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ABSTRACT

Generating accurate step-by-step reasoning is essential for Large Language Models
(LLMs) to address complex problems and enhance robustness and interpretabil-
ity. Despite the flux of research on developing advanced reasoning approaches,
systematically analyzing the diverse LLMs and reasoning strategies in generating
reasoning chains remains a significant challenge. The difficulties stem from the
lack of two key elements: (1) an automatic method for evaluating the generated
reasoning chains on different tasks, and (2) a unified formalism and implementation
of the diverse reasoning approaches for systematic comparison. This paper aims to
close the gap: (1) We introduce AutoRace for fully automated reasoning chain
evaluation. Existing metrics rely on expensive human annotations or pre-defined
LLM prompts not adaptable to different tasks. In contrast, AutoRace automati-
cally creates detailed evaluation criteria tailored for each task, and uses GPT-4 for
accurate evaluation following the criteria. (2) We develop LLM Reasoners, a
library for standardized modular implementation of existing and new reasoning
algorithms, under a unified formulation of the search, reward and world model
components. With the new evaluation and library, (3) we conduct extensive study
of different reasoning approaches (e.g., CoT, ToT, RAP). The analysis reveals
interesting findings about different factors contributing to reasoning, including the
reward-guidance, breadth-vs-depth in search, world model, and prompt formats,
etc.

1 INTRODUCTION

A central topic in Large Language Model (LLM) research is to enhance their ability of complex
reasoning on diverse problems (e.g., logical reasoning, mathematical derivations, and embodied
planning). Rich research has been done to generate multi-step reasoning chains with LLMs, such as
Chain-of-Thoughts (CoT, Wei et al., 2022), Tree-of-Thoughts (ToT, Yao et al., 2023), Reasoning-
via-Planning (RAP, Hao et al., 2023), among others (Zhu et al., 2022; Xie et al., 2023; Zhuang et al.,
2023; Khalifa et al., 2023; Creswell & Shanahan, 2022). However, despite the burgeoning body of
literature, there lacks a systematic analysis and understanding of the diverse approaches, mainly due
to two key challenges:

First, automatic evaluation of multi-step reasoning chains is difficult. Previous studies mostly rely
on the accuracy of the final answers as a proxy for assessing the reasoning processes. However, as
LLMs tend to produce unfaithful outputs or hallucinate, a correct final answer does not necessarily
imply a logically sound reasoning chain (Figure 1, a) (Golovneva et al., 2022; Prasad et al., 2023;
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Figure 1: (a) The first challenge for analyzing step-by-step reasoning with LLMs: correct final
answer may be derived from incorrect reasoning chains (false-positive chains), making it necessary to
evaluate the reasoning chains directly. (b) Our proposed AutoRace for fully automated evaluation.
(c) The second challenge stems from the diverse reasoning algorithms with seemingly distinct designs.
(d) Our LLM Reasoners provides a unified formulation and standardized implementation.

Tyen et al., 2023; Lyu et al., 2023). Indeed, by manually evaluating 100 reasoning chains generated
by Llama-2-70B on the StrategyQA questions (Geva et al., 2021), we found up to 39% of such false-
positive cases that contain reasoning errors despite having correct final answers. Recent efforts have
attempted to evaluate the reasoning chains directly, but often require non-trivial human efforts, such
as human-written reasoning chains as references (Celikyilmaz et al., 2020), or manually-annotated
datasets for training evaluation models (Golovneva et al., 2022; Prasad et al., 2023). He et al. (2023);
Tyen et al. (2023) use GPT-4 to alleviate human cost, but still require demonstration questions
and in-depth error analyses by human experts before applying to each new task. In addition, their
instructions that prompt GPT-4 for evaluation are not adaptive to different tasks, leading to suboptimal
performance (Section 3.2).

Second, the varied reasoning approaches present distinct formalisms and implementations
(Figure 1, c). The disparity makes it difficult to analyze the nuanced differences of their reasoning
chain generation and compare their critical design elements. Therefore, it is desirable to have a more
holistic formulation and unified implementation. This would reveal the underlying connections among
different approaches, and facilitate a more systematic comparison when combined with automatic
reasoning evaluation discussed above.

To tackle the challenges, this paper proposes an automatic method for reasoning chain evaluation,
develops a cohesive library for various latest reasoning approaches, and on this basis, performs
extensive analysis of LLM step-by-step reasoning. More specifically, we first present AutoRace
(Automatic Reasoning Chain Evaluation), a fully automated approach for evaluating reasoning
chains that adapts to different tasks without human efforts (Figure 1, b). For each reasoning task
(e.g., math reasoning), AutoRace autonomously constructs a detailed evaluation criteria list by
summarizing errors in LLM-generated reasoning chains. The criteria list is then used to instruct
GPT-4 to evaluate any given reasoning chains on the task. Compared to the prefixed human-written
prompts (Tyen et al., 2023; He et al., 2023), the AutoRace criteria lists are automatically customized
for each task with GPT-4 to ensure accurate evaluation. On a wide range of tasks, AutoRace shows
strong correlation with human evaluation, and manages to detect 70.4% of incorrect reasoning chains
that cannot be captured by the conventional final-answer-based evaluation.

We then introduce a unified perspective of reasoning algorithms, formulating them as a search
process towards maximizing accumulated rewards (Figure 1, d). A wide range of existing reasoning
algorithms can be interpreted as specific choices of the components in the unified formulation,
including a reward function r to decide preferences on different reasoning steps, world model P
to specify the state transition, and search algorithm (e.g., beam search, Monte-Carlo tree search)
to explore the expansive reasoning space. Based on the unified perspective, we further develop
the LLM Reasoners library that provides standardized implementation of these components with
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configurable options, plus rich LLM APIs and intuitive visualizations. As a result, LLM Reasoners
allows us to easily reproduce the existing reasoning algorithms, and also compose new algorithms
and apply to new tasks with minimal efforts.

