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Abstract

Astrocytes, the most abundant type of glial cell, play a fundamental role in memory.
Despite most hippocampal synapses being contacted by an astrocyte, there are
no current theories that explain how neurons, synapses, and astrocytes might
collectively contribute to memory function. We demonstrate that fundamental
aspects of astrocyte morphology and physiology naturally lead to a dynamic, high-
capacity associative memory system. The neuron-astrocyte networks generated
by our framework are closely related to popular machine learning architectures
known as Dense Associative Memories or Modern Hopfield Networks. Adjusting
the connectivity pattern, the model developed here leads to a family of associative
memory networks that includes a Dense Associative Memory and a Transformer as
two limiting cases. In the known biological implementations of Dense Associative
Memories, the ratio of stored memories to the number of neurons remains constant,
despite the growth of the network size. Our work demonstrates that neuron-
astrocyte networks follow a superior memory scaling law, outperforming known
biological implementations of Dense Associative Memory. Our model suggests
an exciting and previously unnoticed possibility that memories could be stored, at
least in part, within the network of astrocyte processes rather than solely in the
synaptic weights between neurons.

Not all brain cells are neurons. It is estimated that about half of the cells in the human brain are
glial cells (from “glue" in Greek) [1]. Glial cells have long been known to play an important role in
homeostatic brain functions, such as regulating blood flow [2] – thus contributing to hemodynamic
signals such as those measured in fMRI [3] – and removing synaptic debris. Converging lines
of recent evidence strongly suggest that they are also directly involved in learning, memory, and
cognition [4–10]. Among glial cells, astrocytes are particularly important for brain function.

They serve a crucial role in directly sensing neural activity and, in turn, regulating synaptic strength
and plasticity [4, 5, 11–14]. In addition to sensing neural activity, astrocytes are also important targets
of neuromodulatory signals such as norepinephrine and acetylcholine emerging from potentially
distant brain structures such as the brain stem [15].

Of particular relevance to the computational neuroscience community are the recent findings that
1) astrocytes are necessary for forming long-term memories [6, 16–18] and 2) astrocytes respond to
neural activity on timescales spanning many orders of magnitude, from several hundred milliseconds
to minutes [14, 19, 20]. Despite extensive evidence establishing the importance of neuron-astrocyte
interactions for long-term memory function, computational theories of these interactions are still in
their infancy.
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Figure 1: A) An abstracted version of an astrocyte,
showing the astrocyte processes and the synapses. B)
Our mathematical idealization of the mini-circuit defined
by a single astrocyte.

What Shapes Astrocytic Computation? The
core proposal of this paper is that astrocytes com-
pute, with their computations shaped by tunable
signaling pathways. We focus on associative
computations, where neurons, synapses, and as-
trocytes collaborate to store and retrieve mem-
ories.

In this model, astrocytic Ca2+ flux coefficients
store memories, and neuron-synapse-astrocyte
interactions retrieve them. This extends pre-
vious work suggesting memories are stored in
synaptic weights [21, 22], offering a new per-
spective where synaptic weights “emerge" from
neuron-astrocyte interactions.

1 Neuron-Astrocyte Model
Astrocytes, with a central soma and branching processes, envelop nearby synapses to form tripartite
synapses [23]. A single astrocyte can connect to over 106 synapses [24], and astrocyte networks create
non-overlapping regions in the brain [25]. Astrocytes detect synaptic neurotransmitters, triggering
intracellular calcium (Ca2+ ) increases, which may lead to the release of gliotransmitters that regulate
neural activity in a feedback loop. Astrocytes also communicate through calcium transport and gap
junctions [26]. This paper focuses on key aspects of astrocyte biology:

• Astrocytes connect to millions of synapses, forming tripartite synapses [23].
• They detect and regulate neural activity through gliotransmitter release [27].
• Tripartite synapses interact via astrocytic calcium transport [26].

