
Published as a conference paper at ICLR 2023

TOWARDS ONE-SHOT NEURAL COMBINATORIAL
SOLVERS: THEORETICAL AND EMPIRICAL NOTES
ON THE CARDINALITY-CONSTRAINED CASE

Runzhong Wang1, Li Shen2, Yiting Chen1, Xiaokang Yang1, Dacheng Tao2, Junchi Yan1∗
1MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University 2JD Explore Academy
{runzhong.wang,sjtucyt,xkyang,yanjunchi}@sjtu.edu.cn
{mathshenli,dacheng.tao}@gmail.com
Code: https://github.com/Thinklab-SJTU/One-Shot-Cardinality-NN-Solver

ABSTRACT

One-shot non-autoregressive neural networks, different from RL-based ones, have
been actively adopted for solving combinatorial optimization (CO) problems,
which can be trained by the objective score in a self-supervised manner. Such
methods have shown their superiority in efficiency (e.g. by parallelization) and
potential for tackling predictive CO problems for decision-making under uncer-
tainty. While the discrete constraints often become a bottleneck for gradient-based
neural solvers, as currently handled in three typical ways: 1) adding a soft penalty
in the objective, where a bounded violation of the constraints cannot be guaran-
teed, being critical to many constraint-sensitive scenarios; 2) perturbing the input
to generate an approximate gradient in a black-box manner, though the constraints
are exactly obeyed while the approximate gradients can hurt the performance on
the objective score; 3) a compromise by developing soft algorithms whereby the
output of neural networks obeys a relaxed constraint, and there can still occur an
arbitrary degree of constraint-violation. Towards the ultimate goal of establishing
a general framework for neural CO solver with the ability to control an arbitrary-
small degree of constraint violation, in this paper, we focus on a more achievable
and common setting: the cardinality constraints, which in fact can be readily en-
coded by a differentiable optimal transport (OT) layer. Based on this observation,
we propose OT-based cardinality constraint encoding for end-to-end CO problem
learning with two variants: Sinkhorn and Gumbel-Sinkhorn, whereby their viola-
tion of the constraints can be exactly characterized and bounded by our theoretical
results. On synthetic and real-world CO problem instances, our methods surpass
the state-of-the-art CO network and are comparable to (if not superior to) the com-
mercial solver Gurobi. In particular, we further showcase a case study of applying
our approach to the predictive portfolio optimization task on real-world asset price
data, improving the Sharpe ratio from 1.1 to 2.0 of a strong LSTM+Gurobi base-
line under the classic predict-then-optimize paradigm.

1 INTRODUCTION

Developing neural networks that can handle combinatorial optimization (CO) problems is a trending
research topic (Vinyals et al., 2015; Dai et al., 2016; Yu et al., 2020). A family of recent CO
networks (Wang et al., 2019b; Li et al., 2019; Karalias & Loukas, 2020; Bai et al., 2019) improves
the existing reinforcement learning-based auto-regressive CO networks (Dai et al., 2016; Lu et al.,
2019) by solving the problem in one shot and relaxing the non-differentiable constraints, resulting in
an end-to-end learning pipeline. The superiorities of one-shot CO networks are recognized in three
aspects: 1) the higher efficiency by exploiting the GPU-friendly one-shot feed-forward network,
compared to CPU-based traditional solvers (Gamrath et al., 2020) and the tedious auto-regressive

∗Junchi Yan is the correspondence author. The work was in part supported by National Key Research
and Development Program of China (2020AAA0107600), NSFC (U19B2035, 62222607, 61972250), STCSM
(22511105100), Shanghai Committee of Science and Technology (21DZ1100100).

1

https://github.com/Thinklab-SJTU/One-Shot-Cardinality-NN-Solver

Published as a conference paper at ICLR 2023

Table 1: Comparison among CO networks. Both theoretically and empirically, smaller constraint-
violation (CV) leads to better optimization results. Logarithm terms in CV bounds are ignored.

name of self-supervised CO network Erdos Goes Neural CardNN-S (ours) CardNN-GS/HGS (ours)(Karalias & Loukas, 2020)

enforce constraint in network architecture No (loss penalty term) Yes (by Sinkhorn) Yes (by Gumbel-Sinkhorn)
theoretical bound of CV (notations from Sec. 2) non-controlled Õ

(
mτ

|ϕk−ϕk+1|

)
Õ
(

mτ(|ϕi−ϕj |+σ)
|ϕi−ϕj |2+σ2

)
∀i ̸=j

empirical CV (results from Fig. 3(a)) 8.44 6.71 0.09
empirical optimal gap (↓) 0.152 0.139 0.023