With the new evaluation method and library, we conduct extensive analysis of reasoning chain
generation of diverse LLMs and reasoning algorithms. We collect 6 challenging reasoning tasks
that cover different reasoning skills (logical deduction, math, and embodied planning). Using a
standardized evaluation protocol, we compare various most popular reasoning algorithms (e.g., CoT,
ToT, RAP). The results offer a number of new insights into reasoning algorithm design—for example:
(1) Reasoning as reward-guided search helps not only improve final accuracy, but also effectively
alleviate false-positive reasoning chains; (2) For efficient search in the reasoning space, the breadth of
search is generally more important than the depth for most tasks; (3) incorporating a world model that
explicitly infers reasoning state would effectively improve the LLM reasoning ability, particularly
for tasks in embodied environments; (4) inappropriate prompt format design might inadvertently
lead to false-positive reasoning chains. We also compare across diverse LLMs (GPT-4, Claude-3,
Gemini, etc.) on their CoT reasoning chains. We release all code and experiments of AutoRace and
LLM Reasoners at https://www.llm-reasoners.net/, hoping to spur the progress of
research on LLM complex reasoning.

2 RELATED WORK

Evaluation of Reasoning Chains. Traditionally, to evaluate the reasoning process, generated
reasoning chains are compared with human-written explanations, which is known as reference-based
reasoning evaluation. Conventional natural language generation (NLG) metrics were applied to
calculate the similarity between machine-generated chains and human-crafted ones (Celikyilmaz
et al., 2020; Clinciu et al., 2021; Welleck et al., 2022). Towards reference-free reasoning evaluation,
Dalvi et al. (2021); Saparov & He (2022); Han et al. (2022) designed structured reasoning tasks so that
the reasoning process can be checked by a program automatically. Recently, ROSCOE (Golovneva
et al., 2022) and ReCEval (Prasad et al., 2023) proposed reference-free metrics on general domains,
measuring similarity, informativeness and correctness among steps. With the rapid development
of LLM, He et al. (2023) and Tyen et al. (2023) have experimented to evaluate reasoning chains
with LLMs. Tyen et al. (2023) proposed to prompt GPT-4 with few-shot demonstrations, but the
results are not satisfactory, and the authors concluded that it is still challenging for LLMs to evaluate
reasoning chains. He et al. (2023) crafted a detailed instruction inspired by the Socratic method,
but the method requires GPT-4 to generate a reference chain at first, limiting its performance for
challenging reasoning tasks that GPT-4 fails to solve. Besides, the fixed prompt template is not
adjustable to different tasks, which also leads to suboptimal evaluation accuracy. In this work, we
focus on LLM-based reference-free reasoning chain evaluation. Our method is generally more
accurate and robust than existing metrics, while also saving any additional human efforts.

Step-by-step Reasoning with LLMs. A common practice to enhance the reasoning with LLMs is to
generate intermediate reasoning steps, employing methods such as chain-of-thought prompting (Wei
et al., 2022; Kojima et al., 2022) or question decomposition (Zhou et al., 2022; Li et al., 2023).
Inspired by the deliberate reasoning of humans, recent research has focused on searching for better
reasoning chains guided by reward (Zhu et al., 2022; Xie et al., 2023; Yao et al., 2023; Zhuang et al.,
2023; Khalifa et al., 2023; Creswell & Shanahan, 2022). Hao et al. (2023) proposed to incorporate a
world model into reasoning, which simulates the state of the world. This enables LLMs to reason in a
manner close to humans’ conscious planning. Hu & Shu (2023) presented the LAW formulation that
connects the concepts of language models, agent models, and world models for more advanced and
robust reasoning. We include a more systematic summary of reasoning algorithms in Section 4.

3 AUTORACE: AUTOMATIC REASONING CHAIN EVALUATION

In this section, we present AutoRace that offers more insights into the LLM reasoning process
than final answer correctness (Figure 1). Compared to previous works (Tyen et al., 2023; He et al.,
2023) that prompt GPT-4 with fixed human-written instructions, AutoRace involves a “learning”
process, which helps it to adapt to any problem domains. Specifically, for each task, AutoRace
automatically collects LLM-generated incorrect reasoning chains, and summarizes evaluation criteria
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Figure 2: For any reasoning tasks (e.g., commonsense reasoning), AutoRace automatically con-
structs an evaluation criteria list to help itself evaluate reasoning chains in this domain.

from them (Figure 2). With the criteria, GPT-4 can pay more attention to common errors for this
certain domain, and make a more accurate evaluation. Compared to previous works that train an
evaluation model (Golovneva et al., 2022; Prasad et al., 2023) by optimization model parameters,
AutoRace effectively leverages GPT-4’s strong prior knowledge, so that it can learn from only
incorrect reasoning chains, which can be collected automatically, instead of human labels of reasoning
chains.

3.1 EVALUATION METHOD

To formulate the problem, we consider a reasoning question x, and LLM-generated reasoning chains
z, and the predicted answer y. Additionally, we have the reference answer yr, accompanied by a
reference reasoning chain zr, which are available in the training set Dtrain of most reasoning datasets.
Our goal is to develop an automatic evaluation metric for the reasoning chain, s(z) ∈ {0, 1}, which
is better aligned with human evaluation of the reasoning chains.

As the first step to criteria list construction, one needs to find out what kinds of errors are common
for a task. Therefore, AutoRace is designed to condense the criteria from real mistakes in LLM-
generated reasoning chains (Figure 2, I). Here, we make use of the fact that a reasoning chain
reaching a wrong answer must include an intermediate mistake. Given a sub-sampled training set
D = {(x, yr, zr)} ⊂ Dtrain, we run Chain-of-Thoughts reasoning with an LLM (referred as the
student LLM) to expand the dataset to D′ = {x, yr, zr, y, z}, where z is the reasoning chain generated
by the student and y is the predicted answer extracted from z. Then, we can filter out a subset where the
generated answers disagree with the reference answers, Derror = {(x, yr, zr, y, z) ∈ D′ | yr ̸= y}.

Having these reasoning chains with errors, the next goal is to compile a criteria list. To reduce the
difficulty, we divide it into two simple steps: Detection and Summarization. The Detection step
identifies the specific errors in a reasoning chain. GPT-4 is presented with the question, the reference
reasoning chain, and the student reasoning chain. It is then instructed to point to the mistake in the
student reasoning chain (Figure 2, II). The underlying rationale is that, even if the question x might
be challenging for GPT-4 to solve on its own, it has a good chance of understanding the question and
identifying the mistakes once it has access to the reference reasoning chain.

After collecting the errors in reasoning chains, GPT-4 is prompted to summarize these specific
instances into a criteria list (Figure 2, III). Eventually, GPT-4 is able to evaluate any new reasoning
chain z given a question x, by checking each criteria on each reasoning step. The prompt template of
each phrase is in Appendix A.5.