Neural, Synaptic, and Astrocyte Dynamics Neural, synaptic, and astrocytic dynamics can be
captured by a set of coupled equations. The membrane voltage xi of each neuron i evolves following
a standard rate recurrent neural network model [28, 29], with timescale τn and leak rate λ:

τn ẋi = −λ xi +
N∑
j=1

g(sij) ϕ(xj) + bi (1)

Here, bi represents input to neuron i, ϕ(xj) transforms membrane voltages into firing rates, and
g(sij) denotes the strength of the synapse between neurons i and j. With fixed sij , this reduces to
a standard recurrent network. The synaptic strength sij is dynamic, influenced by both pre- and
post-synaptic activity, following synaptic facilitation governed by the equation:

τs ṡij = −α sij + f(xi, xj , pij) + cij (2)
Synaptic dynamics depend on neuronal activity, astrocytic interactions (pij), and bias cij . Astrocytes
modulate synaptic plasticity via calcium (Ca2+ )-dependent gliotransmitters [14], influencing the
function f . Astrocyte calcium dynamics are described by:

τp ṗij = −γ pij +
N∑

k,l=1

Tijkl ψ(pkl) + κ(sij) + dij (3)

The double sum captures interactions between astrocyte processes, with Tijkl representing inter-
process connections and ψ modeling calcium diffusion. Synaptic state sij influences astrocyte
calcium levels through κ, while the bias dij sets a baseline tone. Together, these equations describe
the intertwined dynamics of neurons, synapses, and astrocytes in a tripartite system.

2 Associative Neuron-Astrocyte Model

In section 1, we presented a framework based on neuron-astrocyte communication via tripartite
synapses. Depending on the choice of nonlinearities and parameters, this network can exhibit
complex behaviors like chaos or limit cycles, which are challenging to analyze generally.
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Examples of Possible Lagrangians and Activations

L(z) = log

N∑
i=1

ezi → ∂L(z)
∂z

= Softmax(z)

L(z) =
N∑
i=1

Q(zi) → ∂L(z)
∂z

=
[
q(z1), . . . , q(zn)

]T (4)

Figure 2: Examples of possible Lagrangian functions. Here the variable z is an arbitrary dynamical variable in
our model (e.g., astrocyte calcium level). Recall from the main text that activation functions are defined from
the Lagrangians as ∂L

∂zi
. The first Lagrangian provides an example of a “collective" activation functions. The

second Lagrangian leads to an element-wise activation function, assuming ∂Q
∂zi

= q(zi). Generally, the only
mathematical requirement for our Lagrangians is that they must be convex functions.
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Figure 3: Energy landscapes of a neuron-only vs.
neuron-astrocyte network. The neuron-astrocyte net-
work stores more memories.

To simplify analysis, we focus on a limiting case
where the system demonstrates associative mem-
ory. Like other models of biological associative
memory, this requires symmetries in the gov-
erning equations. Under certain conditions, the
neuron-astrocyte model admits a global energy
(Lyapunov) function that decreases monotoni-
cally and is bounded from below. This guar-
antees that the system’s dynamics converge to
fixed-point attractors, corresponding to “mem-
ories” stored in the weight matrices. The model
thus functions as an energy-based Dense Asso-
ciative Memory [30, 31], and we show that the
presence of a single astrocyte can increase the
memory capacity of a neural circuit by a factor
of N .

We follow the general formulation of energy-
based associative memories [32–34], selecting

three Lagrangians to define the layers (neurons, synapses, astrocytes) and their activation functions.
These are: neural Lagrangian L[n], synaptic Lagrangian L[s], and astrocyte process Lagrangian
L[p], which can be arbitrary differentiable functions of their dynamical variables. Details are in
Appendix A.From these Lagrangians, we derive three terms in the overall energy function of the
neuron-astrocyte system: E[n], E[s], and E[p], using a Legendre transformation. The activation
functions are the partial derivatives of the Lagrangians with respect to their corresponding dynamical
variables (see Appendix A and Figure 2). Additional contributions to the total energy describe
interactions between neurons, synapses, and astrocytes: E[ns], E[ps], and E[pp].

The total energy of the neuron-astrocyte model is:

E = E[n] + E[s] + E[p] + E[ns] + E[ps] + E[pp] (5)

From this formalism [32–34], the dynamical equations can be written as the negative gradient:

τn ẋi = − ∂E

∂ϕi
= − λ xi +

N∑
j=1

gijϕj

τs ṡij = −2
∂E

∂gij
= − α sij + ϕiϕj + ψij

τp ṗij = −2
∂E

∂ψij
= − γ pij +

N∑
k,l=1

Tijkl ψkl + gij

(6)
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The equations exhibit symmetry in both parameters and degrees of freedom (e.g., Tijkl = Tklij),
which ensures the existence of a global energy function, aiding mathematical tractability. While real
biology may break some symmetries, making analysis harder, we use this energy-based model to
theoretically establish memory storage capabilities. The non-symmetric model, studied numerically
in section 3, shows similar properties despite lacking the energy-based formulation. Unlike Hopfield
networks [35], the symmetry in T reflects natural calcium diffusion symmetry.

