First, we propose a tracing approach in the data-limited case where the13

original example is also available. Then, we design a data-free approach to identify14

the adversary without accessing the original example. Finally, the effectiveness15

of our proposed framework is evaluated by extensive experiments with different16

model architectures, adversarial attacks, and datasets.17

1 Introduction18

It has been shown recently that machine learning algorithms, especially deep neural networks, are19

vulnerable to adversarial attacks [1, 2]. To enhance the robustness against attacks, many defence20

strategies have been proposed [3, 4, 5]. However, they suffer from poor scalability and generalization21

on other attacks and trade-offs with test accuracy on clean data, making the robust models hard to22

deploy in real life. Therefore, in this paper, we turn our focus on the aftermath of adversarial attacks,23

where we take the forensic investigation to identify the first compromised model for generating24

the adversarial attack. In this paper, we show that given only a single adversarial example, we25

could trace the source model that adversaries based for conducting the attack. We consider the26

following setting: a Machine Learning as a Service (MLaaS) provider will provide models for a set27

of customers. For the consideration of time-sensitive applications such as auto-pilot systems, the28

models would be distributed to every customer locally. The model architecture and weight details are29

encrypted and hidden from the customers for the consideration of intellectual property (IP) protection30

and maintenance. In other words, every customer could only access the input and output of the31

provided model but not the internal configurations. On the other side, the service provider has full32

access to every detail of their models, including the training procedure, model architecture, and33

hyperparameters. However, there exists a malicious user who aims to fool the system by conducting34

adversarial attacks and gaining profit from the generated adversarial examples. Since the models are35

trained for the same objective using the same dataset, adversarial examples generated by the adversary36
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could be transferred to the other users’ models with a very high probability, 100% if the models are37

the same. Thus it is critical for the interested party to conduct the investigation and trace the malicious38

user by identifying the compromised model. To make the tracing possible, we design a random mask39

watermarking strategy which embeds the watermark to the generated adversarial samples without40

sacrificing model performance. At the same time, the proposed strategy is efficient and scalable that41

only needs a few iterations of fine-tuning. In the presence of the original example, a high-accuracy42

tracing method is proposed, which compares the adversarial perturbation with every model’s masked43

pattern and the adversarial example’s output distribution among different models. Because it is not44

always practical to have the original example as a reference, in the second part, we further discuss45

the most challenging and practical attack setting where only the adversarial example is available for46

the investigator. Observing that the model’s probability predictions on the same adversarial example47

would change significantly with a different watermark applied, we derive an effective rule to find48

the compromised model. Specifically, based on the property that adversarial example is not robust49

against noise, we redesign the tracing metric based on the change in the predicted probabilities when50

applying different watermarks, which we expect the compromised model to minimize. To the best of51

our knowledge, we are the first to propose a novel and scalable framework to make it possible to trace52

the compromised model by only using a single sample and its corresponding adversarial example.53

2 Related Work54

Adversarial Attack Since the discovery of adversarial example [1], many attack methods have been55

proposed. Roughly speaking, based on the different levels of information accessibility, adversarial56

attacks can be divided into white-box and black-box settings. In the white-box setting, the adversary57

has complete knowledge of the targeted model, including the model architecture and parameters.58

Thus, back-propagation could be conducted to solve the adversarial object by gradient computation [2,59

6, 3, 7]. On the other hand, the black-box setting has drawn much attention recently, where the60

attacker could only query the model but has no direct access to any internal information. Based on61

whether the model feedback would give the probability output, the attacks could be soft-label attacks62

or hard-label attacks. Some famous attacks in the soft-label settings are ZOO attack [8], NES [9],63

Bandit [10], SimBA [11]. In the hard-label setting, boundary attack [12] and HSJ [13] use random64

walk based method while OPT attack [14] and Sign-OPT attack [15] formalized the hard-label attack65

into an optimization framework and used the zeroth-order method to solve it.66

Forensic investigation in Machine Learning Although machine learning methods have already67

been used in forensic science [16], there are a few studies on building trustworthy machine learning68

from a forensic perspective. Most papers focus on how to identify the model stealing attack by69

introducing the watermarking approaches to protect the intellectual property of the deep neural70

networks. That is to say, a unified and invisible watermark is hidden into models that can be extracted71

later as special task-agnostic evidence. However, to the best of our knowledge, we are the first paper72

to study the adversarial attack from a forensic investigation perspective.73

3 Methodology74

We formalize the identification of the compromised model in the owner-customer distribution set-75

ting [17]. The machine learning service provider (owner) is assumed to own m copies of model76

f1, f2, . . . , fm for the same K-way classification task trained using the same training dataset. As77

inference efficiency is critical in time-sensitive applications such as auto-pilot systems, these model78

copies are first encrypted for intellectual protection and security concerns and then distributed to the79

m customers (users). Therefore, the customers only have black-box access to their own distributed80

model. In other words, the user i could only query his own model fi to get the prediction results81

without any access to the internal information about the model. Unfortunately, a malicious user82