3.2 EXPERIMENTS

To measure the efficacy of reasoning chain evaluation metrics, we use human-annotated binary
correctness labels of reasoning chains as the ground truth, and calculate their accuracy.

Datasets. We experiment on 6 datasets covering mathematical, commonsense and logical reasoning.
5 of them are from previous works (Golovneva et al., 2022; Tyen et al., 2023), originating from
GSM8K (Cobbe et al., 2021), Multistep-Arithmetics (Srivastava et al., 2023), DROP (Dua et al.,
2019), COSMOS-QA (Huang et al., 2019), Logical-Deduction (Srivastava et al., 2023) and Word-
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Method
Math Common Logical

Average
GSM8k Arith Strategy Cosmos Logic Sort

Answer-based 0.94 0.94 0.76 0.67 0.87 0.94 0.85

SocREval 0.89 0.85 0.71 0.80 0.89 0.77 0.82
Direct (trace) 0.90 0.38 0.80 0.72 0.21 0.36 0.56
Direct (step) 0.85 0.43 0.83 0.73 0.75 0.33 0.65

CoT (step) 0.78 0.74 0.78 0.72 1.00 0.86 0.81

AutoRace (Ours) 0.91 0.85 0.79 0.78 0.97 0.86 0.86

Fully
Auto.

✗
✗
✗
✗

✓

Table 1: Evaluation accuracy of various reasoning chain evaluation metrics. We also list the accuracy
of answer-based evaluation as a reference. Note that AutoRace is the only metric that does not take
any human inputs specific to reasoning tasks (i.e., fully automated). We highlight the best reasoning
chain metrics (dark green) and metrics within 5% of the best performance (light green) for each task.
AutoRace achieves the best average accuracy and is robust across datasets.

Sorting (Srivastava et al., 2023). We additionally sample and manually label reasoning chains from
StrategyQA (Geva et al., 2021). The detailed statistics of these datasets can be found in Appendix A.

Baselines. We compare AutoRace with other LLM-based evaluation metrics for reasoning chains.
(a) SocREval (He et al., 2023) crafted a detailed instruction prompt for GPT-4 through the Socratic
method, which includes asking it to generate a reference reasoning chain before evaluation. This
method also requires a one-shot demonstration written by humans for each task. Tyen et al. (2023)
proposed three methods: (b) Direct (trace) asks GPT-4 to directly evaluate a reasoning chain;
(c) Direct (step) asks GPT-4 to check the reasoning step by step; (d) CoT (step) asks GPT-4 to
generate a reasoning process before evaluating each reasoning step. All these methods require 3-shot
demonstrations written by humans. We don’t experiment with metrics based on fine-tuned small
models (Golovneva et al., 2022; Prasad et al., 2023), as existing literature has already indicated a
substantial performance gap between these methods and LLM-based metrics (He et al., 2023).

Results. The results to compare various evaluation methods are presented in Table 1. We can observe
that among all metrics for reasoning chains, AutoRace achieves the best overall performance. It
excels in 3 out of 6 tasks and exhibits robustness, maintaining performance levels within 5% of the
best results across the board. Note that different from all baseline, which requires human-written
demonstrations, AutoRace does not need any human input specific to reasoning tasks. Indicated
by the confusion matrix (Figure 3, left), AutoRace is good at detecting incorrect reasoning chains,
without sacrificing the performance in correct reasoning chains. On the contrary, SocREval mistakenly
classifies many correct reasoning chains to be incorrect. Since SocREval asks GPT-4 to generate
its own response as the reference, whenever GPT-4 fails to solve the problem itself, it’s very likely
to evaluate the reasoning chain to be incorrect, misled by the wrong reference. We even find that
AutoRace enables GPT-4 to evaluate reasoning chains on problems challenging to GPT-4 itself,
as a case study shown in Figure 6, Specifically, in a problem from MultiArith, a task for testing
multi-digit arithmetic, SocREval fails because GPT-4 generates the reference with the same mistakes
as the reasoning chain to be evaluated, but AutoRace identifies the tricky errors with the detailed
criteria. We include more detailed results, and list the comparison of cost in Appendix A.

Moreover, when compared with the answer-based metric, AutoRace also outperforms it in 3 of
6 tasks with better overall performance. We additionally calculate the accuracy of AutoRace
on reasoning chains with mistakes but reaching a correct answer (false positive reasoning chains),
and it turns out that AutoRace managed to detect 70.4% of the false positive reasoning chains
averaged across different tasks (Figure 3, right). We examine some false positive reasoning chains
detected by AutoRace, and find the explanation given by AutoRace is mostly reasonable. The
false positive reasoning chains can be classified into 3 types (Table 8). Based on these results, we
believe AutoRace would be a useful metric complementary to answer-based evaluation.

4 LLM REASONERS: A UNIFIED FORMULATION AND LIBRARY

Besides reasoning chain evaluation, another difficulty in the analysis of reasoning algorithms lies
in their distinct formulations and implementations. To investigate the critical design elements that
affect the nuanced performance, we aim to deliver a more holistic formulation (Section 4) and
unified implementation (Section ??) in this section. This section introduces LLM Reasoners that
provides a unified formulation of diverse reasoning algorithms as well as a standardized library.
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Figure 3: Analysis on different reasoning chain evaluation methods: (Left) The macro-averaged
confusion matrix of these methods. SocREval and AutoRace are both good at detecting incorrect
reasoning chains, while SocREval mistakenly classifies correct reasoning chains as wrong more
frequently. (Right) AutoRace can recognize 70.4% of the false positive reasoning chains, showing
the promise to be a great complement to answer accuracy.

Unified Formulation. There has been rich research on constructing reasoning chains to solve
problems using LLMs, from the simplest CoT prompting (Wei et al., 2022), to tree search algorithms
guided by a reward function (Yao et al., 2022; Xie et al., 2023; Hao et al., 2023) and a world model
(Hao et al., 2023). These methods, among many others, can be formulated as a search process
that maximizes the accumulated reward argmax(a0,...,aT )

∑T
t=0 r(st, at), with a world model that

predicts state transition st ∼ T (·|st−1, at−1), and a search algorithm to optimize the objective.
This section elaborates on these three crucial components and demonstrates how recent reasoning
algorithms can be interpreted as special cases within this framework, with specific choices of these
three components.

