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ABSTRACT

We introduce a distributing differentially private machine learning training protocol
that locally trains support vector machines (SVMs) and computes their averages
using a single invocation of a secure summation protocol. With state-of-the-art
secure summation protocols and using a strong foundation model such as SimCLR,
this approach scales to a large number of users and is applicable to non-trivial tasks,
such as CIFAR-10. Our experimental results illustrate that for 1,000 users with
50 data points each, our scheme outperforms state-of-the-art scalable distributed
learning methods (differentially private federated learning, short DP-FL) while
requiring around 500 times fewer communication costs: For CIFAR-10, we achieve
a classification accuracy of 79.7% for an ε = 0.59 while DP-FL achieves 57.6%.
More generally, we prove learnability properties for the average of such locally
trained models: convergence and uniform stability. By only requiring strongly
convex, smooth, and Lipschitz-continuous objective functions, locally trained via
stochastic gradient descent (SGD), we achieve a strong utility-privacy trade-off.

1 INTRODUCTION

Scalable distributed privacy-preserving machine learning methods have a plethora of applications,
ranging from medical institutions that want to learn from distributed patient data, over edge AI health
applications, to decentralized recommendation systems. Preserving each person’s privacy during
distributed learning raises two challenges: (1) during the distributed learning process the inputs of
all parties have to be protected and (2) the resulting model itself should not leak information about
the contribution of any person to the training data. To tackle (1), secure multi-party computation
protocols (SMPC) can protect data during distributed computation. To tackle (2), differentially private
(DP) mechanisms provide guarantees for using or releasing the model in a privacy-preserving manner.

The literature contains a rich body of work on this kind of privacy-preserving distributed machine
learning (PPDML) which is frequently evaluated with respect to scalability with the number of
users who participate in the distributed learning, expressivity of the learning method with the goal
of encompassing complex learning tasks, and a good utility-privacy trade-off without a significant
loss in accuracy for protecting each person’s data, optimally the same utility-privacy trade-off as the
centralized training scheme while only adding little communication overhead.

Jayaraman et al. (2018) introduced a theoretic result where the model optimum is noised (output
perturbation). Here, each of the n users locally trains a convex empirical risk minimization (ERM)
model on m data points and contributes the parameters of this model, carefully noised to a single
invoked SMPC step, resulting in an averaged differentially private model. This approach achieves DP
(Chaudhuri et al., 2011), requires as little noise as the centralized setting (O(1/nm)), and incurs little
communication overhead, with one SMPC invocation. However, they use untight utility bounds Pathak
et al. (2010) that scale with the number of local data points (O(1/m)) and not with the combined
number of data points across all users (O(1/nm)).
Jayaraman et al. (2018) prove strong utility bounds with another scheme, the gradient perturbation:
each user contributes the gradients of each local training iteration carefully noised to a single invoked
SMPC step which results in an averaged differentially private gradient step. This construction adds
as little noise as centralized training (O(1/nm)) and achieves strong utility bounds which scale with
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the number of data points across all users (O(1/nm)). However, it has considerable communication
overhead since it requires one SMPC invocation per training iteration.

Federated learning (McMahan et al., 2017) with a DP-SGD approximation (Abadi et al., 2016) (DP-
FL) constitutes another line of research with moderate utility bounds and moderate communication
overhead. In DP-FL, an untrusted aggregator combines the gradient updates from each user, while
each user satisfies DP. DP-FL does not require SMPC for similar security guarantees but needs
O(#training_steps) communication rounds. The utility bounds are comparatively high since the
noise scales with O(m

√
n). Appx. C discusses related work in more detail.

Concerning expressivity, Abadi et al. (2016); Tramèr & Boneh (2021); De et al. (2022) have shown
that pre-trained models can improve the performance of a differentially private machine learning
method (DP-SGD) for non-trivial tasks (e.g., CIFAR-10). While such models require sufficient public
data, they exist and provide simplifying representations for various domains: SimCLR for pictures,
Facenet for portrait pictures, UNet for medical segmentation imagery, or GPT-3 for natural language.

Yet, this prior work does not excel at all three metrics simultaneously: scalability, expressivity, and
utility-privacy trade-off. This places an inherent disadvantage when comparing current distributed
training processes to a centralized training process.

Contributions. Our Secure Distributed DP-Helmet work extends on prior work (Jayaraman et al.,
2018) such that it is scalable, expressive, and has a good utility-privacy trade-off. Table 1 compares
our approach with Jayaraman et al. (2018)’s approaches and DP-FL. In summary, we make two
tangible contributions:

1. For SGD-based strongly convex ERM, we prove a tighter utility bound which essentially states
that we only need the average of locally trained models, e.g. support vector machines (SVMs) or
logistic regression (LR), to converge to the optimal centrally trained model with rate O(1/M) for
M iterations (cf. Thm. 21). We also show train-test generalization by proving uniform stability
which states that averaging our models linearly improves the stability bound (cf. Thm. 19).

2. In Cor. 10 we show how with enough data, guarantees as in local DP can be achieved, even
without assumptions on the training algorithm beyond a norm-bounded parameter space: we
protect the entire input of a user while achieving strong utility bounds (> 80% test accuracy for
CIFAR-10).

2 OVERVIEW
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Figure 1: Schematic overview of Secure Distributed DP-Helmet. Each user locally extracts a
simplified data representation via a pre-training feature extractor (SimCLR), then trains a model, e.g.
an SVM, via a learning algorithm T , and finally contributes a model which is carefully noised with a
spherical Σ-parameterized Gaussian to a single invoked secure summation step which results in an
averaged and (ε, δ)-DP model. ξ denotes some hyperparameters and K a set of classes.

Systems overview. Secure Distributed DP-Helmet achieves scalable, distributed privacy-
preserving training on sensitive data with a strong classification performance. A schematic overview
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of our work is illustrated in Fig. 1. Here each user – the protocol party – holds and protects a small
dataset while all users jointly learn a model without leaking information about the local dataset. More
precisely, the jointly computed model protects information about individual persons in two scenarios:
first, each user is a local aggregator (e.g., a hospital) and each person contributes one data point
(differential privacy, see Fig. 3); second, each user is a person and contributes a small dataset (local
DP, see Fig. 2 for Υ = 50).

Essentially, we base our method on the following simple yet effective scheme introduced by Jayaraman
et al. (2018): Each user locally trains a model, e.g. an SVM, via a learning algorithm T , and
contributes the parameters of this model carefully noised to a single invoked secure summation or
SMPC step which results in an averaged and (ε, δ)-DP model. This construction allows using only
O(1/nm) much noise for n users with m data points each – the same as in a centralized setting.

Thus we seek and subsequently achieve three criteria: (1) scalability with the number of users
which is measured by the number of communication rounds and the number of secure summation
invocations if required with the above privacy definition. (2) high expressivity which is measured by
the classification accuracy as well as the utility degradation when compared to a centralized scheme
where all data is stored at the aggregator. (3) good utility-privacy trade-off which is measured by how
much more noise we need to add due to the distributed training scheme.

Related Work. In Table 1 we detail our utility-bound improvement in comparison to prior work.
Observe that our work matches the utility bound and privacy bound of centralized training while
having constant secure summation overhead: We only require one invocation of secure summation
which is even realistic for Smartphone-based applications since we do not have to deal with issues
of multiple consecutive communication rounds like dropouts or unstable connectivity. When using
Bell et al. (2020)’s construction for secure summation, the number of communication rounds is fixed
to 4 rounds and the size of each communication round is increased by only log(n_users), which
is diminishingly small when compared to the constant overhead amounting to the model size. In
comparison to DP-FL, we have a 500-fold decrease in communication cost: DP-FL has 1,920 rounds
of size ℓ, where ℓ is the model size (roughly 60,000 floats for CIFAR-10) while we have 4 rounds of
size log(n_users) + ℓ for roughly the same model size.

Evaluation. Our evaluation on CIFAR-10 with SimCLR-based pre-training shows that for 1,000
users with 50 data points per user, our scheme achieves with SVMs a classification accuracy of
79.7% for an ε = 0.59. Extrapolated to hundreds of thousands and millions of protocol parties (see
Fig. 2 for a thorough evaluation), we can protect the entire local dataset (say, 50-group DP) of a
protocol party and achieve high accuracy: For local datasets of size 50, Secure Distributed DP-Helmet
achieves ≥ 84% accuracy and (ε, δ) = (0.01, 10−10) for 200, 000 users and ≥ 87% accuracy and
(ε, δ) = (2 · 10−4, 10−12) for 20,000,000 users while guaranteeing local DP-like properties (or
50-group DP). In our experiments, Secure Distributed DP-Helmet significantly improves upon DP-FL
for more than 400 ≤ n users (for CIFAR-10), as it avoids the factor

√
n noise overhead.

Table 1: Comparison to related work for n users with m data points each: utility guarantee to the
population optimum, DP noise scale, and number of SMPC invocations. In DP-FL an untrusted
aggregator combines the updates from each user, while each user update satisfies DP (by adding noise
and norm-clipping each gradient). It does need a communication round per training iteration M .

Algorithm Utility Noise scale SMPC Invocations

DP federated learning (DP-FL) O(1/nm) O(1/m√
n) − (O(M) rounds)

Jayaraman et al. (2018), gradient perturbation O(1/nm) O(1/nm) O(M)
Jayaraman et al. (2018), output perturbation O(1/m) O(1/nm) 1
Secure Distributed DP-Helmet (ours) O(1/nm) O(1/nm) 1

Centralized training O(1/nm) O(1/nm) 0

2.1 KEY IDEAS

Trustworthy distributed noise generation. One core requirement of SMPC-based distributed
learning is honestly generated and unleakable noise as otherwise, our privacy guarantees would not
hold anymore. There is a rich body of work on distributed noise generation (Moran et al., 2009;
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Dwork et al., 2006a; Kairouz et al., 2015b; 2021; Goryczka & Xiong, 2015). So far, however, no
distributed noise generation protocol scales to millions of users. To jointly create noise of a given
magnitude, we can alternatively use a simple, yet effective technique: utilizing the large number of
users in our system, we can reasonably assume that at least a fraction of them (say t = 50%) are
not colluding to violate privacy by sharing the noise they generate with each other. As long as we
combine the noise of each user in an oblivious fashion, every user can create noise separately and
independently and we are still guaranteed noise of a magnitude depending on t.