(adversary) exists who aims to fool the whole system, including other users’ models, by conduct-83

ing black-box adversarial attacks. Specifically, let the malicious user’s model copy to be fatt (the84

compromised model). As he does not have access to query other users’ models, he then chooses to85

perform black-box attacks to his copy fatt to generate an adversarial example xadv. As all model86

copies are trained with the same dataset for the same classification task, the generated adversarial87

example could successfully lead to the misclassification of other users’ models. Our task is to find88

the compromised model fatt from the model pool.89

We then propose our framework which consists of two parts shown in Figure 1 in Appendix. First, we90

design a simple random mask watermarking method that would have a limited effect on the models’91
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accuracy while embedding distinctive features in adversarial examples, distinguishing them from92

those generated from other models. We then propose two detection scenarios to identify the adversary93

from adversarial examples.94

Random mask watermarking Since we need to identify the compromised model from a large95

pool of customer copies, it requires us to assign a unique identification mark for every customer copy,96

and the mark should be reflected in the generated adversarial example.97

In this section, we design a simple but effective method by applying a random watermark on each98

of the m model copies. As shown in Figure 1, for each model copy fi(1 ≤ i ≤ m), we randomly99

select a set of pixels wi as the watermark on the training samples. Formally, denote the input as100

x ∈ RW×H×C . For every model fi, we randomly generate a binary matrix wi ∈ {0, 1}W×H×C by101

sampling uniformly. We call the wi mask for model fi, deciding the set of masked pixels. When102

wi
a,b,c = 1 for a specific pixel (a, b) at channel c, value is set to be 0; otherwise, when wi

a,b,c = 0,103

the original pixel value is not modified. That is to say, for every input x, the input after the mask104

x̃ on model fi would be x̃i
a,b,c := xa,b,c · (1−wi

a,b,c) for each pixel (a, b) at each channel c. For105

simplicity, we use x̃i = x⊙ (1−wi) to denote the masked sample xi in the whole paper, where ⊙106

represents the element-wise product.107

Each input is first applied with the mask and then fed into the model in both the training and inference108

phases. To speed up the training process and make the pipeline scalable to thousands of users, we add109

each model with a few network layers as head part hi. The output of the head part will directly feed110

into a shared tail model t. In other words, we have each model copy as fi(x) = t(hi(x)). Specifically,111

in the pretraining phase, we first train a model without the watermark from scratch as the base model.112

Then each model copy is assigned with a unique model head for the added specific watermark and113

shares a big common tail inherited from the base model. During the fine-tuning process, we freeze114

the parameters in the tail and embed the watermark to the model by only fine-tuning the weights in115

the head part with a few epochs. Our experiments in Appendix will show it is sufficient to embed116

watermark to a few layers in DNNs without sacrificing model accuracy.117

Data-limited adversary identification With the watermarking scheme described in Section 3, we118

can exploit the information embedded in the watermarked adversarial example (and the corresponding119

original example) to identify the compromised model.120

We first introduce the data-limited case where the corresponding original example x, on which the121

given adversarial example xadv is based, is available. Specifically, since the adversarial attack is122

formalized as an optimization problem, the adversary takes the gradient of the designed loss function123

L with respect to the input x to find the most effective perturbation.124

Formally, for the model fi, the gradient of the designed loss function L with respect to the given125

sample x is ∂L(fi(x̃))
∂xa,b,c

= 0 if wi
a,b,c = 1. Since the black-box attacks are designed to approximate126

the gradients used in the white-box attacks, we could expect that the approximated gradients at the127

masked pixels would have a value close to 0 or be smaller in magnitude than the other pixels. Based128

on this observation, since we have access to the original example x, we could calculate the adversarial129

perturbation δ = xadv − x. If the adversarial example is generated by the compromised model130

copy fatt, values in δ should be much smaller in those coordinates where watt = 1. Therefore,131

given xadv and x, we thus calculate a score for each model by summing up the absolute values132

of the adversarial perturbation overall masked pixels (of the corresponding model), i.e., δi =133 ∑
a,b,c w

i
a,b,c ⊙ |xadv − x|a,b,c. Moreover, we also observe that the cross-entropy loss between the134

prediction output of adversarial examples and the ground-truth label of clean examples differs among135

different models. Since adversarial examples should be identical to original examples visually, the136

ground-truth label could be easily inferred. Specifically, if the adversarial example xadv is generated137

from model fi , the cross entropy loss LCE(fi(xadv),y) is smaller than LCE(fj(xadv),y) if138