The first two equations in (6) resemble the approach by Dong and Hopfield [36], which models both
neural dynamics and synaptic plasticity with a single energy function. Our system differs due to the
inclusion of astrocytic processes, which interact with synapses and each other. Using the Lagrangian
formalism, it can be shown (see Appendix B) that the energy decreases: i.e., dE

dt ≤ 0. If each
Lagrangian has a positive semidefinite Hessian, the dynamical equations (6) lead to a fixed point
since the energy is bounded from below (via the invariant set theorem [37]). Thus, starting from an
initial state, the network converges to fixed points, representing associative memory.

2.1 Connection to Dense Associative Memory

Energy-based neuron-astrocyte networks are governed by nonlinear differential equations (6) that
lead to fixed-point attractors, assuming certain conditions on the Lagrangians are met. These fixed
points x∗i , s∗ij , and p∗ij correspond to the local minima of the energy function (5), independent of the
time scales τn, τs, and τp. While the kinetics of the model depend on these time scales, neurons
generally operate on faster time scales than synaptic plasticity and astrocyte processes, τn ≪ τs, τp.
Although we use an "unbiological" choice of time scales for convenience, the final result accurately
represents fixed-point locations for the biologically relevant regime τn ≪ τs, τp. In Appendix C
we show that the fixed points of the neuron-astrocyte network coincide with those of the effective
neuron-only system. Astrocytes enable four-body neuron interactions, unlike conventional models
where synapses connect two neurons [29]. This results in an “effective” four-neuron synapse, which
integrates information across distant neurons.

Figure 4: A) Error-correcting capabilities of the neuron-astrocyte network, trained with backpropagation,
demonstrated with images from the Tiny ImageNet dataset [38]. Top row: masked input; middle row: network’s
final state; bottom row: ground-truth image. B) Root-mean-squared distance of the network state to the ground-
truth as a function of time (standard error across 64 images).

2.2 Storing Memories in Astrocyte Networks
Given K memory patterns ξµ (with index µ = 1...K), the task is to store these patterns in the
neural-astrocyte network, enabling the system to retrieve them. The tensor T is chosen as:

Tijkl ≡
K∑

µ=1

ξµi ξ
µ
j ξ

µ
k ξ

µ
l (7)

This yields an effective neuron-only theory with quartic interactions, akin to Dense Associative
Memory models [30, 31]. Dense Associative Memories extend traditional Hopfield Networks [29]
by introducing higher-order terms in the energy function, leading to superior storage capacity and
representational power [30]. They are also related to attention mechanisms in Transformers [32, 39]
and are used in state-of-the-art energy-based models [40, 41].

Memory Capacity of a Neuron-Astrocyte Network An insightful question is how many memories
the model can store per compute unit. Using a conservative definition of compute units, the neuron-
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astrocyte model (6) has approximately N2 compute units in the large N limit:

N neurons +N2 synapses +N2 processes ∼ N2 compute units

The storage capacity Kmax of the Dense Associative Memory model with quartic energy is Kmax ∼
N3 [30], and thus, the number of memories per compute unit grows linearly:

Kmax

Number of compute units
∼ N

This surpasses other Dense Associative Memory implementations, such as Krotov and Hopfield’s
[32], where the memory per compute unit remains constant, making neuron-astrocyte networks a
promising candidate for biological Dense Associative Memory. The memory storage in our model is
attributed to the tensor T, which describes astrocyte process interactions and calcium or molecular
transport. Memories can be stored via a Hebbian-like plasticity rule (7), though more sophisticated
rules are also possible. Future experiments may confirm this storage mechanism.

How Many Astrocyte Parameters are Needed? The Hebbian-like rule (7) requires all-to-all
connectivity between astrocyte processes. If we wish to store K memories with N independent bits,
we need on the order of KN parameters. For K = N , the required number of connections is:

KN = rN2 =⇒ r =
K

N

Thus, achieving linear storage capacity (K = N ) allows us to ignore process-to-process connectivity.
For supralinear storage, connecting astrocyte processes increases capacity. The number of memories
stored depends on r, which can potentially be determined experimentally. Interestingly, detailed
entries of tensor Tijkl are not required for neuron-astrocyte models to perform meaningful computa-
tions. It is shown in Appendix D that setting Tijkl = 1 in (3) leads to a model that approximates a
transformer’s self-attention mechanism [42].