World model. The world model defines the state transition distribution T (st|st−1, at−1). For
example, we can formulate the reasoning state of CoT (Wei et al., 2022) as the list of all previous
actions, i.e., st = (a0, a1, ..., at−1), and thus the world model represents a deterministic transition
which always appends an action to the action history. Beyond this trivial definition, recent studies seek
a more substantive depiction of the reasoning state, e.g., the description of the physical environment,
or the set of known variables, etc. To track the reasoning state, Liu et al. (2022); Guan et al. (2023)
augment LLMs with a physical engine or PDDL domain model. Li et al. (2023) train a model to
predict the entity states as a latent variable, and RAP (Hao et al., 2023) apply the LLM as a general
world model for reasoning. When the LLM can interact with the external environment, e.g., calling
tools (Zhuang et al., 2023), the environment is the world model.

Reward function. The reward function r(st, at) decides whether a reasoning step is desired. CoT
implicitly employs the likelihood predicted by the language models as the reward, as it generates
the next reasoning step with high likelihood conditioned on previous steps and a CoT prompt, i.e.,
r(st, at) = pLLM (at|a0, ..., at−1, PCoT ). Yao et al. (2023); Hao et al. (2023); Xie et al. (2023)
propose to use self-evaluation as the reward, asking the LLM to choose if the last action is "correct"
or "wrong" with a self-evaluation prompt, i.e., r(st, at) = pLLM ("correct" | st, at, Pself−eval).
Cobbe et al. (2021) train an outcome-supervised reward model (ORM) to evaluate a reasoning
chain, which predicts the reward only at the last reasoning step. More recent works (Khalifa et al.,
2023; Lightman et al., 2023; Sun et al., 2024; Wang et al., 2023) train step-by-step reward models
with process supervision (PRM), to provide a more accurate reward for every step. Task-specific
heuristic functions can also be applied as rewards, e.g., Zhuang et al. (2023) use the longest common
sub-sequence (LCS) score between the current generated action sequence and successful plans in the
memory as a reward.

Search Algorithm. The expansive reasoning space makes exhaustive search infeasible and calls for
the use of more efficient search algorithms. For example, CoT implicitly applies greedy decoding
for the reasoning step with the highest reward1. Another common technique is to sample multiple
reasoning chains, and return the one with the highest accumulated reward (Cobbe et al., 2021;
Lightman et al., 2023; Wang et al., 2023), which in essence is a random shooting algorithm (Kothare
et al., 1996). Other widely used search algorithms include DFS (Yao et al., 2023), beam search (Xie
et al., 2023), A* (Zhuang et al., 2023), and MCTS (Hao et al., 2023; Zhao et al., 2024). These discrete
searching algorithms usually need a finite action space sampled from an LLM.

1It’s usually implemented as token-level greedy decoding.
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Method
Math Logical Common Embodied

GSM8k∗ AQuA∗ Game24 PrOnto StrategyQA∗ Blocks

CoT 0.37 (0.54) 0.09 (0.34) 0.04 0.58 0.34 (0.76) 0.05
ToT (BFS) 0.53 (0.58) 0.15 (0.42) 0.04 0.52 0.41 (0.76) 0.09
ToT (DFS) 0.45 (0.52) 0.10 (0.36) 0.07 0.44 0.42 (0.76) 0.08

RAP 0.58 (0.64) 0.20 (0.47) 0.07 0.59 0.28 (0.77) 0.51

Table 2: Experimental results of various reasoning methods on every dataset. On three datasets
marked with ∗, we evaluate with AutoRace, and also show the answer-based (in brackets) for
reference. On other datasets, we evaluate the reasoning chain with oracle verifiers (e.g., a rule-based
program, or a simulator) due to their nature of close domains. The best method in every metric is
highlighted in bold.
Library Design. LLM Reasoners implements our unified formulation for multi-step reasoning
with a modular design. As illustrated in Figure 7, users can easily set up a reasoning method by
defining the WorldModel and SearchConfig, and importing a SearchAlgorithm. Besides
these three main base classes, we have also integrated rich LLM APIs in LanguageModel class,
standard evaluation pipelines in benchmark, and interactive visualization tool visualizer.
More details with an example are shown in Appendix B.1.

5 ANALYSIS OF LLM STEP-BY-STEP REASONING

To better understand multi-step reasoning algorithms and analyze the design elements critical to better
reasoning performance, we evaluate them on diverse reasoning datasets, utilizing our AutoRace
metric and LLM Reasoners library.

5.1 DATASETS

For a comprehensive evaluation, we first collect reasoning tasks of several categories, where each
category requires different reasoning skills.

Mathematical Reasoning. We select (1) GSM8k (Cobbe et al., 2021), a popular dataset of math
word problems that requires understanding the relationship between numbers and multiple steps
of mathematical calculation; (2) AQuA (Ling et al., 2017), which additionally requires the skill to
perform algebra operations. Both answer-based and AutoRace metrics are employed on these two
datasets. We also include the famous (3) Game of 24, following the settings in Yao et al. (2023). This
task requires constructing an equation with four given numbers and basic arithmetic operations. We
evaluate the reasoning chain on Game of 24 with a program.

Commonsense Reasoning. We take StrategyQA (Geva et al., 2021) as the commonsense reasoning
dataset. Each sample is an open-domain yes-no question that requires raising related commonsense
knowledge and multiple steps of inference. We evaluate the reasoning chain using both answer-based
and AutoRace metrics.

Logical Reasoning. The tasks involve a set of logical principles, initial statements, and a concluding
hypothesis. The challenge is to perform multi-step deductions to determine if the final hypothesis
is true. We use PrOntoQA (Saparov & He, 2022) in this category. The evaluation is based on a
rule-based program, since the problems are from a close domain.

Embodied Planning. The capability of LLMs to power embodied agents presents an interesting
area of study, as it involves the understanding of the physical world, and requires a strong planning
ability toward the goal. To assess this capacity for embodied planning, we employ the Blocksworld
benchmark (Valmeekam et al., 2023), where an agent must reach a specific block stacking arrangement
through moving operations such as PickUp and Stack. For evaluation, we examine whether the
generated chain is valid and can lead to the target state with a simulator.