fj(xadv) ̸= y ,∀j ̸= i, where y is the ground truth label of x. Intuitively, model fi would have139

the smallest confidence on the ground-truth label since some of the adversarial perturbation may be140

blocked by other models’ watermarks. We then combine the two metrics and calculate the final score141

for each model. Then, we take the model with the smallest score as the compromised model, i.e.142

att← argmin
1≤i≤m

(δi + αLCE(fi(xadv),y)) (1)
143

Data-free adversary identification The previously introduced data-limited detector requires access144

to the original example as a reference, which is not realistic in many scenarios. Therefore, in the145
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following section, we relax this constraint and discuss the tracing under the most challenging146

yet realistic setting where the only evidence available is the generated adversarial example. We147

propose a data-free detector based on the different model outputs when applying different masks148

to the adversarial example. Formally, for the given adversarial example xadv, we first apply every149

model’s watermark wi, i ∈ [m] to create a set of masked adversarial examples {x̃i
adv}mi=1 where150

x̃i
adv = xadv ⊙ (1 − wi). We then feed the masked adversarial examples set to each model151

fi to get its probability output. For every model fi, we get a probability output matrix P i :=152

[fi(x̃
1
adv)

T , . . . , fi(x̃
m
adv)

T ] ∈ [0, 1]m×K , where each element in P i is P i
a,b = [fi(x̃

a
adv)]b and K153

is the number of classes.154

Since adversarial examples are very close to the model’s decision boundary [12, 14], a slight155

perturbation to it would cause the model’s prediction to change significantly. In other words,156

adversarial examples are sensitive to small perturbations, while ordinary examples are relatively more157

robust. It then inspires us to propose a metric based on this difference to detect the compromised158

model. Specifically, let us still assume the given adversarial example xadv is from model fi. Then,159

when the corresponding watermark wi is applied, the probability prediction will remain unchanged.160

However, when applying another watermark wj , j ̸= i, it is likely that the watermarked adversarial161

example would be moved away from the decision boundary. Therefore, the maximal predicted class162

probability is generally larger after applying wj . At the same time, if the adversarial example is not163

generated from the model, the extent of change would be limited. Therefore, we propose the max164

label score Smax based on the extent of change of prediction:165

Si
max =

max1≤k≤K P i
i,k∑

1≤j≤m max1≤k≤K P i
j,k

(2)

We further combine the score of adversarial stability proposed in data-limited case with max label166

score to improve the detection accuracy:167

att← argmin
i

(Si
max + βLCE(fi(xadv),y)) (3)

4 Experimental Results168

Implementation Details: We conduct our experiments on two popular image classification datasets169

GTSRB [18] and CIFAR-10 [19]. We use two widely used network architectures VGG16 [20] and170

ResNet18 [21]. We perform the following five black-box adversarial attacks (NES [9], Bandit [10],171

SimBA [11], HSJ [13], SignOPT [15]) to generate the adversarial example. For all attacks, we use172

Adversarial Robustness Toolbox (ART) [22]’s implementation. We use the default hyperparameters173

in the ART toolbox to conduct the attack. All the attacks are conducted in the ℓ2 constraints and174

untargeted setting. The attack will be stopped when there is a successful adversarial example175

generated.176

Evaluation Metric: To evaluate the effectiveness of the proposed detection method, for each attack,177

we generate 10 transferable adversarial examples for every model copy. An adversarial example178

xadv is defined as transferable if and only if the prediction of the compromised model fatt is wrong179

and, at the same time, the prediction of at least one of the other m− 1 models is wrong.180

To sum up, for each attack, we have a total of 1000 adversarial examples under the setting of 100181

models. We then define the tracing accuracy to evaluate the detection rate defined as Trace Acc =182
Ncorrect
Ntotal

where Ncorrect is the count of the correct identification of the compromised model and Ntotal is183

the total number the transferable adversarial example generated.184

Identification Results For identification in the data-limited setting, we conduct experiments on185

100 copies of models applied with random masks. We set the hyperparameter α to 0.85 for CIFAR10186

and 0.5 for GTSRB and test tracing accuracy on different attacks. The results in the top half of187

Table 1 illustrate that our detection method could identify the compromised model successfully in188

all datasets and network architectures which achieves an average of 75.2% tracing accuracy with189

only one adversarial example. As we further limit the accessibility, we trace the compromised model190

with only one adversarial example and show the tracing accuracy at the bottom half of Table 1. For191

the data-free case, we also set the hyperparameter β to 0.5 for both datasets. Although the original192

example is no longer available, we could still achieve a similar or even better tracing accuracy against193

some attacks.194
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Table 1: The tracing accuracies (%) in data-limited and data-free scenarios with only a single
adversarial example available.

