
Certified defences hurt generalisation

Piersilvio De Bartolomeis
ETH Zürich

Jacob Clarysse
ETH Zürich

Fanny Yang
ETH Zürich

Amartya Sanyal
ETH Zürich

Abstract

In recent years, much work has been devoted to designing certified defences for
neural networks, i.e., methods for learning neural networks that are provably robust
to certain adversarial perturbations. Due to the non-convexity of the problem, dom-
inant approaches in this area rely on convex approximations, which are inherently
loose. In this paper, we question the effectiveness of such approaches for realistic
computer vision tasks. First, we provide extensive empirical evidence to show that
certified defences suffer not only worse accuracy but also worse robustness and
fairness than empirical defences. We hypothesise that the reason for why certified
defences suffer in generalisation is (i) the large number of relaxed non-convex
constraints and (ii) the strong alignment between the adversarial perturbations and
the "signal" direction. We provide a combination of theoretical and experimental
evidence to support these hypotheses.

1 Introduction

Deep neural networks have been shown to be vulnerable to adversarial attacks: imperceptible
perturbations to the input can fool state-of-the-art classifiers [13, 27, 21]. The existence of adver-
sarial examples raises serious security concerns in many safety-critical applications [29, 10], and
so robustness to adversarial attacks is becoming a crucial design goal for modern deep learning
architectures.

In practice, robustness against many different types of perturbations may be desired depending on the
domain of application. Hence, in order to build robust models, we need to first define a threat model
for the adversary, i.e., a set of perturbations B. The most commonly used threat models in the literature
are norm-bounded perturbations, where Bϵ,p = {δ : ∥δ∥p ≤ ϵ} is the ℓp-ball with radius ϵ centred
around the origin. In this paper, we focus on Bϵ,2 which, for ease of notation, we will represent as Bϵ.
For any distribution D, neural network model fθ parameterised by θ, and loss function L, our goal is
to find a model which solves the following robust optimisation problem:

min
θ

Rϵ(θ) := E(x,y)∼D

[
max
δ∈Bϵ

L(fθ(x+ δ), y)

]
(1)

We call Rϵ(θ) the robust error when L is the 0-1 loss function. In practice, as the distribution D
is unknown, we instead minimise the empirical robust error on a finite dataset D sampled from D.
Unfortunately, in the case of neural networks, the inner maximisation is a non-convex optimisation
problem and prohibitively hard to solve from a computational perspective [16, 30]. Therefore, two
kinds of approaches are widely used to efficiently solve it: empirical defences that provide a lower
bound on the solution and certified defences that provide an upper bound.

Among empirical defences, Adversarial Training (AT) [13, 20] is one of the few that has stood the
test of time. AT minimises the worst-case empirical loss in Equation (1) by approximately solving the
inner-maximisation problem with first-order gradient-based optimisation methods. However, despite
its simplicity and computational efficiency, owing to its heuristic nature, AT does not provide any
robustness guarantee. In many safety critical domains, such guarantees are of immense importance.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

9 18 36 72 108

0.2

0.4

0.6

0.8 COAP
AT
CROWN-IBP

Perturbation budget (ϵ/255)

St
an

da
rd

 e
rro

r

(a) Standard error

9 18 36 72 108

0.2

0.4

0.6

0.8 COAP
AT
CROWN-IBP

Perturbation budget (ϵ/255)

Ro
bu

st
 e

rro
r

(b) Robust error

9 18 36 72 108

0.2

0.4

0.6

0.8 COAP
AT
CROWN-IBP

Perturbation budget (ϵ/255)

Ac
c.

 d
isc

.

(c) Unfairness

Figure 1: Results for ℓ2-adversaries on the CIFAR-10 dataset. We compare ResNet architectures trained using
state-of-the-art certified defenses CROWN-IBP [37, 34] and COAP [32, 31] against the most popular empirical
defense to date AT [20, 13]. In Figures 1a, 1b and 1c we plot respectively standard error, robust error and
accuracy discrepancy as the perturbation budget increases. See Appendix D.3 for complete experimental details.

To address this limitation, recently, there has been significant interest in designing certified defences,
i.e., methods for learning neural networks that are provably robust to norm-bounded perturbations
on the training data. Many recent works [31, 23, 7, 37] have proposed to solve a convex relaxation
of the inner-maximisation problem by relaxing the non-convex ReLU constraint sets with convex
ones. Despite all of these progresses, certified defences based on convex relaxations suffer from an
inherent flaw: the upper bound they provide on the robust error is far from being tight due to the
looseness of the convex relaxation [25]. In this paper, we argue that the fundamental looseness of
convex relaxations hinders the practical effectiveness of current certified defences. In particular, as
shown in Figure 1, certified defences suffer significantly worse accuracy, robustness, and fairness on
the test data compared to adversarial training. Our contributions are as follows:

• In Section 2, we show that current certified defences hurt accuracy, robustness, and fairness across
a range of ℓ2-ball perturbations on real-world vision datasets like MNIST and CIFAR-10.

• In Section 3, we provide experimental evidence that certified defences hurt generalisation because
of (i) the large number of relaxed non-convex constraints and (ii) the strong alignment between
the adversarial perturbations and the signal direction.

• In Section 4, we prove, in a simplified high-dimensional classification setting, that certified
defences yield higher robust risk than adversarial training when the adversarial perturbation aligns
with the signal direction.

2 Certified defences hurt generalisation on real-world data

In this section, we show that certified defences hurt standard error, robust error, and fairness on two
common computer vision datasets: MNIST [19] and CIFAR-10 [18]. Among certified defences, we
consider the convex outer adversarial polytope (COAP) approach [32, 31], which achieves state-of-
the-art certified robustness under ℓ2-ball perturbations. Additionally, we consider CROWN-IBP [36,
34], which uses the tightest convex relaxation CROWN [36] and achieves state-of-the-art certified
robustness under ℓ∞-ball perturbations. Among empirical defences, we consider adversarial training
(AT) [20, 13], which is one of the most popular and effective defences to date.

Models and robust evaluation We consider the ℓ2-ball perturbations threat model. To reliably
evaluate the robust error, we use the strongest version of AutoAttack (AA+) [4]. For CIFAR-10, we
train a residual network (ResNet) and for MNIST we train a large convolutional neural network (CNN).
Both architectures were introduced in Wong et al. [32] as standard benchmarks for certified defences.
We refer the reader to Appendix D.3 for experimental details.

Certified defences hurt standard and robust error Several studies have shown that adversarial
training may lead to an increase in standard error when compared with standard training [24, 28, 35].
Here, we observe the same phenomenon to a much higher degree in certified defences. Specifically,
our experimental results show that certified defences not only suffer worse standard error but also
worse robust error than adversarial training. First, we observe on both MNIST and CIFAR-10 in
Figures 2a and 2c, respectively, that for increasing perturbation budget, the standard error gap between

2

0.5 1 1.5 2

0

0.2

0.4

0.6

0.8
COAP
AT
CROWN-IBP

Perturbation budget ϵ

St
an

da
rd

 e
rro

r

(a) MNIST Standard error

0.5 1 1.5 2

0

0.2

0.4

0.6

0.8
COAP
AT
CROWN-IBP

Perturbation budget ϵ

Ro
bu

st
 e

rro
r

(b) MNIST Robust error

9 18 36 72 108

0.2

0.4

0.6

0.8 COAP
AT
CROWN-IBP

Perturbation budget (ϵ/255)

St
an

da
rd

 e
rro

r

(c) CIFAR-10 Standard error

9 18 36 72 108

0.2

0.4

0.6

0.8 COAP
AT
CROWN-IBP

Perturbation budget (ϵ/255)

Ro
bu

st
 e

rro
r

(d) CIFAR-10 Robust error

0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1 COAP
AT
CROWN-IBP

Perturbation budget ϵ

Ac
c.

 d
isc

.

(e) MNIST Unfairness

0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1 COAP
AT
CROWN-IBP

Perturbation budget ϵ

Ro
bu

st
 a

cc
. d

isc
.

(f) MNIST Robust unfairness

9 18 36 72 108

0.2

0.4

0.6

0.8 COAP
AT
CROWN-IBP

Perturbation budget (ϵ/255)

Ac
c.

 d
isc

.

(g) CIFAR-10 Unfairness

9 18 36 72 108

0.2

0.4

0.6

0.8

1 COAP
AT
CROWN-IBP

Perturbation budget (ϵ/255)

Ro
bu

st
 a

cc
. d

isc
.

(h) CIFAR-10 Robust unfairness

Figure 2: Results for ℓ2-adversaries on MNIST and CIFAR-10 datasets. In Figures 2a, 2b, 2e and 2f we plot
respectively the standard error, robust error, accuracy discrepancy and robust accuracy discrepancy for a CNN
trained on MNIST, as the perturbation budget ϵ increases. In Figures 2c, 2d, 2g and 2h we plot respectively
the standard error, robust error, accuracy discrepancy and robust accuracy discrepancy, for a ResNet trained on
CIFAR-10, as the perturbation budget ϵ increases.

certified (CROWN-IBP, COAP) and empirical defences (AT) increases. In particular, the gap reaches
almost 90% for CROWN-IBP on MNIST when ϵ = 1.5. Secondly, we observe that the robust error
gap increases with increasing perturbation budget for both MNIST and CIFAR-10 in Figures 2b and
2d, respectively. In particular, the gap reaches almost 40% for the largest perturbation budgets.

Certified defences hurt fairness Previously, we showed that certified defences hurt both standard
and robust generalisation. Taking it one step further, we show that certified defences (CROWN-IBP,
COAP) suffer significantly worse fairness than empirical defences (AT).