Strong utility-privacy tradeoff via tight composition and convexity. Secure Distributed
DP-Helmet utilizes differentially private SGD-based SVMs for which strong utility-privacy tradeoffs
have been shown (Wu et al., 2017). We use SVMs for multi-class classification via the one-vs-rest
(OVR) scheme. Each class is waged against the combination of all other classes during training. We
rely on output perturbation to estimate a sensitivity bound on the resulting models and add calibrated
noise to the model. Meiser & Mohammadi (2018); Sommer et al. (2019); Balle et al. (2020a) show
tight composition bounds for such sensitivity-bounded additive mechanism.

Expressivity of our approach. A known limitation of convex SVMs is their limited expressivity.
As a remedy, we utilize transfer learning and operate in two phases: a pre-training phase in which
a powerful representation model is trained on a public dataset, and a training phase in which we
train a set of SVMs on a sensitive dataset. The datasets can have different, disjoint distributions; it
suffices that the two datasets are comparable in structure. In our evaluation, we use the SimCLR
representation model (Chen et al., 2020b) trained on ImageNet and then fine-tune it on CIFAR-10.

Threat model & security goals. We separate the security assumptions of our protocol and those
of the underlying secure summation. For our work, we assume security against malicious, global
attackers that do not follow our protocol as long as we have a ratio of at least t honest users (say
t = 50%). In particular, we consider dishonest noise generation. The attacker in both variants tries
to extract sensitive information about other parties from the interaction and the result. As in other
strong security definitions, the attacker has strong background knowledge and knows everything
about and can influence each user’s dataset, except for one data point of one user. Our privacy goals
are (ε, δ)-differential privacy (protecting single samples) and (ε, δ)-Υ-group differential privacy
(protecting all samples of a user at once).

2.2 WHAT DOES THAT MEAN FOR PRACTICAL APPLICATIONS?

From a bird’s eye view, our experiments show that the mean of several SVMs significantly improves
the classification accuracy, even if the individual SVMs have a poor performance on their own. We
pushed this approach to its limit and trained each SVMs on only 50 data points. Our experiments
show that the SVM obtained by computing the mean of 1,000 such SVMs has very high accuracy.

Local DP. For applications with around 200,000 or more users, we can protect the entire local
dataset of a user, i.e., the entire locally trained SVM. This result can be generalized: We can protect
each local SVM independently of how many data points were used to train it. With this generalized
view, our scheme does not only protect data points but users, which makes our DP guarantees akin to
a group-DP setting (comparable to local DP). Applications can leverage this method and let users
train SVMs on their own devices instead of requiring local aggregators for sets of users.

For which other learning algorithms is this framework applicable? Our utility-privacy results
apply, beyond SGD-based SVMs, to other learning methods; those methods improve significantly
upon averaging locally trained models (cf. Cor. 10 and Appxs. M and N). We show that the following
five requirements suffice for showing both differential privacy and learnability properties: (1) bounded
output sensitivity, (2) strongly convex training objective, (3) smooth training objective, (4) Lipschitz
continuous training objective, and (5) SGD-based update routine. Notably, we formally only require
that the norm of each model is bounded; we do not make any assumptions about the training procedure
of each base learner, which learns a single model in the ensemble. In particular, base learners do not
need to satisfy differential privacy. Concerning learnability properties, we show that a generalizability
property and a convergence property improve the average of locally trained models when compared
to the locally trained models, for a certain class of learning methods. Whenever SGD is used with a
strongly convex, smooth, and Lipschitz ERM objective (empirical risk minimization), averaging local
models improves on uniform stability, which is a form of generalizability property, and convergence,
which measures the loss-distance to the optimal model for a given dataset.
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Algorithm 1: SGD_SVM(D, ξ,K) with hyperparameters ξ := (h, c,Λ, R,M)

Data: dataset D := {(xi, yi)}Ni=1 where xi is structured as [1, xi,1, . . . , xi,p]; set of classes K;
Huber loss smoothness parameter h ∈ R+; input clipping bound: c ∈ R+; #iterations M ;
regularization parameter: Λ ∈ R+; model clipping bound: R ∈ R+;

Result: models (1d intercepts with p-dimensional hyperplanes):
{
f
(k)
M

}
k∈K

∈ R(p+1)×|K|

1 clipped(x) := c · x/max(c, ∥x∥);
2 J (f,D, k) := Λ

2 f
T f + 1

N

∑
(x,y)∈D ℓhuber

(
fT clipped(x) · y · (1[y = k]− 1[y ̸= k])

)
;

3 for k in K:
4 for m in 1, . . . ,M :
5 f

(k)
m ← SGD(J (fm, D, k), αm), with learning rate αm := min( 1β ,

1
Λm ) and

β = 1/2h + Λ;
6 f

(k)
m := R · f (k)

m /∥f (k)
m ∥; // projected SGD

3 PRELIMINARIES

3.1 DIFFERENTIAL PRIVACY AND DP_SGD_SVM

Preliminaries of the Secure Summation protocol (Bell et al., 2020) as well as pre-training as a tactic
to boost DP performance are available in Appx. B.2 and Appx. B.3 respectively.

As a privacy notion, we consider differential privacy (DP) (Dwork et al., 2006b). Intuitively, differen-
tial privacy quantifies the protection of any individual’s data within a dataset against an arbitrarily
strong attacker observing the output of a computation on said dataset. Strong protection is achieved by
bounding the influence of each individual’s data on the resulting SVMs. For the (standard) definition
of differential privacy we utilize in our proofs, we refer to Appx. B.1.

We consider Support Vector Machines (SVMs), which can be made strongly convex, thus display a
unique local minimum, and have a lower bound on the growth of the optimization function. Having a
unique local minimum makes those methods ideal for computing tight differential privacy bounds and
thus highly relevant machine learning predictors for our work. In fact, this differentially private SVM
definition (DP_SGD_SVM) can be derived directly from the work of Wu et al. (2017) on empirical
risk minimization using SGD-based optimization. They rely on a smoothed version of the hinge-loss:
the Huber loss ℓhuber (cf. Appx. B.4 for details). We additionally apply norm-clipping to all inputs.
We use the one-vs-rest (OVR) method to achieve a multiclass classifier. Alg. 1 provides pseudocode
for the sensitivity-bounded algorithm (before adding noise).

In contrast to Wu et al. (2017), which assumes for each data point ∥x∥ ≤ 1, we use a generalization
that holds for larger norm bounds c > 1: we assume ∥x∥ ≤ c, where c is a hyperparameter of the
learning algorithm SGD_SVM. As a result, the optimization function J is c+RΛ Lipschitz (instead
of 1 +RΛ Lipschitz as in Wu et al. (2017)) and ((c2/2h+Λ)2 + pΛ2)

1/2 smooth (instead of 1/2h+Λ
smooth). Wu et al. (2017) showed a sensitivity bound for SGD_SVM from which we can conclude
DP guarantees. The sensitivity proof follows from Wu et al. (2017, Lemma 8) with the Lipschitz
constant L = c+RΛ, a smoothness β = ((c2/2h + Λ)2 + pΛ2)

1/2 and a Λ-strong convexity.

Similarly, our work applies to L2-regularized logistic regression where we adapt Alg. 1 with the
optimization function J ′(f,D) := Λ

2 f
T f + 1

N

∑
(x,y)∈D ln(1+ exp(−fT clipped(x) · y)) which is

Λ-strongly convex, L = c+RΛ Lipschitz, and β = ((c2/4 + Λ)2 + pΛ2)
1/2 smooth. We would also

need to adapt the learning rate to accommodate the change in the smoothness parameter but continue
to have the same sensitivity as for the classification case.

Definition 1 (Sensitivity). Let f be a function that maps datasets to the p-dimensional vector space
Rp. The sensitivity of f is defined as maxD∼1D′∥f(D)− f(D′)∥, where D ∼1 D′ denotes that the
datasets D and D′ differ in at most one element. We say that f is an s-sensitivity-bounded function.

The following lemma directly follows from Wu et al. (2017, Lemma 8).
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Lemma 2. With the input clipping bound c, the model clipping bound R, the strong convexity factor
Λ, and the number of data points N , the learning algorithm SGD_SVM of Alg. 1 has a sensitivity
bound of s = 2(c+RΛ)

NΛ for each of the |K| output models.

For sensitivity-bounded functions, there is a generic additive mechanism that adds Gaussian noise to
the results of the function and achieves differential privacy, if the noise is calibrated to the sensitivity.
Lemma 3 (Gaussian mechanism is DP (Theorem A.1 & Theorem B.1 in Dwork & Roth (2014))). Let
qk be functions with sensitivity s on the set of datasets D. For ε ∈ (0, 1), c2 > 2 ln 1.25/(δ/|K|), the
Gaussian Mechanism D 7→ {qk(D)}k∈K +N (0, (σ · I(p+1)×|K|)

2) with σ ≥ c·s·|K|
ε is (ε, δ)-DP,

where Id is the d-dimensional identity matrix.

The mechanism that first learns |K| SVM models via SGD_SVM of Alg. 1 and then adds multivariate
Gaussian NoiseN (0, (σ · I(p+1)×|K|)

2) is DP. Note that there are tighter composition results (Meiser
& Mohammadi, 2018; Sommer et al., 2019; Balle et al., 2020a) where ε ∈ O(

√
|K|) which we do

not formalize for brevity reasons but follow in our experiments.
Corollary 4 (Gaussian mechanism on SGD_SVM is DP). With the s-sensitivity-bounded learning
algorithm SGD_SVM (cf. Lem. 2), the dimension of each data point p, the set of classes K, and
ε ∈ (0, 1), DP_SGD_SVM(D, ξ,K, σ) := SGD_SVM(D, ξ,K) + N (0, (σ · s · I(p+1)×|K|)

2) is
(ε, δ)-DP, where ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ and Id is the d-dimensional identity matrix.

Notation. A learning algorithm is a function from datasets to learned models. Subsequently, we
consider the notion of a configuration in many theorems.
Definition 5 (Configuration ζ). A configuration ζ(U , t, T, s, ξ,℧, i, N,K, σ) consists of a set of
users U of which t · U are honest, an s-sensitivity-bounded learning algorithm T on inputs (D, ξ,K),
hyperparameters ξ, a local datasets D(i) of user U (i) ∈ U with N = mini∈{1,...,|U|}|D(i)| and
℧ =

⋃|U|
i D(i), a set of classes K, and a noise multiplier σ. avg(T ) is the aggregation of |U| local

models of algorithm T : avg(T (℧)) = 1
|U|
∑|U|

i=1 T (D
(i), ξ,K). If unique, we simply write ζ.

