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ABSTRACT

Many works show that node-level predictions of Graph Neural Networks (GNNs)
are unrobust to small, often termed adversarial, changes to the graph structure.
However, because manual inspection of a graph is difficult, it is unclear if the
studied perturbations always preserve a core assumption of adversarial examples:
that of unchanged semantic content. To address this problem, we introduce a
more principled notion of an adversarial graph, which is aware of semantic con-
tent change. Using Contextual Stochastic Block Models (CSBMs) and real-world
graphs, our results uncover: i) for a majority of nodes the prevalent perturba-
tion models include a large fraction of perturbed graphs violating the unchanged
semantics assumption; ii) surprisingly, all assessed GNNs show over-robustness
- that is robustness beyond the point of semantic change. We find this to be a
complementary phenomenon to adversarial examples and show that including the
label-structure of the training graph into the inference process of GNNs signif-
icantly reduces over-robustness, while having a positive effect on test accuracy
and adversarial robustness. Theoretically, leveraging our new semantics-aware
notion of robustness, we prove that there is no robustness-accuracy tradeoff for
inductively classifying a newly added node. 1

1 INTRODUCTION

Graph Neural Networks (GNNs) are seen as state of the art for various graph learning tasks (Hu
et al., 2020; 2021). However, there is strong evidence that GNNs are unrobust to changes to the
underlying graph (Zügner et al., 2018; Geisler et al., 2021). This has led to the general belief that
GNNs can be easily fooled by adversarial examples and many works trying to increase the robustness
of GNNs through various defenses (Günnemann, 2022). Originating from the study of deep image
classifiers (Szegedy et al., 2014), an adversarial example has been defined as a small perturbation,
usually measured using an ℓp-norm, which does not change the semantic content (i.e. category) of
an image, but results in a different prediction. These perturbations are often termed unnoticeable
relating to a human observer for whom a normal and an adversarially perturbed image are nearly
indistinguishable (Goodfellow et al., 2015; Papernot et al., 2016). However, compared to visual
tasks, it is difficult to visually inspect (large-scale) graphs. This has led to a fundamental question:

What constitutes a small, semantics-preserving perturbation to a graph?

The de facto standard in the literature is to measure small changes to the graph’s structure using
the ℓ0-pseudonorm (Zheng et al., 2021; Günnemann, 2022). Then, the associated threat mod-
els restrict the total number of inserted and deleted edges globally in the graph and/or locally
per node. However, if the observation of semantic content preservation for these kind of per-
turbation models transfers to the graph domain can be questioned: Due to the majority of low-
degree nodes in real-world graphs, small ℓ0-norm restrictions still allow to completely remove a
significant number of nodes from their original neighbourhood. Only few works introduce mea-
sures beyond ℓ0-norm restrictions. In particular, it was proposed to additionally use different
global graph properties as a proxy for unnoticeability, such as the degree distribution (Zügner
et al., 2018), degree assortativity (Li et al., 2021), or other homophily metrics (Chen et al., 2022).

1Project page: https://www.cs.cit.tum.de/daml/revisiting-robustness/
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Figure 1: Average degree-dependent node-
classification robustness. Semantic boundary in-
dicates when the semantics (i.e., the most likely
class) of a node of a given degree changes on av-
erage. Data from CSBM graphs2. All GNNs show
robustness beyond the point of semantic change.

While these are important first steps, the exact
relation between preserving certain graph prop-
erties and the graph’s semantic content (e.g.,
node-categories) is unclear (see Appendix B).
For instance, one can completely rewire the
graph by iteratively interchanging the endpoints
of two randomly selected edges and preserve
the global degree distribution. As a result, cur-
rent literature lacks a principled understanding
of semantics-preservation in their employed no-
tions of smallness as well as robustness stud-
ies using threat models only including provable
semantics-preserving perturbations to a graph.

We bridge this gap by being the first to di-
rectly address the problem of exactly measur-
ing (node-level) semantic content preservation
in a graph under structure perturbations. Surprisingly, using Contextual Stochastic Block Models
(CSBMs), this leads us to discover a novel phenomenon: GNNs show strong robustness beyond
the point of semantic change (see Figure 1). This does not contradict the existence of adversarial
examples for the same GNNs. Related to the small degree of nodes, we find that common perturba-
tion sets include both: graphs which are truly adversarial as well as graphs with changed semantic
content. Our contributions are:

1. We define a semantics-aware notion of adversarial robustness (Section 3) for node-level predic-
tions. Using this, we introduce a novel concept into the graph domain: over-robustness - that is (un-
wanted) robustness against admissible perturbations with changed semantic content (i.e., changed
ground-truth labels).

2. Using CSBMs, we find: i) common perturbations sets, next to truly adversarial examples, include
a large fraction of graphs with changed semantic content (Section 5.1); ii) all examined GNNs show
significant over-robustness to these graphs (Section 5.2) and we observe similar patterns on real-
world datasets (Section 5.2.1). Using ℓ0-norm bounded adversaries on CSBM graphs, we find a
considerable amount of a conventional adversarial robustness to be in fact over-robustness.

3. Including the known label-structure through Label Propagation (LP) (Huang et al., 2021) into
the inference process of GNNs significantly reduces over-robustness with no negative effects on test
accuracy or adversarial robustness (Section 5.2) and similar behaviour on real-world graphs.

4. Using semantic awareness, we prove the existence of a model achieving both, optimal robustness
and accuracy in classifying an inductively sampled node (Section 4.1), i.e., no robustness-accuracy
tradeoff for a non-i.i.d. data setting.

2 PRELIMINARIES

Let n be the number of nodes and d the feature dimension. We denote the node feature matrix X ∈
Rn×d, the (symmetric) adjacency matrix A ∈ {0, 1}n×n, and the node labels y ∈ {0, 1}n of which
yL ∈ {0, 1}l, l ≤ n are known. We assume a graph has been sampled from a graph data generating
distribution Dn denoted as (X,A, y) ∼ Dn. We study inductive node classification (Zheng et al.,
2021). Due to the non-i.i.d data generation, a node-classifier f may depend its decision on the whole
known graph (X,A, yL). As a result, we write f(X,A, yL)v to denote the classification of a node
v. All GNNs covered in this work are a function f(X,A) only depending on the node features X
and adjacency matrix A. A list of the used symbols and abbreviations can be found in Appendix A.

Label Propagation. We use label spreading (Zhou et al., 2004), which builts a classifier f(A, yL)
by taking the row-wise argmax of the iterate F t = αD−1/2AD−1/2F t−1 + (1 − α)Y , with D
being the diagonal degree matrix; Y ∈ Rn×c with Yij = 1 if i ≤ l and yiL = j, otherwise Yij = 0;
and α ∈ [0, 1]. Similar to Huang et al. (2021), we combine LP and GNNs by replacing the zero-rows
for i > l in Y with GNN soft-predictions, effectively forming a function f(X,A, yL).

2CSBMs parametrized as outlined in Section 5 using K = 1.5 and ℓ2-weak attack.
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Adversarial Robustness. We study (inductive) evasion attacks, that is an adversary A can produce
a perturbed graph (X̃, Ã) ∈ B(X,A) given the clean data (X,A) with the goal to fool a given
node-classifier f(X̃, Ã, yL)v ̸= f(X,A, yL)v on nodes v. The perturbation set B(X,A) collects
all admissible perturbed graphs, defined by the threat model. We focus on direct structure attacks
(Zügner et al., 2018). This means A can remove or add at most ∆ ∈ N edges for a target node v.

Data Model. We leverage Contextual Stochastic Block Models (CSBMs) (Deshpande et al., 2018)
to generate synthetic graphs with analytically tractable distributions. It defines edge probabilities p
between same-class nodes and q between different-class nodes and node-features are drawn from
a Gaussian mixture model. Sampling from a CSBM can be written as an iterative process over
nodes i ∈ [n]: 1) Sample label yi ∼ Ber(1/2) (Bernoulli distribution). 2) Sample feature vector
Xi,:|yi ∼ N ((2yi−1)µ, σI) with µ ∈ Rd, σ ∈ R. 3) For all j ∈ [n], j < i sample Aj,i ∼ Ber(p) if
yi = yj and Aj,i ∼ Ber(q) otherwise, and set Ai,j = Aj,i. We denote this (X,A, y) ∼ CSBMµ,σ2

n,p,q .
To inductively add m nodes, one repeats the above process for i = n+1, . . . ,m. Fountoulakis et al.
(2022) show that depending on the distance of the means d(−µ, µ), one can separate an easy regime,
where a linear classifier ignoring A can perfectly separate the data and a hard regime, defined by
d(−µ, µ) = Kσ, with 0 < K ≤ O(

√
log n), where this is not possible. CSBMs are commonly

used to study transductive tasks. Understanding the sampling process as an iteration extends their
application to inductive node classification. For an alternative we call Contextual Barabási–Albert
Model with Community Structure (CBA) see Appendix C. Appendix D discusses the model choices.

3 REVISITING ADVERSARIAL PERTURBATIONS

Given a clean graph (X,A, yL) and target node v. The perturbation set B(X,A) comprises all
possible (perturbed) graphs (X̃, Ã), which can be chosen by an adversary A, with the goal to change
the prediction of a node classifier f , i.e., f(X̃, Ã, yL)v ̸= f(X,A, yL)v . The prevalent works
implicitly assume that every (X̃, Ã) ∈ B(X,A) preserves the node-level semantic content of the
clean graph, i.e., the original ground-truth label of v. If we would have an oracle Ω, which tells
us the semantic content the known graph encodes about v, this assumption can be made explicit by
writing Ω(X̃, Ã, yL)v = Ω(X,A, yL)v . Usually, we do not have access to such an oracle. However,
we can try to model its behaviour by introducing a reference or base node classifier g. Then, the
idea is to use g to indicate semantic content change and thereby, define the semantic boundary (see
Figure 1). Exemplary, g could be derived from knowledge about the data generating process. We do
so in Section 4 and 5, where we use the (Bayes) optimal classifier for CSBMs as g. Note that labels
themselves are often generated following a base classifier. Exemplary, this can be humans labelling
selected nodes in a graph to generate a dataset for (semi-) supervised learning. Using a reference
classifier g as a proxy for semantic content enables us to make a refined definition of an adversarial
graph, which makes the unchanged-semantics assumption explicit:
Definition 1. Let f be a node classifier and g a reference node classifier. Then the perturbed graph
(X̃, Ã) ∈ B(X,A) chosen by an adversary A is said to be adversarial for f at node v w.r.t. the
reference classifier g if the following conditions are satisfied:

i. f(X,A, yL)v = g(X,A, yL)v (correct clean prediction)

ii. g(X̃, Ã, yL)v = g(X,A, yL)v (perturbation preserves semantics)

iii. f(X̃, Ã, yL)v ̸= g(X,A, yL)v (node classifier changes prediction)

Definition 1 says that a perturbed graph (X̃, Ã) ∈ B(X,A) only then is adversarial, if (X̃, Ã) does
not only change the prediction of the node classifier f (iii), but also lets the original label unchanged
(ii). The first constraint (i) stems from the fact that if f and g disagree on the clean graph at node v
this should represent a case of misclassification captured by standard error metrics such as accuracy.

Suggala et al. (2019) use the concept of a reference classifier to, in similar spirit, define semantics-
aware adversarial perturbations for i.i.d. data, with a focus on the image domain. However, what
has not been considered is that the reference classifier allows us to characterize the exact opposite
behaviour of an adversarial example: if a classifier f does not change its prediction for a perturbed
graph (X̃, Ã) even though the semantic content has changed. As this would mean that f is robust
beyond the point of semantic change, we call this behaviour over-robustness:
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Definition 2. Let f be a node classifier and g a reference node classifier. Then the perturbed graph
(X̃, Ã) ∈ B(X,A) chosen by an adversary A is said to be an over-robust example for f at node v
w.r.t. the reference classifier g if the following conditions are satisfied:

i. f(X,A, yL)v = g(X,A, yL)v (correct clean prediction)

ii. g(X̃, Ã, yL)v ̸= g(X,A, yL)v (perturbation changes semantics)

iii. f(X̃, Ã, yL)v = g(X,A, yL)v (node classifier stays unchanged)

If there exists such an over-robust example, we call f over-robust at node v w.r.t. g.

Definition 2 is of particular interest in the graph domain, where perturbation sets B(X,A) often
include graphs (X̃, Ã), which allow significant changes to the neighbourhood structure of v, but
do not allow easy manual content inspection. Indeed, Section 5 shows that all assessed GNNs are
over-robust for common choices of B(X,A) for many test nodes v in CSBM graphs. A similar
phenomenon for image data has been discussed by Tramèr et al. (2020a).

(a) (b)

Figure 2: a) Decision boundary of classi-
fier f follows a base classifier g except for
the dotted line. b) Finite perturbation sets
B(·) intersect only from one side with the
dashed area. Over- and adversarial robust-
ness are needed to characterize robustness.

Now, let us contrast over- to adversarial robustness. In
Figure 2a the decision boundary of a classifier f fol-
lows the one of a base classifier g except for the dotted
line. The dashed area between f and g is a region of
over-robustness for the blue class and of adversarial
examples for the red class. In practice, the extent of
the perturbation sets B(·) is bounded. As a result, us-
ing adversarial examples, it is only possible to measure
the right boundary of the dashed area (see Figure 2b).
The concept of over-robustness allows us to addition-
ally measure the left boundary and hence, provides a
more complete picture of the robustness of f . Note
that the blue points, using conventional adversarial ro-
bustness, are judged robust in the whole of B(·) even
though their true class changed. Semantic-aware ad-
versarial robustness allows to (correctly) cut off B(·)
at the decision boundary of g.

Contrary to Figure 2a, a region of over-robust examples cannot always be identified as a region
of adversarial examples for different data points. Denote G=(X,A) and collect all over-robust
examples in a set BO(G, v) ⊂ B(G) and adversarial examples in a set BA(G, v) ⊂ B(G). Note that
it follows from Definition 1 and 2 that BO(G, v)∩BA(G, v) = ∅. Now, we find that in general, for a
given over-robust example G̃ ∈ B(G) one can’t always find a corresponding clean graph G′ ̸= G not
in B(G) for which G̃ is an adversarial example. It suffices to look at the case of f being constant:

Proposition 1. Given f is a constant classifier, then BA(G, v) is empty for every possible graph G.

This follows as f can never fulfill both, item (i) and item (iii) in Definition 1. However, over-robust
examples for f may exists. Every example in B(G) will be over-robust, for which g changes its label
for node v. This also shows that over-robustness can differentiate two classifiers, which have the
same adversarial robustness, but one has learned a better decision boundary, while the other has not.
We further develop other interesting conceptual cases in Appendix E.

4 BAYES CLASSIFIER AS REFERENCE CLASSIFIER

In the following, we derive a Bayes optimal classifier to use as a reference classifier g. Using
the Bayes decision rule as g is a natural choice, because, as shown below, it provides us with the
information, if another class is now more likely based on the true data generating distribution and
hence, is the closest we can get to a semantic content returning oracle Ω (see Section 3).

Assume that we want to learn an inductive node-classifier f on a given, fully labeled graph
(X,A, y) ∼ Dn with n nodes. We will focus on the most simple case of classifying an induc-
tively sampled node. We denote the conditional distribution over graphs with an inductively added
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node as D(X,A, y). Then, the target node v corresponds to the newly sampled, n+1-th node. How
well our classifier f generalizes to the newly added node is captured by the expected 0/1-loss of f :

E
(X′,A′,y′)∼D(X,A,y)

[ℓ0/1(y
′
v, f(X

′,A′, y)v] (1)

To derive Bayes optimality, we have to find an optimal classifier f∗ for v, depending on (X′,A′, y),
minimizing (1). The following theorem shows that, similar to inductive classification for i.i.d. data,
f∗ should choose the most likely class based on the seen data (Proof in Appendix F.1):
Theorem 1. The Bayes optimal classifier, minimizing the expected 0/1-loss (1), is f∗(X′,A′, y)v =
argmaxŷ∈{0,1} P[y′v = ŷ|X′,A′, y].