CO networks; 2) the natural label-free, self-supervised learning paradigm by directly optimizing
over the objective score, which is more practical than supervised learning (Vinyals et al., 2015) and
empirically more efficient than reinforcement learning (Schulman et al., 2017); 3) the end-to-end
architecture enabling tackling the important predictive CO problems, i.e. decision-making under
uncertainty (Wilder et al., 2019; Elmachtoub & Grigas, 2022). In this paper, we follow the general
paradigm of learning to solve CO in one-shot presented in the seminal work (Karalias & Loukas,
2020). A neural network CO solver is built upon a problem encoder network, which firstly accepts
raw problem data and predicts the decision variables for the problem. The decision variables are then
passed to a differentiable formula to estimate the objective score, and finally, the objective score is
treated as the self-supervised loss. All modules must be differentiable for end-to-end learning.

As a CO solver, the output of the network should obey the constraint of the CO problem, while still
preserving the gradient. Since the input-output mappings of CO are piece-wise constant, where the
real gradient is zero almost everywhere or infinite when the output changes, it is notoriously hard
to encode CO constraints in neural networks. There are three typical workarounds available: 1) In
Karalias & Loukas (2020), the constraints are softly enforced by a penalty term, and the degree
of constraint-violation can be hardly theoretically characterized nor controlled, which limits their
applicability in many constraint-critical scenarios. Meanwhile, in the obligatory discretization step,
adding penalty terms means that the algorithm must search a much larger space than if it was con-
fined to feasible configurations, making the search less efficient and less generalizable (see Table 1).
2) The perturbation-based black-box differentiation methods (Pogančić et al., 2019; Paulus et al.,
2021; Berthet et al., 2020) resorts to adding perturbation to the input-output mapping of discrete
functions to estimate the approximate gradient as such the strict constraints are enforced in brute
force, yet their approximate gradients may hurt the learning process. 3) The soft algorithms (Zanfir
& Sminchisescu, 2018; Wang et al., 2019a; Sakaue, 2021) encode constraints to neural networks
by developing approximate and differentiable algorithms for certain CO problems (graph matching,
SAT, submodular), which is followed in this paper for their efficiency, yet there still remains the
possibility of facing an arbitrary degree of constraint-violation.

Towards the ultimate goal of devising a general CO network solver addressing all the above issues, in
this paper, we focus on developing a more practical paradigm for solving the cardinality-constrained
CO problems (Buchbinder et al., 2014). The cardinality constraints ∥x∥0 ≤ k are commonly found
in a wide range of applications such as planning facility locations in business operation (Liu, 2009),
discovering the most influential seed users in social networks (Chen et al., 2021), and predicting
portfolios with controllable operational costs (Chang et al., 2000). Under the cardinality constraint,
we aim to find the optimal subset with size k. Likewise other discrete CO constraints, the cardinality
constraint is non-trivial to differentiate through. In this paper, we propose to encode cardinality
constraints to CO networks by a topk selection over a probability distribution (which is the output of
an encoder network). An intuitive approach is to sort all probabilities and select the k-largest ones,
however, such a process does not offer informative gradients. Inspired by Cuturi et al. (2019); Xie
et al. (2020), we develop a soft algorithm by reformulating the topk selection as an optimal transport
problem (Villani, 2009) and efficiently tackle it by the differentiable Sinkhorn algorithm (Sinkhorn,
1964). With a follow-up differentiable computation of the self-supervised loss, we present a CO
network whose output is softly cardinality-constrained and capable of end-to-end learning.

However, our theoretical characterization of the Sinkhorn-based soft algorithm shows its violation of
the cardinality constraint may significantly grow if the values of the k-th and (k+1)-th probabilities
are too close. Being aware of the perturbation-based differentiable methods (Pogančić et al., 2019;
Paulus et al., 2021; Berthet et al., 2020) and the Gumbel trick (Jang et al., 2017; Mena et al., 2018;
Grover et al., 2019) that can build near-discrete neural networks, in this paper, we further incorporate
the Gumbel trick which is crucial for strictly bounding the constraint-violation term to an arbitrary