4 SECURE DISTRIBUTED DP-HELMET

This section presents Secure Distributed DP-Helmet in detail (cf. Alg. 2) and its utility-privacy proper-
ties. Here, each user separately trains a sensitivity-bounded learning algorithm, e.g. DP_SGD_SVMs,
before their parameters are combined with the parameters trained by other users via a single round
of secure summation. The single round of secure multiparty computation allows us to have the full
benefit of securely aggregating data: we can show centralized-DP guarantees within a threat model
akin to that of federated learning with differential privacy.

Active attacks and untrustworthy noise. Our threat model allows each user to place very little
trust in other users. However, we focus on passive adversaries. Active attacks that, e.g., aim to poison
the resulting model, are left for future work. Note that even passive adversaries can collude and
exchange information about the randomness they used in their local computation. As we combine the
noise added by different users, we need to take into account that not all of that noise is necessarily
secret to the adversary. To compensate for untrustworthy users, we double the noise added by each
user; as long as half of all users are honest, our guarantees thus are valid.

Next, we derive a tight output sensitivity bound. A naïve approach would be to release each individual
predictor, determine the noise scale proportionally to σ̃ := σ (cf. Cor. 4), showing (ε, δ)-DP for every
user. We can save a factor of |U|1/2 by leveraging that |U| is known to the adversary and we have at
least t = 50%, yielding σ̃ := σ · 1/√t · |U|.
Corollary 6. Given a configuration ζ, Secure Distributed DP-Helmet(ζ) (cf. Alg. 2) without adding
noise, i.e. avg(T (℧)), has a sensitivity of s · 1/|U| for each class k ∈ K.

The proof is placed in Appx. G. Having bounded the sensitivity of the aggregate to s · 1/|U|, we show
that locally adding noise per user proportional to σ · s · 1/√|U| and taking the mean is equivalent to
only centrally adding noise proportional to σ · s · 1/|U| (as if the central aggregator was honest).

Lemma 7. Given a configuration ζ and any noise scale σ̃, then 1
|U|
∑|U|

i=1N (0, (σ̃ · 1/√|U|)2) =

N (0, (σ̃ · 1/|U|)2).
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Algorithm 2: Secure Distributed DP-Helmet. For T = SGD_SVM (cf. Alg. 1) we have
s = 2(c+RΛ)

NΛ with hyperparameters ξ := (h, c,Λ, R,M). πSecAgg is described in Bell et al.
(2020, Algorithm 2) and can be extended to floating points using fixed-point arithmetic.
def Client Secure Distributed DP-Helmet(D, |U|, K, T, t, ξ, σ):

Data: local dataset D with N = |D|; #users |U|; set of classes K; training algorithm T ;
ratio t of honest users; hyperparameters ξ; noise multiplier σ

Result: DP-models (intercepts with p-dimensional hyperplanes): Mpriv :=
{
f
(k)
priv

}
k∈K

1 M ← T (D, ξ); // T is s-sensitivity-bounded
2 Mpriv ←M +N (0, (σ̃ · s · Ip+1×|K|)

2) with σ̃ := σ · 1/√t · |U|;
3 Run the client code of the secure summation protocol πSecAgg on input Mpriv/|U|;

def Server Secure Distributed DP-Helmet(U):
Data: users U
Result: empty string

4 Run the server protocol of πSecAgg;

The proof is placed in Appx. H. We can now prove differential privacy for Secure Distributed
DP-Helmet of Alg. 2 where we have noise scale σ̃ := σ · 1/√t · |U| and thus ε ∈ O(s/√t · |U|).
Theorem 8 (Main Theorem, simplified). Given a configuration ζ, Secure Distributed DP-Helmet(ζ)
(cf. Alg. 2) satisfies computational (ε, δ+ ν)-DP with ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ and a function

ν negligible in the security parameter of the secure aggregation.

The full statement and proof are in Appx. I. Simplified, the proof follows by the application of the
sensitivity (cf. Cor. 6) to the Gauss Mechanism (cf. Lem. 3) where the noise is applied per user
(cf. Lem. 7). If each user contributes 50 data points and we have 1000 users, N · |U| = 50,000.

Next, we show that we can protect the entire dataset of a single user (e.g., for distributed training
via smartphones). The sensitivity-based bound on the Gaussian mechanism (see Appx. K) directly
implies that we can achieve strong Υ-group privacy results, which is equivalent to local DP.
Corollary 9 (Group-private variant). Given a configuration ζ, Secure Distributed DP-Helmet(ζ)
(cf. Alg. 2) satisfies computational (ε, δ + ν), Υ-group DP with ε ≥ Υ ·

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ

for ν as above: for any pair of datasets ℧,℧′ that differ at most Υ many data points,

Secure Distributed DP-Helmet(ζ(. . . ,℧, . . . )) ≈ε,δ Secure Distributed DP-Helmet(ζ(. . . ,℧′, . . . ))

Cor. 9 and DP-FL. While the averaging will slightly offset this massive amount of noise, such a
result does not hold for DP-FL because in the local training the sensitivity does not decrease. Hence,
in contrast to Secure Distributed DP-Helmet, the standard deviation of the noise that is locally added
will continuously increase, no matter how many users join the distributed training.

Cor. 9 generalizes to a more comprehensive Cor. 10 that is data oblivious. If we can show that the
training algorithm of every user has the same bounded sensitivity, i.e., that the norm of each model is
bounded, then Secure Distributed DP-Helmet can apply to the granularity of users instead of that of
data points. We explicitly don’t need to make any further assumptions about the training procedure of
each base learner; it is sufficient that the local models are combined via noisy arithmetic mean. This
method renders a tighter sensitivity bound than SGD_SVM for certain settings of Υ or data points
per user N . Moreover, it enables the use of other SVM optimizers or Logistic Regression.

In particular, the training procedure of each base learner does not need to satisfy differential privacy.
Corollary 10. Given a learning algorithm T , we say that T is R-norm bounded if for any input
dataset D with N = |D|, any hyperparameter ξ, and all classes k ∈ K, ∥T (D, ξ, k)∥ ≤ R. Any
R-norm bounded learning algorithm T has a sensitivity s = 2R. In particular, T +N (0, (σ · s · Id)2)
satisfies (ε, δ), Υ-group differential privacy with Υ = N and ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ, where

N (0, (σ · s · Id)2) is spherical multivariate Gaussian noise and σ a noise multiplier.

The proof is in Appx. J. Here the number of local data points N can vary among the users.
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STABILITY & CONVERGENCE. The core of our approach is to locally train models and compute the
average without further synchronizing or fine-tuning of the models: avg(T ). For T = SGD_SVM, we
prove that the learnability properties (Shalev-Shwartz et al., 2010) uniform stability and convergence
are comparable to a centrally trained SGD_SVM.

Uniform stability. We show in Appx. M that the training generalizes well by prov-
ing uniform stability in the sense of Bousquet & Elisseeff (2002) for T = SGD_SVM:
|E[J (avg(T (℧)),℧, _)− Ez∈Z [J (avg(T (℧)), z, _)]]| ∈ O(|℧|−1) where J is the objective func-
tion (cf. Alg. 1) and Z an unknown data distribution where ℧ ∈ Z . In particular, we show that
averaging the locally trained SGD_SVMs linearly improves the stability bound.

Convergence. In line with Zhang et al. (2013) on averaged ERM models, we show in Appx. N
that avg(SGD_SVM) gracefully converges to the best model for the combined local datasets ℧:
E[J (avg(SGD_SVM(℧)),℧, _)− inff J (f,℧, _)] ∈ O(1/M) for M many training iterations.

5 EXPERIMENTAL RESULTS
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Figure 2: (ε,Υ)-Heatmap for classification accuracy of Secure Distributed DP-Helmet on CIFAR-10
dataset (left: δ = 10−10; right: δ = 10−12) with 200,000 (left) and 20,000,000 (right) users. We
train 1,000 models on 50 data points each; to emulate having more users we rescale the ε-values
(ε′ := 1000 · ε · Υ/nusers) and report the respective (interpolated) accuracy values. We extrapolate the
privacy guarantees, due to the limited dataset size. Our accuracy values are pessimistic as we keep the
accuracy numbers that we got from averaging 1,000 models. Actually taking the mean over 200,000
or even 20,000,000 users should provide better results. In our evaluation, Υ = 50 group privacy is
comparable to local DP. A lower value of Υ < 50 places trust in users as local aggregators. For
Υ ≥ 2, we can use a tighter group-privacy bound (cf. Cor. 10); hence, the accuracy values are the
same as for Υ = 50 = N , where the entire local data set of a user is protected.

We analyze four experimental questions: (RQ1) First, how does Secure Distributed DP-Helmet as
well as the strongest alternative, DP-SGD-based federated learning, perform in terms of privacy-utility
trade-off? Moreover, how does the performance change if we allow more users (cf. Fig. 3, right, and
Fig. 4)? (RQ2) Second, what is the utility loss of applying both methods in a distributed fashion
instead of centrally (cf. Fig. 3, left)? (RQ3) Third, how does Secure Distributed DP-Helmet perform
when we have truly many users (≥ 200,000 users) and when we are in a local-DP setting (cf. Fig. 2)?
(RQ4) Fourth, how do learning algorithms different than DP_SGD_SVM perform (cf. Appx. F)?

Pretraining. We used a SimCLR pre-trained model1 on ImageNet ILSVRC-2012 (Russakovsky
et al., 2015) for all experiments (cf. Fig. 6 in the appendix for an embedding view). It is built with
a ResNet152 with selective kernels (Li et al., 2019) architecture including a width multiplier of 3
and it has been trained in the fine-tuned variation of SimCLR where 100% of ImageNet’s label
information has been integrated during training. Overall, it totals 795M parameters and achieves
83.1% classification accuracy (1000 classes) when applied to a linear prediction head. In comparison,
a supervised-only model of the same size would only achieve 80.5% classification accuracy.

Sensitive Dataset. CIFAR-10 (Krizhevsky, 2009) acts as our sensitive dataset, as it is frequently
used as a benchmark dataset, especially in the context of the differential privacy literature. CIFAR-10
is an MIT-licensed dataset consisting of 60,000 thumbnail-sized, colored images of 10 classes.