3 Simulations
We conducted two experiments: one using the energy-based equations (6) with the Hebbian-like rule
(7), and another using backpropagation-through-time (BPTT) without symmetry constraints. The
first validates our theoretical claims, while the second shows that strong symmetry, though sufficient,
is not necessary for associative memory in biological systems.

Energy-Based Experiments We tested the memory storage scheme (7) on the CIFAR10 dataset.
Figure 6 shows retrieval of four memories after encoding K = 25. As predicted, the network
converged to fixed points corresponding to stored memories. Training details are in Appendix E.

Backpropagation-Based Experiments To show that symmetry is not required, we trained the
network on a self-supervised task using Tiny ImageNet [38], where the network reconstructed
masked images using BPTT. Results are shown in Figure 4, with more details in Appendix F. The
energy-based model can also be trained with BPTT, using methods like recurrent backpropagation
[43, 44].

4 Discussion

We have introduced a biologically-inspired model that describes the interactions between neurons,
synapses, and astrocytes. In our model, astrocytes are able to adaptively control synaptic weights in an
online fashion. Theoretical analysis has demonstrated that this model can exhibit associative memory
and is closely related to the Dense Associative Memory family of models with supralinear memory
capacity, as well as to transformers. We have shown that, through the choice of the connectivity
tensor Tijkl, our neuron-astrocyte model can be smoothly dialed between operating as a transformer
and operating as a Dense Associative Memory network. This opens up the possibility for exploring
novel architectures “in-between” transformers and Dense Associative Memories. Furthermore, we
have presented a simple algorithm for memory storage and have provided numerical evidence of our
models’ effectiveness, such as successfully storing and retrieving CIFAR10 and ImageNet images.
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In broader terms, this work proposes that memories can, at least in part, be stored within the molecular
machinery of astrocytes. This contrasts with the prevailing neuroscience viewpoint that memories are
stored in the synaptic weights between neurons. To experimentally validate this claim, one would
need to selectively interfere with the ability of Ca2+ to diffuse intracellularly through astrocytes. Our
model predicts that hindering this diffusion would significantly impair memory recall. Our model
is flexible enough to accommodate many different types of process-to-process coupling patterns,
which could presumably be fit to match physiological data. For example, it is possible to enforce
“nearest-neighbor" coupling between astrocyte processes (which can be achieved by e.g., imposing a
block-diagonal structure on the tensor T such that Tijkl = 0 if processes ij and kl are not spatially
close to each other), while still guaranteeing convergence of our model to an equilibrium point.

While our focus has been on a mini-circuit consisting of a single astrocyte interacting with multiple
nearby synapses, astrocytes also extensively communicate with each other through chemical gap
junctions. Exploring the implications of this intercellular coupling will be the subject of future
research.

Key ideas in machine learning and AI drew initial inspiration from neuroscience, including neural
networks, convolutional nets, threshold linear (ReLu) units, and dropout. Yet it is debatable whether
neuroscience research from the last fifty years has significantly influenced or informed machine learn-
ing. Astrocytes, along with other biological structures such as dendrites [45] and neuromodulators
[46] may offer a fresh source of inspiration for building state-of-the-art AI systems.
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A Definitions of Lagrangians and Energy

As described in the main text, the Lagrangians are: a neural Lagrangian L[n], a synaptic Lagrangian
L[s], and an astrocyte process Lagrangian L[p]. In general these scalar functions can be arbitrary
(differentiable) functions of the corresponding dynamical variables. The activation functions are
defined as partial derivatives of the Lagrangians

L[n](x) → ϕi ≡
∂L[n]

∂xi︸ ︷︷ ︸
Neural Lagrangian

, L[s](s) → gij ≡
∂L[s]

∂sij︸ ︷︷ ︸
Synaptic Lagrangian

, L[p](p) → ψij ≡
∂L[p]

∂pij︸ ︷︷ ︸
Astrocyte Process Lagrangian

(8)
One possible choice of these functions is additive: summing each contribution from all the individual
computational elements (e.g., individual neurons), which results in activation functions that depend
only on individual computational elements – for instance, ϕ(xi) = tanh(xi). More general choices of
the Lagrangians allow for “collective" activation functions, which depend on the dynamical degrees
of freedom of several or all the computational elements in a given layer, for example a softmax.