4.1 ROBUSTNESS-ACCURACY TRADEOFF

We show that given a Bayes optimal reference classifier g, our robustness notions (Definition 1 and
2) imply that optimal robustness, i.e., the non-existence of adversarial and over-robust examples for
f , is possible while preserving good generalization in the sense of (1). Our argumentation for the
non-i.i.d. graph data case takes inspiration from Suggala et al. (2019)’s study for i.i.d. data. In the
following, we assume we are given a graph G′ sampled from D(G, y), where G = (X,A) represents
a fully labeled training graph with n nodes and labels y. Let v refer to the n + 1-th (inductively
added) node. First, observe from Definition 1 that a graph G̃′ ∈ B(G′) is an adversarial example, iff
g(G̃′, y)v = g(G′, y)v and ℓ0/1(f(G̃′, y)v, g(G′, y)v) − ℓ0/1(f(G′, y)v, g(G′, y)v) = 1. In analogy
to the generalization error (1), we define the adversarial generalization error:
Definition 3. Let f be a node classifier and g a reference node classifier. Assume G′ is itself in
B(G′). Then the expected adversarial 0/1-loss for an inductively added target node v is defined as
the probability that a conditionally sampled graph can be adversarially perturbed:

E
(G′,y′)∼D(G,y)

[
max

G̃′∈B(G′)

g(G̃′,y)v=g(G′,y)v

{
ℓ0/1(f(G̃′, y)v, g(G′, y)v)− ℓ0/1(f(G′, y)v, g(G′, y)v)

}]
(2)

From Definition 2 it follows that a graph G̃′ ∈ B(G) is an over-robust example, iff f(G̃′, y)v =

f(G′, y)v and ℓ0/1(g(G̃′, y)v, f(G′, y)v)− ℓ0/1(g(G′, y)v, f(G′, y)v) = 1. Thus, we define:

Definition 4. Let f be a node classifier and g a reference node classifier. Assume G′ is itself in
B(G′). Then the expected over-robust 0/1-loss for an inductively added target node v is defined as
the probability that a conditionally sampled graph can be perturbed to be an over-robust example:

E
(G′,y′)∼D(G,y)

[
max

G̃′∈B(G′)

f(G̃′,y)v=f(G′,y)v

{
ℓ0/1(g(G̃′, y)v, f(G′, y)v)− ℓ0/1(g(G′, y)v, f(G′, y)v)

}]
(3)

We denote the expected adversarial 0/1-loss as L adv
G,y (f, g)v and the expected over-robust 0/1-loss

as L over
G,y (f, g)v . Minimizing only one of the robust objectives and disregarding the standard loss

(1), may not yield a sensible classifier. Exemplary, the adversarial loss (2) achieves its minimal value
of 0 for a constant classifier. Therefore, we collect them in an overall expected robustness loss term:

L rob
G,y (f, g)v = λ1L

adv
G,y (f, g)v + λ2L

over
G,y (f, g)v (4)

where λ1 ≥ 0 and λ2 ≥ 0 define how much weight we give to the adversarial and the over-robust
loss. Now, we want to find a node-classifier f with small robust and standard loss. Denoting the
expected 0/1-loss (1) as LG,y(f)v , this leads us to optimize the following objective:

argmin
f∈H

LG,y(f)v + λL rob
G,y (f, g)v (5)

where λ ≥ 0 defines a tradeoff between standard accuracy and robustness and H represent a set of
admissible functions, e.g. defined by a chosen class of GNNs. Now, the following holds:
Theorem 2. Assume a set of admissible functions H, which includes a Bayes optimal classifier
f∗
Bayes and let the reference classifier g be itself a Bayes optimal classifier. Then, any minimizer
f∗ ∈ H of (5) is a Bayes optimal classifier.

5



Published as a conference paper at ICLR 2023

Proof see Appendix F.2.1. Theorem 2 implies that minimizing both, the standard and robust loss for
any λ ≥ 0, always yields a Bayes optimal classifier. Therefore, optimizing for robustness does not
tradeoff accuracy of the found classifier by (5) and hence, establishes that classifying an inductively
sampled node does not suffer from a robustness-accuracy tradeoff. Theorem 2 raises the important
question if common GNNs define function classes HGNN expressive enough to represent a Bayes
classifier for (1) and hence, can achieve optimal robustness. Theorem 3 in Appendix F.2.2 shows
that only being a minimizer for the robust loss L rob

G,y (f, g)v does not imply good generalization.

5 RESULTS

Accuracy (Bayes)
K X (X,A)

0.1 50.8% 89.7%
0.5 59.0% 90.3%
1.0 68.4% 91.7%
1.5 76.5% 93.1%
2.0 83.4% 94.7%
3.0 92.6% 97.4%
4.0 97.5% 99.0%
5.0 99.3% 99.8%

Table 1: Mean ac-
curacy of the Bayes
optimal classifier
on test nodes v with
(X,A) and with-
out (X) structure
information.

Using Contextual Stochastic Block Models (CSBMs) we measure the extent
of semantic content violations in common threat models (Section 5.1). Then,
we study over-robustness in CSBMs (Section 5.2) and real-world graphs (Sec-
tion 5.2.1). In CSBMs, we use the Bayes optimal classifier (Theorem 1), de-
noted g, to measure semantic change. The robustness of the Bayes classifier
defines the maximal meaningful robustness achievable (see Section 3). For re-
sults using the Contextual Barabási–Albert Model with Community Structure
(CBA), we refer to Appendix I.

Experimental Setup. We sample training graphs with n=1000 nodes from
a CSBMµ,σ2

n,p,q in the hard regime (Section 2). Each element of the class mean
vector µ ∈ Rd is set to Kσ/2

√
d, resulting in a distance between the class

means of Kσ. We set σ = 1 and vary K from close to no discriminative fea-
tures K =0.1 to making structure information unnecessary K =5 (see Table
1). We choose p=0.63% and q=0.15% resulting in the expected number of
same-class and different-class edges for a given node to fit CORA (Sen et al.,
2008). Following Fountoulakis et al. (2022), we set d= ⌊n/ ln2(n)⌉=21.
We use an 80%/20% train/validation split on the nodes. As usual in the in-
ductive setting, we remove the validation nodes from the graph during training. At test time, we
inductively sample 1000 times an additional node conditioned on the training graph. For each K,
we sample 10 different training graphs.

Models and Attacks. We study a wide range of popular GNN architectures: Graph Convolutional
Networks (GCN) (Kipf & Welling, 2017), Simplified Graph Convolutions (SGC) (Wu et al., 2019a),
Graph Attention Networks (GAT) (Veličković et al., 2018), GATv2 (Brody et al., 2022), APPNP
(Gasteiger et al., 2019), and GraphSAGE (Hamilton et al., 2017). Furthermore, we study a simple
Multi-Layer Perceptron (MLP) and Label Propagation (LP) (Zhou et al., 2004). The combination of
a model with LP (Huang et al., 2021) is denoted by Model+LP (see Section 2). To find adversarial
examples, we employ the established attacks Nettack (Zügner et al., 2018), DICE (random addition
of different-class edges) (Waniek et al., 2018), GR-BCD (Geisler et al., 2021) and SGA (Geisler
et al., 2021). Furthermore, we employ ℓ2-strong: Connect to the most distant different-class nodes
in feature space using ℓ2-norm. To find over-robust examples, we use a ”weak” attack, which we call
ℓ2-weak: Connect to the closest different-class nodes in ℓ2-norm. Theorem 4 in Appendix F.3 shows
that a strategy to change, with least structure changes, the true most likely class on CSBMs, i.e.,
an ”optimal attack” against the Bayes classifier g, is given by (arbitrarily) disconnecting same-class
edges and adding different-class edges to the target node. Therefore, the attacks DICE, ℓ2-strong,
and ℓ2-weak have the same effect on the semantic content of a graph. We investigate perturbation
sets B∆(·) with local budgets ∆ from 1 up to the degree (deg) of a node + 2, similarly to Zügner
et al. (2018). Further details, including the hyperparameter settings can be found in Appendix H.

Robustness Metrics. To analyse the robustness of varying models across different graphs, we need
to develop comparable metrics summarizing the robustness properties of a model f on a given graph.
First, to correct for the different degrees of nodes, we measure the adversarial robustness of f (w.r.t.
g) at node v relative to v’s degree and average over all test nodes V ′3:

R(f, g) =
1

|V ′|
∑

v∈V ′

Robustness(f, g, v)
deg(v)

(6)

3Excluding degree 0 nodes. This is one limitation of this metric, however, these are very rare in the generated
CSBM graphs and non-existing in common benchmark datasets such as CORA.
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where g represents the Bayes classifier and hence, Robustness(f, g, v) refers to the (minimal)
number of semantics-aware structure changes f is robust against (Definition 1). Exemplary,
R(f, g) = 0.5 would mean that on average, node predictions are robust against changing 50% of
the neighbourhood structure. Using the true labels y instead of a reference classifier g in (6), yields
the conventional (degree-corrected) adversarial robustness, unaware of semantic change, which we
denote R(f) := R(f, y). To measure over-robustness, we measure the fraction of conventional
adversarial robustness R(f), which cannot be explained by semantic-preserving robustness R(f, g):
Rover = 1 − R(f, g)/R(f). Exemplary, Rover = 0.2 means that 20% of the measured robust-
ness is robustness beyond semantic change. In Appendix G we present a metric for semantic-aware
adversarial robustness and how to calculate an overall robustness measure using the harmonic mean.

5.1 EXTENT OF SEMANTIC CONTENT CHANGE IN COMMON PERTURBATION MODELS

Threat K
Models 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

B1(·) 14.3 11.2 9.1 6.8 4.4 1.9 0.8 0.2
B2(·) 35.9 31.2 25.7 19.8 14.1 6.2 2.2 0.7
B3(·) 58.5 53.8 46.8 38.2 28.8 14.3 5.1 1.7
B4(·) 76.5 73.0 66.6 58.1 47.0 25.7 9.8 3.4
Bdeg(·) 75.7 60.0 55.4 49.1 39.6 21.9 9.0 3.2
Bdeg+2(·) 100 100 99.4 92.9 80.5 51.7 24.8 9.1

Table 2: Percentage (%) of test nodes for which
perturbed graphs in B∆(·) violate semantic con-
tent preservation. Calculated by connecting ∆ dif-
ferent class nodes (ℓ2-weak) to every target node.
For K≥4.0 structure is not necessary for good
generalization (Table 1). Results using other at-
tacks are similar (see Appendix J.3). Standard de-
viations are insignificant and hence, omitted.

We investigate how prevalent perturbed graphs
with changed semantic content are for com-
mon perturbation model choices. We denote the
perturbation set allowing a local budget of ∆
edge perturbations as B∆(·). Table 2 shows the
fraction of test nodes, for which we find per-
turbed graphs in B∆(·) with changed ground
truth labels. Surprisingly, even for very mod-
est budgets, if structure matters (K ≤ 3), this
fraction is significant. Exemplary, for K=1.0
and Bdeg+2(·), we find perturbed graphs with
changed semantic content for 99.4% of the tar-
get nodes. This establishes for CSBMs, a neg-
ative answer to a question formulated in the
introduction: If structure matters, does com-
pletely reconnecting a node preserve its seman-
tic content? Similar to CSBMs, nodes in real-
world graphs have mainly low-degree (Figure 12 in Appendix J.1). This provides evidence that
similar conclusion could be drawn for certain real-world graphs. The examined B∆(·) subsume all
threat models against edge-perturbations employing the ℓ0-norm to measure small changes to the
graph’s structure, as we investigate the lowest choices of local budgets possible4 and for these al-
ready find a large percentage of perturbed graphs, violating the semantics-preservation assumption.

Values in Table 2 are lower bounds on the prevalence of graphs in B∆(·) with changed semantic
content. We calculate these values by connecting ∆ different-class nodes (ℓ2-weak) to every target
node and hence, the constructed perturbed graphs G̃ are at the boundary of B∆(·). Then, we count
how many G̃ have changed their true most likely class using the Bayes classifier g. Thus, exemplary,
if a classifier f is robust against B3(·) for CSBMs with K=1.0, f classifies the found graphs at the
boundary of B3(·) wrong in 47% of cases. Therefore, f shows high over-robustness Rover.

5.2 OVER-ROBUSTNESS OF GRAPH NEURAL NETWORKS

Section 5.1 establishes the existence of perturbed graphs with changed semantic content in common
threat models. Now, we examine how much of the measured robustness of common GNNs can
actually be attributed to over-robustness (Rover), i.e., to robustness beyond semantic change. As
a qualitative example, we study a local budget of the degree of the target nodes Bdeg(·), results on
other perturbation sets can be found in Appendix J.4. Figure 3a shows the over-robustness of GNNs
when attacking their classification of inductively added nodes. For K ≤ 3 the graph structure is
relevant in the prediction (see Table 1). We find that in this regime, a significant amount of the
measured robustness of all GNNs can be attributed to over-robustness. Exemplary, 30.3% of the
conventional adversarial robustness measurement of a GCN for K = 0.5 turns out to be over-

4Global budgets again result in local edge-perturbations, however, now commonly allowing for way stronger
perturbations than Bdeg+2(·) to individual nodes. The number of allowed perturbation is usually set to a small
one- or two-digit percentage of the total number of edges in the graph. For CORA with 5278 edges, a relative
budget of 5% leads to a budget of 263 edge-changes, which can be distributed in the graph without restriction.
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(a) Local Budget ∆: Degree of Node (b) No Budget Restriction.

Figure 3: Fraction of Robustness beyond Semantic Change (Attack: ℓ2-weak; Plot with Standard Er-
ror). (a) A large part of the measured robustness against Bdeg(·) can be attributed to over-robustness.
(b) Applying ℓ2-weak without budget restriction until it changes a classifiers prediction. Note that
over-robustness can be significantly reduced by label propagation and for (b) that some over-robust
models, especially for high K, show high adversarial robustness (Appendix J.6).

robustness. LP achieves the lowest Rover and Rover significantly reduces when it is applied on
top of a GNN. Exemplary, GCN+LP for K = 0.5 drops to Rover = 20.9%. Adding LP does not
decrease test-accuracy (Appendix J.2) and often increases adversarial robustness as long as structure
matters (see Figure 15 in Appendix J.6.1).

An MLP achieves maximal robustness. Thus, for attacks choosing perturbations independent of the
attacked model, it provides an upper bound on the measurable over-robustness for a particular node,
as the complete budget ∆ will be exhausted without flipping an MLP’s prediction. Exemplary, we
measure 43% over-robustness for K =0.1 using ℓ2-weak. This means that for a perfectly robust
classifier against Bdeg(·) for CSBM graphs with K =0.1, 43% of measured conventional adversarial
robustness against ℓ2-weak is undesirable over-robustness. Note that all GNNs are close to this
upper bound. Stronger attacks such as Nettack or GR-BCD still show that a significant part of the
measured robustness is over-robustness (see Appendix J.5). Exemplary, Nettack performs strongest
against SGC and GCN. However, for a GCN at K = 0.5, still 11.4% of the measured robustness is
in fact over-robustness. An MLP for Nettack for K = 2 still shows 19.2% Rover, indicating that we
can expect a model robust against Nettack in Bdeg(·) to have high Rover. For bounded perturbation
sets B∆(·), maximal over-robustness necessarily decreases if K increases, as the more informative
features are, the more structure changes it takes to change the semantic content (i.e., the Bayes
decision). Thus, less graphs in B∆(·) have changed semantics (also see Table 2).

As a positive take-away for robustness measurements on real-world graphs, we find that if the at-
tack is strong enough, the robustness rankings derived from conventional adversarial robustness are
consistent with using semantic-aware adversarial robustness (Appendix J.6.1 and J.6.5). However,
if the attack is weak, semantic-awareness can significantly change robustness rankings (Appendix
J.6.2 and J.6.3). For high K, some GNNs show high (semantics-aware) adversarial robustness (Ap-
pendix J.6.1) additional to high Rover. Interestingly, if structure matters, the best harmonic mean
robustness is in general achieved by MLP+LP (Appendix J.6), which also has the best non-trivial
adversarial robustness, while achieving competitive test-accuracies. For Figure 3b, we apply ℓ2-
weak without budget restriction until it changes a model’s prediction. As a result, we find that all
GNNs (but not LP) have extensive areas of over-robustness in input space (compare to Figure 5 in
Appendix E).

5.2.1 OVER-ROBUSTNESS ON REAL-WORLD GRAPHS

Table 2 shows that only a few perturbations can change the semantic-content a graph encodes about
a target node. Additionally, if structure matters (K ≤ 3), the Bayes decision on CSBMs changes on
average after at most changing as many edges as the target node’s degree. This is visualized in Figure
1 measured for K=1.5 and for other K in Figure 31 in Appendix J.8. It is challenging to derive a ref-
erence classifier for real-world datasets and hence, directly measure over-robustness. However, we
can investigate the degree-dependent robustness of GNNs and see if we similarly find high robust-
ness beyond the degree of nodes. Figure 4 shows that a majority of test node predictions of a GCN on
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(inductive) Cora-ML (Bojchevski & Günnemann, 2018) are robust beyond their degree, by several
multiples. The median robustness for degree 1 nodes, lies at over 10 structure changes. Figure 30
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Figure 4: (Inductive) Cora-ML.

in Appendix J.7 shows a similar plot for CSBMs. Results are
obtained by applying a variant of ℓ2-weak on a target node v.
However, as Cora-ML is a multi-class dataset, we ensure all in-
serted edges connect to the same class c, which is different to
the class of v. The vulnerability of a GCN to adversarial attacks
likely stems from the lower quartile of robust node classifica-
tions in Figure 4. We conjecture over-robustness for the upper
quartile of highly robust node classifications. In Appendix K we
show that combining the GCN with LP significantly reduces the
upper extent of its robustness while achieving similar test accu-
racy and show similar results on other real-world datasets.