Evaluation. The model performance is delineated threefold: First, we evaluated a benchmark
scenario in Fig. 3 (left) to compare our Secure Distributed DP-Helmet (cf. Section 4) to a DP-SGD-

1accessible at https://github.com/google-research/simclr, Apache-2.0 license
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Figure 3: Classification accuracy compared to the privacy budget ε (in log10-scale) of Secure
Distributed DP-Helmet (cf. Section 4) and DP-SGD-based federated learning (FL) on CIFAR-10
dataset (δ = 10−5). (left) We use all available data points of CIFAR-10 for each line, spreading them
among a differing number of users. (right) Different numbers of users with 50 data points per user.

based federated learning approach (DP-FL) on a single layer perceptron with softmax loss. There
the approximately same number of data points is split across a various number of users ranging
from 1 to 1000. Second, we also evaluated a realistic scenario in Fig. 3 (right) where we fixed the
number of data points per user and report the performance increase obtained with more partaking
users. Fig. 4 depicts the setting of Fig. 3 (right) for a fixed privacy budget. Third, we evaluated a
scenario with truly many users as well as a local-DP setting in Fig. 2 where we rescale the privacy
budget to accommodate the changed parameters.
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Figure 4: Classification
accuracy versus #users
with 50 data points per
user for a fixed ε =
0.5885, δ = 10−5. Values
for FL are interpolated.

The experiments lead to three conclusions: (RQ1) First, performance
improves with an increasing number of users (cf. Fig. 3 (right)). Al-
though the Secure Distributed DP-Helmet training performs subpar to
DP-FL for few users, it takes off after about 400 users due to its vigorous
performance gain with the number of users (cf. Fig. 4).

(RQ2) Second, in a scenario of a globally fixed number of data points
(cf. Fig. 3 (left)) that are distributed over the users, Secure Distributed
DP-Helmet’s performance degrades more gracefully than that of DP-FL.
Thm. 21 supports the more graceful decline; it states that averaging
multiple of the here used SVM predictors eventually converges to the
optimal SVM on all training data. The difference between 1 and 100
users is largely due to our assumption of t = 50% dishonest users, which
means noise is scaled by a factor of

√
2. In comparison, DP-FL performs

worse the more users U partake as the noise scales with O(|U|1/2).
(RQ3) Third, the advantage of our method over DP-FL becomes espe-
cially evident when considering significantly more users (cf. Fig. 2),
such as is common in distributed training via smartphones. Here, DP-
guarantees of ε ≤ 2·10−4 become plausible with at least 87% prediction
performance for a task like CIFAR-10. Alternatively, leveraging Cor. 9
we can consider a local DP scenario (with Υ = 50) without a trusted
aggregator, yielding an accuracy of 84% for ε = 5 · 10−4. Starting
from Υ ≥ 2, a user-level sensitivity (cf. Cor. 10) is in the evaluated setting tighter than a data point
dependent one; hence, the accuracy values are the same as for the local DP scenario.

(RQ4) We refer to Appx. F for an ablation study in the centrally trained setting for different learning
algorithms than DP_SGD_SVM. In this setting, the here used DP_SGD_SVM has a worse privacy-
utility trade-off than other DP learners like DP-SGD: for ε = 0.59, DP_SGD_SVM has an accuracy of
87.4% while DP-SGD has 93.6%. The reasons include leakage via sequential composition (through
DP-SGD-SVM’s one-versus-rest multi-class approach) compared to DP-SGD’s joint learning of all
classes as well as its noise-correcting property from its iterative noise application.

Computation costs. For Secure Distributed DP-Helmet with 1,000 users and a model size
l ≈ 100,000 for CIFAR-10, we need less than 0.2 s for the client and 40 s for the server, determined
by extrapolating the experiments of (Bell et al., 2020, Table 2).

Experimental setup. Appx. D describes our experimental setup.
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A LIMITATIONS & DISCUSSION

Distributional shifts between the public and sensitive datasets For pre-training our models, we
leverage contrastive learning. While very effective generally, contrastive learning is susceptible to
performance loss if the shape of the sensitive data used to train the SVMs is significantly different
from the shape of the initial public training data.

Multi-class classification As we train separate SVMs for the different classes, this approach
works best if the number of classes is limited. Distributed DPHelmet can deal with multiple classes;
CIFAR-10 has 10 classes. However, if a classification task has significantly more different classes,
non-SVM-based approaches might perform better.

Input Clipping DP_SGD_SVM requires a norm bound on the input data as it directly influences
the SVM training. In many pre-training methods like SimCLR no natural bound exists thus we have
to artificially norm clip the input data. To provide a non-data-dependent clipping bound in CIFAR-10
data, we determined the clipping bound on the CIFAR-100 dataset (here: 34.854); its similar data
distribution encompasses the output distribution of the pretraining reasonably well.

Hyperparameter Search In SGD_SVM, we deploy two performance-crucial hyperparameters:
the regularization weight Λ as well as the predictor radius R, both of which influence noise scaling.
In the noise scaling subterm c/Λ +R, the maximal predictor radius is naturally significantly smaller
than c/Λ due to the regularization penalty. Thus, an imperfect R resulting from a non-hyperparameter-
tuned SVM does not have a large impact on the performance. Estimating the regularization weight
for a fixed ε from public data is called hyperparameter freeness in prior work (Iyengar et al., 2019).
For other ε values we can fit a (linear) curve on a smaller but related public dataset (proposed by
Chaudhuri et al. (2011)) or synthetic data (proposed by AMP-NT (Iyengar et al., 2019)) as smaller ε
prefer higher regularization weights and vice versa.

B EXTENDED PRELIMINARIES

B.1 DIFFERENTIAL PRIVACY

To ease our analysis, we consider a randomized mechanism M to be a function translating a database
to a random variable over possible outputs. Running the mechanism then is reduced to sampling
from the random variable. With that in mind, the standard definition of differential privacy looks as
follows.
Definition 11 (≈ε,δ relation). Let Obs be a set of observations, and RV(Obs) be the set of random
variables over Obs , and D be the set of all databases. A randomized algorithm M : D → RV(Obs)
for a pair of datasets D,D′, we write M(D) ≈ε,δ M(D′) if for all tests S ⊆ Obs we have

Pr[M(D) ∈ S] ≤ exp(ε) Pr[M(D′) ∈ S] + δ. (1)

Definition 12 (Differential Privacy). Let Obs be a set of observations, and RV(Obs) be the set of
random variables over Obs , and D be the set of all databases. A randomized algorithm M : D →
RV(Obs) for all pairs of databases D,D′ that differ in at most 1 element is a (ε, δ)-DP mechanism
if we have

M(D) ≈ε,δ M(D′). (2)

In the context of machine learning, the randomized algorithm represents the training procedure of a
predictor. Our distinguishing element is one data record of the database.

Computational Differential Privacy Note that because of the secure summation, we technically
require the computational version of differential privacy (Mironov et al., 2009), where the differential
privacy guarantees are defined against computationally bounded attackers; the resulting increase
in δ is negligible and arguments about computationally bounded attackers are omitted to simplify
readability.
Definition 13 (Computational ≈c

ε,δ Differential Privacy). Let D be the set of all databases and η a
security parameter. A randomized algorithm M : D → RV(Obs) for a pair of datasets D,D′, we
write M(D) ≈c

ε,δ M(D′) if for any polynomial-time probabilistic attacker

Pr[A(M(D)) = 0] ≤ exp(ε) Pr[A(M(D′)) = 1] + δ(η). (3)
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For all pairs of databases D,D′ that differ in at most 1 element M is a computational (ε, δ(η))-DP
mechanism if we have

M(D) ≈c
ε,δ M(D′). (4)

B.2 SECURE SUMMATION

Hiding intermediary local training results as well as ensuring their integrity is provided by an instance
of secure multi-party computation (SMPC) called secure summation (Bonawitz et al., 2017; Bell et al.,
2020). It is targeted to comply with distributed summations across a huge number of parties. In fact,
Bell et al. (2020) has a computational complexity for n users on an l-sized input ofO(log2 n+ l log n)
for the client and O(n(log2 n+ l log n)) for the server as well as a communication complexity of
O(log n+ l) for the client and O(n(log n+ l)) for the server thus enabling an efficient run-through
of roughly 109 users without biasing towards computationally equipped users. Additionally, it offers
resilience against client dropouts and colluding adversaries, both of which are substantial features for
our distributed setting:

Theorem 14 (Secure Aggregation πSecAgg in the semi-honest setting exists (Bell et al., 2020)). Let
s1, . . . , sn be the d-dimensional inputs of the clients U (1), . . . , U (n). Let F be the ideal secure
summation function: F(s1, . . . , sn) := 1/n

∑n
i=1 si. If secure authentication encryption schemes

and authenticated key agreement protocol exist, the fraction of dropouts (i.e., clients that abort
the protocol) is at most ρ ∈ [0, 1], at most a γ ∈ [0, 1] fraction of clients is corrupted (C ⊆{
U (1), . . . , U (n)

}
, |C| = γn), and the aggregator is honest-but-curious, there is a secure summation

protocol πSecAgg for a central aggregator and n clients that securely emulates F in the following
sense: there is a probabilistic polynomial-time simulator SimF such that RealπSecAgg

(s1, . . . , sn) is
statistically indistinguishable from SimF (C,F(s1, . . . , sn)), i.e., for an unbounded attacker A there
is a negligible function ν such that

Advantage(A) =
|Pr[A(RealπSecAgg

(s1, . . . , sn)) = 1]− Pr[A(SimF (C,F(s1, . . . , sn))) = 1]| ≤ ν(η).

B.3 PRE-TRAINING TO BOOST DP PERFORMANCE

Pretrained DP Trained

trained on public data trained on sensitive data

input data predictions
simplified 

representation

Figure 5: Pre-training: Schematic overview. Dashed lines denote data flow in the training phase and
solid lines in the inference phase.

Recent work (Tramèr & Boneh, 2021; De et al., 2022) has shown that strong feature extractors
(such as SimCLR (Chen et al., 2020a;b)), trained in an unsupervised manner, can be combined with
simple learners to achieve strong utility-privacy tradeoffs for high-dimensional data sources like
images. As a variation to transfer learning, it delineates a two-step process (cf. Fig. 5), where a
simplified representation of the high-dimensional data is learned first before a tight privacy algorithm
like DP_SGD_SVM conducts the prediction process on these simplified representations. For that,
two data sources are compulsory: a public data source which is used to undertake the learning of
a framework aimed to obtain pertinent simplified representations in addition to our sensitive data
source that conducts the prediction process in a differentially private manner. Thereby the sensitive
dataset is protected while strong expressiveness is assured through the use of the feature reduction
network. Also note that a homogeneous data distribution of the public and the sensitive data is not
necessarily required.