From the Lagrangians (8), we may derive via a Legendre transform three terms in the overall energy
function of the neuron-astrocyte system, corresponding to three layer energies,

E[n] +E[s] +E[p] = λ

[ N∑
i=1

xiϕi − L[n]

]
︸ ︷︷ ︸

Neural Energy

+
α

2

[ N∑
i,j=1

sijgij − L[s]

]
︸ ︷︷ ︸

Synaptic Energy

+
γ

2

[ N∑
i,j=1

pijψij − L[p]

]
︸ ︷︷ ︸

Astrocyte Process Energy
(9)

where for simplicity of the presentation we dropped the input signals, bi = cij = dij = 0. The
remaining contributions to the total energy of the system describe the interactions between these
three layers. These contributions describe the synapse-mediated interactions between the neurons
E[ns], the interactions between the processes and the synapses E[ps], and the interactions between
the individual processes inside the astrocyte E[pp],

E[ns] + E[ps] + E[pp] =−
[
1

2

N∑
i,j=1

gij(s)ϕi(x)ϕj(x)

+
1

2

N∑
i,j=1

ψij(p)gij(s)

+
1

4

N∑
i,j,k,l=1

Tijkl ψij(p)ψkl(p)

]
(10)

The overall energy function of the neuron-synapse-astrocyte model can now be written as the sum of
these six terms

E = E[n] + E[s] + E[p] + E[ns] + E[ps] + E[pp] (11)

As mentioned previously, the energy-based equations have a large amount of symmetry–both in
the parameters and the dynamical degrees of freedom. Specifically, sij = sji, gij = gji, pij =
pji, ψij = ψji, and Tijkl = Tklij , Tijkl = Tjikl, Tijkl = Tijlk. These symmetries, are needed
for the existence of the global energy function for our neuron-astrocyte network, which leads to
mathematical tractability. In real biology some (or all) of these symmetries might be broken, and the
analytical tractability might be more difficult or even impossible. We use the energy-based model to
establish theoretically the memory storage capabilities of our model. The non-symmetric model is
studied numerically in section 3.
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B Proof of Decreasing Energy Function

The overall time derivative of the energy function may be written as

dE

dt
=

N∑
i=1

∂E

∂xi
ẋi +

N∑
i,j=1

∂E

∂sij
ṡij +

N∑
i,j=1

∂E

∂pij
ṗij

which may be expressed using the chain rule as

dE

dt
=

N∑
i,j=1

∂E

∂ϕi

∂ϕi
∂xj

ẋj +

N∑
i,j,k,l=1

∂E

∂gij

∂gij
∂skl

ṡkl +

N∑
i,j,k,l=1

∂E

∂ψij

∂ψij

∂pkl
ṗkl

=

N∑
i,j=1

∂E

∂ϕi

∂2L[n]

∂xi∂xj
ẋj +

N∑
i,j,k,l=1

∂E

∂gij

∂2L[s]

∂sij∂skl
ṡkl +

N∑
i,j,k,l=1

∂E

∂ψij

∂2L[p]

∂pij∂pkl
ṗkl

(12)

The second line follows from the definition of the Lagrangians (8). Plugging the dynamics defined in
equations (6) into this last expression, we get the desired result, provided that the Lagrangians are all
convex (i.e., have positive semi-definite Hessians)

dE

dt
= −

[
τn

N∑
i,j=1

ẋi
∂2L[n]

∂xi∂xj
ẋj +

τs
2

N∑
i,j,k,l=1

ṡij
∂2L[s]

∂sij ∂skl
ṡkl +

τp
2

N∑
i,j,k,l=1

ṗij
∂2L[p]

∂pij∂pkl
ṗkl

]
≤ 0

(13)

C Effective Energy

The fixed points of the synaptic and astrocyte dynamics in (6) are defined by:
ψij = −ϕiϕj

gij =
N∑

k,l=1

Tijklϕkϕl

For fixed ϕi, these equations uniquely determine sij and pij when g and ψ are strictly monotonic.
Substituting this into the neural dynamics equation, we get:

τnẋi = −xi +
N∑

j,k,l=1

Tijkl ϕjϕkϕl (14)

The corresponding effective energy is:

Eeff =
[ N∑

i=1

xiϕi − L[n]
]
− 1

4

N∑
i,j,k,l=1

Tijkl ϕiϕjϕkϕl (15)

These equations capture the essence of our argument: the fixed points of the neuron-astrocyte
network coincide with those of the effective neuron-only system. Astrocytes enable four-body neuron
interactions, unlike conventional models where synapses connect two neurons [29]. This results in an
“effective” four-neuron synapse, which integrates information across distant neurons.