2

Published as a conference paper at ICLR 2023

Figure 1: Our CardNN pipeline. The problem encoder and our proposed optimal transport (OT)
cardinality layer compose our CO solver network, which has the superiority of guaranteeing a theo-
retically bounded constraint-violation. The decision variables from the CO network are then utilized
to estimate the objective score, i.e. the self-supervised loss. The implementation of the OT cardi-
nality layer and its theoretical characteristics will be discussed in Sec. 2. The other components are
problem-dependent and will be discussed in Sec. 3 and Sec. 4 under the context of each problem.

small number. Our network takes both advantages of the high efficiency in soft algorithms (Zanfir
& Sminchisescu, 2018) and the low constraint-violation in perturbation-based methods (Pogančić
et al., 2019; Jang et al., 2017). A homotopy extension (Xu et al., 2016) is further developed where
the constraint-violation term is gradually tightened. Following the self-supervised learning pipeline
in Karalias & Loukas (2020), our cardinality-constrained CO networks are validated on two repre-
sentative deterministic CO tasks: facility location and max covering problems.

An important application of predictive CO is also addressed, where the problem parameters are un-
known at the decision-making time. We present a “predict-and-optimize” network that jointly learns
a predictor and a neural network CO solver end-to-end over the final objective score, instead of the
two-stage “predict-then-optimize” which learns a predictor first and then optimizes separately, at the
risk of optimizing performance being hurt by prediction error. Specifically, towards a practical and
widely concerned task: portfolio optimization under uncertainty, we build an end-to-end predictive
portfolio optimization model. Experimental results on real-world data show that it outperforms the
classic “predict-then-optimize” paradigm. The contributions include:

• New End-to-end One-shot Neural Architecture for CO Problems. We propose the first (to
our best knowledge) end-to-end cardinality-constrained neural network for efficient CO problem-
solving in one-shot, in the sense that the constraints are incorporated in the network architecture
instead of directly putting them in the learning objective as penalty terms.
• Theoretical and Empirical Advantages of the CO Architecture. The cardinality constraint
is encoded in the differentiable optimal transport layer based on the topk selection technique (Xie
et al., 2020). While we further introduce the idea of perturbation as used in blackbox differentiable
CO (Pogančić et al., 2019; Paulus et al., 2021), by incorporating the Gumbel trick to reduce the
constraint-violation, and the violation bound is strictly guaranteed by our theoretical results. Empir-
ical results on two CO tasks: facility location and max covering also verify its competitiveness.
• Enabling “predict-and-optimize” Paradigm. We show that our new network further enables an
emerging end-to-end “predict-and-optimize” paradigm in contrast to the traditional “predict-then-
optimize” pipeline. Its potential is demonstrated by a study on predictive portfolio optimization on
real-world asset price data, with an improvement of Sharpe ratio from 1.1 to 2.0, compared with a
baseline: LSTM+Gurobi.

2 CARDINLIATY-CONSTRAINED COMBINATORIAL NETWORKS

An overview of our CardNN pipeline is shown in Fig. 1. Following the general paradigm (Karalias
& Loukas, 2020) to tackle CO in one-shot, we introduce an optimal transport (OT) cardinality layer
in the neural network CO solver to enforce the constraints upon the output of the problem encoder
network, whereby the superiorities could be addressed both empirically and theoretically.

Recall that under cardinality constraint, the solution must have no more than k non-zero elements:

min
x

J(x) s.t. ∥x∥0 ≤ k. (1)

3

Published as a conference paper at ICLR 2023

In this paper, enforcing the cardinality constraint in networks is formulated as solving OT with
differentiable layers (Cuturi, 2013). Denote s = [s1, · · · , sm] as the probability vector predicted by
the problem encoder network, our OT layer selects k largest items from s by moving k items to one
destination (selected), and the other (m− k) elements to the other destination (not selected). In the
following, we present two embodiments of OT layers and their theoretical characteristics.

2.1 CARDNN-S: SINKHORN LAYER FOR CARDINALITY CONSTRAINT

We follow the popular method Sinkhorn (1964) and define the OT problem as follows. The sources
are m candidates in s and the destinations are the min/max values of s. OT moves the topk items to
smax, and the others to smin. The marginal distributions (c, r) and distance matrix (D) are defined as:

c = [1 1 ... 1]︸ ︷︷ ︸
m items

, r =

[
m− k

k

]
,D =

[
s1 − smin s2 − smin ... sm − smin
smax − s1 smax − s2 ... smax − sm

]
. (2)