6 RELATED WORK

We now briefly discuss the most important related work and refer to Appendix L for an extended dis-
cussion. Semantics-aware adversarial robustness was theoretically studied by Suggala et al. (2019).
Similarly, their work shows no (adversarial) robustness-accuracy tradeoff, postulated among others
by Tsipras et al. (2019). However, they only discuss i.i.d. data and focus on the image domain. A
notion of overstability was investigated by Jia & Liang (2017) in natural language processing. How-
ever, their studied perturbations still preserve the ground-truth answers to predict by models. Tramèr
et al. (2020a) discussed over-robustness under the name of invariance-based adversarial examples
for the image domain. They did not use the concept of a reference classifier, but used humans as a
labeling oracle. To the best of our knowledge, we are the first to study a notion of over-robustness for
graphs, and a robustness-accuracy tradeoff for non-i.i.d. data. For graphs, Dai et al. (2018) note the
possibility of measuring semantics with a gold standard classifier and generate semantic-preserving
perturbations for graph classification on Erdős-Rényi graphs. Although no work has explicitly ad-
dressed semantic content preservation for node classification, Zügner et al. (2018) proposed to ap-
proximate unnoticeability by preserving the degree distribution; Li et al. (2021) introduced a metric
for degree assortativity, but did not restrict perturbations; Chen et al. (2022) proposed a node- and
edge-centric homophily metric, but focused on adding malicious nodes instead of edges.

7 DISCUSSION AND CONCLUSION

We have shown that common threat models on CSBMs include many graphs with changed semantic
content. As a result, (full) conventional robustness leads to sub-optimal generalization and robust-
ness beyond the point of semantic change. But we also found that the same threat models include
truly adversarial examples. This dichotomy is caused by the low-degrees of nodes and the brittle-
ness of their class-membership to a few edges. Thus, it needs both notions, adversarial and over-
robustness for a complete picture of robustness in graph learning. As real-world graphs also contain
mainly low-degree nodes, this calls for more caution when applying ℓ0-norm restricted threat mod-
els. These thread models should not be an end to, but the start of an investigation into realistic pertur-
bation models and works thinking about unnoticeability are positive directions into this endeavour.
On CSBMs a significant part of conventional robustness of GNNs is in fact over-robustness (with
similar patterns on real-world graphs). This raises the question what kind of robustness do defenses
improve on in GNNs?

Applying label propagation on top of GNN predictions has shown to be a simple way to reduce
over-robustness while not harming generalization or adversarial robustness. Therefore, LP can be
seen as a defense against an attack, where the adversary overtakes a clean node (e.g., social media
user) and, with its malicious activity, tries to stay undetected. This shows that not including the
known labels in their predictions can be a significant limitation of GNNs. As visually inspecting
graphs is difficult, synthetic graph generation models have proved to be an important tool to further
a principled understanding of graph attacks and defenses. Concluding, using semantics-aware ro-
bustness, we have shown that for inductively classifying a newly sampled node, optimal robustness
is achieveable, while maintaining high accuracy.
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REPRODUCIBILITY STATEMENT

The source code, together will all experiment configuration files of all our experi-
ments can be found on the project page: https://www.cs.cit.tum.de/daml/
revisiting-robustness/. Furthermore, we detail our hyperparameter search procedure and
all searched through values of all our models and attacks in Appendix H. Details on the parametriza-
tion of the used CSBMs can be found in Section 5. We performed all experiments trying to control
the randomness as much as possible. We set random seeds and ensure no outlier phenomena by
averaging over multiple seeds (including generating multiple CSBM graphs for each CSBM param-
eterization) as detailed in Section 5 and Appendix H. The experimental setup of our real-world graph
experiments is outlined in Appendix H.1.

ETHICS STATEMENT

Robustness is an important research direction for the reliability of machine learning in real-world
applications. A rigorous study counteracts possible exploits by real-world adversaries. We think
that the benefits of our work outweigh the risks and see no direct negative implications. However,
there remains the possibility of non-benign usage. Specifically, perturbations that are over-robust are
likely less noticeable in comparison to prior work. To mitigate this risk and other threats originating
from unrobustness, we urge practitioners to assess their model’s robustness (at best trying to include
domain knowledge to go beyond ℓ0-norm perturbations and closer to truly realistic threat models).
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Stephan Günnemann. Graph Neural Networks: Adversarial Robustness, pp. 149–176. Springer
Nature Singapore, 2022.

Bruce Hajek and Suryanarayana Sankagiri. Community recovery in a preferential attachment graph.
IEEE Transactions on Information Theory, 65(11):6853–6874, 2019.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Neural Information Processing Systems (NeurIPS), 2017.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical Learning: Data
Mining, Inference and Prediction. Springer, 2 edition, 2009.

Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved Problems in ML
Safety. arXiv:2109.13916, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
arXiv:2005.00687, 2020.

Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-lsc:
A large-scale challenge for machine learning on graphs. arXiv:2103.09430, 2021.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin Benson. Combining label prop-
agation and simple models out-performs graph neural networks. In International Conference on
Learning Representations (ICLR), 2021.

11



Published as a conference paper at ICLR 2023

Robin Jia and Percy Liang. Adversarial examples for evaluating reading comprehension systems.
In Conference on Empirical Methods in Natural Language Processing (EMNLP), 2017.

Jonathan Jordan. Geometric preferential attachment in non-uniform metric spaces. Electronic Jour-
nal of Probability, 18:1 – 15, 2013.

Brian Karrer and M. E. J. Newman. Stochastic blockmodels and community structure in networks.
Physical Review E, 83(1), 2011.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations (ICLR), 2017.
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Daniel Zügner and Stephan Günnemann. Certifiable robustness and robust training for graph con-
volutional networks. In Conference on Knowledge Discovery and Data Mining (KDD), 2019b.
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A LIST OF SYMBOLS AND ABBREVIATIONS

[n] Set {1, . . . , n}
A Adversary
A Adjacency matrix
Ã Perturbed adjacency matrix
A′ Adjacency matrix of a graph with an inductively added node
Ã′ Perturbed adjacency matrix of a graph with an inductively added node
AT Transpose of matrix A
Ai,: i-th row of matrix A
Ai,j Element of matrix A in i-th row and j-th column
a.e. Almost everywhere
B(X,A), B(·) Perturbation set (possible perturbed graphs for a given clean graph)
B∆(·) Perturbation set allowing ∆ ∈ N edge changes
Bdeg(·) Perturbation set B∆(·) with ∆ ≡ degree of the target node
BA(G, v) Set of adversarial examples for a node v and clean graph G
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BO(G, v) Set of over-robust examples for a node v and clean graph G
Ber Bernoulli distribution
Bin Binomial distribution
CBA Contextual Barabási–Albert model with community structure
CSBM Contextual stochastic block model
d Feature dimension
Dn Data generating distribution
D(X,A, y) Conditional distribution over graphs with an inductively added node
deg(v) Degree of node v
f Investigated node classifier, e.g. a GNN
f∗ Bayes optimal classifier and/or classifier minimizing some loss
f∗
Bayes Bayes optimal classifier
F rob
1 Harmonic mean between 1−Rover and Radv

g Reference node classifier (see Section 3)
G The graph without labels, i.e. (X,A)

G̃ Perturbed graph without labels, i.e. (X̃, Ã)
G′ Sampled graph with an inductively added node without labels
G̃′ Perturbed graph with an inductively added node without labels
H Function class, i.e. set of possible considered node classifiers
I(cond) Indicator function, 1 if cond evaluates to true, otherwise 0
K Distance between the class means in a CSBM / CBA in σ units
ℓ0/1 0/1-loss
ℓp p-norm
LG,y(f)v Expected 0/1-loss of node v (see Equation 1)
L adv

G,y (f, g)v Expected adversarial 0/1-loss of node v (see Equation 2)
L over

G,y (f, g)v Expected over-robust 0/1-loss of node v (see Equation 3)
L rob

G,y (f, g)v Expected robust loss of node v (see Equation 4)
LP Label propagation
m The degree each newly added node in a CBA should have
µ Class mean vector in a CSBM / CBA
n Number of nodes
N (v) Neighbourhood of node v
p Connection probability between same-class nodes in a CSBM
q Connection probability between different-class nodes in a CSBM
R(f, g) Degree-corrected, semantic-aware adversarial robustness of f w.r.t. g
R(f) Degree-corrected classic adversarial robustness of f (≡ R(f, y)).

Note: R(g) represents the maximal achievable semantic-aware robust-
ness w.r.t. g.

Rover Fraction of R(f) not explained by semantic-aware robustness R(f, g)
Radv Fraction of R(g) achieved by semantic-aware robustness R(f, g)
σ Variance of the node features in a CSBM / CBA
v A node in the graph. Usually, the target node.
Ω Semantic-content returning oracle
ωc1c2 Affinity in a CBA between classes c1 and c2
X Feature matrix
X̃ Perturbed feature matrix
X′ Feature matrix of a graph with an inductively added node
X̃′ Perturbed feature matrix of a graph with an inductively added node
y Complete label vector of a given graph (possibly unknown)
y′ Complete label vector of a graph with an inductively added node (pos-

sibly unknown)
yi Label of node i
yL Known label vector of a given graph

Table 3: List of most important symbols and abbreviations used in this work.
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B WHY GLOBAL GRAPH PROPERTIES DO NOT PRESERVE SEMANTIC
CONTENT

Here we provide formal arguments, why the employed global graph properties and metrics by
Zügner et al. (2018), Li et al. (2021) and Chen et al. (2022) do not necessarily preserve or cor-
relate with the semantic content in a graph. In Appendix B.1, we discuss the degree distribution
preservation proposed by Zügner et al. (2018). Empirical results showing that preserving degree
distribution has no effect on the over-robustness can be found in Appendix I. Appendix B.2 focus
on degree assortativity proposed by Li et al. (2021) and Appendix B.3 on other homophily metrics
proposed by Chen et al. (2022).

B.1 DEGREE DISTRIBUTION PRESERVATION

Assume we are given an undirected graph. Choose two arbitrary edges e1 = (i, j) and e2 = (u, v)
from the set of edges in the graph. Without loss of generality, we assume i < j and u < v
and binary classification. Now, we replace these two edges with (i, v) and (u, j). Because
deg(i), deg(j), deg(u) and deg(v) are unchanged, the above procedure preserves the degree dis-
tribution in the graph.

Assume now that we choose as edges e1 only same-class edges of class 0 and of e2 only same-class
edges of class 1. By repeating the above procedure for all possible (e1, e2)-pairs we effectively
rewiring a homophilic graph until it becomes heterophilic, while preserving its degree distribution.
Given structure is relevant for the semantics, this can’t preserve semantics on real-world graphs. For
CSBMs and CBAs Theorem 4 and Theorem 5 prove that this rewiring is theoretically most effective
to change the semantic content the graph encodes about its nodes. Similar arguments can be made
for different edges choices preserving the degree distribution but completely changing the original
semantic content, e.g. to change different-class edges to same-class edges or repeating randomly
choosing edge-pairs until the original graph structure has been completely destroyed.

Empirical results showing that preserving degree distribution has no effect on the over-robustness
can be found in Appendix I. We also want to note that Zügner et al. (2018) requires the graphs to
follow a power-law degree distribution. However, not all graphs in practice satisfy this criterion
(Clauset et al., 2009).

B.2 DEGREE ASSORTATIVITY

Degree assortativity, similarly to the degree distribution, can be an orthogonal measure to semantic
content preservation. This is as it too only depends on the degree of the nodes and hence, we derive
a perturbation scheme preserving the degrees of the incident nodes, provable preserving degree
assortativity, but changing the semantic content.

Without loss of generality, we again assume an undirected graph. Then, the degree assortativity
coefficient (Li et al., 2021; Newman, 2003) is defined using the so called degree mixing matrix M .
Mi,j represents the fraction of edges, connecting degree i nodes with degree j nodes. For undirected
graphs, Mi,j is symmetric and satisfies

∑
ij Mi,j = 1 and

∑
j Mi,j = αi. Degree assortativtiy is

then defined as

r(α) =

∑
ij ij(Mi,j − α2

i )

σ2
α

(7)

where σα denotes the standard deviation of the degree distribution α.

Now, choose two arbitrary edges e1 = (v1, v2) and e2 = (u1, u2) fulfilling deg(v1) = deg(u1)
and deg(v2) = deg(u2). If we replace these two edges with (v1, u2) and (u1, v2), we preserve
the degrees of the original nodes and hence the degree distribution α, the degree counts, as well as
Mi,j . Therefore, r(α) stays unchanged. This perturbation scheme can be seen as a special case of
the one defined in Appendix B.1. Li et al. (2021) defines as a metric to measure unnoticeability,
the expected (normalized) change in degree assortativity by a perturbation scheme, which they call
Degree Assortativity Change (DAC). Because the above proposed perturbation scheme does not
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change r(α), it has a DAC of 0. However, if e1 represents a same-class edge for class 0 and e2
a same-class edge for class 1, of which there will be many for lower degree connections5 such as
degree 1 nodes with degree 2 nodes or degree 2 nodes with degree 2 nodes, this perturbation scheme
significantly rewires the graph by reducing homophily and increasing heterophily. This again is
provably most effective perturbations to change the semantic content on CSBMs/CBAs as shown
by Theorem 4/Theorem 5. Note that DAC can be non-zero for semantic preserving operations
on CSBMs/CBAs, exemplary when e1 and e2 are same-class edges, both of the same class, but
connecting nodes of different degrees.

While Li et al. (2021) propose to measure an attacks effect on unnoticeability based on degree
assortativity change, it does not propose to restrict the perturbation set through degree assortativity
preservation or similar. Furthermore, it is unclear, if one wants to preserve degree assortativity, what
sensible values for the preservation would be. All attacks investigated by Li et al. (2021) show small
DAC, i.e. on the order of a few percentage points assortativity change at most - while being very
effective attacks. For most datasets, exemplary Cora or Pubmed, degree assortativity changes by
less than 1%.

B.3 OTHER HOMOPHILY METRICS

Chen et al. (2022) propose two homophily metrics for graph injection attacks, edge-centric ho-
mophily and node-centric homophily. They argue that edge-centric homophily has several short-
comings and focus their attention on node-centric homophily. Therefore, we do the same here.
Node-centric homophily of a node u is defined as

hu = sim(ru, Xu), ru =
∑

j∈N (u)

1√
djdu

Xj,: (8)

where sim(·) is a similarity metric and chosen by (Chen et al., 2022) to be the cosine similarity.

Chen et al. (2022) analyse node-centric homophily changes when adding malicious nodes into the
graph (graph injection attacks, GIA) and when adding/removing edges (graph modification attacks,
GMA - representing the scenario studied in this work). For adding/removing edges, they similarly
to our work, study an inductive evasion setting and use an attack which chooses to add/remove
those edges having the largest effect on the attack loss based on the gradient of the relaxed adja-
cency matrix. Especially, they create perturbed graphs by applying either graph injection or graph
modification attacks. They observe that GIA significantly changes the homophily distribution of a
graph given by Equation 8, while GMA has only very slight effects on the measured homophily
distribution. Especially, GIA produces a significant tail in the homophily distribution not seen in the
original graph, which can be avoided by restricting the node-centric homophily change to not sur-
pass certain thresholds. However, GMA does not produce these tails in the homophily distribution
and hence, it is not clear how node-centric homophily can be effectively leveraged for preserving
semantic content for GMAs. Therefore, node-centric homophily is a highly relevant and interesting
metric for GIAs but its applicability to GMAs is limited.

Note that for node-centric homophily, it is not as trivial as for the other graph properties to derive an
attack preserving the metric. Especially, node-centric homophily is not a global but a local property
and dependent on the continuous node features instead of the discrete node degrees. Therefore,
we informally show that our employed ℓ2-weak attack, given a limited budget, approximatively
preserves the node-centric homophily with high probability for our synthetic graph models, while
changing the semantic content of a node. Note that the feature distributions on CSBMs/CBAs, being
a Gaußian mixture model, overlap6. Without loss of generality, we assume a binary classification
setting with node u having class 0. Assuming homophily, Equation 8 will result with a probability
greater 0.5 in an average closer to the mean feature vector of class 0 than class 1. If the number
of nodes in the graph increases, there will, with high probability, be nodes of class 1 with node
features more likely based on class 0, i.e. more closer to the mean feature vector of class 0 than
class 1 in feature space. Most nodes have low degree and hence, they change their semantic content

5This is due to homophily and a majority of nodes being low degree the real-world graph (Figure 8) and
synthetic graphs (Figure 6).

6Note that otherwise, the graph structure would not be necessary to separate the classes.
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by connecting only to a few different class node (see Appendix J.8). If we now employ the ℓ2-
weak attack, i.e. connect a target node of class 0 to the closest nodes in feature space of class
1, given the graph is large enough, node-centric homophily will not significantly change into the
direction of the mean of class 1, as we will - with high probability - find enough nodes closer to
the mean of class 0 than 1 to change the semantic content of the target node, before we have to
include nodes with features having a large effect on the node-centric homophily. Because semantic
content for low-degree nodes often changes after 1 or 2 edge insertions, it can be argued that the
node-centric homophily measure for ℓ2-weak attack will not change significantly, before we already
have measured significant over-robustness, given the graph is large enough.

C CONTEXTUAL BARABÁSI–ALBERT MODEL WITH COMMUNITY
STRUCTURE

We use the Barabási–Albert model with community structure (Hajek & Sankagiri, 2019; Jordan,
2013) as a (tractable) graph generation model generating a power-law degree distribution and ex-
tend it with node features sampled from a Gaußian mixture distribution. In line with the CSBM,
we call the resulting model Contextual Barabási–Albert Model with Community Structure (CBA).
Compared to a CSBM, it requires the following additional parameters:

• m: The degree of each added node (number of edges to insert with each added node).
• ωyiyj

: The affinity between labels yi and yj . The affinity must be provided for each possible
label pair and we collect the individual terms in the affinity matrix ω. This replaces the
parameters p, q in a CSBM.