D Proof of Neuron-Astrocyte Equilibration to Transformer Out-
put

Neuron-Astrocyte Transformer Architecture The aim of this section is to demonstrate that a
simple selection of the astrocyte process-to-process weights Tijkl = 1 is sufficient, along with
a specialized architecture (Figure 5), to produce interesting computations in the general neuron-
astrocyte network equations (1), (2), (3). We consider a single group of N neurons, where the state
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5: Dynamic, stable neuron-astrocyte architecture which implements the self-attention operation in transformers.

of the i-th neuron in this group is denoted by xi. These neurons receive inputs from another group of
M neurons, where the state of the j-th neuron in this group is denoted Ij . The synaptic connection
between neuron Ij and neuron xi is represented by sij . The xi neurons also receive input from
another group of N neurons, whose state we denote by vi, for reasons that will become clear later on.
The dynamical equations for the xi layer are given by

τnẋi = −xi + r

M∑
j=1

sijIj + (1− r)vi (16)

where r = {0, 1} stands for "read", and is a global parameter controlling whether the network
is in "read" or "write" mode. Biologically, global coordination of this kind may be achieved by
neuromodulators (e.g., acetylcholine) [47]. We additionally assume that the Ij neurons receive strong
input from two M -dimensional neural populations which we denote as q̃j and k̃j (again for reasons
that will become clear shortly), so that the state of neuron Ij is given by

Ij = r q̃j + (1− r) k̃j (17)

The synaptic weights sij are modulated by an astrocyte and evolve according to the following
dynamical equations:

τsṡij = −pijsij + cij (18)

where pij represents the state of the astrocyte process ij, and cij is a fixed bias term. This set of
synaptic equations can be associated with equations (2) by setting

α = 0, and f(sij , xi, xj , pij) = −pijsij
The astrocyte dynamics are described by simple diffusive equations:

τpṗij =

N∑
k=1

M∑
l=1

[pkl − pij ] with
N∑
i=1

M∑
j=1

pij(0) > 0 (19)

The inequality is to ensure that the total amount of Ca2+ initially in the astrocyte is positive. Bi-
ologically, even Ca2+ concentrations inside individual processes are positive pij(0) ≥ 0, but,
mathematically, we will only use the positivity of the total amount of calcium inside the astrocyte.
Similar to the synaptic variables, this set of astrocyte equations can be associated with the astrocyte
equations (3) by setting

ψ(pij) = pij , γ = NM, Tijkl = 1, κ(sij) = 0 and dij = 0

Before establishing a connection with transformer networks, we will describe the dynamical properties
of Equations (16), (18), and (19). Specifically, we will demonstrate that, during the reading phase,
the neurons xi converge to an equilibrium point determined solely by the input neurons Ij , the
initial Ca2+ concentration in the astrocyte, and the synaptic bias terms cij . Following this, we
will illustrate how a judicious and biologically plausible selection of input neuron states, initial
Ca2+ levels, and synaptic biases enables the neurons xi to mimic the output of the self-attention
mechanism in transformers.
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Convergence & Synchronization of Astrocyte Processes To begin, note that the astrocyte equa-
tions (19) are autonomous with respect to the neural and synaptic variables. Therefore, we can
analyze their convergence properties independently from these variables. In particular, we can show
that the astrocyte equations synchronize to the average of their initial conditions. To see this, first
note that the total amount of Ca2+ in the astrocyte, which we denoted z, is conserved throughout the
diffusion process

z ≡
N∑
i=1

M∑
j=1

pij =⇒ ż =

N∑
i=1

M∑
j=1

ṗij = 0

Second, note that this property implies that if the astrocyte processes synchronize, i.e., pij = pkl = p∗,
then the state of each astrocyte process must converge to the average of the astrocyte initial conditions,
because

z(t) = NMp∗ = z(0) =

N∑
i=1

M∑
j=1

pij(0) =⇒ p∗ =
1

NM

N∑
i=1

M∑
j=1

pij(0) > 0 (20)

The inequality follows from the assumption in (19), that the total initial amount of Ca2+ in the
astrocyte is positive. To prove that the astrocyte processes in fact synchronize, one can use a virtual
system, as in [48] or a Lyapunov-like function

L =
1

2
(pij − pkl)

2 ≥ 0

for arbitrary indices ij and kl. Taking the time derivative of this function, one sees that

L̇ = (pij − pkl)(ṗij − ṗkl) = −NM
τp

(pij − pkl)
2 = −2NM

τp
L =⇒ L(t) = L(0)e

− 2NMt
τp

which shows that the astrocyte processes do in fact synchronize (i.e., |pij − pkl| → 0) exponentially
with rate NM

τp
.