Let R(θ) be the standard error of the classifier fθ and Rk(θ) the standard error conditioned on the
class label k. We measure the degree of unfairness as:

maxkR
k(θ)−R(θ)

1−R(θ)
(2)

Using the terminology in Sanyal et al. [26], we refer to this metric as accuracy discrepancy. However,
we expect our results to translate to other related fairness metrics as well [6, 8, 14, 15]. Additionally,
we consider the discrepancy in robust accuracy, as it was observed in Xu et al. [33] that adversarial
defences may induce a large discrepancy of robustness among different classes. We refer to this
metric as robust accuracy discrepancy and it corresponds to replacing standard error with the robust
error in Equation (2).

We present our experimental results comparing the fairness of certified and empirical defences. For
MNIST, we observe in Figure 2e and 2f that COAP and CROWN-IBP have a significant discrepancy
for both standard and robust accuracy. For large perturbations, these methods obtain 100% discrep-
ancy, indicating that their accuracy on the worst class can be as low as 0%. By contrast, AT preserves
fairness for both standard and robust accuracy much better. In particular, the discrepancy for standard
accuracy is always less than 2% for all perturbation budgets considered. Similarly, for CIFAR-10
AT maintains a constant accuracy discrepancy around 20% for all perturbation budgets considered,
whereas for certified defences it steadily increases with the perturbation budget, reaching above 80%.
Additionally, for robust accuracy, we observe a discrepancy gap of 35% between the best certified
and empirical defences for the largest perturbation budget considered.

3 Developing intuition on synthetic datasets

In this section, we hypothesise that certified defences hurt robust and standard generalisation because
of (i) the large number of relaxed non-convex constraints and (ii) the strong alignment between the

3

3 3.5 4 4.5 5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

COAP
AT
ST

Perturbation budget ϵ

Ro
bu

st
 e

rro
r

(a) Linearly separable distribution

0.1 0.3 0.5 0.7 0.9

0

0.1

0.2

0.3

0.4

0.5 COAP
AT
ST

Perturbation budget ϵ

Ro
bu

st
 e

rro
r

(b) Concentric spheres distribution

0.2 0.4 0.8 1
0

20

40

60

80

100
Linear
Spheres

Perturbation budget ϵ

Ac
tiv

e
ne

ur
on

s (
%

)

(c) COAP active neurons

Figure 3: We report mean and standard deviation over 15 seeds. In Figures 3a and 3b we plot the robust
error for standard training (ST), adversarial training (AT) and convex outer adversarial polytope (COAP), when
training on the linearly separable and concentric spheres distributions respectively. In Figure 3c, we plot
the percentage of neurons in the activation set for the linearly separable and concentric spheres distribution
respectively. See Appendix D.2 for complete experimental details.

adversarial perturbations and the signal direction. We investigate these hypotheses on more controlled
settings. In particular, we consider two synthetic data distributions: a linearly separable distribution
as in Clarysse et al. [3], which is similar to distributions studied in Nagarajan and Kolter [22], Tsipras
et al. [28], and the concentric spheres distribution studied in Gilmer et al. [12], Nagarajan and Kolter
[22].

Data and threat models Similarly to the previous section, we focus on ℓ2-ball perturbations of
size ϵ. As for distributions, we consider the linearly separable distribution where first, the label
y ∈ {+1,−1} is drawn with equal probability. Then, for some γ > 0, the covariate vector is created
as x = [γ sgn(y); x̃], where x̃ ∈ Rd−1 is a random vector drawn from a standard normal distribution
x̃ ∼ N

(
0, σ2Id−1

)
and [;] represents concatenation. We sample the concentric spheres dataset as

follows; for 0 < R1 < R−1, we first draw a binary label y ∈ {+1,−1} with equal probability and
then the covariate vector x ∈ Rd is distributed uniformly on the sphere of radius Ry. Observe that
achieving a low test error on the concentric spheres distribution requires a non-linear classifier.

In Figures 3a and 3b, we plot the robust error of standard training (ST), adversarial training (AT),
and certified training (COAP) on the linear and concentric spheres distributions respectively. We see
that in contrast to the linear setting, COAP has a much higher robust error on the concentric spheres
distribution than AT and ST, where the gap increases with increasing perturbation budget ϵ. Below,
we provide intuition as to why COAP has a much higher robust error than AT on the concentric
spheres distribution.

The intuition is two-fold: first of all COAP relaxes the non-convex ReLU constraints for all neurons
that activate within the perturbation set, i.e., there exists δ ∈ Bϵ for which the input to the neuron
equals 0. Hence, the larger the percentage of relaxed neurons, the worse the approximation. This is
formally captured by Theorem A.2 in Appendix A. Secondly, the ℓ2-ball perturbations are significantly
aligned with the signal direction, meaning that they effectively reduce the information about the label
in the data. Applying an approximation in this direction yields poor generalisation. We prove this in
Theorem 4.1 for the linearly separable distribution.

COAP relaxes many constraints on the concentric spheres In Figure 3c we empirically show
that COAP convexly approximates a large number of constraints when training on the concentric
spheres distribution. We plot the percentage of active neurons on the concentric spheres and linear
distributions against increasing perturbation budgets: the percentage is much higher for the concentric
spheres than for the linearly separable distribution and increases with perturbation budget ϵ. Indeed,
the complex spherical decision boundary requires much more active neurons compared to the linear
decision boundary which only needs 1 active neuron.

ℓ2-ball perturbations align with the signal direction We empirically show that ℓ2-ball perturba-
tions align with the signal direction on the concentric spheres distribution. Note that for a point x
drawn from the concentric spheres distribution, the signal direction is given by y x

∥x∥2
(see Figure 4a

for a 2D visualization). In Figure 4b, we plot the cosine distance between the ℓ2-perturbations

4

(a) Signal direction

0 50 100 150 200 250

0.1

0.2

0.3

0.4 COAP
AT

Epoch

Co
sin

e
sim

ila
rit

y

(b) Signal alignment

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8 COAP
AT

Epoch

St
an

da
rd

 e
rro

r

(c) Standard error

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1
COAP
AT

Epoch

Ro
bu

st
 e

rro
r

(d) Robust error

Figure 4: We report mean and standard deviation over 15 seeds. In Figure 4a we plot a 2-dimensional realisation
of the adversarial spheres dataset, the black arrow illustrates the signal direction. In Figure 4b we plot the cosine
similarity between ℓ2 norm-bounded perturbations on the training data (average) and the signal directed vector.
In Figures 4c and 4d we plot standard and robust error for adversarial training (AT) and convex outer adversarial
polytope (COAP). We observe that when cosine similarity is high, the gap in standard and robust error between
COAP and AT increases. Hence, especially approximations in the signal direction can hurt standard and robust
generalisation.

computed on the training set, and the signal direction. Comparing Figures 4b to 4d, we see that during
the early stages of training, the ℓ2-ball perturbations are not aligned with the signal direction and the
robust and standard errors for COAP are similar to AT. However, after some epochs, when the ℓ2-ball
perturbations start to align with the signal direction, both the robust and standard error gaps between
COAP and AT increase. This provides evidence that, as training progresses, ℓ2-ball perturbations
become significantly aligned with the signal direction and the generalisation gap worsens.

4 Approximations along the signal direction hurt generalisation

In this section, we further investigate our hypothesis that certified defences hurt generalisation when
adversarial perturbations are aligned with the signal direction. In particular, we study the linearly
separable distribution from the previous section and assume that the adversarial attacks concentrate
all of their perturbation budget along the signal direction. In Theorem 4.1, we prove for a simple
neural network that, in high dimensions, certified defences (COAP) yield higher robust error than
empirical defences (AT) for large perturbation budgets. We then corroborate our theoretical results
with extensive experimental evidence on synthetic data.

Data and threat models We consider the linearly separable distribution described in Section 3.
As for the threat model, we consider signal-directed attacks that efficiently concentrate their attack
budget on the signal in the input. Since the signal direction corresponds to the first component of the
data, we define the set of allowed perturbations as:

Bϵ(x) = {z1 = x+ e1β | |β| ≤ ϵ} (3)

where e1 is the standard basis vector of the first coordinate. Further, as the original formulation of
COAP only allows ℓp-adversaries, we provide an extension of COAP that covers our theoretical and
experimental setting in Appendix A.

One gradient step training We consider the hypothesis class to be the set of one-neuron shallow
neural networks fθ : Rd −→ R, defined by:

fθ(x) = aReLU
(
θ⊤x

)
+ b (4)

where x ∈ Rd, θ ∈ Rd, a ∈ R, b ∈ R and the only trainable parameter is θ1. Note that as our
distribution is linearly separable, our hypothesis class includes the ground truth.

We study the early phase of neural network optimisation. Under structural assumptions on the data, it
has been proved that one gradient step with sufficiently large learning rate can drastically decrease the
training loss [2] and extract task-relevant features [11, 5]. A similar setting was also studied recently
in Ba et al. [1] for the MSE loss in the high-dimensional asymptotic limit. Here, we focus on the
classification setting with binary cross-entropy loss. Below we state our main theorem.