Recent work has shown that for several applications such representation reduction frameworks can be
found, such as SimCLR for pictures, FaceNet for face images, UNet for segmentation, or GPT-3 for
language data. Without loss of generality, we focus in this work on the unsupervised SimCLR feature
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reduction network (Chen et al., 2020a;b). SimCLR uses contrastive loss and image transformations to
align the embeddings of similar images while keeping those of dissimilar images separate (Chen et al.,
2020a). It is based upon a self-supervised training scheme called contrastive loss where no labeled
data is required. Labelless data is especially useful as it exhibits possibilities to include large-scale
datasets which would otherwise be unattainable due to the labeling efforts needed.

B.4 DP_SGD_SVM

Definition 15. The Huber loss according to Chaudhuri et al. (2011, Equation 7) is with a smoothness
parameter h defined as

ℓhuber (z) :=


0 if z > 1 + h
1
4h (1 + h− z)2 if |1− z| ≤ h

1− z if z < 1− h

.

C RELATED WORK

C.1 PRIVACY-PRESERVING DISTRIBUTED MACHINE LEARNING

There is a rich body of literature about different differentially private distributed learning techniques
that protect any individual data point (sometimes called distributed learning with global DP guaran-
tees). One direction uses an untrusted central aggregator; users locally add noise to avoid leakage
toward the aggregator. This method computationally scales well with the number of users. Another
direction utilizes cryptographic protocols to jointly train a model without a central aggregator. This
direction requires less noise for privacy, but the cryptographic protocols face scalability challenges.

For local noising, the most prominent and flexible approach is federated learning (McMahan et al.,
2017) with DP-SGD approximation (Abadi et al., 2016) (DP-FL). DP-FL proposes each of the n
users locally train with the DP-SGD algorithm and share their local gradient updates with a central
aggregator. This aggregator updates a global model with the average of the noisy local updates,
leading to noise overhead in the order of

√
n.

This noise overhead can be completely avoided by PPDML protocols that rely on cryptographic
methods to hide intermediary training updates from a central aggregator. There are several secure
distributed learning methods that protect the contributions during training but do not come with
privacy guarantees for the model such as DP: an attacker (e.g., a curious training party) can potentially
extract information about the training data from the model. As we focus on differentially private
distributed learning methods (PPDML in this paper), we will neglect those methods.

cpSGD (Agarwal et al., 2018) is a PPDML protocol that utilizes SMPC methods to honestly generate
noise and compute DP-SGD. While cpSGD provides the full flexibility of SGD, it does not scale to
millions of users as it relies on expensive SMPC methods. Another recent PPDML work (Truex et al.,
2019) relies on a combination of SMPC and DP methods. This work, however, also does not scale to
millions of users.

Another line of research aims for the stronger privacy goal of protecting a user’s entire input (called
local DP) during distributed learning (Balle et al., 2020b; Girgis et al., 2021). Due to the strong
privacy goal, federated learning with local DP tends to achieve weaker accuracy. With Cor. 9,
evaluated in Fig. 2 in Section 5, we show how Secure Distributed DP-Helmet achieves a comparable
guarantee via group privacy: given enough users, any user can protect their entire dataset at once
while we still reach good accuracy.

For DP training of SVMs, there exist other methods, such as objective perturbation and gradient
perturbation. When performed under SMPC-based distributed training, both methods would require a
significantly higher number of SMPC invocations; hence, they are unsuited for the goals of this work.
Appx. C.2 discusses those approaches in detail.

C.2 DIFFERENTIALLY PRIVATE EMPIRICAL RISK MINIMIZATION

On differentially private empirical risk minimization for convex loss functions (Chaudhuri et al.,
2011), which is utilized in this work, the literature discusses three directions: output perturbation,

15



objective perturbation, and gradient perturbation. Output perturbation (Chaudhuri et al., 2011; Wu
et al., 2017) estimates a sensitivity on the final model without adding noise, and only in the end adds
noise that is calibrated to this sensitivity. We rely on output perturbation because it enables us to only
have a single invocation of an SMPC protocol at the end to merge the models while still achieving
the same low sensitivity as if the model was trained at a trustworthy central party that collects all data
points, trains a model and adds noise in the end.

Objective perturbation (Chaudhuri et al., 2011; Kifer et al., 2012; Iyengar et al., 2019; Bassily et al.,
2019) adds noise to the objective function instead of adding noise to the final model. In principle,
SMPC could also be used to emulate the situation that a central party as above trains a model via
objective perturbation. Yet, in that case, each party would have to synchronize with every other party
far more often, as no party would be allowed to learn how exactly the objective function would be
perturbed. That would result in far higher communication requirements.

Concerning gradient perturbation (Bassily et al., 2014; Wang et al., 2017; Feldman et al., 2018;
Bassily et al., 2019; Feldman et al., 2020), recent work has shown tight privacy bounds. In order to
achieve the same low degree of required noise as in a central setting, SMPC could be utilized. Yet,
for SGD also multiple rounds of communication would be needed as the privacy proof (for convex
optimization) does not take into account that intermediary gradients are leaked. Hence, the entire
differentially private SGD algorithm for convex optimization would have to be computed in SMPC,
similar to cpSGD (see above).

D EXPERIMENTAL SETUP

We leveraged 5-repeated 6-fold stratified cross-validation for all experiments unless stated differently.
Privacy Accounting has been undertaken either by using the privacy bucket (Meiser & Mohammadi,
2018; Sommer et al., 2019) toolbox2 or, for Gaussians without subsampling, with Sommer et al.
(2019, Theorem 5) where both can be extended to multivariate Gaussians (see Appx. L). We note that
with either of these tactics, ε ∈ O(|K|1/2). The δ parameter of differential privacy has been set to
δ = 10−5 if not stated otherwise, which is for the CIFAR-10 dataset always below 1/n, where n is
the sum of the size of all local datasets.

Concerning computation resources, for our experiments, we trained 1000 DP_SGD_SVM with 50
data points each, which took 10 minutes on a machine with 2x Intel Xeon Platinum 8168, 24 Cores
@2.7 GHz with an Nvidia A100 and allocated 16GB RAM.

For DP_SGD_SVM-based experiments, we utilize the strongly convex projected stochastic gradient
descent algorithm (PSGD) as used by Wu et al. (2017). More specifically, we chose a batch size
of 20, the Huber loss with a smoothness parameter h = 0.1, a hypothesis space radius R ∈
{0.04, 0.05, 0.06, 0.07, 0.08}, a regularization parameter Λ ∈ {10, 100, 200}, and trained for 500
epochs; for the variant where we protect the whole local dataset, we have chosen a different Λ ∈
{0.5, 1, 2, 5} and R ∈ {0.06, 0.07}.
In every experiment, we chose for each parameter combination the best performing regularization
parameter Λ as well as R, i.e. those values that lead to the best mean accuracy. This is highly
important, as the regularization parameter not only steers the utility but also the amount of noise
needed to the effect where there is a sweet spot for each noise level where the amount of added noise
is on the edge of still being bearable.

For the federated learning experiments, we utilized the opacus3 PyTorch library (Yousefpour et al.,
2021), which implements DP-SGD (Abadi et al., 2016). We loosely adapted our hyperparameters
to the ones reported by Tramèr & Boneh (2021) who already evaluated DP-SGD on SimCLR’s
embeddings for the CIFAR-10 dataset. In detail, the neural network is a single-layer perceptron with
61 450 trainable parameters on a 6 144-d input and 10d output. The loss function is the categorical
cross-entropy on a softmax activation function and training has been performed with stochastic
gradient descent. Furthermore, we set the learning rate to 4, the Poisson sample rate q := 1024/50000
which in expectation samples a batch size of 1024, trained for 40 epochs, and norm-clipped the
gradients with a clipping bound c := 0.1.

2accessible at https://github.com/sommerda/privacybuckets, MIT license
3accessible at https://github.com/pytorch/opacus/, Apache-2.0 license
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In the distributed training scenario, instead of running an end-to-end experiment with full SMPC
clients, we evaluate a functionally equivalent abstraction without cryptographic overhead. In our
experiments, we randomly split the available data points among the users and emulated scenarios
where not all data points were needed by taking the first training data points. However, the validation
size remained constant. Moreover, for DP-SGD-based federated learning, we kept a constant batch
size whenever enough data is available i.e. increased the sampling rate as follows: q′ := 1024/20000
for 20000, q′′ := 1024/5000 for 5000, and q′′ := 1023/1024 for 500 available data points (|U| · N ).
For DP-SGD-based FL, we emulated a higher number of users by dividing the noise multiplier σ
by |U|1/2 to the benefit of DP-FL. The justification for dividing by |U|1/2 is that in FL the model
performance is not expected to differ as the mean of the gradients of one user is the same as the mean
of gradients from different users: SGD computes, just as FL, the mean of the gradients. Yet, the noise
will increase by a factor of |U|1/2. Hence, we optimistically assume that everything stays the same,
just the noise increases by a factor of |U|1/2.

E PRE-TRAINING VISUALISATION

Figure 6: 2-d projection of the CIFAR-10 dataset via t-SNE (Van der Maaten & Hinton, 2008) with
colored labels. Note that t-SNE is defined on the local neighborhood thus global patterns or structures
may be arbitrary.
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Figure 7: Classification accuracy compared to the privacy budget ε of DP_SGD_SVM (cf. Sec-
tion 3.1), DP_SMO_SVM where only the optima are perturbed, DP-SGD (1-layer perceptron) (Abadi
et al., 2016), and AMP (SVM with objective perturbation) (Iyengar et al., 2019) on CIFAR-10
benchmark dataset (left: δ = 10−5, right: δ = 2 · 10−8 ≪ 1/dataset_size). For comparison, we report a
non-private SVM baseline.
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F.1 SETUP OF THE ABLATION STUDY

For DP_SMO_SVM-based experiments, we used the liblinear (Fan et al., 2008) library via the
Scikit-Learn method LinearSVC4 for classification. Liblinear is a fast C++ implementation that uses
the SVM-agnostic sequential minimal optimization (SMO) procedure. However, it does not offer a
guaranteed and private convergence bound.