Furthermore, our initial graph consists of a single node with a self-loop. We implicitly assume
that each added node also has one self-loop. Technically, we do not record the self-loops in the
adjacency matrix and degree counts but just add them for the sampling probability calculation (see
below). Thus, the resulting graph has no self-loops. Sampling from a CBA can now be written as
the following iterative process over nodes i = 2, . . . , n:

1. Sample label yi ∼ Ber(1/2) (Ber denoting the Bernoulli distribution).
2. Sample feature vector Xi,:|yi ∼ N ((2yi − 1)µ, σI) with µ ∈ Rd, σ ∈ R.

3. Choose m neighbours with probability p
(i)
j =

(1+kj)ωyiyj∑i−1
m=1(1+km)ωyiyj

. In other words, the

neighbours are sampled from a multinomial distribution. If a node got sampled more than
once, i.e. Ai,j > 1, then we set Ai,j = 1. Note that this implies P[Ai,j = 1|y] = 1 −
P[Ai,j = 0|y] = 1−Bin(0|m, p

(i)
j ). (Bin denoting the binomial distribution). Furthermore,

for all j ≤ i, we set Ai,j = Aj,i.

We denote the above process process (X,A, y) ∼ CBAµ,σ2

n,m,ω . Inductively adding n′ nodes can be
performed by repeating the above process for i = n+ 1, . . . , n+ n′. Note that a separation into an
easy and hard regime for learning made by Fountoulakis et al. (2022) is only based on the fact that
the node features are sampled from a Gaußian mixture distribution and does not making use of how
the graph structure is generated. Hence, the observation for a CSBM carries to a CBA.

D ON THE CHOICES OF GRAPH GENERATION MODELS

There has been a recent trend in using synthetic graph models to generated principled insights into
GNNs (see related work in Appendix L). As graph generation model choice, particularly prevalent
are the contextual stochastic block model (CSBM) and the degree-corrected stochastic block model
(DCSBM). First, we talk about a limitation of CSBMs and we outline why the DCSBM is not
applicable to the setting studied in our work. Secondly, we give an argument why we choose a
CSBM compared to alternative graph models, in particular preferential attachment models.

The (C)SBM allows to generate graphs with same-class edge probabilities p and different-class
edges probabilities q, which can be fitted to real-world graphs, such that generated nodes have in
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expectation equal (average) same-class degree or different-class degree as the real-world graph and
they allow to configure the degree of homophily or heterophily. One shortcoming of stochastic
block models is that they do not produce a power-law degree distribution, which is often observed
in practice. As a result, Karrer & Newman (2011) introduced a degree-corrected stochastic block
model, which allows to fit its expected degree distribution to arbitrary empirical distributions found
in real-world graphs. However, to correctly parametrize a DCSBM, one needs knowledge of the
expected degrees of all individual nodes in the graph in advance. Then, its theoretic guarantees only
hold for a graph of prespecified size and it does not define an iterative growth process. Thereby,
its principled applicability is limited to transductive learning7 not matching our setting of inductive
node classification. Classic stochastic block models, including the CSBM, do not suffer from this
limitation, as a new node can be added inductively with connection probabilities p and q, making
CSBMs applicable for our study of inductive node classification.

Stochastic block models have a long history of study in the statistics and machine learning literature
(Abbe, 2018) and are the canonical graph generation models to study tasks such as community de-
tection or clustering. This and their extension (CSBM) with node features sampled from a Gaußian
mixture model (Binkiewicz et al., 2017; Deshpande et al., 2018), make them an appealing first choice
of study for the graph neural network community compared to alternative models outlined below.
Hence, (C)SBMs have been used as the model of choice by many previous related work, among
others by Fountoulakis et al. (2022); Baranwal et al. (2021) and Palowitch et al. (2022).

A well-known alternative type of graph generation models, which result in a power-law degree dis-
tribution, are based on preferential attachment of which the Barabási–Albert (BA) model (Albert &
Barabási, 2002) is a widely used instantiation. However, the BA and most of its later variations,
do not show community structure making them not applicable to study node classification tasks.
Indeed, we are not aware of any works using preferential attachment models to further our under-
standing of graph neural networks and there are only few works which extent classical preferential
attachment models to exhibit community structure. Notably, Hajek & Sankagiri (2019) investigate
the properties of a classical BA model implanted with community structure, initially conceived in a
more general setting by Jordan (2013). Other works combining preferential attachment with com-
munity structure are Li & Maini (2005) and Lee et al. (2015). For our work, we choose the model
from Hajek & Sankagiri (2019) and, similarly to the CSBM, extend it with node features sampled
from a Gaußian mixture distribution (CBA). We choose this model, as it is based on the classical BA
model and compared to the work of Li & Maini (2005), is more concise and principled, with less
additionally added parameters following more closely the original BA model, and enjoying a deeper
mathematical theory. Furthermore, compared to the work of Lee et al. (2015) it does not require to
define a similarity function between individual nodes.

Note that all preferential attachment models with community structure suffer from having to fix
the node degree of newly added nodes in advance and that higher degrees are only observed for
the earlier nodes in the graph, making newly sampled nodes less representative of the whole graph
compared to SBM models. Because of these reasons, we think that using the above preferential
attachment models with community structure can provide interesting additional information for the
(inductive) study of GNNs, but cannot substitute for using CSBMs.

Furthermore, note that even though a CSBM does not produce a power-law degree distribution, it
still fulfills the important property that a majority of nodes have low degree and its degree distri-
bution visually is not so dissimilar to what we find in real-world graph (compare with Figure 12).
Furthermore, Clauset et al. (2009) show that not all graphs in the real-world follow a power-law
degree distribution.

7In a DCSBM edges are sampled from a Poison distribution allowing multi-edges in the graphs. This has
to be corrected to fit many real-world graphs but in doing so, one violates the exact matching of the expected
degree distribution to a real-world graph.
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E CONCEPTUAL DIFFERENCES BETWEEN OVER- AND ADVERSARIAL
ROBUSTNESS

Figure 5a shows the decision boundary of a classifier f following the one of a base classifier g
except for the dotted line. The dashed region between f ’s and g’s decision boundary is a region of
over-robustness for the blue class and a region of adversarial examples for the red class.

(a) (b) (c) (d)

Figure 5: Conceptual differences between over- and adversarial robustness. a) The decision bound-
ary of classifier f follows the one of a base classifier g except for the dotted line. b) Finite perturba-
tion budgets induce bounded perturbation sets B(·) intersecting only from one side with the dashed
area. c) The red class is not seen because it lies in a low data likelihood region. d) Zoomed: A node
whose perturbation set includes a region of adversarial and over-robust examples.

Note that in Figure 5b, using the classical concept of adversarial robustness, perturbed examples
of blue datapoints crossing the decision boundary of g but still in B(·) will be judged adversari-
ally robust. Therefore, they may be used to provide a learning signal for f to further solidify its
too insensitive decision boundary. Using our refined concept of adversarial robustness, the set of
potentially adversarial examples B(·) is (correctly) cut off at the decision boundary of g.

In Figure 5a it is assumed that datapoints on both sides of the decision boundary g have been sam-
pled. This may be likely if every datapoint in the input space has a comparable sampling probability.
However, in practice there are regions of high and low data likelihood and hence, it could be that dat-
apoints on one side of the dashed regions have not been sampled as exemplified in Figure 5c). There,
the dashed line indicates the transition from a high to low data likelihood area. As a result, only the
concept of over-robustness can capture the misbehaviour of the classifier f . The reverse scenario is
also possible in which only the examples of the right class are sampled and the left class is in a low
likelihood region. Indeed, in our results (see Section 5.2), there are some cases where we measure
both high adversarial and over-robustness, exactly fitting the scenario visualized in Figure 5c. Note
that it makes sense to robustify a classifier even against low-likelihood events as in safety-critical
scenarios correct behaviour for unusual or rare events is crucial (Hendrycks et al., 2021).

Figure 5d zooms in to a more intricate case. Disregarding the base classifier g would lead to wrongly
interpreting every example above the decision boundary of f as adversarial. With our refined no-
tions, it is possible correctly identify the adversarial region as above f until g, the over-robust region
as below the decision boundary of f but right of g and the correctly classified area in the top-right.

F PROOFS

F.1 BAYES CLASSIFIER

We proof Theorem 1 by deriving the base classifier for multi-class node classification with C classes.
Theorem 1 then follows as special case by setting C = 2. We restate Theorem 1 for multiple classes:

Theorem 1. The Bayes optimal classifier, minimizing the expected 0/1-loss (1), is f∗(X′,A′, y)v =
argmax

ŷ∈{0,...,C−1}
P[y′v = ŷ|X′,A′, y].
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Proof. Lets denote by x−i all elements of a vector x except the i-th one. First, note that D(X,A, y)
from which we sample (X′,A′, y′) defines a conditional joint distribution8

P[X′,A′, y′|X,A, y] = P[y′v|X′,A′, y′−v,X,A, y] · P[X′,A′, y′−v|X,A, y]

= P[y′v|X′,A′, y] · P[X′,A′, y|X,A, y]

= P[y′v|X′,A′, y] · P[X′,A′|X,A, y] (9)

where the first line follows from the basic definition of conditional probability, the second lines from
the definition of the inductive sampling scheme (i.e., y′−v = y, and X′ and A′ containing X and A),
and the third line from P[y|X,A, y] = 1. Thus, we can rewrite the expected loss (1) with respect to
these probabilities as

E
(X′,A′,y′)∼D(X,A,y)

[ℓ0/1(y
′
v, f(X

′,A′, y)v]

= EX′,A′|X,A,y

[
Ey′

v|X′,A′,y[ℓ0/1(y
′
v, f(X

′,A′, y)v]
]

(10)

= EX′,A′|X,A,y

[
C−1∑
k=0

ℓ0/1(k, f(X
′,A′, y)v) · P[y′v = k|X′,A′, y]

]
(11)

The following argument is adapted from Hastie et al. (2009). Equation (11) is minimal for a classifier
f∗, if it is (point-wise) minimal for every (X′,A′, y). This means

f∗(X′,A′, y)v = argmin
ŷ∈{0,...,C−1}

C−1∑
k=0

ℓ0/1(k, ŷ) · P[y′v = k|X′,A′, y]

= argmin
ŷ∈{0,...,C−1}

C−1∑
k=0

(1− I[k = ŷ]) · P[y′v = k|X′,A′, y]

= argmax
ŷ∈{0,...,C−1}

C−1∑
k=0

I[k = ŷ] · P[y′v = k|X′,A′, y] (12)

= argmax
ŷ∈{0,...,C−1}

P[y′v = ŷ|X′,A′, y] (13)

where line (13) follows from fact that in the sum of line (12), there can only be one non-zero
term. Equation (13) tells us that the optimal decision is to choose the most likely class. Due to
f∗(X′,A′, y) = argmax

ŷ∈{0,1}
P[ŷ|X′,A′, y] minimizing (11) it also minimizes the expected loss (1)

and hence, is a Bayes optimal classifier.

F.2 ROBUSTNESS-ACCURACY TRADEOFF

F.2.1 THEOREM 2

For the proofs of Theorem 2 and Theorem 3, we assume that the set of cases where the two classes
are equiprobable has measure zero. This is a mild assumption for instance satisfied in contextual
stochastic block models.

For convenience we restate Theorem 2:

Theorem 2. Assume a set of admissible functions H, which includes a Bayes optimal classifier
f∗
Bayes and let the reference classifier g be itself a Bayes optimal classifier. Then, any minimizer
f∗ ∈ H of (5) is a Bayes optimal classifier.

8Note that we actually deal with a discrete-continuous joint distribution.
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Proof. The proof strategy is mainly adapted from Suggala et al. (2019). Let f∗
Bayes ∈ H and g

be a Bayes optimal classifiers. Assume f∗ is a minimizer of (5). Further, assume that f∗(G′, y)v
disagrees with f∗

Bayes(G′, y)v for a set of graphs G′ ∼ D(G, y) with non-zero measure. Note that
a Bayes optimal classifier follows the decision rule argmax

ŷ∈{0,1}
P[y′v = ŷ|G′, y] (see Theorem 1).

We assume that the set of cases where there are two or more maximal, equiprobable classes has
measure zero. Then, the Bayes Decision rule is unique on the support of D(G, y). Therefore,
f∗
Bayes(G′, y)v = g(G′, y)v a.e.

We will show that the joint expected loss (5) is strictly larger for f∗ than f∗
Bayes. We start by

showing that the standard expected loss LG,y(f
∗)v > LG,y(f

∗
Bayes)v:

LG,y(f
∗)v − LG,y(f

∗
Bayes)v

= E
(G′,y′)∼D(G,y)

[ℓ0/1(y
′
v, f

∗(G′, y)v)− ℓ0/1(y
′
v, f

∗
Bayes(G′, y)v)]

= EG′|G,y
[
Ey′

v|G′,y[ℓ0/1(y
′
v, f

∗(G′, y)v)− ℓ0/1(y
′
v, f

∗
Bayes(G′, y)v)]

]
(14)

= EG′|G,y
[
Ey′

v|G′,y[I(y′v ̸= f∗(G′, y)v)]− Ey′
v|G′,y[I(y′v ̸= f∗

Bayes(G′, y)v)]
]

(15)

= EG′|G,y
[
P[y′v ̸= f∗(G′, y)v|G′, y]− P[y′v ̸= f∗

Bayes(G′, y)v|G′, y]
]

(16)

> 0 (17)

Line 14 follows from rewriting the conditional joint distribution defined by D(G, y) (see Equation
(9)). Line 15 follows from the definition of the ℓ0/1-loss and the linearity of expectation. The last
line 17 follows from the Bayes optimal classifier being defined as a pointwise minimizer of the prob-
ability terms in line (16) and the initial assumption of f∗(G′, y)v disagreeing with f∗

Bayes(G′, y)v
for a set of graphs with non-zero measure.

Now, we investigate the expected robust 0/1-losses for f∗ and f∗
Bayes. Because the decision rule

defined by g equals the one of f∗
Bayes a.e., it follows that:

L adv
G,y (f∗

Bayes, g)v

= E
(G′,y′)∼D(G,y)

[
max

G̃′∈B(G′)

g(G̃′,y)v=g(G′,y)v

ℓ0/1(f(G̃′, y)v, g(G′, y)v)− ℓ0/1(f(G′, y)v, g(G′, y)v)

]

= 0

and similarly:

L over
G,y (f∗

Bayes, g)v

= E
(G′,y′)∼D(G,y)

[
max

G̃′∈B(G′)

f(G̃,y)v=f(G′,y)v

ℓ0/1(g(G̃′, y)v, f(G′, y)v)− ℓ0/1(g(G′, y)v, f(G′, y)v)

]

= 0

Because the expected adversarial and over-robust 0/1-losses are non-negative, i.e. L adv
G,y (f, g)v ≥ 0

and L over
G,y (f, g)v ≥ 0 for any f ∈ H, it follows that L rob

G,y (f
∗, g)v ≥ L rob

G,y (f
∗
Bayes, g)v . Therefore,

LG,y(f
∗)v + λL rob

G,y (f
∗, g)v > LG,y(f

∗
Bayes, g)v + λL rob

G,y (f
∗
Bayes, g)v

This is a contradiction with f∗ being a minimizer of (5). Therefore, f∗(G′, y)v must equal
f∗
Bayes(G′, y)v a.e. and hence, f∗(G′, y)v is a Bayes optimal classifier.
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F.2.2 THEOREM 3

Here we investigate what happens, if we would only optimize for minimal L rob
G,y (f, g)v =

λ1L adv
G,y (f, g)v + λ2L over

G,y (f, g)v . Will we also find a classifier, which has not only small robust
but also small standard loss? Theorem 3 below establishes that this does not hold in general. Thus,
being a minimizer for the robust loss L rob

G,y (f, g)v , i.e., achieving optimal robustness (low over-
and high adversarial robustness) does not imply achieving minimal generalization error. Theorem
3 showcases that the concepts of over- and adversarial robustness do not interchange with standard
accuracy.
Theorem 3. Assume H is a set of all measurable functions. Let f∗

Bayes be a Bayes optimal classifier
and let the base classifier g also be a Bayes optimal classifier. Then, there exists a function f∗

rob ∈ H
minimizing the robust loss L rob

G,y (f
∗
rob, g)v and satisfying

LG,y(f
∗
rob)v > LG,y(f

∗
Bayes)v.

Proof. We assume that the set of cases where the two classes are equiprobable has measure zero.
To prove this result, we define a node-classifier f(G′, y)v := 1− f∗

Bayes(G′, y). We will first show
that f(G′, y)v has minimal expected adversarial 0/1-loss and later show the same for the expected
over-robust 0/1-loss.