5

3 3.5 4 4.5 5 5.5

0
0.05
0.1

0.15
0.2

0.25 COAP
AT
ST

Perturbation budget ϵ

St
an

da
rd

 e
rro

r

(a) Small sample size regime

3 3.5 4 4.5 5 5.5

0

0.1

0.2

0.3

0.4

0.5
COAP
AT
ST

Perturbation budget ϵ

Ro
bu

st
 e

rro
r

(b) Small sample size regime

4 4.25 4.5 4.75 5 5.25

0

0.005

0.01 COAP
AT
ST

Perturbation budget ϵ

St
an

da
rd

 e
rro

r

(c) Large sample size regime

4 4.25 4.5 4.75 5 5.25

0

0.1

0.2

0.3

0.4 COAP
AT
ST

Perturbation budget ϵ

Ro
bu

st
 e

rro
r

(d) Large sample size regime

Figure 5: We report mean and standard deviation over 15 seeds. In Figure 5a and 5b we plot respectively
the standard and robust errors in the small sample size (n = 50) regime for standard training (ST), adversarial
training (AT) and convex outer adversarial polytope (COAP) as the perturbation budget ϵ increases. In Figure 5c
and 5d we plot respectively the standard and robust errors in the large sample size (n = 10000) regime
for standard training (ST), adversarial training (AT) and convex outer adversarial polytope (COAP) as the
perturbation budget ϵ increases. See Appendix D.1 for complete experimental details.

Theorem 4.1. Let θ̄ and θ̃ be the network parameters after one step of gradient descent with respect
to AT and COAP objectives. Let,

∥θ2:d∥2
∥θ1∥2

>

√
24γ3

σ2
and

2

3
γ < ϵ < γ (5)

where θ are the network parameters at initialization. Then, COAP yields higher robust risk than AT:

Rϵ(θ̃) > Rϵ(θ̄) (6)

Theorem 4.1 relies on two main assumptions. The first is an assumption on the data dimensionality
and the initialisation of the network parameters θ. For instance, if t he network parameters are
initialised sampling from a standard multivariate gaussian θ ∼ N (0, Id), then we know that ∥θ∥2
concentrates around

√
d with high probability. Hence, the assumption is satisfied when the data

dimensionality d is sufficiently high. Further, the second assumption requires that the perturbation
budget ϵ is sufficiently close to the separation margin γ. This is consistent with the experimental
evidence we presented so far, as the generalisation of certified defences significantly worsen for large
perturbation budgets.

Synthetic experiments We corroborate our theory with experimental evidence using a one-hidden
layer neural network with 100 neurons. In particular, we investigate the effect of perturbation budget ϵ
on generalisation for three different models: standard training (ST), adversarial training (AT) [20, 13]
and convex outer adversarial polytope (COAP) [31, 32]. In Figure 5, we plot robust and standard
errors for both small and large sample size regimes as the perturbation budget ϵ increases. The
generalisation gap in the small sample size regime between standard and adversarial training was
already observed in Clarysse et al. [3] for linear classifiers. Here, we observe a further generalisation
gap between AT and COAP in both small and large sam ple size regimes, which surprisingly worsens
in the large sample regime.

5 Conclusions

In this paper, we show that certified defences can hurt accuracy, robustness and fairness for realistic
datasets and adversarial perturbations. Further, we develop intuition on synthetic datasets for why
certified defences hurt generalisation, combining both theoretical and experimental evidence. We
believe that shedding light on the performance gap between empirical and certified defences will not
only provide us with a clearer picture of the trade-offs observed in practice but also lead to better
approaches for adversarial robustness.

References
[1] Jimmy Ba, Murat A. Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang.

High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the
Representation, May 2022. arXiv:2205.01445 [cs, math, stat].

6

[2] Niladri S. Chatterji, Philip M. Long, and Peter L. Bartlett. When Does Gradient Descent with
Logistic Loss Find Interpolating Two-Layer Networks? Journal of Machine Learning Research,
(159), 2021. ISSN 1533-7928.

[3] Jacob Clarysse, Julia Hörrmann, and Fanny Yang. Why adversarial training can hurt robust
accuracy, 2022. arXiv:2203.02006.

[4] Francesco Croce and Matthias Hein. Reliable evaluation of adversarial robustness with an
ensemble of diverse parameter-free attacks. In Proceedings of the International Conference on
Machine Learning, 2020.

[5] Amit Daniely and Eran Malach. Learning Parities with Neural Networks. In Advances in Neural
Information Processing Systems, 2020.

[6] John C. Duchi and Hongseok Namkoong. Learning models with uniform performance via
distributionally robust optimization. CoRR, abs/1810.08750, 2018. URL http://arxiv.org/
abs/1810.08750.

[7] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal, Timothy A. Mann, and Pushmeet
Kohli. A Dual Approach to Scalable Verification of Deep Networks. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence, 2018.

[8] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard S. Zemel. Fairness
through awareness. In Shafi Goldwasser, editor, Innovations in Theoretical Computer Science
2012, Cambridge, MA, USA, January 8-10, 2012, pages 214–226. ACM, 2012. doi: 10.1145/
2090236.2090255. URL https://doi.org/10.1145/2090236.2090255.

[9] Ecenaz Erdemir, Jeffrey Bickford, Luca Melis, and Sergül Aydöre. Adversarial Robustness with
Non-uniform Perturbations. In Advances in Neural Information Processing Systems, 2021.

[10] Samuel G. Finlayson, John D. Bowers, Joichi Ito, Jonathan L. Zittrain, Andrew L. Beam, and
Isaac S. Kohane. Adversarial attacks on medical machine learning. Science, (6433), March
2019.

[11] Spencer Frei, Niladri S. Chatterji, and Peter L. Bartlett. Random Feature Amplification: Feature
Learning and Generalization in Neural Networks, May 2022. arXiv:2202.07626 [cs, math, stat].

[12] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S. Schoenholz, Maithra Raghu, Martin
Wattenberg, and Ian J. Goodfellow. Adversarial Spheres. CoRR, 2018. arXiv: 1801.02774.

[13] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and Harnessing Adver-
sarial Examples. In Proceedings of the International Conference on Learning Representations,
2015.

[14] Moritz Hardt, Eric Price, and Nati Srebro. Equality of opportunity in supervised learning.
In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 29: Annual Conference
on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pages 3315–3323, 2016. URL https://proceedings.neurips.cc/paper/2016/hash/
9d2682367c3935defcb1f9e247a97c0d-Abstract.html.

[15] Úrsula Hébert-Johnson, Michael P. Kim, Omer Reingold, and Guy N. Rothblum. Multi-
calibration: Calibration for the (computationally-identifiable) masses. In Jennifer G. Dy
and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80
of Proceedings of Machine Learning Research, pages 1944–1953. PMLR, 2018. URL
http://proceedings.mlr.press/v80/hebert-johnson18a.html.

[16] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Relu-
plex: An Efficient SMT Solver for Verifying Deep Neural Networks. In Proceedings of the
International Conference of Computer Aided Verification, 2017.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In
Proceedings of the International Conference on Learning Representations, 2015.

7

http://arxiv.org/abs/1810.08750
http://arxiv.org/abs/1810.08750
https://doi.org/10.1145/2090236.2090255
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/9d2682367c3935defcb1f9e247a97c0d-Abstract.html
http://proceedings.mlr.press/v80/hebert-johnson18a.html

[18] Alex Krizhevsky. Learning multiple layers of features from tiny images. citeseer, 2009.

[19] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning
applied to document recognition. Proc. IEEE, (11), 1998.

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards Deep Learning Models Resistant to Adversarial Attacks. In Proceedings of the
International Conference on Learning Representations, 2018.

[21] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. DeepFool: A Simple
and Accurate Method to Fool Deep Neural Networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016.

[22] Vaishnavh Nagarajan and J. Zico Kolter. Uniform convergence may be unable to explain
generalization in deep learning. In Advances in Neural Information Processing Systems, 2019.

[23] Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified Defenses against Adversarial
Examples. In Proceedings of the International Conference on Learning Representations, 2018.

[24] Aditi Raghunathan, Sang Michael Xie, Fanny Yang, John C. Duchi, and Percy Liang. Under-
standing and Mitigating the Tradeoff between Robustness and Accuracy. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages 7909–7919. PMLR,
2020. URL http://proceedings.mlr.press/v119/raghunathan20a.html.

[25] Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, and Pengchuan Zhang. A Convex
Relaxation Barrier to Tight Robustness Verification of Neural Networks. In Advances in Neural
Information Processing Systems, 2019.

[26] Amartya Sanyal, Yaxi Hu, and Fanny Yang. How unfair is private learning? In Proceedings of
the Conference on Uncertainty in Artificial Intelligence, 2022.

[27] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J.
Goodfellow, and Rob Fergus. Intriguing properties of neural networks. In Proceedings of the
International Conference on Learning Representations, 2014.

[28] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness May Be at Odds with Accuracy. In Proceedings of the International Conference on
Learning Representations, 2019.

[29] Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski. Simulation-based
Adversarial Test Generation for Autonomous Vehicles with Machine Learning Components. In
Proceedings of the IEEE Intelligent Vehicles Symposium, 2018.

[30] Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Luca Daniel, Duane S.
Boning, and Inderjit S. Dhillon. Towards fast computation of certified robustness for relu
networks. In Proceedings of the International Conference on Machine Learning, 2018.

[31] Eric Wong and J. Zico Kolter. Provable Defenses against Adversarial Examples via the Convex
Outer Adversarial Polytope. In Proceedings of the International Conference on Machine
Learning, 2018.

[32] Eric Wong, Frank R. Schmidt, Jan Hendrik Metzen, and J. Zico Kolter. Scaling provable
adversarial defenses. In Advances in Neural Information Processing Systems, 2018.

[33] Han Xu, Xiaorui Liu, Yaxin Li, Anil K. Jain, and Jiliang Tang. To be Robust or to be Fair:
Towards Fairness in Adversarial Training. In Proceedings of the International Conference on
Machine Learning, Proceedings of Machine Learning Research, 2021.