Then OT can be formulated as integer linear programming:

min
T

tr(T⊤D) s.t. T ∈ {0, 1}2×m,T1 = r,T⊤1 = c, (3)

where T is the transportation matrix which is also a feasible decision variable for the cardinality
constraint, and 1 is a column vector whose all elements are 1s. The optimal solution T∗ to Eq. (3)
should be equivalent to the solution by firstly sorting all items and then selecting the topk items. To
make the process differentiable by soft algorithms, the binary constraint on T is relaxed to continu-
ous values [0, 1], and Eq. (3) is modified with an entropic regularization:

min
Tτ

tr(Tτ⊤D) + τh(Tτ) s.t. Tτ ∈ [0, 1]2×m,Tτ1 = r,Tτ⊤1 = c, (4)

where h(Tτ) =
∑

i,j T
τ
ij logT

τ
ij is the entropic regularizer (Cuturi, 2013). Given any real-valued

matrix D, Eq. (4) is solved by firstly enforcing the regularization factor τ : Tτ = exp(−D/τ). Then
Tτ is row- and column-wise normalized alternatively:

Dr = diag(Tτ1⊘ r), Tτ = D−1
r Tτ ; Dc = diag(Tτ⊤1⊘ c), Tτ = TτD−1

c , (5)

where ⊘ is element-wise division. We denote Tτ∗ as the converged solution, which is the optimal
solution to Eq. (4). The second row of Tτ∗ is regarded as the relaxed decision variable for the
cardinality constraint: Tτ∗[2, i] is regarded as the probability that xi should be non-zero. Tτ∗ is
further fed into the objective estimator. Note that Tτ∗ is usually infeasible in the original problem,
and we define the following constraint violation to measure the quality of Tτ∗.
Definition 2.1 (Constraint Violation, CV). CV is the expected minimal distance between a re-
laxed solution t (from distribution T) and any feasible solution from the feasible set H: CV =
Et∈T [minh∈H ∥t− h∥F]. Apparently, h is the nearest feasible solution to t.
Remark 2.2 (Meaning of CV). Take the self-supervised CardNN-S as an example, estimating the
objective score (which is exactly the self-supervised loss) based on Tτ∗ is necessary during training.
In inference, the solution must be feasible in the original problem, so the nearest feasible solution T∗

is returned. Actually, in training, the network learns to solve a relaxed, easier version of the original
problem, and CV = ∥T∗ − Tτ∗∥F is an important characteristic measuring the gap between the
relaxed problem (in training) and the original problem (in inference). Here T means the distribution
of all CardNN-S outputs and is omitted for simplicity. Such a meaning of CV also applies for other
self-supervised CO networks. In the following, we theoretically characterize the CV of CardNN-S:
Proposition 2.3. Assume that Sinkhorn is converged. The constraint-violation of the CardNN-S is

CVCardNN-S = ∥T∗ −Tτ∗∥F ≤ 2mτ log 2

|ϕk − ϕk+1|
. (6)

Without loss of generality, ϕ is denoted as the descending sequence of s, i.e. ϕk, ϕk+1 are the k-
th, (k + 1)-th largest elements of s, respectively. Proposition 2.3 is a straightforward derivation
based on Theorem 2 of Xie et al. (2020), and is better than Karalias & Loukas (2020) whose CV
is non-controlled. However, as we learn from Eq. (6), the CV of CardNN-S gradually grows if
|ϕk − ϕk+1| becomes smaller, and turns diverged under the extreme case that ϕk = ϕk+1, meaning
that its CV cannot be tighten by adjusting the hyperparameter τ . Such a divergence is not surprising

4

Published as a conference paper at ICLR 2023

Algorithm 1: CardNN-GS: Gumbel-Sinkhorn Layer for Cardinality Constraint
Input: List s with m items; cardinality k; Sinkhorn factor τ ; noise factor σ; sample size #G.

1 for i ∈ {1, 2, ..., #G} do
2 for all sj , s̃j = sj − σ log(− log(uj)), where uj is from (0, 1) uniform distribution;

3 D̃ =

[
s̃1 − smin ... s̃m − smin
smax − s̃1 ... smax − s̃m

]
; construct c, r following Eq. (2); T̃i = exp(−D̃/τ);

4 while not converged do
5 D̃r = diag(T̃i1⊘ r); T̃i = D̃−1

r T̃i; D̃c = diag(T̃⊤
i 1⊘ c); T̃i = T̃iD̃

−1
c ;

Output: A list of transport matrices [T̃1, T̃2, ..., T̃#G].

because one cannot decide whether to select ϕk or ϕk+1 if they are equal, which is fine if any direct
supervision on Tτ∗ is available. However, as discussed in Remark 2.2, the importance of CV is
non-negligible in self-supervised CO networks. Since working with solely the Sinkhorn algorithm
reaches its theoretical bottleneck, in the following, we present our improved version by introducing
random perturbations (Pogančić et al., 2019; Jang et al., 2017) to further tighten the CV.