The adversarial loss L adv
G,y (f, g)v takes the expectation over

max
G̃′∈B(G′)

g(G̃′,y)v=g(G′,y)v

{
ℓ0/1(f(G̃′, y)v, g(G′, y)v)− ℓ0/1(f(G′, y)v, g(G′, y)v)

}
(18)

Now, note that the second term in equation (18) ℓ0/1(f(G′, y)v, g(G′, y)v) is 1 by definition of
f . Furthermore, because we maximize (18) over graphs with g(G̃′, y)v = g(G′, y)v , the first term
ℓ0/1(f(G̃′, y)v, g(G′, y)v) = ℓ0/1(f(G̃′, y)v, g(G̃′, y)v) and hence, is always 1 by definition of f . As
a result, L adv

G,y (f, g)v = 0. Because L adv
G,y (f, g)v is non-negative, f achieves minimal adversarial

loss.

Now we look at the expected over-robust 0/1-loss L over
G,y (f, g)v . It takes the expectation over

max
G̃′∈B(G′)

f(G̃′,y)v=f(G′,y)v

{
ℓ0/1(g(G̃′, y)v, f(G′, y)v)− ℓ0/1(g(G′, y)v, f(G′, y)v)

}
(19)

Here again, the second term ℓ0/1(g(G′, y)v, f(G′, y)v) = 1 as established above. However, because
in the set of graphs we are optimizing over f(G̃, y)v = f(G′, y)v , it follows that the first term in (19)
ℓ0/1(g(G̃′, y)v, f(G′, y)v) = ℓ0/1(g(G̃′, y)v, f(G̃′, y)v) and thus, by definition of f , is 1. As a result,
L over

G,y (f, g)v = 0. Again, because L over
G,y (f, g)v is non-negative, f achieves minimal over-robust

loss.

Therefore, we have established that f achieves optimal robustness, i.e., L rob
G,y (f, y)v = 0.

Now we will show that LG,y(f)v > LG,y(f
∗
Bayes)v:

LG,y(f)v − LG,y(f
∗
Bayes)v

= E
(G′,y′)∼D(G,y)

[ℓ0/1(y
′
v, f(G′, y)v)− ℓ0/1(y

′
v, f

∗
Bayes(G′, y)v)]

= E
(G′,y′)∼D(G,y)

[ℓ0/1(y
′
v, 1− f∗

Bayes(G′, y)v)− ℓ0/1(y
′
v, f

∗
Bayes(G′, y)v)]

= EG′|G,y
[
Ey′

v|G′,y[I(y′v ̸= 1− f∗
Bayes(G′, y)v]− Ey′

v|G′,y[I(y′v ̸= f∗
Bayes(G′, y)v)]

]
= EG′|G,y

[
Ey′

v|G′,y[I(y′v = f∗
Bayes(G′, y)v]− Ey′

v|G′,y[I(y′v ̸= f∗
Bayes(G′, y)v)]

]
(20)

= EG′|G,y
[
P[y′v = f∗

Bayes(G′, y)v|G′, y]− P[y′v ̸= f∗
Bayes(G′, y)v|G′, y]

]
> 0
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Line (20) follows from the fact of binary classes. The last line follows again from the definition of
the Bayes classifier and assuming that the set of cases where the two classes are equiprobable classes
has measure zero.

F.3 OPTIMAL ATTACK ON CSBMS

Theorem 4. Given a graph generated by a CSBM. The minimal number of structure changes to
change the Bayes classifier (Theorem 1) for a target node v is defined by iteratively: i) connecting v
to another node u with yv ̸= yu or ii) dropping a connection to another node u with yv = yu.

Proof. Assume (X′,A′, y′) ∼ CSBMµ,σ2

1,p,q(X,A, y) with q < p (homophily assumption). Recall
the Bayes decision y∗ = argmaxŷ∈{0,1} P[y′v = ŷ|X′,A′, y]. We want to prove which structure
perturbations result in a minimally changed adjacency matrix Ã′, as measured using the ℓ0-norm,
but for which

y∗new = argmax
ŷ∈{0,1}

P[y′v = ŷ|X′, Ã′, y] ̸= y∗ (21)

Therefore, we want to change

P[y′v = y∗|X′,A′, y′] > P[y′v = 1− y∗|X′,A′, y′] (22)

to
P[y′v = y∗|X′, Ã′, y′] < P[y′v = 1− y∗|X′, Ã′, y′] (23)

To achieve this, first note that we can rewrite Equation (22) using Bayes theorem:

P[X′
v,:,A

′
v,:|y′v = y∗,X,A, y] · P[y′v = y∗|X,A, y]

P[X′
v,:,A

′
v,:|X,A, y]

>
P[X′

v,:,A
′
v,:|y′v = 1− y∗,X,A, y] · P[y′v = 1− y∗|X,A, y]

P[X′
v,:,A

′
v,:|X,A, y]

(24)

⇐⇒ P[X′
v,:,A

′
v,:|y′v = y∗,X,A, y] > P[X′

v,:,A
′
v,:|y′v = 1− y∗,X,A, y] (25)

where in Equation 24 we use (A′
v,:)

T = A′
:,v and Equation 25 follows from P[y′v = y∗|X,A, y] =

P[y′v = 1 − y∗|X,A, y] = 1
2 by definition of the sampling process. Now, we take the logarithm of

both sides in (25) and call the log-difference ∆:

∆(A′) := logP[X′
v,:,A

′
v,:|y′v = y∗,X,A, y]− logP[X′

v,:,A
′
v,:|y′v = 1− y∗,X,A, y] (26)

Clearly, Equation 25 is equivalent to

∆(A′) ≥ 0 (27)

Using the properties of the sampling process of a CSBM (see Section 2), we can rewrite

P[X′
v,:,A

′
v,:|y′v = y∗,X,A, y] = P[X′

v,:|y′v = y∗] · P[A′
v,:|y′v = y∗, y] (28)

= P[X′
v,:|y′v = y∗] ·

∏
i∈[n]\{v}

P[A′
v,i|y′v = y∗, yi] (29)

and therefore
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∆(A′) = log
P[X′

v,:|y′v = y∗]

P[X′
v,:|y′v = 1− y∗]

+
∑

i∈[n]\{v}

(
logP[A′

v,i|y′v = y∗, yi]− logP[A′
v,i|y′v = 1− y∗, yi]

)︸ ︷︷ ︸
∆i(A′)

(30)

Now, to achieve (23), we want to find those structure perturbations, which lead to ∆(Ã′) < 0 the
fastest (i.e., with least changes). First, note that the first term in Equation 30 does not depend on
the adjacency matrix and hence, can be ignored. The second term shows that the change in ∆(A′)
induced by adding or removing an edges (v, i) is additive and independent of adding or removing
another edge (v, j). Denote by Ã′(u) the adjacency matrix constructed by removing (adding) edge
(v, u) from A′ if (v, u) is (not) already in the graph. We define the change potential of node u

as ∆̃u := ∆u(Ã
′(u)) − ∆u(A

′). Then, we only need find those nodes u with maximal change
potential |∆̃u| = |∆u(Ã

′(u))−∆u(A
′)| and ∆̃u < 0 and disconnect (connect) them in decreasing

order of |∆̃u| until ∆(Ã′) < 0. We will now show that any node u has maximal negative change
potential, who either satisfies i) yu = y∗ and A′

v,u = 1 or ii) yu ̸= y∗ and A′
v,u = 0.

To prove this, we make a case distinction on the existence of (v, u) in the unperturbed graph and the
class of yu:

Case A′
v,u = 0:

We distinguish two subcases:

i) yu ̸= y∗:

We can write

∆̃u = logP[A′
v,u = 1|y′v = y∗, yu]− logP[A′

v,u = 1|y′v = 1− y∗, yu]

− logP[A′
v,u = 0|y′v = y∗, yu] + logP[A′

v,u = 0|y′v = 1− y∗, yu]

= log q − log p− log(1− q) + log(1− p) (31)
< 0 (32)

Equation 31 follows from the sampling process of the CSBM. Equation 32 follows from q < p,
implying log q − log p < 0 and − log(1− q) + log(1− p) < 0.

ii) yu = y∗

We can write

∆̃u = log p− log q − log(1− p) + log(1− q) > 0 (33)

where the last > follows similarly from q < p.

Case A′
v,u = 1:

i) yu ̸= y∗:

We can write

∆̃u = logP[A′
v,u = 0|y′v = y∗, yu]− logP[A′

v,u = 0|y′v = 1− y∗, yu]

− logP[A′
v,u = 1|y′v = y∗, yu] + logP[A′

v,u = 1|y′v = 1− y∗, yu]

= log p− log q − log(1− p) + log(1− q) > 0 (34)

where Equation 34 follows by the insight, that ∆̃u is the same as for case A′
v,u = 0 except multiplied

with −1.
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ii) yu = y∗

We can write

∆̃u = log q − log p− log(1− q) + log(1− p) < 0 (35)

where the first equality follows from the insight, that ∆̃u is again the same as for case A′
v,u = 0

except multiplied with −1. The last > follows again from q < p.

The theorem follows from the fact that only the cases where we add an edge to a node of different
class, or drop an edge to a node with the same class have negative change potential and the fact, that
both cases have the same change potential.

F.4 OPTIMAL ATTACK ON CBA

Theorem 5. Given a graph generated by a CBA. The minimal number of structure changes to
change the Bayes classifier (Theorem 1) for a target node v is defined by iteratively: i) connecting v
to another node u with yv ̸= yu or ii) dropping a connection to another node u with yv = yu.

Proof. For this proof, we assume homophily, i.e. the affinity between same class nodes ωyuyv
, i.e.,

if yu = yv is bigger than between different class nodes, i.e. if yu ̸= yv . We denote the same class
affinity as p and the different class affinity as q. Now, the proof follows the proof of Theorem 4 until
Equation 27. Then, the proof strategy is similar to the one for Theorem 4, but has to be adapted to
the specificities of the CBA.

Using the properties of the sampling process of a CBA (see Section C), we can rewrite

P[X′
v,:,A

′
v,:|y′v = y∗,X,A, y] = P[X′

v,:|y′v = y∗] · P[A′
v,:|y′v = y∗, y] (36)

= P[X′
v,:|y′v = y∗] ·

∏
i∈[n]\{v}

P[A′
v,i|y′v = y∗, y] (37)

Note that if i < v, P[A′
v,i|y′v = y∗, y] = P[A′

v,i|y1, . . . , y′v = y∗] and if i > v, P[A′
v,i|y′v =

y∗, y] = P[A′
v,i|y1, . . . , y′v = y∗, . . . , yi]. In the following, for a more concise presentation, we

write P[A′
v,i|y′v = y∗, y] in general to include both cases.

Therefore

∆(A′) = log
P[X′

v,:|y′v = y∗]

P[X′
v,:|y′v = 1− y∗]

+
∑

i∈[n]\{v}

(
logP[A′

v,i|y′v = y∗, y]− logP[A′
v,i|y′v = 1− y∗, y]

)︸ ︷︷ ︸
∆i(A′)

(38)

Now, to achieve (23), we want to find those structure perturbations, which lead to ∆(Ã′) < 0 the
fastest (i.e., with least changes). First, note that the first term in Equation 30 does not depend on
the adjacency matrix and hence, can be ignored. The second term shows that the change in ∆(A′)
induced by adding or removing an edges (v, i) is additive and independent of adding or removing
another edge (v, j). Denote by Ã′(u) the adjacency matrix constructed by removing (adding) edge
(v, u) from A′ if (v, u) is (not) already in the graph. We define the change potential of node u

as ∆̃u := ∆u(Ã
′(u)) − ∆u(A

′). Then, we only need find those nodes u with maximal change
potential |∆̃u| = |∆u(Ã

′(u))−∆u(A
′)| and ∆̃u < 0 and disconnect (connect) them in decreasing

order of |∆̃u| until ∆(Ã′) < 0. We will now show that any node u has maximal negative change
potential, who either satisfies i) yu = y∗ and A′

v,u = 1 or ii) yu ̸= y∗ and A′
v,u = 0.
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To prove this, we make a case distinction on the existence of (v, u) in the unperturbed graph and
the class of yu. Furthermore, without loss of generality, we assume u < v.

Case A′
v,u = 0:

We distinguish two subcases:

i) yu ̸= y∗:

Now, we can write

∆̃u = logP[A′
v,u = 1|y′v = y∗, y]− logP[A′

v,u = 1|y′v = 1− y∗, y]

− logP[A′
v,u = 0|y′v = y∗, y] + logP[A′

v,u = 0|y′v = 1− y∗, y] (39)

= logP[A′
v,u = 1|y1, . . . , y′v = y∗]− logP[A′

v,u = 1|y1, . . . , y′v = 1− y∗]

− logP[A′
v,u = 0|y1, . . . , y′v = y∗] + logP[A′

v,u = 0|y1, . . . , y′v = 1− y∗]

= log
[
1− Bin

(
0|m, p(v)u (y′v = y∗)

)]
− log

[
1− Bin

(
0|m, p(v)u (y′v = 1− y∗)

)]
− log

[
Bin

(
0|m, p(v)u (y′v = y∗)

)]
+ log

[
Bin

(
0|m, p(v)u (y′v = 1− y∗)

)]
Where the last line follows from the definition of the sampling process of the CBA.
Bin

(
0|m, p

(v)
u (y′v = y∗)

)
denotes the probability of the event 0 under a binomial distribution with

the success probability p
(v)
u (y′v = y∗) depending on the class of y′v; p(v)u is also dependent on the

other classes y1, . . . , yv−1 - however, these do not change, hence we omit to explicitly mention the
dependence.

Now, using the properties of the binomial distribution, we can write

∆̃u = log[p(v)u (y′v = y∗)]− log[p(v)u (y′v = 1− y∗)]

− log[1− p(v)u (y′v = y∗)] + log[1− p(v)u (y′v = 1− y∗)]

= log[
(1 + ku)q∑v−1

m=1,m ̸=u(1 + km)ωyvym
+ (1 + ku)q

]− log[
(1 + ku)p∑v−1

m=1,m ̸=u(1 + km)ωyvym
+ (1 + ku)p

]

+ log[

∑v−1
m=1,m ̸=u(1 + km)ωyvym∑v−1

m=1,m̸=u(1 + km)ωyvym
+ (1 + ku)q

]− log[

∑v−1
m=1,m ̸=u(1 + km)ωyvym∑v−1

m=1,m̸=u(1 + km)ωyvym
+ (1 + ku)p

]

= log q − log p (40)
< 0 (41)

The second line follows from the definition of the sampling process of the CBS and denoting the
same class affinity as p and the different class affinity as q. Equation 40 follows from splitting up
the division / multiplication in the log-terms and simplifying. The last equation follows from q < p.

Note that if u > v, the sampling probabilities change to p
(u)
v (y′v = y∗), yielding the same result.

ii) yu = y∗

Now we can write

∆̃u = logP[A′
v,u = 1|y′v = y∗, y]− logP[A′

v,u = 1|y′v = 1− y∗, y]

− logP[A′
v,u = 0|y′v = y∗, y] + logP[A′

v,u = 0|y′v = 1− y∗, y] (42)

= log p− log q

> 0 (43)

the second line follows from recognizing that Equation 42 leads to the exact same equations as case
i) except for interchanging p and q. The last > follows similarly from q < p.

26



Published as a conference paper at ICLR 2023

Case A′
v,u = 1:

i) yu ̸= y∗:

We can write

∆̃u = logP[A′
v,u = 0|y′v = y∗, y]− logP[A′

v,u = 0|y′v = 1− y∗, y]

− logP[A′
v,u = 1|y′v = y∗, y] + logP[A′

v,u = 1|y′v = 1− y∗, y] (44)

= log p− log q > 0

where Equation 44 follows by the insight, that it equals Equation 39 multiplied by −1.

ii) yu = y∗

We can write

∆̃u = logP[A′
v,u = 0|y′v = y∗, y]− logP[A′

v,u = 0|y′v = 1− y∗, y]

− logP[A′
v,u = 1|y′v = y∗, y] + logP[A′

v,u = 1|y′v = 1− y∗, y] (45)

= log q − log p < 0

where the result follows from recognizing that Equation 45 equals Equation 42 except multiplied
with −1.

The theorem follows from the fact that only the cases where we add an edge to a node of different
class, or drop an edge to a node with the same class have negative change potential and the fact, that
both cases have the same change potential.

G ROBUSTNESS METRICS

We restate the degree corrected robustness of a classifier f w.r.t. a reference classifier g:

R(f, g) =
1

|V ′|
∑
v∈V ′

Robustness(f, g, v)
deg(v)

(46)

Using the true labels y instead of a reference classifier g in (46), one can measure the maximal
achievable robustness (before semantic content changes) as R(g) := R(g, y), i.e. the semantic
boundary. Note that we can exactly compute R(g) due to knowledge of the data generating process.
We measure adversarial robustness as the fraction of optimal robustness R(g) achieved: Radv =
R(f, g)/R(g). Again, to correctly measure Radv , the identical attack is performed to measure
R(f, g) and R(g).

A model f can have high adversarial- but also high over-robustness (see Section 3). To have a metric,
which truly shows a complete picture of the robustness properties of a model, we take the harmonic
mean of Radv and the percentage of how much robustness is legitimate (1 − Rover) and define an
F1-robustness score: F rob

1 (·, ·) = 2 (1−Rover)·Radv

(1−Rover)+Radv . Only a model showing perfect adversarial
robustness and no over-robustness achieves F rob

1 = 1.