[34] Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic Perturbation Analysis for Scalable Certified
Robustness and Beyond. In Advances in Neural Information Processing Systems, 2020.

8

http://proceedings.mlr.press/v119/raghunathan20a.html

[35] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P. Xing, Laurent El Ghaoui, and Michael I.
Jordan. Theoretically Principled Trade-off between Robustness and Accuracy. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97
of Proceedings of Machine Learning Research, pages 7472–7482. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/zhang19p.html.

[36] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient Neural
Network Robustness Certification with General Activation Functions. In Advances in Neural
Information Processing Systems, 2018.

[37] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane S.
Boning, and Cho-Jui Hsieh. Towards Stable and Efficient Training of Verifiably Robust Neural
Networks. In Proceedings of the International Conference on Learning Representations, 2020.

9

http://proceedings.mlr.press/v97/zhang19p.html
http://proceedings.mlr.press/v97/zhang19p.html

A Certified defences for signal-directed adversaries

We now formulate the convex outer adversarial polytope (COAP) [31] for adversaries that concentrate
all their budget along the signal direction in the input. Our derivation can be seen as an extension of
Wong and Kolter [31], Erdemir et al. [9].

Data and threat model We consider the linearly separable distribution described in Section 3.
First, the label y ∈ {+1,−1} is drawn with equal probability. Then, for some γ > 0, the covariate
vector is x = [γ sgn(y); x̃], where x̃ ∈ Rd−1 is a random vector drawn from a standard normal
distribution x̃ ∼ N

(
0, σ2Id−1

)
and [;] represents concatenation. As for the threat model, we

consider signal-directed attacks that efficiently concentrate their attack budget on the signal in the
input. Since the signal direction corresponds to the first component of the data, we define the set of
allowed perturbations as:

Bϵ(x) = {z1 = x+ e1β | |β| ≤ ϵ} (7)

where e1 is the standard basis vector of the first coordinate.

Network structure For the rest of this section we consider a 2 layer feed-forward ReLU network.
In particular, we define fθ(x) : Rd → R2 as follows:

x
x+δ−→ z1

W1z1+b1−→ ẑ2
ReLU(·)−→ z2

W2z2+b2−→ ẑ3 (8)

where x ∈ Rd, z1 ∈ Bϵ(x), W1 and W2, are linear operators and we define the set of network
parameters as θ = {Wi, bi}i=1,2.

Constructing the convex outer bound We define the adversarial polytope Zϵ(x) as the set of all
final-layer activations attainable by perturbing x with some x̃ ∈ Bϵ(x):

Zϵ(x) = {fθ(x̃) : x̃ ∈ Bϵ(x)} (9)

Our approach will be to construct a convex outer bound on this adversarial polytope: if no adversarial
example exists in this outer approximation, then we are guaranteed that no adversarial example exists
in the original polytope. We relax the ReLU activations z = ReLU (ẑ) with their convex envelopes:

z ≥ 0, z ≥ ẑ, (u− ℓ)z ≤ uẑ − uℓ (10)

where u and ℓ are respectively the pre-activations ẑ upper and lower bounds.

First, we address the problem of obtaining the upper and lower bounds u and ℓ for the pre-activations
ẑ. Specifically, the following proposition gives a closed form solution for ℓ and u.
Proposition A.1. Consider the neural network fθ defined in Equation (8). Let w1 be the first column
of W1. Then, for a data point x and perturbation budget ϵ, we have the following element-wise
bounds on the pre-activation vector ẑ2:

ℓ ≤ ẑ2 ≤ u (11)

where
ℓ =W1x+ b1 − ϵ|w1| and u =W1x+ b1 + ϵ|w1| (12)

Proof. Given a data point x and perturbation budget ϵ, let x̃ = x+ δ be the perturbed input to the
network. First, we find an upper bound the pre-activations values ẑ2:

ẑ2 =W1(x+ δ) + b1 =W1x+ b1 +W1δ (13)

In particular, we want to solve the following optimisation problem for each component of the
pre-activation vector:

ui = max
x̃∈Bϵ(x)

[ẑ2]i = [W1x]i + [b1]i + max
x̃∈Bϵ(x)

[W1δ]i (14)

where u will be the vector containing element-wise upper bounds. Note that δ = βe1, thus the
optimisation problem can be rewritten as:

max
x̃∈Bϵ(x)

[W1δ]i = max
∥β∥1≤ϵ

β · [w1]i = ϵ · ∥[w1]i∥1 (15)

10

where w1 is the first column of W1. The vector of upper bounds will then be:

u =W1x+ b1 + ϵ|w1| (16)

Along the same lines, we can derive the vector of lower bounds ℓ:

l =W1x+ b1 − ϵ|w1| (17)

Next, we define the outer bound on the adversarial polytope we get from relaxing ReLU constraints
as Z̃ϵ(x). Given a data point x with known label y, we can formulate the problem of finding an
adversarial example with a linear program as follows:

min
ẑ3

[ẑ3]y − [ẑ3]ȳ = c⊤ẑ3 s.t. ẑ3 ∈ Z̃ϵ(x) (18)

where ȳ is the binary negation of y. Note that if we solve this linear program and find that the
objective is positive, then we know that no input perturbation within the threat model can misclassify
the example.

However, solving the linear program in Equation (18) for every example in the dataset is intractable.
Therefore, we consider the dual formulation and take a feasible solution. In the following theorem,
we state the dual problem formulation of the linear program in Equation (18). v
Theorem A.2. The dual of the linear program (18) can be written as

max
α

J̃ϵ (x, gθ(c, α))

s.t. αj ∈ [0, 1], ∀j
(19)

where J̃ϵ(x, ν1, ν2, ν3) is equal to

−
2∑
i=1

ν⊤i+1bi +
∑
j∈I

ℓj [ν2]
+
j − ν̂

⊤
1 x− ϵ ∥[ν̂1]1∥1 (20)

and gθ is a one-hidden layer neural network given by the equations

ν3 = −c
ν̂2 =W⊤

2 ν3
[ν2]j = 0, j ∈ I−
[ν2]j = [ν̂2]j , j ∈ I+
[ν2]j =

uj

uj−ℓj [ν̂2]
+
j − αj [ν̂2]

−
j , j ∈ I

ν̂1 =W⊤
1 ν2

(21)

where I−, I+ and I denote the sets of activations in the hidden layer where ℓ and u are both negative,
both positive or span zero, respectively.

Proof. Consider a data point x and let x̃ = x+ δ be the adversarial perturbed data point. First, we
explicit all the constraints for the linear program defined in (18):

min
ẑ3

[ẑ3]y − [ẑ3]ȳ = c⊤ẑ3 , s.t.

x+ δ ∈ Bϵ(x)
z1 = x+ δ

ẑ2 =W1z1 + b1
ẑ3 =W2z2 + b2

[z2]j = 0, ∀j ∈ I−

[z2]j = [ẑ2]j , ∀j ∈ I+

[z2]j ≥ 0, ∀j ∈ I
[z2]j ≥ [ẑ2]j , ∀j ∈ I
((uj − ℓj) [z2]j −uj [ẑ2]j) ≤ −ujℓj , ∀j ∈ I

(22)

11

where I−, I+ and I denote the sets of activations in the hidden layer where ℓ and u are both negative,
both positive, or span zero respectively. In order to compute the dual of this problem, we associate
the following Lagrangian variables with each of the constraints:

ẑ2 =W1z1 + b1 ⇒ ν2
ẑ3 =W2z2 + b2 ⇒ ν3
z1 = x+ δ ⇒ ψ

−[z2]j ≤ 0⇒ µj , ∀j ∈ I
[ẑ2]j − [z2]j ≤ 0⇒ τj , ∀j ∈ I

((uj − ℓj) [z2]j − uj [ẑ2]j) ≤ −ujℓj ⇒ λj , ∀j ∈ I

(23)

note that we do not define explicit dual variables for [z2]j = 0 and [z2]j = [ẑ2]j as we can easily
eliminate them. We write the Lagrangian as follows:

L(z, ẑ, ν, δ, λ, τ, µ, ψ) =−
(
W⊤

1 ν2 + ψ
)⊤
z1 −

∑
j∈I

(
µj + τj − λj (uj − ℓj) +

[
W⊤

2 ν3
]
j

)
[z2]j

+
∑
j∈I

(τj − λjuj + [ν2]j) [ẑ2]j + (c+ ν3)
⊤
ẑ3 −

2∑
i=1

ν⊤i+1bi

+
∑
j∈I

λjujℓj + ψ⊤x+ ψ⊤δ +
∑
j∈I−

[ẑ2]j [ν2]j

+
∑
j∈I+

[z2]j
(
[ν2]j − [W⊤

2 ν3]j
)

s.t. x̃ ∈ Bϵ(x)
(24)

and we take the infimum w.r.t. z, ẑ, δ:

inf
z,ẑ,δ
L(z, ẑ, ν, δ, λ, τ, µ, ψ) =− inf

z2

∑
j∈I

(
µj + τj − λj (uj − ℓj) +

[
W⊤

2 ν3
]
j

)
[z2]j

+ inf
ẑ2

∑
j∈I

(τj − λjuj + [ν2]j) [ẑ2]j + inf
ẑ3

(c+ ν3)
⊤
z3 −

2∑
i=1

ν⊤i+1bi

+
∑
j∈I

λjujℓj + ψ⊤x+ inf
x̃∈Bϵ(x)