5.2 EVALUATING REASONING ALGORITHMS

Compared methods. To analyze the connections between recent step-by-step reasoning methods, we
pick three representative methods, CoT (Wei et al., 2022), ToT (Yao et al., 2023), and RAP (Hao et al.,
2023). Different CoT which autoregressively decodes the reasoning chain, ToT and RAP define the
reward and include tree search algorithms. RAP additionally incorporates an explicit world model.
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Configurations. For ToT and RAP, we mainly apply the combination of two rewards: (1) Self-
evaluation: Prompting the LLMs to evaluate the new action, and use the logits of “good” as the
reward, Pθ("Good" | s, a). (2) Likelihood: Calculating the log-likelihood of predicting the next
action given the current state, i.e., Pθ(a | s). The definition of states and the world model for
RAP depends on the reasoning tasks. Benefiting from the explicit world model, there are also other
rewards available for RAP on certain tasks. More details about RAP implementation are described in
Appendix C.1.

Implementation details. To ensure reproducibility and accessibility, we use one of the leading
open-sourced LLMs, Llama 2 70B (Touvron et al., 2023b), quantized with GPT-Q (Frantar et al.,
2022) for all tasks and methods. To make a fair comparison, we restrict search-based methods to
explore up to 10 reasoning chains: The breadth limit is 10 for ToT (BFS), the maximum number of
visited terminal nodes is 10 for ToT (DFS), and the maximum number of iterations is 10 in RAP,
which is based on Monte-Carlo Tree Search. We manually crafted 10 examples of reasoning chains
for each task, and all methods share this same example pool. For each test case, 4 examples are
randomly sampled to form the demonstrations in the prompt, resulting in a 4-shot learning setting.

5.2.1 RESULTS
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Figure 4: AutoRace metric of different reason-
ing methods on answer-correct chains. We find
search-based methods, ToT and RAP have higher
AutoRace scores, indicating fewer false positive
reasoning chains.

Table 1 shows a comparative analysis of step-
by-step reasoning algorithms. Overall, ToT con-
sistently outperforms the vanilla CoT, and RAP
further improves upon ToT. Notably, the evalua-
tion metric (AutoRace) is generally lower than
the answer-based metric, especially in the AQuA
and StrategyQA datasets. This discrepancy sug-
gests significant potential for enhancements in
future reasoning algorithms. We outline several
key findings below.

Reward-guided Search Reduces False Posi-
tives. Enhanced exploration in the reasoning
space, facilitated by effective reward functions,
naturally leads to the superior performance of
search-based methods (ToT and RAP) over the
autoregressive decoding method CoT. However,
a noteworthy observation is that these search-
based methods also yield fewer false positive
reasoning chains, indicated by the smaller gap
between AutoRace and answer-based metric
(Table 2), and higher AutoRace score of rea-
soning chains with correct answers (Figure 4). Further examination of examples with ToT (BFS)
reveals that it effectively avoids some false positives by discarding reasoning steps with low rewards.
In contrast, CoT lacks this mechanism to “regret”. E.g., in type-A false positive chains made by
CoT (Table 8), while some reasoning mistakes are identifiable by the LLM itself, CoT fails to amend
errors from previous steps, only able to overlook them in the following steps.

Importance of Search Breadth Over Depth. By comparing two variants of ToT, ToT (BFS) and
ToT (DFS), our results show that BFS is relatively better on two math word problems, logical and
embodied tasks. This indicates that when the search space is expansive, such as in these complex
math, logic, and embodied planning tasks, DFS may sink into inappropriate reasoning subspace with
the first steps, thereby failing to explore the full space. In contrast, for tasks with a limited search
space, such as Game-24, DFS doesn’t hamper the exploration.

Crucial Role of World Model in Embodied Tasks. RAP stands out as the most effective method
across most datasets, thanks to its explicit world model. This enables the LLM to predict and track
state changes during reasoning, allowing for decisions based on the current state. Specifically, it
outperforms ToT by 42% on Blocksworld. As previous research suggests (Xiang et al., 2023), LLMs
miss essential embodied knowledge and skills, e.g., tracking objects over long action sequences.
Thus, an explicit world model that maintains the current state would greatly reduce the difficulties in
memorizing or reasoning about previous actions in an embodied environment.
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Figure 5: Results of various LLMs using CoT on every dataset. We apply AutoRace on three
datasets with *, and oracle verifiers on other datasets. On three datasets marked with ∗, LLMs are
ordered by average performance.

Impact of Prompt Format on False Positives. Interestingly, StrategyQA witnesses a higher false
positive rate of RAP (Figure 4). Based on errors identified by AutoRace, we discovered a common
failure mode from the reasoning chains generated by RAP: The prompt design that guides LLMs to
iteratively ask and answer sub-questions encourages LLMs to generate excessive details. This makes
it easier to introduce factual errors but does not necessarily affect the accuracy of final answers. For
example, for the problem presented in Appendix C.2, RAP raises the incorrect number 7,000 in the
explanation, which is identified as an error by AutoRace. Conversely, CoT avoids this pitfall by not
delving into unnecessary details. It’s worth noting that, this prompt format is not a problem for math
reasoning tasks, including GSM8k and AQuA, because every detail needs to be accurate to solve a
math problem. This suggests that prompt design should be tailored to the task domain.

5.3 EVALUATING LEADING LLMS

We also use the same experimental setting to compare the step-by-step reasoning ability of multiple
popular LLMs, including GPT-4 (OpenAI, 2023), Claude-3 Opus2, Gemeni pro (Team et al., 2023),
InternLM-2 (Cai et al., 2024), Mistral (Jiang et al., 2023), Mixtral (Jiang et al., 2024), Llama-2
(Touvron et al., 2023b), Qwen (Bai et al., 2023), and Gemma (Team et al., 2024). The overall results
are shown in Figure 5, with more details in Table 9

Overall Rankings. GPT-4 turbo and Claude-3 Opus are the two with the strongest reasoning abilities,
and they lead on almost every reasoning task. Surprisingly, InternLM-2 7B surpasses much larger
models (e.g., Llama-2 70B) on average performance. We also notice the ranking of Top-3 models is
aligned with ChatArena leaderboard3, which indicates that the reasoning ability is indeed crucial to
power the SOTA chatbot.