2.2 CARDNN-GS: GUMBEL-SINKHORN LAYER FOR CARDINALITY CONSTRAINT

In this section, we present our Gumbel-Sinkhorn Layer for Cardinality Constraint as summarized
in Alg. 1 and we will theoretically characterize its CV. Following the reparameterization trick (Jang
et al., 2017), instead of sampling from a distribution that is non-differentiable, we add random
variables to probabilities predicted by neural networks. The Gumbel distribution is:

gσ(u) = −σ log(− log(u)), (7)

where σ controls the variance and u is from (0, 1) uniform distribution. We can update s and D as:

s̃j = sj + gσ(uj), D̃ =

[
s̃1 − smin s̃2 − smin ... s̃m − smin
smax − s̃1 smax − s̃2 ... smax − s̃m

]
. (8)

Again we formulate the integer linear programming version of the OT with Gumbel noise:

min
Tσ

tr(Tσ⊤D̃) s.t. Tσ ∈ {0, 1}2×m,Tσ1 = r,Tσ⊤1 = c, (9)

where the optimal solution to Eq. (9) is denoted as Tσ∗. To make the integer linear programming
problem feasible for gradient-based deep learning methods, we also relax the integer constraint and
add the entropic regularization term:

min
T̃

tr(T̃⊤D̃) + h(T̃) s.t. T̃ ∈ [0, 1]2×m, T̃1 = r, T̃⊤1 = c, (10)

which is tackled by the Sinkhorn algorithm following Eq. (5). Here we denote the optimal solution
to Eq. (10) as T̃∗. Since Tσ∗ is the nearest feasible solution to T̃∗, we characterize the constraint-
violation as the expectation of ∥Tσ∗ − T̃∗∥F , and multiple T̃s are generated in parallel in practice
to overcome the randomness (note that ϕ is the descending ordered version of s):
Proposition 2.4. With probability at least (1− ϵ), the constraint-violation of the CardNN-GS is

CVCardNN-GS = Eu

[
∥Tσ∗ − T̃∗∥F

]
≤ (log 2)mτ

∑
i ̸=j

Ω(ϕi, ϕj , σ, ϵ), (11)

where Ω(ϕi, ϕj , σ, ϵ) =
2σ log

(
σ − |ϕi−ϕj |+2σ

log(1−ϵ)

)
+ |ϕi − ϕj |

(
π
2 + arctan

ϕi−ϕj

2σ

)
(1− ϵ)((ϕi − ϕj)2 + 4σ2)(1 + exp ϕi−ϕk

σ)(1 + exp
ϕk+1−ϕj

σ)
.

Proof sketch: This proposition is proven by generalizing Proposition 2.3. We denote ϕπk
, ϕπk+1

as
the k-th and (k + 1)-th largest items after perturbed by the Gumbel noise, and our aim becomes to
prove the upper bound of Eu

[
1/(|ϕπk

+ gσ(uπk
)− ϕπk+1

− gσ(uπk+1
)|)
]
, where the probability

density function of gσ(uπk
) − gσ(uπk+1

) can be bounded by f(y) = 1/(y2 + 4). Thus we can
compute the bound by integration. See Appendix C.1 for details.

5

Published as a conference paper at ICLR 2023

Table 2: Objective score↑ among perturb-based methods (Pogančić et al., 2019; Berthet et al., 2020;
Amos et al., 2019) on MCP (k=50,m=500,n=1000). Baseline is Xie et al. (2020) used in CardNN-S.

CardNN+Pogančić et al. (2019) CardNN+Berthet et al. (2020) CardNN+Amos et al. (2019) CardNN-S CardNN-GS

32499.7 37618.9 38899.6 42034.9 44710.3

Corollary 2.5. Ignoring logarithm terms for simplicity, CVCardNN-GS ≤ Õ
(

mτ(|ϕi−ϕj |+σ)
|ϕi−ϕj |2+σ2

)
∀i ̸=j

(see Appendix C.2 for the proof).