ψ⊤δ − inf
z1

(
W⊤

1 ν2 + ψ
)⊤
z1

+ inf
ẑ2

∑
j∈I−

[ẑ2]j [ν2]j + inf
z2

∑
j∈I+

[z2]j
(
[ν2]j − [W⊤

2 ν3]j
)

(25)
Now, we can compute the infimum for the ψ⊤δ term:

inf
x̃∈Bϵ(x)

ψ⊤δ = inf
∥β∥1≤ϵ

ψ1 · β = −ϵ · ∥ψ1∥1 (26)

and since for all the other terms the infimum of a linear function is −∞, except in the special case
when it is identically zero, the infimum of L(·) becomes:

inf
z,ẑ,δ
L(.) =

{
−
∑2
i=1 ν

⊤
i+1bi +

∑
j∈I λjujℓj + ψ⊤x− ϵ ∥ψ1∥1 if conditions

−∞ else
(27)

where the conditions to satisfy are:
ν3 = −c
W⊤

1 ν2 = −ψ
[ν2]j = 0, j ∈ I−i
[ν2]j =

[
W⊤

2 ν3
]
j
, j ∈ I+i

(uj − ℓj)λj − µj − τj =
[
W⊤

2 ν3
]
j

[ν2]j = ujλj − τj

}
j ∈ I

λ, τ, µ ≥ 0

(28)

12

Thus, we can rewrite the dual problem as follows:

max
ν,ψ,λ,τ,µ

−
2∑
i=1

ν⊤i+1bi +
∑
j∈I

λjujℓj + ψ⊤x− ϵ ∥ψ1∥1

s.t. ν3 = −c
W⊤

1 ν2 = −ψ
[ν2]j = 0, j ∈ I−i
[ν2]j =

[
W⊤

2 ν3
]
j
, j ∈ I+i

(uj − ℓj)λj − µj − τj =
[
W⊤

2 ν3
]
j

[ν2]j = ujλj − τj

}
j ∈ I

λ, τ, µ ≥ 0

(29)

Note that the dual variable λ corresponds to the upper bounds in the convex ReLU relaxation, while µ
and τ correspond to the lower bounds. By the complementarity property, we know that at the optimal
solution, these variables will be zero if the ReLU constraint is non-tight, or non-zero if the ReLU
constraint is tight. Since the upper and lower bounds cannot be tight simultaneously, either λ or
µ+ τ must be zero. This means that at the optimal solution to the dual problem we can decompose
[W⊤

2 ν3]j into positive and negative parts since (uj − ℓj)λj ≥ 0 and τj + µj ≥ 0 :

(uj − ℓj)λj = [W⊤
2 ν3]

+
j

τj + µj = [W⊤
2 ν3]

−
j

(30)

combining this with the constraint [ν2]j = ujλj − τj leads to

[ν2]j =
uj

uj − ℓj
[W⊤

2 ν3]
+
j − αj [W

⊤
2 ν3]

−
j (31)

for j ∈ I and 0 ≤ αj ≤ 1. Hence, we have that:

λj =
uj

uj − ℓj
[ν̂2]

+
j (32)

Now, we denote ν̂1 = −ψ to make our notation consistent, and putting all of this together the dual
objective becomes:

−
2∑
i=1

ν⊤i+1bi +
∑
j∈I

λjujℓj + ψ⊤x− ϵ ∥ψ1∥1 = −
2∑
i=1

ν⊤i+1bi +
∑
j∈I

ujℓj
uj − ℓj

[ν̂2]
+
j − ν̂

⊤
1 x− ϵ ∥[ν̂1]1∥1

= −
2∑
i=1

ν⊤i+1bi +
∑
j∈I

ℓj [ν2]
+
j − ν̂

⊤
1 x− ϵ ∥[ν̂1]1∥1

(33)
and the final dual problem:

max
ν,ν̂

−
∑2
i=1 ν

⊤
i+1bi +

∑
j∈I ℓj [ν2]

+
j − ν̂⊤1 x− ϵ ∥[ν̂1]1∥1

s.t. ν3 = −c
ν̂2 =W⊤

2 ν3
[ν2]j = 0, j ∈ I−
[ν2]j = [ν̂2]j , j ∈ I+
[ν2]j =

uj

uj−ℓj [ν̂2]
+
j − αj [ν̂2]

−
j , j ∈ I

ν̂1 =W⊤
1 ν2

(34)

Most importantly, the theorem states that we can represent the dual problem as a linear back propa-
gation network, which provides a tractable solution for a lower bound on the primal objective. In
practice, rather than solving the exact dual problem, we choose a fixed dual feasible solution:

αj =
uj

uj − ℓj
(35)

13

B Theoretical results for signal-directed adversaries

In this section, we study a simplified one-neuron neural network. We consider the linearly separable
distribution from the previous section and assume that the adversarial attacks concentrate all of their
perturbation budget along the signal direction. For a formal definition of the data and threat models
we refer the reader to Appendix A.

One-neuron neural network We consider the hypothesis class to be the set of one-neuron shallow
neural networks fθ : Rd −→ R, defined by:

fθ(x) = aReLU
(
θ⊤x

)
+ b (36)

where x ∈ Rd, θ ∈ Rd, a ∈ R, b ∈ R and the only trainable parameter is θ1. Note that as our
distribution is linearly separable, our hypothesis class includes the ground truth. Further, we focus on
the classification setting with binary cross-entropy loss:

L(x, y) = y log (σ (x)) + (1− y) log (1− σ (x)) (37)

where σ (·) is the sigmoid function.

B.1 Adversarial training

The basic idea behind adversarial training is to update the network parameters according to the
following rule:

θ ← θ − η

|D|
∑

(x,y)∈D

∇θ max
x+δ∈Bϵ(x)

L(fθ(x+ δ), y) (38)

This is usually done by applying some first-order approximation to the maximisation problem.
However, for our simplified network we can analytically compute the gradient.

First of all, note that when L is the binary cross-entropy loss function we can rewrite the maximisation
problem as follows:

max
x+δ∈Bϵ(x)

L(fθ(x+ δ), y) = L

sgn(y)

:=Jϵ(x,y)︷ ︸︸ ︷
min

x+δ∈Bϵ(x)
sgn(y)fθ(x+ δ), y

 (39)

In particular, if Jϵ is strictly positive then no adversarial example exists that fools the network. Further,
note that this formulation is closely related to the objective considered in Appendix A for the convex
outer adversarial polytope. This will be useful when comparing COAP and AT gradients. Below we
provide the gradient of the adversarial training objective w.r.t. the network parameters θ.

Proposition B.1. Consider the neural network fθ defined in Equation (36) and the threat model Bϵ
defined in Equation (7). Let L be the binary cross-entropy loss function, as defined in Equation (37).
Then, we have:

∇θ1 max
x+δ∈Bϵ(x)

L(fθ(x+ δ), y)

= − sgn(y)σ (−Jϵ(x, y))
{
a(x1 − ϵ sgn(θ1))1{ℓ > 0} if a sgn(y) > 0

a(x1 + ϵ sgn(θ1))1{u > 0} if a sgn(y) < 0

where ℓ = θ⊤x− ϵ|θ1| and u = θ⊤x+ ϵ|θ1| are respectively lower and upper bounds on the ReLU
inputs.

Proof. Given a data point x with known label y ∈ {−1, 1}, when L is the binary cross-entropy loss
function we have:

max
x+δ∈Bϵ(x)

L(fθ(x+ δ), y) = L

(
sgn(y) min

x+δ∈Bϵ(x)
sgn(y)fθ(x+ δ), y

)
(40)

14

For our simplified network we can analytically compute a closed form solution of the minimisation
problem:

Jϵ := min
x+δ∈Bϵ(x)

sgn(y)
(
b+ aReLU

(
θ⊤(x+ δ)

))
=

{
sgn(y) (b+ amax(0, ℓ)) if a sgn(y) > 0

sgn(y) (b+ amax(0, u)) if a sgn(y) < 0

=

{
sgn(y) (b+ amax(0, ℓ)) if a sgn(y) > 0

sgn(y) (b+ amax(0, u)) if a sgn(y) < 0

(41)

where ℓ = θ⊤x − ϵ|θ1| and u = θ⊤x + ϵ|θ1| are respectively lower and upper bounds on the
pre-activations. Thus, we can compute the gradients for adversarial training w.r.t the signal parameter:

∂

∂θ1
Jϵ =

{
sgn(y)a(x1 − ϵ sgn(θ1))1{ℓ > 0} if a sgn(y) > 0

sgn(y)a(x1 + ϵ sgn(θ1))1{u > 0} if a sgn(y) < 0
(42)

and applying the chain-rule we have:
∂

∂θ1
L (sgn(y)Jϵ, y) (43)

=
∂

∂Jϵ
L (sgn(y)Jϵ, y) ·

∂

∂θ1
Jϵ (44)

= sgn(y) [σ (sgn(y)Jϵ)− 1{y = 1}] · ∂

∂θ1
Jϵ (45)

= − sgn(y)σ (−Jϵ)
{
a(x1 − ϵ sgn(θ1))1{ℓ > 0} if a sgn(y) > 0

a(x1 + ϵ sgn(θ1))1{u > 0} if a sgn(y) < 0
(46)

where in the last equality we use a known property of the sigmoid function, σ (x) = 1−σ (−x).

B.2 Convex outer adversarial polytope

We now consider the dual approximation J̃ϵ to the optimisation problem in Equation (39). Note
that, for a binary classification problem, we have c = sgn(y) and the dual objective in Theorem A.2
becomes:

J̃ϵ (x, gθ(c, α)) = J̃ϵ (x, y) (47)
where we set α to the dual feasible solution and for the sake of clarity we omit the dependence on the
network parameters θ.