Reasoning Tasks. Top models have achieved remarkable performance on math word problems
(GSM8k) and commonsense reasoning (StrategyQA), but reasoning tasks that require strong planning
abilities (e.g., Game-24 and Blocksworld) remain unsolved, which leaves room for future research.
Interestingly, on StrategyQA, the answer accuracy of different models is similar (0.63 - 0.79), but the
AutoRace results differ a lot, ranging from 0.28 to 0.91, with a totally different ranking. Further
examination reveals the questions in StrategyQA are often ambiguous and overly simplified. GPT-4,
Claude-3, and Gemini demonstrate a more thorough consideration of these problems, unlike other
models (and sometimes even the ground truth reasoning chains) which can suffer from baseless
assumptions and flawed logic. The difference might be attributed to the RLHF process, which aligns
model response to human preference.

6 CONCLUSION

We propose AutoRace, LLM-powered automated evaluation of reasoning chains, and LLM
Reasoners, a unified formulation and library for diverse step-by-step reasoning algorithms. On
this basis, we conducted comprehensive experiments to analyze the factors contributing to reasoning.
We are interested in extending LLM Reasoners by including more algorithms and supporting
multi-modalities, and applying AutoRace for broader comparison.

2https://www.anthropic.com/news/claude-3-family
3https://huggingface.co/spaces/lmsys/chatbot-arena-leaderboard
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Method Math Common Logical

Dataset GSM8k Arith Strategy Cosmos Logic Sort

Correctans 110 45 100 82 45 45
Incorrectans 90 255 100 97 255 255

Correcthuman 101 62 71 31 6 34
Incorrecthuman 99 238 129 148 294 266

FP rate 0.16 0 0.39 0.67 0.87 0.33

Table 3: The distribution of datasets for evaluation metrics.

Method Math Common Logical

Dataset GSM8k Arith Strategy Cosmos Logic Sort

Answer-based 0.89 0.99 0.76 0.63 0.87 0.94

SocREval 0.89 0.92 0.96 0.91 0.89 0.76
Direct (trace) 0.90 0.34 0.78 0.74 0.21 0.33
Direct (step) 0.96 0.44 0.85 0.87 0.75 0.32

CoT (step) 0.93 0.88 0.78 0.84 1.00 0.87
AutoRace (Ours) 0.91 0.90 0.82 0.84 0.97 0.87

Table 4: Evaluation accuracy for reasoning chains labeled incorrect by humans.

A ADDITIONAL DETAILS OF AUTORACE

A.1 DATASET STATISTICS

For all datasets we experiment on, we list the statistics by answer labels and human labels in Table 3.
We also include the false positive (FP) rate, defined as the proportion of instances with correct answers
but labeled as incorrect by human evaluators, relative to the total number of instances with correct
answers.

A.2 RESULTS ON REASONING CHAINS OF DIFFERENT HUMAN LABELS

We calculate the accuracy on two subsets: (1) reasoning chains labeled correct by human, and (2)
reasoning chains labeled incorrect by human. The results are listed in Table 4 and Table 5. Generally,
AutoRace balances the performance on both datasets, while SocREval suffers from a severe drop
on the reasoning chains labeled incorrect.

Method Math Common Logical

Dataset GSM8k Arith Strategy Cosmos Logic Sort

Answer-based 0.99 0.71 0.76 0.87 1.00 0.88

SocREval 0.89 0.55 0.24 0.29 1.00 0.85
Direct(trace) 0.89 0.58 0.83 0.58 1.00 0.68
Direct(step) 0.74 0.40 0.78 0.03 0.83 0.38

CoT(step) 0.82 0.11 0.78 0.13 1.00 0.14
AutoRace (Ours) 0.90 0.85 0.72 0.45 1.00 0.74

Table 5: Evaluation accuracy for reasoning chains labeled correct by humans.
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Figure 6: A case study on MultiArith (Srivastava et al., 2023). SocREval (He et al., 2023) requires
GPT-4 to generate its own response to the problem, and then use it as the reference to evaluate
the reasoning chain. In this case, it makes the same mistake as the reasoning chain. AutoRace
successfully recognized the calculation error, guided by the criterion list learned for this task.

Method Long Short

Word-Sort StrategyQA

SocREval 1686n + 427n ($0.030n) 357n + 269n ($0.012n)

Direct (trace) 2265n + n ($0.023n) 507n + n ($0.005n)
Direct (step) 17517n + 12n ($0.176n) 1349n + 4n ($0.014n)

CoT (step) 26839n + 5504n ($0.434n) 2688n + 575n ($0.044)

AutoRace (Ours) 1382n + 435n ($0.027n) 270n + 389n ($0.014n)

Table 6: Cost approximation for different method

A.3 CASE STUDY

In Figure 6, we show a case study of AutoRace on MultiArith (Srivastava et al., 2023), in comparison
with SocREval (He et al., 2023).

A.4 COMPARISON ON THE COST OF REASONING CHAIN EVALUATION METRICS

Table 7 shows the average input token number, output token number, and the cost per question using
different evaluation methods. We list the statistics on two tasks: Word-Sort, which usually has long
reasoning chains, and StrategyQA, which has shorter reasoning chains.

Figure 7: The three key components in a reasoning algorithm, reward function, world model, and
search algorithm in the formulation (top), correspond to three classes in LLM Reasoners. To
implement a reasoning algorithm for a certain domain (a Reasoner object), a user may inherit the
SearchConfig and WorldModel class, and import any SearchAlgorithm.
World Model. The WorldModel class is responsible for managing all the state changes during
reasoning. It includes init_state to create the initial state, step to predict the next states,
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Method Word-Sort (Long) StrategyQA (Short)

SocREval 1686 / 427 / $0.030 357 / 269 / $0.012
Direct (trace) 2265 / 1 / $0.023 507 / 1 / $0.005
Direct (step) 17517 / 12 / $0.176 1349 / 4 / $0.014

CoT (step) 26839 / 5504 / $0.434 2688 / 575 / $0.044

AutoRace (Ours) 1382 / 435 / $0.027 270 / 389 / $0.014

Table 7: Average cost on one problem for different evaluation methods, in the form of (input token
number / output token number / cost per question).

and is_terminal to identify terminal states. Utilizing our consistent API, users can effortlessly
implement a world model for a specific task, or adapt the default world model recording previous
actions, as done in CoT (Wei et al., 2022), ToT (Yao et al., 2023), etc.