More specifically, we used the L2-regularized hinge loss, an SMO convergence tolerance of tol :=
2 · 10−12 with a maximum of 10,000 iterations which were seldom reached, and a logarithmically
spaced inverse regularization parameter C ∈

{
{3, 6} · 10−8, {1, 2, 3, 6} · 10−7, {1, 2, 3, 6} · 10−6,

{1, 2, 3, 6} · 10−5, {1, 2} · 10−4
}

. To better fit with the LinearSVC implementation, the original loss
function is rescaled by 1/Λ and C is set to 1/Λ · n with n as the number of data points. Furthermore,
for distributed DP_SMO_SVM training we extended the range of the hyperparameter C – whenever
appropriate – up to 3 · 10−3 which becomes relevant in a scenario with many users and few data
points per user. Similar to DP_SGD_SVM-based experiment, the best performing regularization
parameter C was selected for each parameter combination.

The non-private reference baseline uses a linear SVM optimized via SMO with the hinge loss and an
inverse regularization parameter C = 2 (best performing of C ∈

{
≤ 5 · 10−5, 0.5, 1, 2

}
).

For the ablation study, we also included the Approximate Minima Perturbation (AMP) algorithm5

(Iyengar et al., 2019) which resembles an instance of objective perturbation. There, we used a (80–20)-
train-test split with 10 repeats and the following hyperparameters: L ∈ {0.1, 1.0, 34.854}, eps_frac
∈ {.9, .95, .98, .99}, eps_out_frac∈ {.001, .01, .1, .5}. We selected (L = 1, eps_out_frac = 0.001,
eps_frac = 0.99) as a good performing parameter combination for AMP. For better performance,
we resembled the GPU-capable bfgs_minimize from the Tensorflow Probability package. To provide
better privacy guarantees, we leveraged the results of Kairouz et al. (2015a); Murtagh & Vadhan
(2016) for tighter composition bounds on arbitrary DP mechanisms.

F.2 RESULTS OF THE ABLATION STUDY

For the extended ablation study, we considered the centralized setting (only 1 user) and compare
different algorithms as well as different values for the privacy parameter δ. The results are depicted
in Fig. 7 and display four algorithms: firstly, the differentially private Support Vector Machine with
SGD-based training DP_SGD_SVM (cf. Section 3.1), secondly, a similar differentially private SVM
but with SMO-based training which does not offer a guaranteed and private convergence bound,
thirdly, differentially private Stochastic Gradient descent (DP-SGD) (Abadi et al., 2016) applied on a
1-layer perceptron with the cross-entropy loss, and fourthly, approximate minima perturbation (AMP)
(Iyengar et al., 2019) which is based upon an SVM with objective perturbation. Note that, only
DP_SMO_SVM and DP_SGD_SVM have an output sensitivity and are thus suited for this efficient
Secure Distributed DP-Helmet scheme.

While all algorithms come close to the non-private baseline with rising privacy budgets ε, we observe
that although DP-SGD performs best, DP_SMO_SVM comes considerably close, DP_SGD_SVM
has a disadvantage above DP_SMO_SVM of about a factor of 2, and AMP a disadvantage of about a
factor of 4. We suspect that DP-SGD is able to outperform the other variants as it is the only contestant
which directly optimizes for the multi-class objective via the cross-entropy loss while others are only
able to simulate it via the one-vs-rest (ovr) SVM training scheme. Although DP_SMO_SVM renders
best of the variants with an output sensitivity, it does not offer a privacy guarantee when convergence
is not reached. In the case of AMP, we have an inherent disadvantage of about a factor of 3 due to
an unknown output distribution, and thus bad composition results in the multi-class SVM. Here, the
privacy budget of AMP roughly scales linearly with the number of classes.

For DP-SGD, DP_SGD_SVM, and DP_SMO_SVM, Fig. 7 shows that a smaller and considerably
more secure privacy parameter δ ≪ 1/dataset_size is supported although reflecting on the reported
privacy budget ε.

4https://scikit-learn.org/stable/modules/generated/sklearn.svm.
LinearSVC.html, BSD-3-Clause license

5reference implementation by the authors: https://github.com/sunblaze-ucb/
dpml-benchmark, MIT license
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G PROOF OF COR. 6

We recall Cor. 6:

Corollary 6 (Sensitivity of Secure Distributed DP-Helmet). Given a configuration ζ, Secure Dis-
tributed DP-Helmet(ζ) (cf. Alg. 2) without adding noise, i.e. avg(T (℧)), has a sensitivity of s · 1/|U|
for each class k ∈ K.

Proof. Without loss of generality, we consider one arbitrary class k ∈ K. We know that T is an
s-sensitivity bounded algorithm thus

s = max
D

(i)
0 ∼D

(i)
1

∣∣∣T (D(i)
0 , ξ, k)− T (D

(i)
1 , ξ, k)

∣∣∣ (5)

with D
(i)
0 and D

(i)
1 as 1-neighboring datasets. For instance, for T = SGD_SVM we have s =

2(c+RΛ)
NΛ (cf. Lem. 2).

By Alg. 2, we take the average of multiple local models, i.e. avg(T (℧)) = 1
|U|
∑|U|

i=1 T (D
(i), ξ,K).

The challenge element – i.e. the element that differs between D
(i)
0 and D

(i)
1 – is only contained in

one of the |U| SGD_SVM’s. By the application of the parallel composition theorem, we know that
the sensitivity reduces to

max
D

(i)
0 ∼D

(i)
1 ,∀i=0,...,|U|

∣∣∣∣∣∣ 1

|U|

|U|∑
i=1

T (D
(i)
0 , ξ, k)− 1

|U|

|U|∑
i=1

T (D
(i)
1 , ξ, k)

∣∣∣∣∣∣ = s · 1

|U|
.

Hence, the constant 1/|U| factor reduces the sensitivity by a factor of 1/|U|.

H PROOF OF LEM. 7

We recall Lem. 7:

Lemma 7. Given a configuration ζ and any noise scale σ̃, then 1
|U|
∑|U|

i=1N (0, (σ̃ · 1/√|U|)2) =

N (0, (σ̃ · 1/|U|)2).

Proof. We have to show that

1
|U |
∑|U |

i=1N (0, (σ̃ · 1√
|U|

)2) = N (0, (σ̃ · 1
|U| )

2). (6)

It can be shown that the sum of normally distributed random variables behaves as follows: Let
X ∼ N (µX , σ2

X) and Y ∼ N (µY , σ
2
Y ) two independent normally-distributed random variables,

then their sum Z = X + Y equals Z ∼ N (µX + µY , σ
2
X + σ2

Y ) in the expectation.

Thus, in this case, we have

1
|U |
∑|U |

i=1N (0, (σ̃ · 1√
|U|

)2) = 1
|U |N (0, |U | · (σ̃ · 1/√|U|)2) = 1

|U |N (0, σ̃2).

As the normal distribution belongs to the location-scale family, we get N (0, (σ̃ · 1/|U|)2).

I PROOF OF THM. 8

We state the full version of Thm. 8:

Theorem 8 (Main Theorem, full). Given a configuration ζ , a maximum fraction of dropouts ρ ∈ [0, 1],
and a maximum fraction of corrupted clients γ ∈ [0, 1], if secure authentication encryption schemes
and authenticated key agreement protocol exist, then Secure Distributed DP-Helmet(ζ) (cf. Alg. 2)
satisfies computational (ε, δ+ν1)-DP with ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ, for ν1 := (1+exp(ε)) ·

ν(η) and a function ν negligible in the security parameter η used in secure aggregation.
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Proof. We first show (ε, δ)-DP for a variant M1 of Secure Distributed DP-Helmet that uses the
ideal summation protocol F instead of πSecAgg. Then, we conclude from Thm. 14 that for Secure
Distributed DP-Helmet (abbreviated as M2) which uses the real secure summation protocol πSecAgg

for some negligible function ν1 (ε, δ + ν1)-DP holds.

Recall that we assume at least t · |U| many honest users. As we solely rely on the honest t · |U| to
contribute correctly distributed noise to the learning algorithm T , we have for each class similar to
Lem. 7

1

|U|

t·|U|∑
i=1

N (0, (σ̃ · 1√
|U|

)2) =

t·|U|∑
i=1

N (0, (σ̃ · 1

|U|
√
|U|

)2)

= N (0, (σ̃ ·
√
t · |U|

|U|
√
|U|

)2) = N (0, (σ̃ ·
√
t

|U|
)2).

Hence, we scale the noise parameter σ̃ with 1/
√
t and get

1

|U|

t|U|∑
i=1

N (0, (σ̃ · 1√
t
· 1√
|U|

)2) = N (0, (σ̃ · 1

|U|
)2).

By Cor. 6, Lem. 7, and Lem. 3, we know that M1 satisfies (ε, δ)-DP (with the parameters as described
above).

Hence, considering an unbounded attacker A and Thm. 14, we know that for any pair of neighboring
data sets D,D′ the following holds

Pr [A (M1(D)) = 1] ≤ exp(ε) Pr [A (M1(D
′)) = 1] + δ

By Thm. 14, we know that πSecAgg(s1, . . . , sn) securely emulates F (w.r.t. an unbounded attacker).
Hence, there is a negligible function ν such that for any neighboring data sets D,D′ (differing in at
most one element) the following holds w.l.o.g.:

Pr [A (M2(D)) = 1]− ν(η) ≤Pr [A (SimF (M1(D))) = 1] . (7)

For the attacker A′ that first applies Sim and then A, we get:

Pr [A (M2(D)) = 1]− ν(η) ≤ exp(ε) Pr [A (SimF (M1(D
′))) = 1] + δ (8)

≤ exp(ε) (Pr [A (M2(D
′)) = 1] + ν(η)) + δ (9)

thus we have

Pr [A (M2(D)) = 1] ≤ exp(ε) Pr [A (M2(D
′)) = 1] + δ + (1 + exp(ε)) · ν(η). (10)

From a similar argumentation it follows that

Pr [A (M2(D
′)) = 1] ≤ exp(ε) Pr [A (M2(D)) = 1] + δ + (1 + exp(ε)) · ν(η) (11)

holds.

Hence, with ν1 := (1 + exp(ε)) · ν(η) the mechanism Secure Distributed DP-Helmet mechanism
M2 which uses πSecAgg is (ε, δ + ν1)-DP. As ν is negligible and ε is constant, ν1 is negligible as
well.