We are particularly interested in the data points for which Jϵ(x, y) ̸= J̃ϵ(x, y), i.e., when the certified
and adversarial training objectives differ. Below, we provide a necessary and sufficient condition to
have a mismatch between the two objectives.
Proposition B.2. Consider the neural network fθ defined in Equation (36) and the threat model Bϵ
defined in Equation (7). Let L be the binary cross-entropy loss function, as defined in Equation (37).
Further, we define ℓ = θ⊤x− ϵ|θ1| and u = θ⊤x+ ϵ|θ1| respectively as lower and upper bounds on
the ReLU inputs.

Let I⋆ = {(x, y) : 0 ∈ [ℓ, u] ∧ a sgn(y) > 0}. Then, for data points in I⋆, we have that AT and
COAP gradients differ:

∇θ1Jϵ(x, y) ̸= ∇θ1 J̃ϵ(x, y) ∀(x, y) ∈ I⋆

and COAP gradient is given by:

∇θ1L(sgn(y)J̃ϵ(x, y), y)

= −
a sgn(y)σ

(
−J̃ϵ(x, y)

)
2ϵ

(
ℓ

∥θ1∥1
(x1 + ϵ sgn(θ1)) + u

x1 ∥θ1∥1 − θ⊤x sgn(θ1)
θ21

)
Further, for data points that are not in I⋆ we have that AT and COAP gradients are equivalent:

∇θ1Jϵ(x, y) = ∇θ1 J̃ϵ(x, y) ∀(x, y) /∈ I⋆

15

Proof. For the sake of clarity, we report here the definition of COAP objective from appendix A.

J̃ϵ(x, y) = −
2∑
i=1

ν⊤i+1bi +
∑
j∈I

ℓj [ν2]
+
j − ν̂

⊤
1 x− ϵ ∥[ν̂1]1∥1 (48)

Further, recall that the dual variables ν are given by the following equations:

ν3 = −c
ν̂2 =W⊤

2 ν3
[ν2]j = 0, j ∈ I−
[ν2]j = [ν̂2]j , j ∈ I+
[ν2]j =

uj

uj−ℓj [ν̂2]
+
j − αj [ν̂2]

−
j , j ∈ I

ν̂1 =W⊤
1 ν2

(49)

where I−, I+ and I denote the sets of activations in the hidden layer where ℓ and u are both negative,
both positive and span zero, respectively.

First, we consider the case when the neuron is always dead, i.e., ℓ < u < 0. The dual variables are:

ν3 = − sgn(y)

ν̂2 = −a sgn(y)
ν2 = 0

ν̂1 = 0

(50)

Hence, AT and COAP objectives are equal in this case:

J̃ϵ = sgn(y)b = Jϵ (51)

where the last equality follows from Equation (41).

Next, we consider the case when the neuron is always active, i.e., 0 < ℓ < u. The dual variables are:

ν3 = − sgn(y)

ν̂2 = −a sgn(y)
ν2 = −a sgn(y)
ν̂1 = −a sgn(y) · θ

(52)

and the dual objective becomes:

J̃ϵ = −ν⊤3 b− ν̂⊤1 x− ϵ ∥[ν̂1]1∥1 (53)

= sgn(y)
(
b+ a(θ⊤x)

)
− ϵ∥a sgn(y)θ1∥ (54)

=

{
sgn(y) (b+ aℓ) if a sgn(y) > 0

sgn(y) (b+ au) if a sgn(y) < 0
(55)

= Jϵ (56)

where the last equality follows from the fact that 0 < ℓ < u.

Finally, we consider the case when the neuron is in the activation set I, i.e., ℓ < 0 < u. The dual
variables are:

ν3 = − sgn(y)

ν̂2 = −a sgn(y)

ν2 = −a sgn(y) u

2ϵ ∥θ1∥1
ν̂1 = −a sgn(y) u

2ϵ ∥θ1∥1
· θ

(57)

Here we have two cases, when ν̂2 > 0 we can rewrite the dual objective as:

J̃ϵ = sgn(y) (b+ au) = Jϵ (58)

and the two objectives coincide.

16

When ν2 < 0 we can rewrite the dual objective as:

J̃ϵ = sgn(y)

(
b+

auℓ

2ϵ ∥θ1∥1

)
̸= Jϵ (59)

Hence, the only case when COAP gradient differs from AT gradient is when ν2 < 0 and the neuron
belongs to the activation set I.

We compute the partial derivative w.r.t. the signal parameter θ1 in this case, by the chain rule we
have:

∂

∂θ1
L
(
sgn(y) · J̃ϵ, y

)
(60)

=
∂

∂J̃ϵ
L
(
sgn(y) · J̃ϵ, y

)
· ∂

∂θ1
J̃ϵ (61)

= sgn(y)
[
σ
(
sgn(y) · J̃ϵ

)
− 1{y = 1}

]
· ∂

∂θ1
J̃ϵ (62)

= −
a sgn(y)σ

(
−J̃ϵ

)
2ϵ

(
ℓ

∥θ1∥1
(x1 + ϵ sgn(θ1)) + u

x1 ∥θ1∥1 − θ⊤x sgn(θ1)
θ21

)
(63)

B.3 Signal-directed approximations hurt generalisation

In this section, we prove that convex relaxations along the signal direction hurt robust generalisation.
First, in Lemma B.1 we relate the robust error of the classifier fθ to the ℓ2-norm of the signal
parameter θ1. Specifically, we show that robust error monotonically decreases in ∥θ1∥2.

Lemma B.1. Let fθ be the neural network defined in Equation (36) and Bϵ the threat model defined
in Equation (7). We define the robust risk Rϵ of fθ as follows:

Rϵ(θ) := P(x,y) [∃z ∈ Bϵ(x) : y ̸= sgn (fθ(z))] (64)

Then, Rϵ(θ) is monotonically decreasing in ∥θ1∥2.

Proof.

Rϵ(θ) := P(x,y) [∃z ∈ Bϵ(x) : y ̸= sgn (fθ(z))]

=
1

2

(
Px
[
θ⊤x < ∥b∥1 | x1 = γ − ϵ

]
+ Px

[
θ⊤x > ∥b∥1 | x1 = ϵ− γ

])
=

1

2

(
Px

[
d∑
i=2

xiθi < −θ1(γ − ϵ) + ∥b∥1

]
+ Px

[
d∑
i=2

xiθi > θ1(γ − ϵ) + ∥b∥1

])

=
1

2

(
Φ

(
−
(γ − ϵ) ∥θ1∥2
σ ∥θ2:d∥2

+
∥b∥1

σ ∥θ2:d∥2

)
+Φ

(
−
(γ − ϵ) ∥θ1∥2
σ ∥θ2:d∥2

−
∥b∥1

σ ∥θ2:d∥2

))
hence Rϵ(θ) is monotonically decreasing in ∥θ1∥2 and the statement follows.

Below we present our main result.

Theorem 4.1. Let θ̄ and θ̃ be the network parameters after one step of gradient descent with respect
to AT and COAP objectives. Let,

∥θ2:d∥2
∥θ1∥2

>

√
24γ3

σ2
and

2

3
γ < ϵ < γ (5)

where θ are the network parameters at initialization. Then, COAP yields higher robust risk than AT:

Rϵ(θ̃) > Rϵ(θ̄) (6)

17

Proof. First we assume, without loss of generality, that at initialisation θ1 > 0, and since a and b are
not trainable parameters we must have a > 0 and b < 0 to include the ground truth in our hypothesis
class.

Let Jϵ be the adversarial training inner maximisation as defined in Equation (39). Then, AT solves
the following optimisation problem:

min
θ

E(x,y) [L (σ (sgn(y)Jϵ(x, y)) , y)] (65)

Similarly, let J̃ϵ be the COAP dual approximation to the inner maximization described in Equa-
tion (47). Then, COAP solves the following optimisation problem:

min
θ

E(x,y)

[
L
(
σ
(
sgn(y)J̃ϵ

)
, y
)]

(66)

Since we are only training the signal parameter θ1, after one gradient descent step, we have:∥∥θ̄2:d∥∥2 =
∥∥∥θ̃2:d∥∥∥

2
(67)

Further, from Lemma B.1 we know that AT yields smaller robust risk than COAP if the following
holds: ∥∥θ̄1∥∥2 > ∥∥∥θ̃1∥∥∥2 =⇒ Rϵ(θ̃) > Rϵ(θ̄) (68)

which, after one step of gradient descent, is equivalent to:

E(x,y) [∇θ1L (σ (sgn(y)Jϵ(x, y)) , y)] < E(x,y)

[
∇θ1L

(
σ
(
sgn(y)J̃ϵ(x, y)

)
, y
)]

Now recall from Theorems B.1 and B.2 that the gradients of AT and COAP differ only on the set I⋆.
In particular, we have that:

(x, y) /∈ I⋆ =⇒ ∇θ1L (σ (sgn(y)Jϵ(x, y)) , y) = ∇θ1L
(
σ
(
sgn(y)J̃ϵ(x, y)

)
, y
)
< 0

and

(x, y) ∈ I⋆ =⇒ 0 = ∇θ1L (σ (sgn(y)Jϵ(x, y)) , y) ̸= ∇θ1L
(
σ
(
sgn(y)J̃ϵ(x, y)

)
, y
)

Hence, for our purpose we need to show that:

E(x,y)

[
∇θ1L

(
σ
(
sgn(y)J̃ϵ(x, y)

)
, y
)
| (x, y) ∈ I⋆

]
> 0 (69)