Search Configuration. The SearchConfig class mainly includes two important functions:
get_actions to decide the action space under each state to facilitate searching, and reward to
assess the quality of each reasoning step.

Search Algorithm. The SearchAlgorithm specifies the strategy to explore the reasoning space.
We have implemented several search algorithms in our library, e.g., Greedy Decoding (Khalifa et al.,
2023), Beam Search (Xie et al., 2023; Creswell & Shanahan, 2022), Depth-first Search (Yao et al.,
2023), and Monte-Carlo Tree Search (Hao et al., 2023). These algorithms are designed to work
seamlessly with any world model and search configuration on any reasoning task.

Other Features. LLM Reasoners has integrated To power these modules above with LLMs
conveniently, we offer a standardized interface LanguageModel that supports a range of LLM
libraries, including HuggingFace transformers (Wolf et al., 2020), facebookresearch/llama
(Touvron et al., 2023a;b), APIs of GPT (OpenAI, 2023), Claude and Gemini (Team et al., 2023). We
also integrated libraries specialized in quantization, like Exllama (Frantar et al., 2022), to reduce
the hardware requirements. Additionally, the Benchmark class provides a standard platform (e.g.,
standard prompts, evaluation methods) for a collection of widely recognized reasoning tasks, such
as GSM8k (Cobbe et al., 2021), StrategyQA (Geva et al., 2021), and Blocksworld (Valmeekam
et al., 2023). We also include Visualizer, an interactive visualization tool that allows for the
straightforward depiction of the search trees. This tool significantly lowers the complexity of
developing and analyzing the complicated reasoning process.

A.5 AUTORACE PROMPT

In this section, we demonstrate the pipeline of AutoRace for GSM8k (Cobbe et al., 2021) as
examples. For other reasoning tasks, the template is the same, and only the questions, student
answers, and extracted criteria need to be replaced.

Prompt for detection and summarization

You are a teacher. Below are some questions, reference
answers and the answers from students.

Question:
Janet’s ducks lay 16 eggs per day. She eats three for
breakfast every morning and bakes muffins for her friends
every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars
does she make every day at the farmers’ market?
Reference answer:
Janet sells 16 - 3 - 4 = 9 duck eggs a day. She makes 9 * 2 =
18 every day at the farmer’s market.
Student answer:
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Janet’s ducks lay 16 eggs per day. She eats three for
breakfast every morning and bakes muffins for her friends
every day with four. This means she uses 3 + 4 = 7 eggs every
day. She sells the remainder at the farmers’ market daily for
$2 per fresh duck egg. So she sells (16 - 7) * $2 = $6 worth
of eggs every day. The answer is 6.

Question:
Claire makes a 3 egg omelet every morning for breakfast. How
many dozens of eggs will she eat in 4 weeks?
Reference answer:
She eats 3 eggs every day and there are 7 days in a week so
she eats 3*7 = 21 eggs a week After 4 weeks she will have
eaten 4*21 = 84 eggs There are 12 eggs in 1 dozen and she’ll
eat 84 eggs so that’s 84/12 = 7 dozen eggs.
Student answer:
Claire makes a 3 egg omelet every morning. In one week she
will eat 3 * 7 = 21 eggs. In 4 weeks she will eat 4 * 21 = 84
eggs. The answer is 84.

Question:
Gloria is shoe shopping when she comes across a pair of boots
that fit her shoe budget. However, she has to choose between
the boots and two pairs of high heels that together cost five
dollars less than the boots. If one pair of heels costs $33
and the other costs twice as much, how many dollars are the
boots?
Reference answer:
The second pair of heels costs 33 * 2 = $66. The heels
together cost 66 + 33 = $99. The boots cost $5 more than both
pairs of heels together, so the boots cost 99 + 5 = $104.
Student answer:
We know that one pair of heels costs $33 and the other pair
costs twice as much. This means that the other pair costs $33
* 2 = $66. Together, the two pairs of heels cost $33 + $66 =
$99. The boots cost five dollars less than the heels, so the
boots cost $99 - $5 = $94. The answer is $94.

Question:
Mark’s car breaks down and he needs to get a new radiator.
The cost for a new radiator is $400 but he goes to get it at a
junk shop and gets it for 80% off. He then hires a mechanic
to install it and it takes 3 hours at $50 an hour. How much
did he pay?
Reference answer:
The discount on the radiator was 400*.8=$320 So he paid
400-320=$80 The mechanic charges 3*50=$150 So in total he paid
80+150=$230
Student answer:
The cost for a new radiator is $400. He got it at a junk shop
for 80% off, so he paid $400 * 0.8 = $320 for the radiator.
The mechanic charged him $50 per hour for 3 hours, so he paid
$50 * 3 = $150 for the labor. In total, he paid $320 + $150 =
$470. The answer is 470.

Please summarize the mistakes in a short sentence for the
question. At the end, please make a brief list of criteria.
Make sure they are general and not specific to these questions

16



Published as a conference paper at ICLR 2024

so that others can grade the answers for other answers by
following these criteria.

Prompt for Evaluation

Below is a question and an answer from a student. You are
required to check the correctness of the reasoning chains step
by step. The criteria are as follows:

**Accuracy in Mathematical Operations:** Ensure calculations
are correct and follow logical mathematical principles.
**Understanding the Problem Statement:** Comprehend the
details and conditions of the question accurately.
**Correct Application of Mathematical Concepts:** Apply the
right mathematical formulas, operations, or concepts to solve
the problem.
**Unit Conversion and Appropriateness:** When required,
correctly convert units and use appropriate units in the
answer.
**Final Answer Relevance:** Ensure the final answer directly
addresses the question asked, and is presented clearly and
concisely.
**Logical Reasoning and Step-by-Step Explanation:** The answer
should include a logical, step-by-step explanation that
demonstrates how the final answer was reached.

Question:
[QUESTION]

Student answer:
[INPUT]

Please check the answer through each criterion, and make sure
you carefully examine each reasoning step. Finally, if there
is any step that fails the verification, output an INCORRECT,
or else output a CORRECT.

The criteria are provided by the GPT in the Summarization step.

A.6 FALSE POSITIVE REASONING CHAINS DETECTED BY AUTORACE

AutoRace can serve as a scalable way to detect false positive reasoning chains. Here, we summarize
several types of false positive reasoning chains in Table 8.