Note that using F rob
β = (1 + β2) (1−Rover)·Radv

β2(1−Rover)+Radv , with β ≥ 0, one can weight the importance of
over- versus adversarial examples with Radv being β-times as important as (1−Rover).
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H EXPERIMENT DETAILS

Datasets. We use Contextual Stochastic Block Models (CSBMs) and Contextual Barabási–Albert
Model with Community Structure (CBA). The main setup is described in Section 5. The experimen-
tal setup for the CBA follows the one for CSBMs outline in Section 5, except for setting m = 2, i.e.
the number of edges for a newly sampled node is set to two, resulting in similar average node degree
to CORA (see Table 4). Furthermore, instead of p and q, CBA has affinity terms ωyiyj

, one for
same-class nodes, which we set to the average same-class node degree in CORA (see Table 4) and
one for different-class nodes, which we analogously set to the average different-class node degree
in CORA.

Table 4 summarizes some dataset statistics and contrasts them with CORA. The reported values are
independent of K, hence we report the average across 10 sampled CSBM graphs for one K.

Dataset # Nodes # Edges # Features # Classes Average
Node Degree

Average Same-Class
Node Degree

Average Different-Class
Node Degree

CSBM 1,000 1,964±25 21 2 3.93±0.05 3.18±0.07 0.74±0.04
CBA 1,000 1,968±4 21 2 3.94±0.01 3.17±0.03 0.77±0.03
CORA 2,708 5,278 1,433 7 3.90 3.16 0.74

Table 4: Dataset statistics

Figure 6a shows that CSBM and CBA graphs mainly contain low-degree nodes.

(a) (b)

Figure 6: (a) Degree distribution of a CSBM graph as parametrized in Section 5 (n = 1000). (b)
Degree distribution of a CBA parametrized as described in Appendix H.

Graph Neural Networks and Label Propagation (LP). We perform extensive hyperparameter
search for LP and MLP and each GNN model for each individual K and choose, for each K, the on
average best performing hyperparamters on 10 graphs sampled from the respective CSBM or CBA.
For the MODEL+LP variants of our models, we use the individually best performing hyperparame-
ters of the model and LP. Interestingly, we find that very different hyperparameters are optimal for
different choices of the feature-information defining parameter K. We also find that using the default
parameters from the respective model papers successful on the benchmark real-world datasets, don’t
work well for some choices of K, especially low K when structure is very important but features
not so.

We train all model for 3000 epochs with a patients of 300 epochs using Adam (Kingma & Ba, 2015)
and explore learning rates [0.1, 0.01, 0.001] and weight decay [0.01, 0.001, 0.001] and additionally
for

• MLP: We use a 1 (Hidden)-Layer MLP and test hidden dimensions [32, 64, 128, 256] and
dropout [0.0, 0.3, 0.5]. We employ the ReLU activation function.

• LP: We use 50 iterations and test α in the range between 0.00 and 1.00 in step sizes of 0.05. LP
is the only method having the same hyperparameters on all CSBMs, as it is independent of K.
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• SGC: We explore [1, 2, 3, 4, 5] number of hops and additionally, a learning rate of 0.2. We
investigate dropouts of [0, 0.3, 0.5]. SGC was the most challening to train for low K.

• GCN: We use a two layer (ReLU) GCN with 64 filters and dropout [0.0, 0.3, 0.5]
• GAT: We use a two layer GAT with 8 heads and 8 features per head with LeakyReLU having a

negative slope of 0.2. We test dropout [0.0, 0.3, 0.6] and neighbourhood dropout [0.0, 0.3, 0.6].
• GATv2: We use the best performing hyperparameters of GAT.
• APPNP: We use 64 hidden layers, K = 10 iterations, dropout [0.0, 0.3, 0.6] and [0.0, 0.3, 0.5]

and test α in [0.05, 0.1, 0.2]. Interestingly, the higher K, we observe higher α performing better.

Further details, such as the best performing hyperparameters, can be found in the released exper-
iment configuration files and source code. Exemplary, the (averaged) validation accuracies on the
CSBM graphs can be seen in Figure 7.

Figure 7: Validation accuracies of the best performing hyperparameters of the different models on
CSBMs. Note that GNNs for low K (high-structure relevance) underperform pure LP.

Attacks.

• Nettack attacks a surrogate SGC model to approximately find maximal adversarial edges. As
a surrogate model, instead of using a direct SGC implementation as in the models section, we
use a 2-layer GCN with the identity function as non-linearity and 64 filters and found it trains
easier on K = 0.1 and hence, provides better adversarial examples for K = 01 than direct SGC
implementation. For higher K, differences are neglectable. We use the same hyperparamter
search as outlined for the conventional GCN. For the experiments on CSBMs, we remove the
power-law degree distribution test, as a CSBM does not follow a power-law distribution.

• DICE randomly disconnects d edges from the test node v to same-class nodes and connects b
edges from v to different-class nodes. For a given local budget ∆, we set d = 0 and b = ∆.

• GRBCD is a Greedy gradient-based attack that does not require materializing the dense adja-
cency matrix due to its use of Randomized Block Coordinate Descent. During the attack, it
relaxes the edge weights from {0, 1} to [0, 1] and then discretises the result at the end. Thus,
we can straight-forwardly attack all models that are differentiable w.r.t. the edge weights (GCN,
APPNP). For GAT and GATv2 we softly mask edges based on their weight prior to the atten-
tion’s softmax activation. Most importantly, since we avoid any surrogate model we can consider
GRBCD to be an adaptive attack that crafts model-specific adversarial examples.

• SGA, similar to Nettack, attacks a surrogate SGC model. However, it chooses a malicious edge
based on the gradient signal obtained from relaxing the adjacency matrix. Furthermore, it re-
stricts the space of possible edges to insert based on the K-hop neighbourhood of a target node.
As surrogate SGC model, we use the same 2-layer linearized GCN as in Nettack.

• ℓ2-weak connects a node to its most-similar different class nodes in feature space (using ℓ2-
norm).

• ℓ2-strong, in analogy to ℓ2-weak, connects a target node to ist most-dissimilar different class
nodes in feature space (using ℓ2-norm).

Further details, such as the best performing hyperparameters, can be found in the released experi-
ment configuration files and source code.
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H.1 REAL-WORLD GRAPHS

This section covers datasets, models and evaluation procedure for our real-world graph results re-
ported in Section 5.2.1 and Appendix K.

Datasets. To explore potential over-robustness on real-world graphs, the citation networks
Cora (Sen et al., 2008), Cora-ML (Bojchevski & Günnemann, 2018), Citeseer (Sen et al., 2008),
Pubmed (Sen et al., 2008) and ogbn-arxiv (Hu et al., 2020) are selected. We extract the largest
connected component for Cora ML, Citeseer and Pubmed. Table 5 provides an overview over the
most important dataset characteristics. Figure 8 visualizes the degree distributions up to degree 25
for ogbn-arxiv and up to degree 15 for all other datasets.

We investigate a supervised learning setting, similar to the setting on the CSBM and CBA graphs
as well as a semi-supervised learning setting more common in practice. In the supervised learning
setting, for all datasets except ogbn-arxiv, 40 nodes per class are randomly selected as validation and
test nodes. The remaining nodes are selected as labeled training set. For ogbn-arxiv, the by Hu et al.
(2020) provided temporal split is chosen. Following the inductive approach used in Section 5 for
CSBMs, model optimization is performed using the subgraph spanned by all training nodes. Early
stopping uses the subgraph spanned by all training and validation nodes based on the validation
loss. The semi-supervised learning setting follows the commonly employed learning scenario with
having access to only a small amount of labeled nodes during training (see e.g. Geisler et al. (2021)),
but again splitting inductively. Here, 20 nodes per class are randomly selected as labeled training
and validation nodes. Additionally, 40 nodes per class are sampled as test nodes. The remaining
nodes are selected as unlabeled training set. Model optimization is again performed inductively
using the subgraph spanned by all labeled- and unlabeled training nodes. Early stopping is done
w.r.t. all validation nodes and uses the subgraph spanned by the labeled- and unlabeled training and
validation nodes.

Dataset # Nodes # Edges # Features # Classes Average
Node Degree

Average Same-Class
Node Degree

Average Different-Class
Node Degree

Cora-ML 2,810 15,962 2,879 7 5.68 4.46 1.22
Cora 2,708 5,278 1,433 7 3.90 3.16 0.74
Citeseer 2,110 7,336 3,703 6 3.48 2.56 0.92
Pubmed 19.717 44.324 500 3 4.50 3.61 0.89
ogbn-arxiv 169,343 1,157,799 128 40 13.67 8.95 4.73

Table 5: Dataset statistics

Model Architectures. We evaluate the robustness of Graph Convolutional Networks (GCN), Label
Propagation (LP), and GCN followed by LP post-processing (GCN+LP). The GCN architecture and
optimization scheme follow Geisler et al. (2021). The GCN has two layers with 64 filters. For
ogbn-arxiv three layers with 256 filters are chosen. During training, a dropout of 0.5 is applied. We
optimize the model parameters for a maximum of 3000 epochs using Adam (Kingma & Ba, 2015)
with learning rate 0.01 and weight decay 0.001. For ogbn-arxiv, no weight decay is applied. LP
uses the normalized adjacency as transition matrix and is always performed for ten iterations. This
mirrors related architectures like APPNP (Gasteiger et al., 2019). We additionally choose α = 0.7
by grid-search over {0.1, 0.3, 0.5, 0.7, 0.9} on Cora-ML. For GCN+LP, it should be noted that LP is
applied as a post-processing routine at test-time only. It is not included during training.

Evaluating Degree-Depending Robustness. We investigate degree-dependent robustness of GNNs
by following a similar strategy as the ℓ2-weak attack on CSBMs. However, real-world datasets are
multi-class. Therefore, we ensure to only connect the target nodes to nodes of one selected class.
More concretely, let v be a correctly classified test node with label c∗. We investigate for each
class c ̸= c∗, how many edges we can connect to v, until the model’s prediction changes and
denote this number Nc(v). The attack then works as follows: First, we project the high-dimensional
feature vectors into lower dimensional space by applying the first weight matrix of the GCN9. Then,
we iteratively add edges connecting v to the most similar nodes (after projection) in ℓ2-norm and
evaluate after how many insertions the model’s prediction changes. We evaluate for a maximum of
128 edge insertions. We present the results for the class achieving lowest robustness, i.e. smallest

9For ogbn-arxiv, this projection is omitted as the GCN’s filter size is larger than the initial attribute dimen-
sion.
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Figure 8: Degree distribution by dataset.

Nc(v), and the results for the class achieving highest robustness, i.e. largest Nc(v). To save on
computation, for ogbn-arxiv, not all test nodes are evaluated. Instead, we sample 1500 nodes from
the test set while enforcing the same proportion of classes as in the full test set. Additionally, the
above scheme is not applied for every class c ̸= c∗. We instead compute the average ℓ2-distance of
each class’s closest 3 ·deg(v) nodes to the target node and evaluate Nc(v) for the nearest and farthest
class.

I RESULTS USING CBAS

I.1 EFFECTS OF DEGREE PRESERVATION ON OVER-ROBUSTNESS

Using CBAs we explore if degree preservation can reduce the measured over-robustness. Note that
compared to CSBMs, CBAs degree distribution follows a power-law and hence, Nettacks test for
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power-law degree distribution preservation can be employed. For this analysis, we focus on the
following models: GCN, APPNP, GAT, LP, MLP as well as their +LP variants. Figure 9 compares
the measured over-robustness of Nettack without employing the power-law degree distribution test
(left figures), i.e. without degree preservation with employing the power-law degree preserving
distribution test (right figures). We find that there is close to no difference in the measured over-
robustness. Figure 9 explores the perturbation budgets Bdeg(·) and Bdeg+2(·). The same result,
that preserving the degree distribution has close to no effect, can be seen for the other perturbation
sets B1(·), B2(·), B3(·) and B4(·) in Figure 10. Interestingly, for K = 0.1 preserving the degree
distribution increases the measured over-robustness for a GCN if Bdeg(·) is chosen (Fig. 9a and 9b).

Note that for K = 0.1, the measured over-robustness is less than for K = 0.5. This can be
explained by the fact that for K = 0.1 the surrogate SGC model attacked (as well as the all other
models) achieve only slightly better performance than random guessing as the learning problem
relays heavily on the structure of the graph and only very slightly on the node features. Therefore,
Nettack often proposes to add edges which preserve the semantic content but still fool the models,
effectively reducing the measured over-robustness. Also note, that the CBA is parametrized using
m = 2, Bdeg(·) equals B2(·) and Bdeg+2(·) equals B4(·) for most target nodes.

(a) Bdeg(·), Nettack w/o power-law test (b) Bdeg(·), Nettack with power-law test

(c) Bdeg+2(·), Nettack w/o power-law test (d) Bdeg+2(·), Nettack with power-law test

Figure 9: The measured over-robustness with a perturbation model employing a test for degree
preservation compared to the measured over-robustness for a perturbation model not employing a
test for degree preservation. Concretely, Nettack with and without power-law degree distribution test
for varying local budgets is employed. Degree preservation has close to no effects on the measured
over-robustness. Plots with standard error.

32



Published as a conference paper at ICLR 2023

(a) B1(·), Nettack w/o power-law test (b) B1(·), Nettack with power-law test

(c) B2(·), Nettack w/o power-law test (d) B2(·), Nettack with power-law test

(e) B3(·), Nettack w/o power-law test (f) B3(·), Nettack with power-law test

(g) B4(·), Nettack w/o power-law test (h) B4(·), Nettack with power-law test

Figure 10: The measured over-robustness with a perturbation model employing a test for degree
preservation compared to the measured over-robustness for a perturbation model not employing a
test for degree preservation. Concretely, Nettack with and without power-law degree distribution test
for varying local budgets is employed. Degree preservation has close to no effects on the measured
over-robustness. Plots with standard error.

I.2 OVER-ROBUSTNESS ON CBAS

Figure 11 shows that the measured over-robustness of the models on CBA graphs is comparable to
the measurements on CSBM graphs (see Figure 3a.
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Figure 11: Over-Robustness Rover measured using ℓ2-weak on CBA graphs with a budget of the
degree of the target node. Plot with standard error.

J FURTHER RESULTS USING CSBMS

J.1 DEGREE DISTRIBUTION CSBM VS CORA

Note that degrees in CSBM do not follow a power-law distribution. However, they are similar in a
different sense to common benchmark citation networks. The goal of this section is to show that the
large majority of nodes in both graphs have degrees 2, 3, 4 or 5. Low degree nodes are even more
pronounced in CORA than CSBMs.

(a) Graph sampled from a CSBM, using n = 2708
as CORA. Note that the graph structure is of a CSBM
is independent of the K but only dependent on p, q
which have been set to fit CORA. Plot cut at node de-
gree 15.

(b) CORA contains mainly low degree nodes. Plot cut
at node degree 15.

Figure 12: Degree distribution of the used CSBMs vs CORA, both distribution show that the graphs
mainly contain low-degree nodes. This is even more pronounced in CORA than CSBMs.

J.2 TEST-ACCURACY ON CSBM

This section summaries the detailed performance of the different models on the CSBMs.
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Figure 13: Test accuracy of models on test nodes on the CSBMs.

0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

Bayes Classifier (BC) 89.7% 90.3% 91.7% 93.1% 94.7% 97.4% 99.0% 99.8%
BC (Features Only) 50.8% 59.0% 68.4% 76.5% 83.4% 92.6% 97.5% 99.3%
BC (Structure Only) 89.8% 89.8% 89.8% 89.8% 89.8% 89.8% 89.8% 89.8%
MLP 50.4% 57.2% 64.6% 74.3% 83.0% 85.3% 96.6% 99.0%
GCN 64.6% 71.5% 81.2% 87.3% 90.8% 94.0% 95.3% 96.0%
SGC 61.3% 73.5% 82.9% 87.9% 91.5% 94.3% 95.3% 96.2%
APPNP 74.6% 76.7% 82.4% 87.7% 91.8% 96.4% 97.0% 95.5%
GAT 70.0% 77.6% 80.8% 85.2% 89.6% 93.7% 95.0% 95.5%
GATv2 72.8% 76.7% 81.5% 86.1% 90.7% 95.3% 98.1% 99.3%
GraphSAGE 66.2% 70.6% 79.9% 86.0% 89.8% 95.4% 97.9% 99.4%
LP 89.2% 89.2% 89.2% 89.2% 89.2% 89.2% 89.2% 89.2%
MLP+LP 86.6% 88.8% 89.3% 91.3% 93.1% 93.2% 98.4% 99.3%
GCN+LP 85.6% 86.1% 87.6% 89.8% 91.5% 93.2% 94.3% 94.7%
APPNP+LP 85.0% 86.3% 88.4% 89.6% 93.3% 95.9% 96.5% 95.0%
SGC+LP 88.1% 87.0% 88.0% 90.4% 92.0% 93.7% 94.4% 95.0%
GATv2+LP 85.0% 86.4% 88.0% 89.6% 92.2% 95.6% 98.4% 99.2%
GAT+LP 86.0% 86.7% 88.2% 89.7% 91.2% 93.3% 94.3% 94.7%
GraphSAGE+LP 85.5% 86.4% 88.1% 90.2% 92.4% 95.4% 97.9% 99.3%

Table 6: Average test accuracies of the models on the sampled test nodes on the CSBMs. Standard
deviations rarely exceeds 1% and never 2% and hence, is omitted for brevity.