Our strategy will be to lower-bound the expectation in Equation (69) with some strictly positive
quantity. We define

Z =

d∑
i=2

θixi (70)

and plug-in the gradient computed in Theorem B.2:

E(x,y)

[
∇θ1L

(
sgn(y)σ

(
J̃ϵ(x, y)

)
, y
)
| (x, y) ∈ I⋆

]
(71)

= E(x,y)

aσ
(
−J̃ϵ(x, y)

)
2ϵ

(
− ℓ

θ1
(γ + ϵ) + u

∑d
i=2 xiθi
θ21

)
| (x, y) ∈ I⋆


=

a

2θ1ϵ
E(x,y)

[
σ
(
−J̃ϵ(x, y)

)(
−ℓ(γ + ϵ) + u

Z

θ1

)
| (x, y) ∈ I⋆

]
=

a

2θ1ϵ
E(x,y)

[
σ
(
−J̃ϵ(x, y)

)
u
Z

θ1
− σ

(
−J̃ϵ(x, y)

)
ℓ(γ + ϵ) | (x, y) ∈ I⋆

]
Now, we observe that Z is always negative on the set I⋆, since we need to satisfy the constraint
ℓ < 0 < u:

(x, y) ∈ I⋆ =⇒ −θ1(γ + ϵ) <

d∑
i=2

θixi < −θ1(γ − ϵ) < 0 (72)

18

Further, from Equation (59) we have:

(x, y) ∈ I⋆ =⇒ σ
(
−J̃ϵ(x, y)

)
≥ 1

2
(73)

Combining these two observations we can lower-bound the expectation:

E(x,y)

[
∇θ1L

(
sgn(y)σ

(
J̃ϵ(x, y)

)
, y
)
| (x, y) ∈ I⋆

]
(74)

=
a

2θ1ϵ
E(x,y)

[
σ
(
−J̃ϵ(x, y)

)
u
Z

θ1
− σ

(
−J̃ϵ(x, y)

)
ℓ(γ + ϵ) | (x, y) ∈ I⋆

]
≥ a

2θ1ϵ
E(x,y)

[
u
Z

θ1
− γ + ϵ

2
ℓ | (x, y) ∈ I⋆

]
Now, we need to show that this lower-bound is strictly positive:

E(x,y)

[
u
Z

θ1
− γ + ϵ

2
ℓ | (x, y) ∈ I⋆

]
> 0 (75)

Note that, we can further expand this expression:

E(x,y)

[
u
Z

θ1
− γ + ϵ

2
ℓ | (x, y) ∈ I⋆

]
(76)

= −(γ2 − ϵ2)θ21 + (γ + ϵ)θ1E [Z | (x, y) ∈ I⋆] + 2E
[
Z2 | (x, y) ∈ I⋆

]
Further, Z | (x, y) ∈ I⋆ is distributed as a truncated normal with:

α = −θ1(γ + ϵ)

σ ∥θ2:d∥2
and β = −θ1(γ − ϵ)

σ ∥θ2:d∥2
(77)

Hence, we can plug in the expectations of the truncated normal distribution to obtain the following:

− (γ2 − ϵ2)θ21 + θ1(γ + ϵ)E [Z | (x, y) ∈ I⋆] + 2E
[
Z2 | (x, y) ∈ I⋆

]
= −(γ2 − ϵ2)θ21 + 2σ2 ∥θ2:d∥22 + σ ∥θ2:d∥2 θ1

(γ − 3ϵ)ϕ(β)− (γ + ϵ)ϕ(α)

Φ(β)− Φ(α)

∝ −(γ2 − ϵ2) + 2σ2r2 + σr
(γ − 3ϵ)ϕ(β)− (γ + ϵ)ϕ(α)

Φ(β)− Φ(α)

= −f(r) (78)

where we define r = ∥θ2:d∥2

∥θ1∥2
. Now, under our assumptions, from Lemma C.3 we have:

f(r) < 0, ∀r >
√

24γ3

σ2
(79)

which concludes the proof.

C Auxiliary lemmas

C.1 Upper bound on the exponential function

Lemma C.1. Let f : R→ R be the function defined by f(x) = exp(x). When x ≤ 0 and n is even
we have:

f(x) ≤ 1 + x+
x2

2!
+ · · ·+ xn

n!
(80)

Proof. Let g : (−∞, 0]→ R be the function defined by

g(x) = 1 + x+
x2

2!
+ · · ·+ xn

n!
− exp(x) (81)

Since g(x) → ∞ as x → −∞, g must attain an absolute minimum somewhere on the interval
(−∞, 0]. Now, differentiating we have:

19

• If f has an absolute minimum at 0 , then for all x, f(x) ≥ f(0) = 1− exp(0) = 0, so we
are done.

• If f has an absolute minimum at y for some y < 0, then f ′(y) = 0. But differentiating,

f ′(y) = 1 + y +
y2

2!
+ · · ·+ yn−1

(n− 1)!
− exp(y) = f(y)− yn

n!
.

Therefore, for any x,

f(x) ≥ f(y) = yn

n!
+ f ′(y) =

yn

n!
> 0,

since n is even.

C.2 Lower bound on the difference of Gaussian CDFs

Lemma C.2. Let f : R2 → R be the function defined by f(x, y) = Φ(y)− Φ(x). When x < y < 0
we have:

ϕ(0)

(
y − x+

x3

6

)
≤ Φ(y)− Φ(x) (82)

where Φ and ϕ are respectively the CDF and PDF of the standard Gaussian distribution.

Proof. First, we want to prove that 2x√
π

is a lower bound for the error function erf(x) when x ≤ 0.
That is, we want to show that f(x) ≥ 0 where f : (−∞, 0]→ R is the function defined by:

f(x) = erf(x)− 2x√
π

(83)

Since f is continuous and f(x) → ∞ as x → −∞, f must attain an absolute minimimum on the
interval (−∞, 0]. Now, differentiating we have:

f ′(x) =
2√
π
exp(−x2)− 2√

π
(84)

hence f attains an absolute minimum at 0 and we have f(x) ≥ f(0) = 0.
Next, we show that 2√

π
(x− x3/3) is an upper bound for erf(x) when x ≤ 0. Let g : (−∞, 0]→ R

the function defined by:

g(x) =
2√
π
(x− x3/3)− erf(x) (85)

Similarly, since g is continuous and g(x)→∞ as x→ −∞, g must attain an absolute minimimum
on the interval (−∞, 0]. Now, differentiating we have:

g′(x) =
2√
π
(1− x2 − exp(−x2)) (86)

hence g attains an absolute minimum at 0 and we have g(x) ≥ g(0) = 0.
Now, since a < b < 0 we can use the erf bounds derived above:

Φ(b)− Φ(a) =
1

2

(
erf(b/

√
2)− erf(a/

√
2)
)

(87)

≥ 1√
π

(
b√
2
− a√

2
+

a3

6
√
2

)
(88)

= ϕ(0)

(
b− a+ a3

6

)
(89)

which concludes the proof.

20

C.3 Upper bound on the ratio of Gaussian PDFs and CDFs

Lemma C.3. Suppose f : R→ R is defined as follows:

f(r) = γ2 − ϵ2 − 2σ2r2 − σr (γ − 3ϵ)ϕ(β)− (γ + ϵ)ϕ(α)

Φ(β)− Φ(α)
(90)

where α := −γ+ϵrσ , β := −γ−ϵrσ , Φ and ϕ are respectively the standard Gaussian CDF and PDF.

Assume that:
5 + 2

√
3

13
γ < ϵ < γ (91)

Then, we have:

f(r) < 0, ∀r >
√

24γ3

σ2
(92)

Proof. We begin by providing a lower bound on the difference of gaussian cdfs. Applying Lemma C.2
with x = α and y = β we have:

Φ(β)− Φ(α) ≥
(
2ϵ

rσ
− (γ + ϵ)3

6σ3r3

)
ϕ(0), α < β < 0 (93)

Next, we can upper-bound f :

f(r) ≤ γ2 − ϵ2 − 2σ2r2 − σr (γ − 3ϵ)ϕ(β)− (γ + ϵ)ϕ(α)(
2ϵ
σr −

(γ+ϵ)3

6σ3r3

)
ϕ(0)

(94)

≤ γ2 − ϵ2 − 2σ2r2 − σ2r2
(γ − 3ϵ)ϕ(0)− (γ + ϵ)ϕ(α)(

2ϵ− (γ+ϵ)3

6r2σ2

)
ϕ(0)

(95)

= γ2 − ϵ2 − 2σ2r2 − σ2r2
(γ − 3ϵ)− (γ + ϵ) exp(−α2/2)

2ϵ− (γ+ϵ)3

6σ2r2

(96)

Now, we use the upper-bound for the exponential function from Lemma C.1 with n = 2:

exp(x) ≤ 1 + x− x2/2, ∀x ≤ 0 (97)

and substituting it back into our upper-bound for f we get:

f(r) ≤ γ2 − ϵ2 − 2σ2r2 − σ2r2
(γ − 3ϵ)− (γ + ϵ)(1− (γ+ϵ)2

2r2σ2 + (γ+ϵ)4

8r4σ4)

2ϵ− (γ+ϵ)3

6r2σ2

(98)

which can be further simplified:

f(r) ≤ γ2 − ϵ2 − 2σ2r2 − σ2r2
(γ − 3ϵ)− (γ + ϵ)(1− (γ+ϵ)2

2r2σ2 + (γ+ϵ)4

8r4σ4)

2ϵ− (γ+ϵ)3

6r2σ2

(99)

=
(γ − 7ϵ)(γ + ϵ)4 + 4r2σ2(γ + ϵ)(γ2 − 10γϵ+ 13ϵ2)

4(γ + ϵ)3 − 48r2σ2ϵ
(100)

= u(r) (101)

and we have that for ϵ > 5+2
√
3

13 γ and r >
√
max

(
(7ϵ−γ)(γ+ϵ)4

4σ2(γ2−10γϵ+13ϵ2) ,
(γ+ϵ)3

12σ2ϵ

)
the upper bound is

negative, i.e. u(r) < 0. Finally, for the sake of clarity we can further simplify the condition on r:

r >

√
24γ3

σ2
>

√
max

(
(7ϵ− γ)(γ + ϵ)4

4σ2(γ2 − 10γϵ+ 13ϵ2)
,
(γ + ϵ)3

12σ2ϵ

)
(102)

which concludes the proof.