Case Task Bandit HSJ NES SignOPT SimBA Mean

Data-Limit

V-CIFAR10 48.2 93.4 84.2 55.4 85.3 73.30
R-CIFAR10 54.2 95.5 87.4 65.8 83.0 77.18
V-GTSRB 42.1 98.7 86.3 56.9 91.0 75.00
R-GTSRB 43.8 98.7 86.3 61.8 86 75.32

Data-Free

V-CIFAR10 66.2 83.9 71.6 85.7 59.2 73.32
R-CIFAR10 69.3 89.4 77.8 90.5 56.4 76.68
V-GTSRB 62.4 92.0 67.5 90.7 56.3 73.78
R-GTSRB 61.8 92.8 73.2 91.5 52.7 74.40

We also apply the adaptive attack and multiple adversarial example experiments to further verify the195

proposed methods’ effectiveness in Appendix.196

5 Conclusion197

In this paper, we develop the first framework for identifying the compromised model from a single198

adversarial example for the forensic investigation. We first present a watermarking method to make199

the generated adversarial example unique and differentiable. Depending on the accessibility of the200

original example, two identification methods are presented and compared. Our results demonstrate201

that the proposed framework has a limited effect on the model’s performance and has a high success202

rate to find the compromised model by only giving a single adversarial example. Our framework203

could further improve the detection rate to near 100% when two more adversarial examples are204

provided.205
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Figure 1: Proposed framework of identifying compromised model from adversarial examples.

A Appendix263

A.1 Model performance with random mask watermarking264

In this section, we conduct experiments to verify whether the model could still maintain a good265

performance after applying the watermark. Specifically, we train 100 models on two datasets CIFAR-266

10 and GTSRB with two popular architectures VGG16 and ResNet18. We also add a baseline model267

without watermark as a reference.268

Table 2: The classification accuracies (%) of models with random mask watermarking. V-CIFAR10
represents the model trained with VGG16 using the CIFAR-10 dataset and R-GTSRB represents the
ResNet18 model trained using the GTSRB dataset.

Task Baseline Min Mean Median Max

V-CIFAR10 90.70 89.30 89.71 89.72 90.20
R-CIFAR10 91.97 91.10 91.49 91.51 91.83
V-GTSRB 97.60 96.10 96.99 97.02 97.48
R-GTSRB 98.50 96.81 97.45 97.47 98.15

In Table 2, it could be clearly observed that the accuracy of the watermarked models has a similar269

performance compared with the baseline model. The worst accuracy drops are only around 1%, while270

both mean and median keep a very similar performance with the baseline. Concerning there exists271

randomness in the training procedure, the proposed watermarking method has a limited effect on the272

model performance.273

A.2 Results on adaptive attack274

To fully test the robustness of our proposed detectors, we also conducted an adaptive attack where275

the adversary has full access to the specific watermark embedded in each model. To be noted, it is276

not practical because users have only black-box access and it is not an easy task to directly infer277

which pixels are masked because of the noise estimation. The attacker then adds some Gaussian278
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noise within the watermark to fool our tracing method. We test the average tracing accuracy across279

different noise levels on CIFAR10 with ResNet18 structure. Our results are shown in Table 2.280

Figure 2: Average tracing ac-
curacy on adaptive attack with
different random noise levels.

281

Not surprisingly, we observe a significant accuracy drop in the data-282

limited case when adding random perturbation since we utilize the283

adversarial perturbation to identify the compromised model. How-284

ever, we also notice that our data-free detector is not sensitive to285

random noise, which suggests that our tracing method can still be286

effective even if the adversary knows the predefined watermark.287

A.3 Results on multiple adversarial examples288

In the previous experiments, we considered only one adversarial289

example, which is the most extreme case for forensic investiga-290

tion. However, here comes a natural question: could the proposed291

method have a better detection rate if more adversarial examples are292

collected? In this section, we conduct experiments to answer this293

question.294

We use a simple strategy to combine multiple adversarial example295

scores. That is, we first calculate scores defined in Section 3 and296

Section 3 for each example, and then add up each score computed over all adversarial examples.297

Then we take the model with the smallest sum as the compromised model. We then conduct the298

experiments on 100 copies of the random mask watermarked ResNet18 and VGG16 models for the299

CIFAR-10 dataset in both the data-limited and data-free settings. It could be seen in Figure 3 that the300

detection rate keeps increasing with the number of adversarial examples. We could get around 97%301

tracing accuracy on average when adding only 1 adversarial example to current accessibility. And the302

accuracy will reach 100% if given three or more adversarial examples. It shows our method is quite303

robust and has a great potential to be further improved.304

Figure 3: Tracing accuracy with different numbers of adversarial examples.

Optionally include extra information (complete proofs, additional experiments and plots) in the305

appendix. This section will often be part of the supplemental material.306
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