Convergence of Synapses Moving on to the synaptic equations (18), we will assume that the
astrocyte processes have converged to p∗ > 0. This assumption is justified because, as the preceding
paragraph shows, the converge of the astrocyte process to p∗ is exponential, meaning that pij can be
brought arbitrarily close to p∗ after finite time. Because cij is a constant, and because p∗ is strictly
positive, this implies that the synapses simply converge exponentially quickly to the value

s∗ij =
cij
p∗

(21)

Convergence of Neurons Following a similar logic, the neural equations (16) converge exponen-
tially. When the network is in its writing phase (i.e., r = 0), the neurons converge to the equilibrium
point

x∗i = vi (22)

otherwise, when the network is in the reading phase (i.e., r = 1), the network converges exponentially
to the equilibrium point

x∗i =

M∑
j=1

s∗ijIj =
1

p∗

M∑
j=1

cijIj =

NM
M∑
j=1

cijIj

N∑
i=1

M∑
j=1

pij(0)

(23)

The first equality was obtained by substituting in s∗ij from (21), while the second equality was
obtained by subsituting in the value of p∗ from (20).
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Transformer Self-Attention We are now in a position to relate the neural fixed point (23) to the
output of the self-attention mechanism in transformers. To establish this connection, we define
several important terms. Consider a set of Ktok tokens, which are vectors in RD. As is standard in
transformer architectures, these tokens are transformed via three linear mappings into three new sets
of vectors known as keys, queries, and values. By collecting these transformed vectors into matrices,
we denote

K, Q ∈ RKtok×D and V ∈ RKtok×N .

The self-attention matrix A associated with these matrices is given by

Aµi =

Ktok∑
β=1

exp

(
D∑

s=1
QµsKβs

)
Vβi

Ktok∑
σ=1

exp

(
D∑

s=1
QµsKσs

)
An important characteristic of the above self-attention matrix is that it may be approximated via
feature maps [49] with the following property

ϕ(x)Tϕ(y) ≈ exp(xTy)

where x and y are two vectors. In general, the output dimension of ϕ, which we denote M (the same
M as above) is much larger than the input dimension D. To keep notations clean, we define the
output of these feature maps (applied column-wise to the matrices K and Q) as

K̃, Q̃ ≡ ϕ(K), ϕ(Q) ∈ RKtok×M

With this notation, we have that

Aµi ≈
Ktok∑
β=1

M∑
j=1

Q̃µjK̃βjVβi

Ktok∑
σ=1

M∑
j=1

Q̃µjK̃σj

Neuron-Astrocyte Self-Attention To make a connection to the fixed point equation (23), we first
rearrange the above terms as follows

Aµi ≈

M∑
j=1

(
Ktok∑
β=1

VβiK̃βj

)
Q̃µj

M∑
j=1

Q̃µj

Ktok∑
σ=1

K̃σj

(24)

We then set the bias terms cij in the synaptic equations as follows:

cij =
1

M

Ktok∑
β=1

VβiK̃βj (25)

Biologically, this corresponds to a simple form of Hebbian learning between two groups of neurons.
Within the framework of (23), this can be achieved during the writing phase (i.e., r = 0), such
that xi = vi = Vβi and Ij = k̃j ≡ K̃µj (from (17)). Then, updating cij by adding the product of
these two terms for each β represents a simple form of associative Hebbian learning, and yields (25).
Assuming cij is initially zero, we see that

∆cij =
1

M
xiIj =

1

M
VβiK̃βj =⇒ cij =

1

M

Ktok∑
β=1

VβiK̃βj

Finally, during the reading phase (r = 1) we select an index µ in the token sequence to run the
neuron-astrocyte dynamics forward on. In other words, cij is fixed across all tokens, but Ij and
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pij(0) change from token to token. For a particular index µ we instantiate the neurons Ij (17) and
the astrocyte processes pij as follows

Ij = q̃j ≡ Q̃µj and pij(0) = Q̃µj

Ktok∑
σ=1

K̃σj (26)

Plugging (25) and (26) into the neural fixed point condition for the reading phase (23), we arrive at
the desired result

x∗i =

NM
M∑
j=1

cijIj

N∑
i=1

M∑
j=1

pij(0)

=

NM
M

M∑
j=1

Ktok∑
β=1

VβiK̃βjQ̃µj

N∑
i=1

M∑
j=1

Q̃µj

Ktok∑
σ=1

K̃σj

=

NM
M

M∑
j=1

(
Ktok∑
β=1

VβiK̃βj

)
Q̃µj

N
M∑
j=1

Q̃µj

Ktok∑
σ=1

K̃σj

≈ Aµi

which shows that for a particular choice of parameters and initialization, the neuron-astrocyte network
converges to the output of self-attention. In other words, the neural fixed point equation (23) is equal
to the self-attention approximation (24).