21

D Experimental details

D.1 Synthetic experiments with signal-directed adversaries

Below we provide detailed experimental details to reproduce Figure 5.

Data generation For the linearly separable distribution we set d = 1000, ntest = 105, γ = 6.

Model and hyper-parameters For all the experiments, we use the one hidden layer architecture
defined in Equation (8) with 100 neurons. We use PyTorch SGD optimiser and train all networks
for 100 epochs. We sweep over the learning rate η ∈ {0.1, 0.01, 0.001} and for each perturbation
budget, we choose the one that interpolates the training set and minimises robust error on the test set.

Robust evaluation We perform all the attacks to evaluate robust risk at test-time using exact line
search; this is computationally tractable since the attacks are directed along one dimension.

Training paradigms For standard training (ST), wee train the network to minimise the cross-
entropy loss. For adversarial training (AT) [20, 13], we train the network to minimise the robust
binary cross-entropy loss. At each epoch, we compute an exact adversarial example using line search
and update the weights using a gradient with respect to this example. For convex outer adversarial
polytope (COAP) [31, 32], at each epoch, we compute upper and lower bounds u and ℓ as described in
Theorem A.1. We then train the network to minimise the upper bound on robust error from Theorem
A.2.

Standard training. We train the network to minimise the cross-entropy loss.

Adversarial training [20, 13]. We train the network to minimise the robust binary cross-entropy loss.
At each epoch, we compute an exact adversarial example using line search and update the weights
using a gradient with respect to this example.

Certified training [31, 32]. At each epoch, we compute upper and lower bounds u and ℓ as described
in Proposition A.1. We then train the network to minimize the upper-bound on robust error derived in
Theorem A.2.

D.2 Synthetic experiments with ℓ2 adversaries

Below we provide complete experimental details to reproduce Figures 3 and 4.

Data generation For the spheres dataset, we generate a random x ∈ Rd where ∥x∥2 is either R1 or
R−1 , with equal probability assigned to each norm. We associate with each x a label y such that
y = −1 if ∥x∥2 = R−1 and y = 1 if ∥x∥2 = R1. We can sample uniformly from this distribution by
sampling z ∼ N (0, Id) and then setting x = z

∥z∥2
R−1 or x = z

∥z∥2
R1. For the linearly separable

distribution we set d = 1000, n = 50, ntest = 105, γ = 6. For the concentric spheres distribution
we set d = 100, , n = 50, ntest = 105, γmin = 1 and γmax = 12.

Model and hyper-parameters For all the experiments, we use a MLP architecture with W = 100
neurons in each hidden layer and ReLU (·) activation functions. We use PyTorch SGD optimiser
with a momentum of 0.95 and train the network for 150 epochs. We sweep over the learning rate
η ∈ {0.1, 0.01, 0.001} and for each perturbation budget, we choose the one that minimises robust
error on the test set and interpolates the training set.

Robust evaluation We consider ℓ2-ball perturbations. We evaluate robust error at test-time using
Auto-PGD [4] with 100 iterations and 5 random restarts. We use both the cross-entropy and difference
of logits loss to prevent gradient masking. We use the implementation provided in AutoAttack [4]
with minor adjustments to allow for non-image inputs.

Training paradigms For standard training (ST), we train the network to minimise the cross-entropy
loss. For adversarial training (AT) [20, 13] we train the network to minimise the robust cross-entropy
loss. At each epoch, we search for adversarial examples using Auto-PGD [4] with a budget of 10 steps

22

and 1 random restart. Then, we update the weights using a gradient with respect to the adversarial
examples. For convex outer adversarial polytope (COAP) [31, 32]. We train the network to minimise
the upper-bound on the robust error. Our implementation is based on the code released by the authors.

D.3 Image experiments

Below we provide complete experimental details to reproduce Figure 2.

Model architectures For MNIST, we train the CNN architecture with four convolutional layer and
two fully connected layers of 512 units introduced in Wong et al. [32]. We report the architectural
details in Table 1. For CIFAR-10, we train the residual network (ResNet) with the same structure
used in Wong et al. [32]; we use 1 residual block with 16, 16, 32, and 64 filters. For Tiny ImageNet,
we train a WideResNet. Following Xu et al. [34] we use 3 wide basic blocks with a widen factor of
10.

CNN

CONV 32 3× 3 + 1
CONV 32 4× 4 + 2
CONV 64 3× 3 + 1
CONV 64 4× 4 + 2
FC 512
FC 512

Table 1: MNIST model architecture. All layers are followed by ReLU (·) activations. The last fully
connected layer is omitted. "CONV k w × h+ s" corresponds to a 2D convolutional layer with k
filters of size w × h using a stride of s in both dimensions. "FC n" corresponds to a fully connected
layer with n outputs.

Dataset preprocessing For MNIST, we use full 28× 28 images without any augmentations and
normalisation. For CIFAR-10, we use random horizontal flips and random crops as data augmentation,
and normalise images according to per-channel statistics. For Tiny ImageNet, we use random crops
of 56 × 56 and random flips during training. During testing, we use a central 56 times 56 crop. We
also normalise images according to per-channel statistics.

Robust evaluation We consider ℓ2-ball perturbations. We evaluate the robust error using the
most expensive version of AutoAttack (AA+) [4]. Specifically, we include the following attacks:
untargeted APGD-CE (5 restarts), untargeted APGD-DLR (5 restarts), untargeted APGD-DLR (5
restarts), Square Attack (5000 queries), targeted APGD-DLR (9 target classes) and targeted FAB (9
target classes).

AT training details For MNIST, we train 100 epochs using Adam optimiser [17] with a learning
rate of 0.001, momentum of 0.9 and a batch size of 128; we reduce the learning rate by a factor 0.1
at epochs 40 and 80. For CIFAR-10 with ResNet, we train 150 epochs using SGD with a learning
rate of 0.05 and a batch size of 128; we reduce the learning rate by a factor 0.1 at epochs 80 and 120.
For Tiny Imagenet and CIFAR-10 with Wide-Resnet we train 200 epochs using SGD with a learning
rate of 0.1 and a batch size of 512; we reduce the learning rate by a factor 0.1 at epochs 100 and 150.
For the inner optimisation of all models and datasets, adversarial examples are generated with 10
iterations of Auto-PGD [4].

COAP training details We follow the settings proposed by the authors and report them here. For
MNIST, we use the Adam optimiser [17] with a learning rate of 0.001 and a batch size of 50. We
schedule ϵ starting from 0.01 to the desired value over the first 20 epochs, after which we decay the
learning rate by a factor of 0.5 every 10 epochs for a total of 60 epochs. For CIFAR-10, we use the
SGD optimiser with a learning rate of 0.05 and a batch size of 50. We schedule ϵ starting from 0.001
to the desired value over the first 20 epochs, after which we decay the learning rate by a factor of 0.5
every 10 epochs for a total of 60 epochs. For all datasets and models, we use random projection of 50
dimensions. For all experiments, we use the implementation provided in Wong et al. [32].

23

CROWN-IBP training details We follow the settings proposed by the authors and report them
here. For MNIST, we train 200 epochs with a batch size of 256. We use Adam optimiser [17] and set
the learning rate to 5× 10−4. We warm up with 10 epochs of regular training, and gradually ramp up
ϵtrain from 0 to ϵ in 50 epochs. We reduce the learning rate by a factor 0.1 at epoch 130 and 190. For
CIFAR-10, we train 2000 epochs with a batch size of 256, and a learning rate of 5× 10−4. We warm
up for 100 epochs, and ramp-up ϵ for 800 epochs. Learning rate is reduced by a factor 0.1 at epoch
1400 and 1700. For Tiny ImageNet, we train 600 epochs with batch size 128. The first 100 epochs
are clean training, then we gradually increase ϵtrain with a schedule length of 400. For all datasets,
an hyper-parameter β to balance LiRPA bounds and IBP bounds for the output layer is gradually
decreased from 1 to 0 (1 for only using LiRPA bounds and 0 for only using IBP bounds), with the
same schedule of ϵ. For all experiments, we use the implementation provided in the auto LiRPA
library [34].

24

	Introduction
	Certified defences hurt generalisation on real-world data
	Developing intuition on synthetic datasets
	Approximations along the signal direction hurt generalisation
	Conclusions
	Certified defences for signal-directed adversaries
	Theoretical results for signal-directed adversaries
	Adversarial training
	Convex outer adversarial polytope
	Signal-directed approximations hurt generalisation

	Auxiliary lemmas
	Upper bound on the exponential function
	Lower bound on the difference of Gaussian CDFs
	Upper bound on the ratio of Gaussian PDFs and CDFs

	Experimental details
	Synthetic experiments with signal-directed adversaries
	Synthetic experiments with l2 adversaries
	Image experiments