J.3 EXTENT OF SEMANTIC CONTENT CHANGE IN COMMON PERTURBATION MODELS

The extent of semantic content change looks similar for the other attacks Nettack (Table 7), DICE
(Table 8), SGA (Table 9) and ℓ2-strong (10) to Table 2 (ℓ2-weak).

Values are calculated by attacking an MLP with these respective attacks. As an MLP has perfect
robustness, the attacks will exhaust their complete budget in trying to change the MLP’s prediction
without achieving success. In other words, given any perturbation budget ∆, we construct a maxi-
mally perturbed graph with ∆ edge changes and measure, in what fraction of cases, this graph has
changed its semantic content. We do not include GR-BCD, as it is not model agnostic and attacking
an MLP with GR-BCD, because all gradients w.r.t. the adjacency matrix are zero, is equivalent to
random selection of edges, making it similar to but weaker compared to DICE. However, the re-
sults in Appendix J.5 indicate that GR-BCD would result in a similar high fraction of graphs with
changed semantic content if it would be able to use up its complete budget ∆, as it shows similar
over-robustness to the other attacks, when attacking other models than MLP.
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Nettack:

Furthermore, for K = 0.1 the SGC uses by Nettack has only mediocre test-accuracy due to features
not being very informative. Therefore, Nettack sometimes proposes to add same-class edges or
remove different-class edges.

Threat Models K=0.1 K=0.5 K=1.0 K=1.5 K=2.0 K=3.0 K=4.0 K=5.0

B1(·) 10.6 9.7 9.1 6.8 4.4 1.9 0.7 0.2
B2(·) 23.5 24.7 24.8 19.8 14.1 6.2 2.2 0.7
B3(·) 35.7 41.0 43.6 38.1 28.8 14.2 4.9 1.6
B4(·) 47.3 55.0 61.2 57.5 46.8 25.1 9.2 3.2
Bdeg(·) 45.4 42.9 50.0 47.6 39.4 21.9 8.9 3.1
Bdeg+2(·) 63.9 73.7 90.1 89.8 79.6 50.2 23.6 8.6

Table 7: Percentage (%) of nodes for which we find perturbed graphs in B∆(·) violating semantic
content preservation, i.e. with changed ground truth labels. Calculated by adding or dropping ∆
edges suggested by Nettack to every target node. Note that for K=4.0 and K=5.0 structure is
not necessary for good generalization (Table 1). Standard deviations are insignificant and hence,
omitted.

DICE:

Threat Models K=0.1 K=0.5 K=1.0 K=1.5 K=2.0 K=3.0 K=4.0 K=5.0

B1(·) 14.9 10.9 9.0 6.2 4.3 2.1 0.6 0.2
B2(·) 36.8 31.4 26.2 19.7 13.8 6.4 2.0 0.6
B3(·) 58.6 52.9 46.4 37.7 28.8 13.9 5.0 1.3
B4(·) 77.1 72.6 66.6 57.0 45.8 25.8 9.6 2.9
Bdeg(·) 76.6 58.9 55.6 48.9 38.5 22.1 8.7 2.8
Bdeg+2(·) 100.0 100.0 99.2 92.2 79.9 50.8 24.0 8.2

Table 8: Percentage (%) of nodes for which we find perturbed graphs in B∆(·) violating semantic
content preservation, i.e. with changed ground truth labels. Calculated by randomly connecting ∆
different-class nodes (DICE) to every target node. Note that for K=4.0 and K=5.0 structure is
not necessary for good generalization (Table 1). Standard deviations are insignificant and hence,
omitted.

SGA:

Threat Models K=0.1 K=0.5 K=1.0 K=1.5 K=2.0 K=3.0 K=4.0 K=5.0

B1(·) 14.2 11.3 9.3 6.6 4.6 1.7 0.8 0.2
B2(·) 36.1 32.5 26.1 19.8 14.2 5.6 2.2 0.6
B3(·) 59.3 54.2 47.2 38.2 28.8 13.5 5.0 1.7
B4(·) 76.4 73.5 66.8 58.1 46.8 24.3 9.6 3.4
Bdeg(·) 73.6 61.7 56.2 49.0 40.0 20.9 8.9 3.2
Bdeg+2(·) 100.0 99.9 99.3 92.8 80.0 50.2 24.6 9.1

Table 9: Percentage (%) of nodes for which we find perturbed graphs in B∆(·) violating semantic
content preservation, i.e. with changed ground truth labels. Calculated by randomly connecting
∆ different-class nodes (SGA) to every target node. Note that for K=4.0 and K=5.0 structure is
not necessary for good generalization (Table 1). Standard deviations are insignificant and hence,
omitted.

ℓ2-strong:
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Threat Models K=0.1 K=0.5 K=1.0 K=1.5 K=2.0 K=3.0 K=4.0 K=5.0

B1(·) 14.5 11.1 9.4 6.7 4.4 1.9 0.8 0.2
B2(·) 35.9 30.9 25.8 19.8 14.1 6.2 2.2 0.7
B3(·) 58.6 53.7 46.9 38.1 28.8 14.5 5.0 1.7
B4(·) 76.5 73.0 66.7 58.0 47.0 25.9 9.7 3.4
Bdeg(·) 77.3 59.6 55.9 49.0 39.6 22.0 8.9 3.2
Bdeg+2(·) 100.0 100.0 99.4 92.9 80.5 51.8 24.7 9.1

Table 10: Percentage (%) of nodes for which we find perturbed graphs in B∆(·) violating semantic
content preservation, i.e. with changed ground truth labels. Calculated by randomly connecting ∆
different-class nodes (ℓ2-strong) to every target node. Note that for K=4.0 and K=5.0 structure
is not necessary for good generalization (Table 1). Standard deviations are insignificant and hence,
omitted.

J.4 OVER-ROBUSTNESS RESULTS FOR OTHER PERTURBATION SETS

Figure 14 shows the measured over-robustness using ℓ2-weak for the perturbation sets B1(·), B2(·),
B3(·), B4(·) and Bdeg+2(·). For completeness, Bdeg(·) is include in Figure 14. All perturbation sets
show significant over-robustness.

(a) B1(·); Attack: ℓ2-weak (b) B2(·); Attack: ℓ2-weak

(c) B3(·); Attack: ℓ2-weak (d) B4(·); Attack: ℓ2-weak

(e) Bdeg(·); Attack: ℓ2-weak (f) Bdeg+2(·); Attack: ℓ2-weak

Figure 14: Over-robustness Rover, i.e. the fraction of robustness beyond semantic change for dif-
ferent perturbation sets B∆(·). (Attack: ℓ2-weak; Plots with Standard Error). A significant part of
the measured robustness for every perturbation set can be attributed to over-robustness. The larger
∆, the larger the share of over-robustness.
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J.5 DETAILED OVER-ROBUSTNESS RESULTS FOR Bdeg(·)

ℓ2-weak:

K 0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

MLP 43.1% 35.6% 30.7% 25.5% 19.3% 9.9% 3.8% 1.3%
GCN 35.3% 30.3% 25.7% 19.8% 14.1% 5.2% 1.6% 0.4%
SGC 37.4% 29.6% 23.9% 20.1% 14.1% 5.2% 2.3% 0.6%
APPNP 32.5% 30.1% 24.3% 19.6% 16.8% 7.0% 2.4% 0.9%
GAT 33.3% 29.2% 26.6% 21.2% 15.7% 7.3% 2.9% 0.9%
GATv2 33.0% 29.4% 26.6% 21.2% 16.1% 7.5% 2.9% 0.9%
GraphSAGE 36.7% 32.3% 26.8% 22.2% 16.9% 8.3% 3.3% 1.2%
LP 16.0% 13.7% 11.3% 8.9% 6.7% 3.0% 1.0% 0.3%
MLP+LP 21.4% 14.8% 15.2% 14.4% 13.1% 6.6% 2.5% 0.9%
GCN+LP 23.5% 20.9% 19.3% 15.2% 10.3% 3.7% 1.2% 0.3%
APPNP+LP 24.5% 22.0% 18.2% 14.8% 11.7% 4.4% 1.6% 0.5%
SGC+LP 19.1% 18.2% 17.3% 14.8% 9.9% 3.8% 1.5% 0.4%
GATv2+LP 25.1% 20.8% 18.2% 15.7% 11.1% 5.1% 2.2% 0.6%
GAT+LP 21.5% 20.5% 17.3% 14.4% 10.8% 4.9% 1.9% 0.6%
GraphSAGE+LP 23.9% 21.2% 18.6% 15.8% 12.5% 5.6% 2.3% 0.9%

Table 11: Over-Robustness Rover measured using ℓ2-weak (see also Figure 3a with a budget of the
degree of the target node. Standard deviations never exceed 1% except for MLP+LP at K = 0.1
which has a standard deviation of 3%.

Nettack:

Table 12 shows that over-robustness is not only occurring for weak attacks. Especially, the MLP
results show that if we would have a classifier perfectly robust against Nettack in the bounded per-
turbation set, for all K ≤ 3 (where structure matters), this would result in high over-robustness.

0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

MLP 26.5% 26.4% 28.4% 25.0% 19.2% 9.9% 3.8% 1.3%
GCN 13.5% 11.4% 6.0% 2.4% 0.8% 0.1% 0.0% 0.0%
SGC 7.7% 4.6% 2.9% 1.4% 0.4% 0.1% 0.1% 0.0%
APPNP 11.9% 10.1% 9.0% 3.8% 1.4% 0.1% 0.6% 0.6%
GAT 9.7% 15.1% 12.7% 11.0% 5.4% 3.3% 1.6% 0.5%
GATv2 14.0% 12.4% 13.3% 13.8% 8.8% 5.1% 2.7% 0.8%
GraphSAGE 14.6% 17.7% 15.7% 12.3% 9.9% 4.8% 2.1% 0.7%
LP 5.4% 5.4% 5.6% 5.4% 4.2% 1.9% 0.6% 0.2%
MLP+LP 9.4% 6.9% 10.2% 9.6% 10.1% 5.0% 1.7% 0.6%
GCN+LP 4.5% 3.6% 2.0% 1.1% 0.5% 0.2% 0.1% 0.1%
APPNP+LP 8.5% 5.6% 3.1% 2.1% 0.3% 0.1% 0.4% 0.3%
SGC+LP 1.0% 1.1% 1.1% 0.5% 0.2% 0.1% 0.1% 0.0%
GATv2+LP 8.9% 6.3% 6.3% 5.2% 5.3% 3.1% 1.7% 0.5%
GAT+LP 6.5% 6.8% 4.4% 3.7% 2.3% 1.3% 0.7% 0.3%
GraphSAGE+LP 7.7% 7.4% 7.1% 4.8% 4.1% 1.7% 0.8% 0.4%

Table 12: Over-Robustness Rover measured using Nettack with a budget of the degree of the target
node. Standard deviations rarely exceed 1% notably for MLP at K = 0.1 with 4.8% and MLP+LP
at K = 0.1 at 3%.

DICE:

Table 13 shows, as for Nettack, that over-robustness is not only occurring for weak attacks. Es-
pecially, the MLP results show that if we would have a classifier perfectly robust against DICE in
the bounded perturbation set, for all K ≤ 3 (where structure matters), this would result in high
over-robustness.
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0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

MLP 43.6% 35.0% 30.8% 25.0% 18.8% 10.0% 3.5% 1.1%
GCN 34.0% 29.2% 23.2% 16.8% 11.1% 3.4% 0.9% 0.3%
SGC 37.2% 28.9% 21.3% 16.5% 10.7% 3.3% 0.9% 0.2%
APPNP 31.1% 27.8% 22.7% 17.2% 13.6% 4.3% 1.7% 0.8%
GAT 32.9% 27.9% 25.7% 19.2% 13.1% 5.7% 2.2% 0.7%
GATv2 31.2% 27.8% 23.6% 18.7% 13.5% 6.6% 2.4% 0.8%
GraphSAGE 34.7% 29.9% 24.7% 19.4% 14.6% 7.0% 2.6% 0.9%
LP 16.0% 13.4% 10.8% 8.7% 6.4% 2.7% 0.9% 0.3%
MLP+LP 20.8% 14.7% 15.3% 14.5% 12.9% 6.9% 2.4% 0.8%
GCN+LP 21.9% 20.0% 17.0% 12.5% 8.2% 2.5% 0.8% 0.3%
APPNP+LP 23.4% 20.1% 15.9% 13.2% 8.7% 2.7% 1.1% 0.5%
SGC+LP 18.5% 17.6% 15.3% 11.9% 7.6% 2.6% 0.8% 0.2%
GATv2+LP 22.7% 19.5% 15.7% 13.3% 8.7% 4.6% 1.8% 0.6%
GAT+LP 21.9% 18.9% 15.6% 12.3% 8.9% 3.5% 1.5% 0.5%
GraphSAGE+LP 22.8% 19.2% 16.0% 12.4% 9.5% 4.2% 1.7% 0.7%

Table 13: Over-Robustness Rover measured using DICE with a budget of the degree of the target
node. Standard deviations are insignificant and removed for brevity.

SGA:

Table 14 shows, as for Nettack, that over-robustness is not only occurring for weak attacks. Es-
pecially, the MLP results show that if we would have a classifier perfectly robust against SGA in
the bounded perturbation set, for all K ≤ 3 (where structure matters), this would result in high
over-robustness.

0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

MLP 42.3% 36.4% 31.2% 25.4% 19.5% 9.2% 3.8% 1.3%
GCN 23.4% 16.9% 7.3% 3.2% 1.1% 0.1% 0.1% 0.0%
SGC 20.0% 8.4% 4.3% 1.8% 0.4% 0.0% 0.1% 0.0%
APPNP 25.1% 18.5% 10.9% 5.9% 3.5% 0.6% 0.1% 0.0%
GAT 31.2% 26.6% 18.4% 16.7% 9.4% 4.5% 2.1% 0.9%
GATv2 33.8% 25.0% 18.8% 16.9% 11.4% 6.8% 2.8% 0.8%
GraphSAGE 34.1% 28.5% 22.5% 17.8% 12.8% 6.3% 2.4% 0.9%
LP 8.3% 7.7% 6.3% 5.6% 4.0% 1.9% 0.6% 0.2%
MLP+LP 11.2% 9.9% 10.1% 9.3% 12.2% 4.6% 1.9% 0.6%
GCN+LP 8.7% 6.2% 2.9% 1.3% 0.6% 0.1% 0.1% 0.0%
APPNP+LP 16.5% 12.4% 7.0% 3.5% 1.7% 0.4% 0.1% 0.1%
SGC+LP 3.8% 2.6% 1.1% 0.4% 0.2% 0.2% 0.1% 0.0%
GATv2+LP 21.8% 17.4% 8.6% 10.8% 5.5% 4.3% 1.6% 0.4%
GAT+LP 19.4% 16.6% 6.9% 7.3% 4.3% 2.0% 1.1% 0.4%
GraphSAGE+LP 17.6% 15.9% 12.9% 9.8% 6.2% 3.2% 1.1% 0.1%

Table 14: Over-Robustness Rover measured using SGA with a budget of the degree of the target
node. Standard deviations are insignificant and removed for brevity.

GR-BCD:

Table 14 shows how much robustness of the GNNs, when using GR-BCD as an attack, is actually
over-robustness. GR-BCD is not applicable to all investigated GNNs in the study as explained
in Appendix H. However, for the models GR-BCD shows significant over-robustness. However,
GR-BCD shows the least over-robustness compared to the other attacks, indicated that its model-
dependent attack strategy makes it better adapted to measure true adversarial robustness compared
to model-agnostic attacks.
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0.1 0.5 1.0 1.5 2.0 3.0 4.0 5.0

GCN 11.9% 7.6% 3.9% 1.4% 0.6% 0.1% 0.1% 0.0%
APPNP 17.3% 13.1% 7.6% 5.0% 1.6% 0.1% 0.6% 0.6%
GAT 10.0% 9.2% 6.6% 3.7% 2.1% 0.7% 0.1% 0.1%
GATv2 10.0% 8.8% 6.5% 4.5% 2.7% 1.0% 0.4% 0.1%
GCN+LP 3.0% 1.9% 1.0% 0.6% 0.4% 0.2% 0.1% 0.1%
APPNP+LP 10.5% 6.6% 3.9% 2.3% 0.3% 0.1% 0.4% 0.3%
GATv2+LP 6.0% 4.1% 2.7% 2.3% 1.6% 0.8% 0.3% 0.1%
GAT+LP 5.1% 4.0% 2.7% 1.9% 1.4% 0.7% 0.2% 0.1%

Table 15: Over-Robustness Rover measured using GR-BCD with a budget of the degree of the target
node. Standard deviations are insignificant and removed for brevity.

J.6 ADVERSARIAL-ROBUSTNESS RESULTS FOR Bdeg(·)

We investigate Nettack (Appendix J.6.1), DICE (Appendix J.6.2), SGA (Appendix J.6.3), ℓ2-strong
(Appendix J.6.4) and GR-BCD (Appendix J.6.5). If not mentioned otherwise, error bars refer to the
standard error.