J PROOF OF COR. 10

We recall Cor. 10:
Corollary 10 (User-level sensitivity). Given a learning algorithm T , we say that T is R-norm
bounded if for any input dataset D with N = |D|, any hyperparameter ξ, and all classes k ∈ K,
∥T (D, ξ, k)∥ ≤ R. Any R-norm bounded learning algorithm T has a sensitivity s = 2R. In
particular, T + N (0, (σ · s · Id)2) satisfies (ε, δ), Υ-group differential privacy with Υ = N and
ε ≥

√
2 ln 1.25/(δ/|K|) · |K| · 1/σ, where N (0, (σ · s · Id)2) is spherical multivariate Gaussian noise

and σ a noise multiplier.
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Proof. We know that the sensitivity of the learning algorithm T is defined as s =
maxD∼D′∥T (D, ξ, k) − T (D′, ξ, k)∥ for Υ-neighboring datasets D,D′. Thus, in our case we
have s = 2R since any T (_, ξ, k) ∈ [−R,R]. As this holds independent on the dataset and by Lem. 3
and by Lem. 16, we can protect any arbitrary number of data points per user, i.e. we have Υ-group
DP.

K GROUP PRIVACY REDUCTION OF MULTIVARIATE GAUSSIAN

Lemma 16. Let pdfN (A,B)[x] denote the probability density function of the multivariate Gaussian
distribution with location and scale parameters A,B which is evaluated on an atomic event x. For
any atomic event x, any covariance matrix Σ, any group size k ∈ N, and any mean µ, we get

pdfN (0,k2Σ)[x]

pdfN (µ,k2Σ)[x]
=

pdfN (0,Σ)[x/k]

pdfN (µ/k,Σ)[x/k]
. (12)

Proof.

pdfN (0,k2Σ)[x]

pdfN (µ,k2Σ)[x]
=

1
det(2πk2Σ) exp(−

1
2x

T k2Σ−1x)

1
det(2πk2Σ) exp(−

1
2 (x− µ)T k2Σ−1(x− µ)︸ ︷︷ ︸
=xT k2Σ−1x−µT k2Σ−1x−xT k2Σ−1µ+µT k2Σ−1µ

)
(13)

=exp(−1

2
(−µT k2Σ−1x− xT k2Σ−1µ+ µT k2Σ−1µ)) (14)

=exp(−1

2
k2 · (−µTΣ−1x− xTΣ−1µ+ µTΣ−1µ)) (15)

for µ1 := µ/k

=exp(−1

2
· k(−µT

1 Σ
−1x− xTΣ−1µ1 + µT

1 Σ
−1µ1/k)) (16)

for x1 := x/k

=exp(−1

2
· (−µT

1 Σ
−1x1 − xT

1 Σ
−1µ1 + µT

1 Σ
−1µ1)) (17)

=exp(−1

2
· (−µT

1 Σ
−1x1 − xT

1 Σ
−1µ1 + µT

1 Σ
−1µ1)) (18)

=

1
det(2πΣ) exp(−

1
2x

T
1 Σ

−1x1)

1
det(2πΣ) exp(−

1
2 (x1 − µ1)T k2Σ−1(x1 − µ1))

(19)

=
pdfN (0,Σ)[x/k]

pdfN (µ/k,Σ)[x/k]
(20)

As the Gaussian distribution belongs to the location-scale family, Lem. 16 directly implies that the
(ε, δ)-DP guarantees of using N (0, k2 Σ) noise for sensitivity k and using N (0,Σ) for sensitivity 1
are the same.

L REPRESENTING MULTIVARIATE GAUSSIANS AS UNIVARIATE GAUSSIANS

For the sake of completeness, we rephrase a proof that we first saw in Abadi et al. (2016) that argues
that sometimes the multivariate Gaussian mechanism can be reduced to the univariate Gaussian
mechanism.
Lemma 17. Let pdfN (µ,diag(σ2)) denote the probability density function of a multivariate (p ≥ 1)
spherical Gaussian distribution with location and scale parameters µ ∈ Rp, σ ∈ Rp

+. Let Mgauss,p,q

be the p dimensional Gaussian mechanism D 7→ q(D) + N (0, σ2 · Ip) for σ2 > 0 of a function
q : D → Rp, whereD is the set of datasets. Then, for any p ≥ 1, if q is s-sensitivity-bounded, then for
any p ≥ 1, there is another s-sensitivity-bounded function q′ : D → R such that the following holds:
for all ε ≥ 0, δ ∈ [0, 1] if Mgauss,1,q′ satisfies (ε, δ)-ADP, then Mgauss,p,q satisfies (ε, δ)-ADP.
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Proof. First observe that for any s-sensitivity-bounded function q′′, two adjacent inputs D,D′

(differing in one element) with ∥q′′(D) − q′′(D′)∥2 = s are worst-case inputs. As a spherical
Gaussian distribution (covariance matrix Σ = σ2 · Ip×n) is rotation invariant, there is a rotation
such that the difference only occurs in one dimension and has length s. Hence, it suffices to analyze
a univariate Gaussian distribution with sensitivity s. Hence, the privacy loss distribution of both
mechanisms (for the worst-case inputs) is the same. As a result, for all ε ≥ 0, δ ∈ [0, 1] (i.e. the
privacy profile is the same) if (ε, δ)-ADP holds for the univariate Gaussian mechanism it also holds
for the multivariate Gaussian mechanism.

M STABILITY OF AVERAGING MODELS

Definition 18 (Uniform Stability, Definition 2.1 in Hardt et al. (2016)). Let f(h, z) denote a loss
function on hypothesis h and instance z. A randomized algorithm A is ϵ-uniformly stable if for all
datasets S, S′ ∈ Zn of size n such that S and S′ differ in at most one example, we have

sup
z

EA [f(A(S); z)− f(A(S′); z))] ≤ ϵstab

Theorem 19 (Averaging models is uniformly stable). Given a set of users U (i) ∈ U each with a
local data set D(i) ∈ Z originating from an unknown data distribution Z , a learning algorithm
T with a Λ-strongly convex, L-Lipschitz, and β-smooth training objective J (f,D(i),K) on model
parameters f (like SGD_SVM of Alg. 1), an averaging routine avg(T (℧)) = 1

|U|
∑|U|

i=1 T (D
(i), ξ,K)

with ℧ :=
⋃|U|

i D(i) (like in Alg. 2), and the projected SGD update routine for a c-norm clipped data

point z(i)m ∈ D(i) and class k ∈ K, i.e. f (i)
m+1 =

∏
∥f∥≤R

(
f
(i)
m − αt

∂
∂fJ (f

(i)
m , z

(i)
m , k)

)
=: G, then

for a constant learning rate α ≤ 1/β, M steps, and N := |℧| total data points, T is ϵstab-uniformly
stable in the sense of Bousquet & Elisseeff (2002) with

|ED,SGD_SVM[J (avg(T (℧)),℧, _)− Ez∈Z [J (avg(T (℧)), z, _)]]| ≤ ϵstab ≤
2L2

ΛN
∈ O(N−1).

Proof. By definition of uniform stability (Hardt et al., 2016, Definition 2.1), it suffices to prove (cf.
Hardt et al. (2016, Theorem 2.2))

sup
z.k

ET

J ( 1

|U|

|U|∑
i=1

f
(i)
M , z, k)− J ( 1

|U|

|U|∑
i=1

f
′(i)
M , z, k)

 ≤ ϵstab

with f
(i)
M = T (D(i), ξ, k) and f

′(i)
M = T (D′(i), ξ, k) respectively after M steps where⋃

i D
(i),
⋃

i D
′(i) are 1-neighboring datasets.

We know due to the Lipschitz condition that for a given z, k

E

J ( 1

|U|

|U|∑
i=1

f
(i)
M , z, k)− J ( 1

|U|

|U|∑
i=1

f
′(i)
M , z, k)

 ≤ LE[δM ].

with δm =
∥∥∥ 1
|U|
∑|U|

i=1 f
′(i)
m − f

(i)
m

∥∥∥ ≤ 1
|U|
∑|U|

i=1

∥∥∥f ′(i)
m − f

(i)
m

∥∥∥.

Next, we need to bound E[δM ] by defining a modified growth recursion (Hardt et al., 2016, Lemma
2.5) for two arbitrary sequences of gradient updates G1, . . . , GM and G′

1, . . . , G
′
M , the starting point

f
(i)
0 = f

′(i)
0 , any i ∈ [1, |U|], and some j ∈ [1, |U|] as

δ0 = 0

δm+1 ≤

{
ηδm if G(i)

m = G
′(i)
m is η-expansive

ηδm + 2σm

|U| if G(j)
m and G

′(j)
m are σ-bounded, G(i)

m is η-expansive
.

Note that we consider the differing element occurring only in one local gradient update and not in
each one. We recall the definition of a gradient update as fm+1 = Gm(fm) and f ′

m+1 = G′
m(f ′

m).
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Proof, growth recursion (case I).

δm+1 =
1

|U|

|U|∑
i=1

∥∥∥Gm(f ′(i)
m )−Gm(f (i)

m )
∥∥∥

≤ 1

|U|

|U|∑
i=1

η
∥∥∥f ′(i)

m − f (i)
m

∥∥∥ (Expansiveness, cf. Hardt et al. (2016, Definition 2.3))

≤ ηδm.

Proof, growth recursion (case II).

δm+1 =
1

|U|

|U|∑
i=1,j ̸=i

∥∥∥Gm(f (i)
m )−Gm(f ′(i)

m )
∥∥∥+ 1

|U|

∥∥∥Gm(f (j)
m )−G′

m(f ′(j)
m )

∥∥∥
=

1

|U|

|U|∑
i=1,j ̸=i

∥∥∥Gm(f (i)
m )−Gm(f ′(i)

m )
∥∥∥

+
1

|U|

∥∥∥Gm(f (j)
m )−Gm(f ′(j)

m ) +Gm(f ′(j)
m )−G′

m(f ′(j)
m )

∥∥∥
≤ 1

|U|

|U|∑
i=1,j ̸=i

∥∥∥Gm(f (i)
m )−Gm(f ′(i)

m )
∥∥∥

+
1

|U|

∥∥∥Gm(f (j)
m )−Gm(f ′(j)

m )
∥∥∥+ 1

|U|

∥∥∥Gm(f ′(j)
m )−G′

m(f ′(j)
m )

∥∥∥
≤ 1

|U|

|U|∑
i=1

∥∥∥Gm(f (i)
m )−Gm(f ′(i)

m )
∥∥∥

+
1

|U|

∥∥∥f ′(j)
m −Gm(f ′(j)

m )
∥∥∥+ 1

|U|

∥∥∥f ′(j)
m −G′

m(f ′(j)
m )

∥∥∥
≤ ηδm +

2σm

|U|
(Expansiveness and σ-boundedness, cf. Hardt et al. (2016, Definition 2.3)).