E Details of Energy Network Experiments

6: A) A schematic for our associative neuron-synapse-astrocyte network. B) The neural, synaptic, and astrocyte
process activations during memory retrieval. In this case, the memory item being retrieved is an image of a dog
taken from the CIFAR10 dataset. C) Decreasing energy function of the neuron-synapse-astrocyte network as the
dynamics evolve. The decreasing energy functions during four different retrievals are shown.

To reduce the dimensionality of the problem, we use a custom autoencoder to encode the 3072-
dimensional (32× 32× 3) CIFAR10 images into a smaller, 768 dimensional, latent space. A single
CIFAR10 image in this latent space corresponds to a single memory ξµ. In addition to being 768-
dimensional, this latent space was also binary, so that ξµ ∈ [−1, 1]768. To ensure that the latent
space was binary, we wrote a custom autograd function which outputs the sign of the argument
during the forward pass, but is linear during the backwards pass. The discrepancy between forward
and backward pass induces a small amount of gradient noise in the training process, which is not
significant enough to impair learning. For concreteness, in PyTorch this custom activation is given
by:

c l a s s RoundWithGradien t ( t o r c h . a u t o g r a d . F u n c t i o n ) :
@ s t a t i c m e t h o d
def f o r w a r d ( c tx , x ) :

re turn t o r c h . s i g n ( x )

@ s t a t i c m e t h o d
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def backward ( c tx , g r a d _ o u t p u t ) :
re turn g r a d _ o u t p u t

def r o u n d _ w i t h _ g r a d i e n t ( x ) :
re turn RoundWithGradien t . apply ( x )

To initialize the network, we reasoned (in analogy with traditional Hopfield networks) that the entire
system should be initialized close to a stored memory. In our case, this includes all dynamical
variables: neuron, synapses, and astrocytes. To do this, we set the time derivatives in (6) equal
to zero, clamped the neural state at the corrupted memory x0, and then solved the resulting set of
algebraic equations for pij(0) and sij(0). Note that the synaptic states and process states are uniquely
determined given a fixed neural state, due to the invertibility of g and ψ.

F Details of Backpropagation Experiment

To reduce the dimensionality of the problem, we assume that the the state of the processes does
not depend on index i, in other words pij = pj . Biologically, this has the interpretation that the
astrocyte processes associated with post-synaptic neuron i are all synchronized. This can be justified
by assuming that nearby astrocyte processes are sensitive to inputs arrive at the dendritic tree of
neuron i, and can rapidly redistribute their Ca2+ levels. Similarly, we assume that the weights Tijkl
between astrocyte processes ij and kl is only a function of indices j and l. We likewise assume that
the synapses only receive pre-synaptic input. That is,

τ ẋi = −xi +
N∑
j=1

gijϕj + bi

τ ṡij = −sij + ϕj + ψj

τ ṗj = −pj +
N∑
l=1

Tjlψl + sj

where gij = Wij tanh(sij), Wij is a trainable parameter, and ψ and ϕ are both also hyperbolic
tangent. To match the dimensionality of the Tiny ImageNet dataset, our network contains N =
12288 = 64× 64× 3 neurons. We numerically integrate the network using Euler integration for 20
timesteps, using a step-size of dt = 0.1τ . We set τ = 1 in our experiment. As described in the main
text, we initialized the neurons in the network as the masked images. The synapses and astrocyte
processes we initialized at zero. The output of the network was a linear layer followed by a sigmoid
function, to ensure valid RGB values. The network was trained using the Adam optimizer with a
learning rate of 0.001, using a batch size of 64 images. We trained on a subset of 5000 images in the
TinyImage dataset, which enabled our network to learn quickly.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We do not claim anything other than what is proven.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.
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are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please refer to the discussion.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: To the best of our knowledge, the proofs prsented herein are self-contained.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We will provide all the code which generated the figures.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All code can be run on Google Colab.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There are no ethical concerns in this work, as far as we know.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The results are too theoretical at the moment to speculate as to the downstream
societal consequences.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

20

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is theoretical.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We are the only creators.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: There are no assets introduced here.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We did not use crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: We did not use an IRB or do any experiments on people.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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