B ADDITIONAL DETAILS OF LLM REASONERS

B.1 VISUALIZER IN LLM REASONERS

We show a screenshot of the visualization module of LLM Reasoners in Figure 8. Users have the
option to upload the log file to our server with one line of code and use the web-based visualization
to debug the reasoning algorithms. It allows users to interact with the log by selecting different
reasoning trees, and checking the details of each node and edge in the tree. This tool significantly
lowers the difficulty of applying a complex reasoning algorithm to new tasks.
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Type Question Reasoning Chain Explanation

A Henry made two stops during
his 60-mile bike trip. He first
stopped after 20 miles. His
second stop was 15 miles be-
fore the end of the trip. How
many miles did he travel be-
tween his first and second
stops?

Step 1 - Henry traveled 20
miles + 15 miles = 35 miles
between his first and sec-
ond stops.
Step 2 - Henry traveled 60
miles - 35 miles = 25 miles
without stopping. Step 3 -
The answer is 25

There is a hallucination
in an early reasoning step,
but the following reason-
ing steps ignore the mis-
take and reach the correct
answer.

B Is "A Tale of Two Cities" a
parody of the Bible?

"A Tale of Two Cities" was
published in 1859, and the
Bible was published much
earlier. Thus, "A Tale of
Two Cities" is not a parody
of the Bible. So the answer
is no.

The reasoning chain has
obvious or multiple mis-
takes, but hits the correct
answer by chance.

C Is clementine pith highly
sought after?

Clementine pith is not
highly sought after. So the
answer is no.

The reasoning chain is
not informative at all,
though the answer is cor-
rect.

Table 8: Common types of false positive reasoning chains detected by AutoRace. The example
questions are from StrategyQA (Geva et al., 2021) and GSM8k (Cobbe et al., 2021), and the reasoning
chains are generated by Llama-2 70B. An explanation for each type of false positive reasoning chain
is attached.

Figure 8: A screenshot of the visualization tool to diagnose the RAP algorithms on the Blocksworld
task.
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C ADDITIONAL DETAILS OF EXPERIMENT ANALYSIS

C.1 DETAILS OF RAP IMPLEMENTATION

We explicitly define states and world models in RAP. For free-form question-answering tasks,
including GSM8k, AQuA, and StrategyQA, a state is considered as the set of known variables. An
action involves posing a sub-question about an unknown variable. The world model then responds to
this sub-question, thereby augmenting the state with the value of a new intermediate variable. For
tasks with a clearly defined intermediate state, such as the remaining numbers in Game of 24, the
latest facts in PrOntoQA, and the current block arrangement in Blocksworld, we directly employ
these intermediate states in natural language description. Actions in these scenarios are defined
respectively as a basic arithmetic operation, a one-hop logic reasoning, and a single block movement.
The world model is prompted to predict the subsequent state as per the task’s definition.

In GSM8k, AQuA, and StrategyQA, we use the rewards from the confidence of state transition and
self-evaluation of usefulness of each step. In Game of 24, we use the rewards from self-evaluation of
the possibility to achieve 24 for the state after each step. In PrOntoQA, we use the rewards of action
likelihood and self-evaluation of the correctness of each step. In Blocksworld, we use the rewards
from the action likelihood and task-specific heuristics, i.e., the number of achieved subgoals.

C.2 CASE STUDY ON PROMPT FORMATS

Below, we present the reasoning chain of RAP and CoT to a question in StrategyQA.

----Question---
Did either Kublai Khan or his grandfather practice monogamy?
----RAP------
Step 1: Did Kublai Khan have a harem? Kublai Khan had a
harem of 7,000 women. So the answer is yes.
Step 2: Did Genghis Khan have a harem? Genghis Khan had a
harem of 500 women. So the answer is yes.
Step 3: Does having a harem of women mean practicing
polygamy? Having a harem of women means practicing polygamy.
So the answer is yes.
Step 4: Now we can answer the question: Did either Kublai
Khan or hisgrandfather practice monogamy? Kublai Khan had a
harem of 7,000 women. Genghis Khan had a harem of 500 women.
Having a harem of women means practicing polygamy. Thus,
neither Kublai Khan nor his grandfather practiced monogamy.
So the answer is no.
----CoT------
Step 1: Both Kublai Khan and his grandfather, Genghis Khan,
were polygamous. Step 2: Thus, neither Kublai Khan nor his
grandfather practiced monogamy. Step 3: So the answer is no.
----reference--
Step 1: Kublai Khan was married multiple times and was said
by some to have thousands of concubines.
Step 2: Kublai Khan’s grandfather was Genghis Khan.
Step 3: Genghis Khan had six wives and was said to have over
500 concubines. Step 4: So the answer is no.

C.3 AUTORACE LEADERBOARD

We show the detailed evaluation results on leading LLMs in Table 9.
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Model GSM8k AQuA Game24 Pronto Strategy Block Average

GPT-4 turbo 0.86 (0.93) 0.59 (0.71) 0.09 0.75 0.91 (0.65) 0.45 0.66
Claude-3 Opus 0.90 (0.90) 0.57 (0.79) 0.07 0.88 0.78 (0.63) 0.41 0.66

Gemini pro 0.67 (0.72) 0.28 (0.48) 0.08 0.52 0.46 (0.71) 0.15 0.45
InternLM-2 7B 0.61 (0.68) 0.17 (0.45) 0.03 0.45 0.31 (0.69) 0.10 0.39

Llama-2 70B 0.37 (0.54) 0.09 (0.34) 0.04 0.58 0.34 (0.76) 0.05 0.35
Qwen-1.5 7B 0.53 (0.56) 0.17 (0.28) 0.05 0.21 0.33 (0.79) 0.06 0.33

Gemma-7B 0.48 (0.57) 0.16 (0.34) 0.02 0.34 0.30 (0.66) 0.10 0.33
Mistral 7B 0.38 (0.41) 0.12 (0.32) 0.02 0.40 0.28 (0.66) 0.09 0.33

Llama-2 13B 0.24 (0.29) 0.06 (0.20) 0.04 0.42 0.28 (0.66) 0.05 0.25

Table 9: The comparison of different models across various tasks. GSM8k, AQuA and Strategy are
evaluated with AutoRace (The answer accuracy is shown as a reference in the bracket). Other
results use the oracle verifier.
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