Having established the growth recursion, we now combine the bounds with their probability of
occurrence as well as calculate the corresponding η-expansiveness and σ-boundedness terms. Hardt
et al. (2016, Lemma 3.3) have shown that we have αL-boundedness for a L-Lipschitz objective
function as well as (1−αΛ)-expansiveness for a learning rate α ≤ 1/β and a β-smooth and Λ-strongly
convex objective function (cf. Hardt et al. (2015, Proof of Theorem 3.9)). Since each user samples
during each training iteration one data point, we have for a given iteration a probability of |U|/N that
an individual data point of ℧ has been chosen resulting in differing gradient updates G(i)

m ̸= G
′(i)
m .

Thus, we have

E[δm+1] ≤ (1− |U|
N

)η E[δm] +
|U|
N

(η E[δm] +
2σm

|U|
)

≤ (1− |U|
N

)(1− αΛ)E[δm] +
|U|
N

(1− αΛ)E[δm] +
|U|
N

2αL

|U|

= (1− αΛ)E[δm] +
2αL

N
.

The remaining part goes by the proof of Hardt et al. (2015, Theorem 3.9) with the Lipschitzness of
the training objective as well as the growth recursion E[δm+1].

In short, we unfold the recursion:

E[δM ] ≤ 2Lα

N

M∑
m=1

(1− αΛ)m ≤ 2L

ΛN
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and insert it into our initial bound which gets us for all k and any z

E

J ( 1

|U|

|U|∑
i=1

f
(i)
M , z, k)− J ( 1

|U|

|U|∑
i=1

f
′(i)
M , z, k)

 ≤ 2L2

ΛN
.

Note that this proof permits the learning rate scheduling in Secure Distributed DP-Helmet which has
been set to αm := min(1/β, 1/Λm) for iteration m and the β-smooth and Λ-strongly convex objective.

N CONVERGENCE OF AVERAGING MODELS

Definition 20 (Convergence). Let f(h, z) denote a loss function on hypothesis h and instance z and
FS(h) :=

1
|S|
∑

z∈S f(h, z) the empirical risk on some dataset S. An algorithm A converges with
rate ϵconv under a data distribution Z if

ES∈Z [FS(A(S))− inf
h

FS(h)] ≤ ϵconv .

Theorem 21 (Averaging models converges). Given a set of users U (i) ∈ U each with a lo-
cal data set D(i), a learning algorithm T with a Λ-strongly convex, L-Lipschitz, and β-smooth
training objective J (f,D(i),K) on model parameters f (like SGD_SVM of Alg. 1), an averag-
ing routine avg(T (℧)) = 1

|U|
∑|U|

i=1 T (D
(i), ξ,K) with ℧ :=

⋃|U|
i D(i) (like in Alg. 2), and the

projected SGD update routine for a c-norm clipped data point z(i)m ∈ D(i) and class k ∈ K,
i.e. f

(i)
m+1 =

∏
∥f∥≤R

(
f
(i)
m − αt

∂
∂fJ (f

(i)
m , z

(i)
m , k)

)
=: G, then for a diminishing learning rate

αm = min( 1β ,
1

Λm ), M steps, a given Z :=
∥∥∥ 1
|U| (
∑|U|

i=0 f
(i)
0 )− f∗

∥∥∥, and a bias term b, T conver-

gences to f∗ := argminf J (f,℧, _) with

E[J (avg(T (℧)),℧, _)− J (f∗,℧, _)] ≤ ϵconv ≤
βL2

2Λ2
(M − 1)−1 + b(M − 1)−2 ∈ O(M−1).

The bias term b depends on Z, β,Λ, L.

Proof. The proof is based on Nemirovski et al.’s proof of convergence for strongly convex SGD_SVM
training. (Nemirovski et al., 2009, Section 2.1). Subsequently, we abbreviate the output of the
learning algorithm T at iteration m for the i-th user with f

(i)
m := T (D(i), ξ, k). First, we define the

convergence criterion Am at the iterate m and then its recursive growth Am+1.

Am =
1

2
E


∥∥∥∥∥∥ 1

|U|
(

|U|∑
i=0

f (i)
m )− f∗

∥∥∥∥∥∥
2


Our convergence criterion describes that we measure and subsequently seek to bound the difference
in the weights between the averaged T ’s 1

|U|
∑|U|

i=0 f
(i)
m and the optimal weights f∗ for the loss J on
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the combined data of all users. Subsequently, we abbreviate G(f) := ∂
∂fJ (f, _, _).

Am+1 =
1

2
E


∥∥∥∥∥∥ 1

|U|
(

|U|∑
i=0

Π∥f∥≤R(f
(i)
m − αmG(f (i)

m )))− f∗

∥∥∥∥∥∥
2


=
1

2
E


∥∥∥∥∥∥ 1

|U|
(

|U|∑
i=0

Π∥f∥≤R(f
(i)
m − αmG(f (i)

m )))−Π∥f∥≤R(f∗)

∥∥∥∥∥∥
2


≤ 1

2
E


∥∥∥∥∥∥ 1

|U|
(

|U|∑
i=0

f (i)
m − αmG(f (i)

m ))− f∗

∥∥∥∥∥∥
2


(binomial expansion ⟨x+ y, x+ y⟩ = ⟨x, x⟩+ 2⟨x, y⟩+ ⟨y, y⟩ and linearity of expectation)

= Am +
1

2
α2
m E


∥∥∥∥∥∥ 1

|U|

|U|∑
i=0

G(f (i)
m )

∥∥∥∥∥∥
2
− αm E

( 1

|U|
(

|U|∑
i=0

f (i)
m )− f∗)

T (
1

|U|

|U|∑
i=0

G(f (i)
m ))


Recall that because of the L-Lipschitz continuity of J , ∥G(f)∥ ≤ L. Hence,

E

[∥∥∥ 1
|U|
∑|U|

i=0 G(f
(i)
m )
∥∥∥2] = E

[∥∥∥G( 1
|U|
∑|U|

i=0 f
(i)
m )
∥∥∥2] ≤ L2. We now have for the recursion

Am+1 ≤ Am − αm E

( 1

|U|
(

|U|∑
i=0

f (i)
m )− f∗)

TG(
1

|U|

|U|∑
i=0

f (i)
m )

+
1

2
α2
mL2.

Recall, strong convexity states that (f ′−f)T (∇J (f ′)−∇J (f)) ≥ µ ∥f ′ − f∥2 ,∀f ′, f . Hence, we
also know for the optimal f∗ that (f ′−f∗)T∇J (f ′) ≥ µ ∥f ′ − f∗∥2 ,∀f ′. With f ′ := 1

|U|
∑|U|

i=0 f
(i)
m ,

we conclude

E

( 1

|U|
(

|U|∑
i=0

f (i)
m )− f∗)

TG(
1

|U|

|U|∑
i=0

f (i)
m )

 ≥ µE


∥∥∥∥∥∥ 1

|U|
(

|U|∑
i=0

f (i)
m )− f∗

∥∥∥∥∥∥
2
 = 2µAm.

The strong convexity constant µ = Λ can be determined by H
(
J(f,

⋃
i D

(i), _)
)
⪰ ΛI, ∀f where

H is the hessian matrix, I the identity matrix and B ⪰ ιI means that B − ιI is positive semi-
definite. As the argumentation above about J’s strong convexity holds for any f , it also holds for
f = 1

|U|
∑|U|

i=0 f
(i)
m .

In summary, we now have

Am+1 ≤ (1− 2Λαm)Am +
1

2
α2
mL2. (21)

The smoothness assumption can be equivalently formulated as ∥∇J (f)−∇J (f ′)∥ ≤
β ∥f − f ′∥ ,∀f, f ′ ⇔ J (f) ≤ J (f∗) + 1

2β ∥f − f∗∥2 ,∀f ⇔ ∥H(J (f))∥ ≤ β,∀f . Similarly to
the argumentation above, since beta smoothness holds for any f , it also holds for f = 1

|U|
∑|U|

i=0 f
(i)
m .

Thus we conclude that

E

J ( 1

|U|

|U|∑
i=0

f
(i)
M ,℧, _)− J (f∗,℧, _)

 ≤ 1

2
β E


∥∥∥∥∥∥ 1

|U|
(

|U|∑
i=0

f
(i)
M )− f∗

∥∥∥∥∥∥
2
 = βAM .

By unraveling the recursive formula of AM (cf. Equation (21)) we get with the base case A0

≤ β

(
M∑

m=1

(
M∏

n=m+1

1− 2Λαn

)
1

2
α2
mL2

)
+ β

(
M∏
n=1

1− 2Λαn

)
A0.
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Recall the learning rate αm = min( 1β ,
1

Λm ) At m0 = β
Λ are we switching the learning rate from 1

β to
1

Λm . First, we consider the case m ≤ m0 where we rewrite for a constant learning rate αm = 1
β and

φ = L2

2β :

E

J ( 1

|U|

|U|∑
i=0

f (i)
m0

,℧, _)− J (f∗,℧, _)

 ≤ φ

(
m0∑
m=1

(
m0∏

n=m+1

1− Λ

β

))
+ β

(
m0∏
n=1

1− Λ

β

)
A0

≤ φ

(
m0∑
m=1

(1− Λ

β
)m0−m

)
+m0(β − Λ)A0 =: b′

Next, we consider the case m > m0 where we rewrite for a diminishing learning rate αm = 1
Λm as

well as ς = βL2

2Λ2

E

J ( 1

|U|

|U|∑
i=0

f
(i)
M ,℧, _)− J (f∗,℧, _)


≤ ς

(
M∑

m=m0+1

(
M∏

n=m+1

n− 2

n

)
1

m2

)
+

(
M∏

l=m0+1

l − 2

l

)
b′

≤ ς

(
M∑

m=m0+1

(
M∏

n=m+1

n− 2

n

)
1

m2

)
+

(m0 − 1)m0

(M − 1)M
b′

= ς

∑M
m=m0+1 1− 1/m

(M − 1)M
+

1

(M − 1)M
(m0 − 1)m0b

′

≤ ς
M

(M − 1)M
+

1

(M − 1)M
((m0 − 1)m0b

′ −m0)︸ ︷︷ ︸
=:b

≤ ς(M − 1)−1 + b(M − 1)−2

If we approach M to∞, i.e. assume a sufficient number of iterations, we further simplify

lim
M→∞

E

J ( 1

|U|

|U|∑
i=0

f
(i)
M ,℧, _)− J (f∗,℧, _)

 = 0

which proves the convergence.

Note that the bias term b depends on how many iterations are conducted with the constant learning
rate 1/β.
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