J.6.1 NETTACK

Nettack, next to GR-BCD and SGA, is the strongest attack we employ, hence, it is a good heuristic
to measure (semantic-aware) adversarial robustness Radv (see Appendix G) and conventional, non-
semantics aware, adversarial robustness R(f) (see Section 5). Figure 15 shows that surprisingly,
MLP+LP has highest adversarial robustness, if structure matters K ≤ 3.

Figure 15: Semantic Aware Robustness Radv measured using Nettack.

Figure 16 shows that similar, albeit slightly less accurate adversarial robustness measurements are
obtained by not including the semantic awareness. Rankings can indeed change, but only if these
models are already very close regarding Radv .

The harmonic mean of Radv and Rover (see Metric-Section G) shows a complete picture of the
robustness of the analysed models. To measure Rover, we use ℓ2-weak. Note that no GNN achieves
top placements using this ranking, but the best models, depending on the amount of feature infor-
mation, are LP, MLP+LP and MLP.
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Figure 16: Conventional (Degree-Corrected) Robustness R(f) measured using Nettack.

Figure 17: The harmonic mean of Radv and 1 − Rover, with Radv measured using Nettack and
Rover using ℓ2-weak.

J.6.2 DICE

DICE, as just randomly connecting to different class nodes, turns out to be a very weak attack similar
to ℓ2-weak. Hence, its adversarial robustness counts differ significantly from the stronger Nettack.
Here, we measure a significant difference between true (semantic-aware) adversarial robustness as
presented in Figure 18 and conventional adversarial robustness as shown in Figure 19. Indeed, a
conventional robustness measurement claims that LP is always the least robust method by signifi-
cant margins, however, correcting for semantic change uncovers that LP actually is the most robust
method for K ≤ 0.5 and has competitive robustness for K = 1 (even until K = 1.5 looking at
overall robustness 20). We find that with DICE we measure significantly higher over-robustness
(Section J.5). Therefore, having a weak attack can result in a significantly different picture of the
true compared to conventional adversarial robustness. This gives us insights for applying attacks
on real-world graphs, calling for the importance of always choosing a strong, best adaptive attack
(Tramèr et al., 2020b; Mujkanovic et al., 2022), if we want to gain insights into the true robustness
of a defense and not be ”fooled” by over-robust behaviour.

The harmonic mean of Radv and Rover (Figure 20 shows a complete picture of the robustness of the
analysed models. Note that again no GNN achieves top placements using this ranking, but the best
models, depending on the amount of feature information, are LP, MLP+LP and MLP.
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Figure 18: Semantic Aware Robustness Radv measured using DICE.

Figure 19: Conventional (Degree-Corrected) Robustness Rf measured using DICE.

Figure 20: The harmonic mean of Radv and 1−Rover, with Radv measured using DICE and Rover

using ℓ2-weak.

J.6.3 SGA

Albeit slightly weaker, we measure similar behaviour for SGA compared to Nettack, which can be
explained as both use a SGC surrogate model. Figure 21 again shows that MLP+LP has highest
adversarial robustness, if structure matters K ≤ 3.
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Figure 21: Semantic Aware Robustness Radv measured using SGA.

Figure 22 shows that because SGA is weaker than Nettack that similar to DICE robustness rankings
are different using conventional adversarial robustness.

Figure 22: Conventional (Degree-Corrected) Robustness Rf measured using SGA.

The harmonic mean of Radv and Rover (Figure 23) shows a complete picture of the robustness of
the analysed models. Note that as with Nettack and DICE, no GNN achieves top placements using
this ranking, but the best models, depending on the amount of feature information, are LP, MLP+LP
and MLP.
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Figure 23: The harmonic mean of Radv and 1−Rover, with Radv measured using SGA and Rover

using ℓ2-weak.

J.6.4 ℓ2-STRONG

We measure similar behaviour for ℓ2-strong compared to DICE, except that it performs way stronger
against SGC and GCN, as these models are probably most effected by having neighbours with
significantly different node features. Figure 21 shows semantic-aware adversarial robustness.

Figure 24: Semantic Aware Robustness Radv measured using ℓ2-strong.

Figure 25 shows adversarial robustness measurements not including the semantic awareness. ℓ2-
strong seems suboptimal to distinguish different models for low K. Compared to the similar DICE,
it ranks MLP+LP high for K ≥ 1.0.

The harmonic mean of Radv and Rover (Figure 26 shows a complete picture of the robustness of
the analysed models. Note that as with Nettack, DICE and SGA, no GNN achieves top placements
using this ranking, but the best models, depending on the amount of feature information, are LP,
MLP+LP and MLP.
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Figure 25: Conventional (Degree-Corrected) Robustness R(f) measured using ℓ2-strong.

Figure 26: The harmonic mean of Radv and 1 − Rover, with Radv measured using ℓ2-strong and
Rover using ℓ2-weak.

J.6.5 GR-BCD

Figure 21 shows semantic-aware adversarial robustness of GR-BCD. GR-BCD is one of the
strongest attacks we test, especially by taking the gradient w.r.t. the actually attacked model in-
stead of using a surrogate model, it adapts to each individually. Because it is such a strong attacks,
the semantic-aware adversarial robustness seems similar to the conventional adversarial robustness
in Figure 28 and the harmonic mean in in Figure 29. However, semantic-aware adversarial robust-
ness and the harmonic mean show that adding LP as postprocessing has a slightly higher effect than
conventionally measurable.

GR-BCD provides strong evidence, that a strong, adaptive attack results in low over-robustness and
hence, classic adversarial robustness is a good proxy for semantic-aware adversarial robustness and
the over-all robustness as measured using the harmonic mean.
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Figure 27: Semantic Aware Robustness Radv measured using GR-BCD.

Figure 28: Conventional (Degree-Corrected) Robustness R(f) measured using GR-BCD.

Figure 29: The harmonic mean of Radv and 1 − Rover, with Radv measured using ℓ2-strong and
Rover using GR-BCD.

J.7 STRUCTURE PERTURBATIONS UNTIL GCN-PREDICTION CHANGES ON CSBMS

Figure 30 shows that on a CSBM with K = 1.5, where a GCN already shows significant over-
robustness (see Figure 3b), the GCN is less strongly robustness as on Cora-ML (compare to Figure
4).
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Figure 30: Robustness of GCN predictions on CSBMs with K = 1.5 as shown in Figure 1.

J.8 AVERAGE ROBUSTNESS BAYES CLASSIFIER

Figure J.8 shows that the average robustness of the Bayes classifier increases with K and is linear in
the degree of the node. Furthermore, if structure matters (K ≤ 3), average robustness rarely exceeds
the degree of a node.

Figure 31: Average Robustness of the Bayes classifier on CSBMs.

K FURTHER RESULTS ON REAL-WORLD GRAPHS

In this section, we show all results obtained on real-world graphs following the experimental setup
described in Section H.1. The results for the fully supervised learning setting, which is more closer
to our theoretic investigation, are outlined in Appendix K.1. The results for the semi-supervised
learning setting, which is more common in practice, are outline in Appendix K.2

K.1 SUPERVISED LEARNING SETTING

Table 16 visualizes model performance on the test set. GCN and GCN+LP achieve comparable
accuracy while LP accuracy is slightly lower.
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Model GCN GCN+LP LP
Dataset
Citeseer 69.4 ± 1.75 69.5 ± 1.62 66.5 ± 2.12
Cora-ML 87.1 ± 2.12 86.7 ± 1.80 84.0 ± 2.45
Cora 87.6 ± 2.02 87.8 ± 1.77 85.4 ± 1.87
Pubmed 85.3 ± 2.26 84.3 ± 2.26 81.3 ± 2.88
ogbn-arxiv 70.2 ± 0.65 71.3 ± 0.61 70.0 ± 1.21

Table 16: Test accuracy mean and standard deviation over different data splits.

Figure 33 visualizes the robustness per node degree when applying the ℓ2-weak attack as described
in H.1 on Cora-ML, Citeseer, Cora and Pubmed. The results for ogb-arxiv are presented in Figure 32.
For each dataset, the mean minimal and maximal per-class robustness is depicted. The results are
similar for all datasets. In general, robustness increases with increasing node degree. For all datasets
and node degrees, GCN shows significant robustness to the structural changes, most pronounced
on Pubmed (Figure 33h). The mean (maximal per-class) robustness is always a multiple of the
considered node degree. LP is considerably less robust, while achieving similar test accuracy (Table
16). In general, less than half of the perturbations needed for GCNs suffice to change the LP’s
prediction. Combining a GCN with label propagation significantly and consistently reduces the
robustness compared to GCN while again, preserving test accuracy (Table 16).

Figure 34 shows the distribution of maxc ̸=c∗ Nc(v) by degree of v. In contrast to Figure 33, the
robustness of each node is visualized individually. The median robustness of GCN is significantly
higher than that of GCN+LP which in turn is higher than that of LP. The difference between lower
and upper quartile (IQR) is comparatively large for GCN, smaller for GCN+LP, and smallest for LP.
Moreover, we observe that GCN has the largest amount of highly robust predictions. Applying LP
to the GCN output drastically reduces the number and robustness of such outliers.

In conclusion, smoothing the GCN output using label propagation reduces the mean and median
robustness, variance of robustness and decreases the number of highly robust predictions. There-
fore, we conjecture that pairing GNNs with LP successfully combats over-robustness on real-world
graphs.
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(c) Minimal robustness, ogbn-arxiv

Figure 32: Mean robustness per node degree. Error bars indicate the standard error of the mean over
five model initializations.
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(b) Maximal robustness, Cora-ML
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(d) Maximal robustness, Citeseer
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(f) Maximal robustness, Cora
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(g) Minimal robustness, Cora
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(h) Maximal robustness, Pubmed
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(i) Minimal robustness, Pubmed

Figure 33: Mean robustness per node degree. Error bars indicate the standard error of the mean over
eight data splits.
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(a) Cora-ML, GCN
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(b) Cora-ML, GCN+LP
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(c) Cora-ML, LP
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(e) Citeseer, GCN+LP
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(f) Citeseer, LP
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(g) Cora, GCN
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(h) Cora, GCN+LP
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(i) Cora, LP
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(j) Pubmed, GCN
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(k) Pubmed, GCN+LP
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(l) Pubmed, LP
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(m) ogbn-arxiv, GCN
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(n) ogbn-arxiv, GCN+LP
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Figure 34: Distribution of maximal (per-class) node robustness by node degree. Results are aggre-
gated over different data splits. The box captures the lower quartile (Q1) and upper quartile (Q3) of
the data. The whiskers are placed at Q1 − 1.5 · IQR and Q3 + 1.5 · IQR, where IQR = Q3 − Q1 is
the interquartile range.

K.2 SEMI-SUPERVISED LEARNING SETTING

Table 17 visualizes model performance on the test set. GCN and GCN+LP achieve comparable
accuracy. Because of the low labeling rate (see Table 18), label propagation does not work as a
stand-alone classification algorithm, achieving accuracies similar to chance. For completeness, we
have still included LP robustness results in the following figures.

Figure 35 visualizes the robustness per node degree when applying the ℓ2-weak attack. Compared to
the supervised learning setting, the mean robustness is considerably higher for all models. For GCN,
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Model GCN GCN+LP LP
Dataset
Citeseer 66.5 ± 2.41 66.5 ± 2.15 15.8 ± 2.97
Cora-ML 83.5 ± 1.79 84.0 ± 2.78 15.1 ± 4.99
Cora 82.3 ± 1.42 83.0 ± 1.71 13.0 ± 2.27
Pubmed 76.7 ± 2.29 76.9 ± 2.91 37.5 ± 8.85

Table 17: Model test accuracy and standard deviation over different data splits

Nodes Training
(labeled)

Training
(unlabeled) Validation Test

Dataset
Citeseer 5.69 77.25 5.69 11.37
Cora-ML 4.98 80.07 4.98 9.96
Cora 5.17 79.32 5.17 10.34
Pubmed 0.30 98.78 0.30 0.61

Table 18: Percentage of training, validation and test nodes per dataset for the semi-supervised set-
ting.

nodes of degree one have an average maximal (per-class) robustness of above 40 on all evaluated
datasets. The robustness of GCN and GCN+LP shows a relationship similar to the supervised learn-
ing setting. In general, GCN is more robust and additional smoothing with LP reduces the robustness
while leaving the test accuracy unchanged (Table 17). Note that the LP results do not yield inter-
pretable information, due to LP not working as a standalone classifier and have only been included
for completeness. Figure 35 provides strong evidence, that pairing GNNs with LP significantly re-
duces over-robustness on real-world graphs in the realistic semi-supervised learning scenario with
small labeling rates.

Figure 36 shows the distribution of maxc̸=c∗ Nc(v) by degree of v. The median robustness of both
GCN and GCN+LP is higher when compared to the supervised learning setting. However, again
GCN+LP significantly reduces the very high robustness of a GCN, while achieving similar test
accuracy (Table 17). Note that we only investigated node-level robustness until 128 edge insertions.
On Pubmed, most predictions seem to be more robust than 128 edge insertions. However, adding
LP as post-processing, still lets the whiskers and lower quartiles of the box-plot start earlier as
without adding LP for most node degrees. In general, the interquartile range (IQR) of both GCN
and GCN+LP is noticeable larger when comparing to the supervised learning setting. At the same
time, the IQR of GCN+LP is again lower than that of GCN.

In conclusion, smoothing the GCN output using label propagation reduces the mean and median
robustness as well as the variance of the robustness for the semi-supervised learning setting. There-
fore, the results are consistent with the supervised learning setting. Thus, as pointed out above,
they provide strong evidence, that pairing GNNs with LP significantly reduces over-robustness on
real-world graphs in the semi-supervised learning scenario often found in practice.

51



Published as a conference paper at ICLR 2023

1 2 3 4 5 6 7 8
Node Degree

40

60

80

100

120

m
ax

c
c

* N
c(v

)

(b) Maximal robustness, Cora-ML
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(c) Minimal robustness, Cora-ML
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(d) Maximal robustness, Citeseer
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(f) Maximal robustness, Cora

1 2 3 4 5 6 7 8
Node Degree

0

5

10

15

20

m
in

c
c

* N
c(v

)

(g) Minimal robustness, Cora

1 2 3 4 5 6 7 8
Node Degree

20

40

60

80

100

120

m
ax

c
c

* N
c(v

)

(h) Maximal robustness, Pubmed
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(i) Minimal robustness, Pubmed

Figure 35: Mean robustness per node degree. Error bars indicate the standard error of the mean over
eight data splits.
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(a) Cora-ML, GCN
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(b) Cora-ML, GCN+LP

1 2 3 4 5 6 7 8
Node Degree

0
20
40
60
80

100
120

m
ax

c
c

* N
c(v

)

(c) Cora-ML, LP
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(e) Citeseer, GCN+LP
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(f) Citeseer, LP
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(g) Cora, GCN
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(h) Cora, GCN+LP
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(i) Cora, LP
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(j) Pubmed, GCN
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(k) Pubmed, GCN+LP
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(l) Pubmed, LP

Figure 36: Distribution of maximal (per-class) node robustness by node degree. Results are aggre-
gated over eight data splits. The box captures the lower quartile (Q1) and upper quartile (Q3) of the
data. The whiskers are placed at Q1 − 1.5 · IQR and Q3 + 1.5 · IQR, where IQR = Q3 − Q1 is the
interquartile range.
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L ADDITIONAL RELATED WORK

We see us related to works using synthetic graph models to generate principled insights into GNNs.
Notably, Fountoulakis et al. (2022) show that in non-trivially CSBMs settings (hard regime), GATs,
with high probability, can’t distinguish same-class edges from different-class edges and degenerate
to GCNs. Baranwal et al. (2021) study GCNs on CSBMs and find graph convolutions extent the lin-
ear separability of the data. Palowitch et al. (2022) generate millions of synthetic graphs to explore
the performance of common GNNs on graph datasets with different characteristics to the common
benchmark real-world graphs. However, their studied degree-corrected SBM is fundamentally lim-
ited to transductive learning.

Regarding the bigger picture in robust graph learning, all works measuring small changes to the
graph’s structure using the ℓ0-norm can be seen as related. This is a large body of work and includes
but is not limited to i) the attack literature such as (Zügner et al., 2018; Dai et al., 2018; Waniek
et al., 2018; Chen et al., 2018; Zügner & Günnemann, 2019a; Geisler et al., 2021); ii) various
defenses ranging from detecting attacks (Wu et al., 2019b; Entezari et al., 2020), proposing new
robust layers and architectures (Zhu et al., 2019; Geisler et al., 2020) to robust training schemes
(Zügner & Günnemann, 2019b; Xu et al., 2019; 2020); iii) robust certification (Bojchevski et al.,
2020; Schuchardt et al., 2021). An overview of the adversarial robustness literature on GNNs is
given by Günnemann (2022). Zheng et al. (2021) provide a graph robustness benchmark.

Regarding sound perturbations models, distantly related is also the work of Geisler et al. (2022),
which apply GNNs to combinatorial optimization tasks and therefore, can describe how the pertur-
bations change or preserve the label and thereby, semantics.
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