10 3 10 2 10 1

 (log scale)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Co
ns

tra
in

t-V
io

la
tio

n
(C

V)

CardNN-GS (= 0.050)
CardNN-GS (= 0.010)
CardNN-GS (= 0.005)
CardNN-GS (= 0.001)
CardNN-S (= 0.050)
CardNN-S (= 0.010)
CardNN-S (= 0.005)
CardNN-S (= 0.001)

Figure 2: Toy example.

We compare CV of CardNN-S and CardNN-GS
by the toy example in Fig. 2: finding the top3 of
[1.0, 0.8, 0.601, 0.6, 0.4, 0.2]. We plot CV w.r.t. dif-
ferent τ, σ values. CV is tightened by larger σ and
smaller τ for CardNN-GS, compared to CardNN-S
whose violation is larger and can only be controlled
by τ . These empirical results are in line with Propo-
sition 2.3 and Proposition 2.4.

Homotopy Gumbel-Sinkhorn. The Corollary 2.5
suggests that CV can be tightened by adjusting τ
and σ, motivating us to develop a homotopy (Xiao
& Zhang, 2013; Xu et al., 2016) Gumbel-Sinkhorn
method where the constraints are gradually tighten
(i.e. annealing τ and σ values). In practice, σ is not considered because a larger σ means increased
variance which calls for more Gumbel samples. We name the homotopy version as CardNN-HGS.

We also notice that our CardNN-S (Sec. 2.1) and CardNN-GS (Sec. 2.2) can be unified theoretically:
Corollary 2.6. CardNN-S is a special case of CardNN-GS when σ → 0+ (proof in Appendix C.3).

3 ONE-SHOT SOLVING THE DETERMINISTIC CO TASKS

In this section, we present the implementation details and experiment results for learning to solve two
deterministic CO problems in one-shot: facility location problem (FLP) and max covering problem
(MCP). Deterministic CO means all problem parameters are known at the decision-making time.
Readers are referred to Appendix D for the algorithm details.

The Facility Location Problem. Given m locations and we want to extend k facilities such that the
goods can be stored at the nearest facility and delivered more efficiently (Liu, 2009). The objective
is to minimize the sum of the distances between each location and its nearest facility.
Problem Formulation: Denote ∆ ∈ Rm×m

≥0 as the distance matrix for locations, the FLP is

min
x

m∑
j=1

min({∆i,j | ∀xi = 1}) s.t. x ∈ {0, 1}m, ∥x∥0 ≤ k. (12)

Problem Encoder: For locations with 2-D coordinates, an edge is defined if two locations are closer
than a threshold, e.g. 0.02. We exploit a 3-layer SplineCNN (Fey et al., 2018) to extract features.
Objective Estimator: We notice that the min operator in Eq. (12) will lead to sparse gradients.
Denote ◦ as element-wise product of a matrix and a tiled vector, we replace min by Softmax with
minus temperature −β: J̃i = sum(softmax(−β∆ ◦ T̃i[2, :]

⊤) ◦∆), J = mean([J̃1, J̃2, ..., J̃#G]).

The Max Covering Problem. Given m sets and n objects where each set may cover any number
of objects, and each object is associated with a value, MCP (Khuller et al., 1999) aims to find k sets
(k ≪ m) such that the covered objects have the maximum sum of values. This problem reflects real-
world scenarios such as discovering influential seed users in social networks (Chen et al., 2021).
Problem Formulation: We build a bipartite graph for the sets and objects, whereby coverings are
encoded as edges. Denote v ∈ Rn as the values, A ∈ {0, 1}m×n as the adjacency of bipartite
graph, I(x) as an indicator I(x)i = 1 if xi ≥ 1 else I(x)i = 0. We formulate the MCP as

max
x

n∑
j=1

(
I

(
m∑
i=1

xiAij

)
· vj

)
s.t. x ∈ {0, 1}m, ∥x∥0 ≤ k, (13)

6

Published as a conference paper at ICLR 2023

0 200 400 600
inference time (seconds)

2

3

4

5

6

7

8

ob
je

ct
iv

e
(lo

we
r i

s b
et

te
r)

0 200 400 600
inference time (seconds)

0
10 4

10 3

10 2

10 1

100

op
tim

al
 g

ap
 (l

ow
er

 is
 b

et
te

r) greedy
SCIP (120s)
Gurobi (120s)
Gurobi (optimal)
EGN
EGN-accu
CardNN-S
CardNN-GS
CardNN-HGS

(a) FLP-Synthetic (k=30, m=500)

0 200 400 600 800 1000 1200
inference time (seconds)

2

3

4

5

6

7

8

ob
je

ct
iv

e
(lo

we
r i

s b
et

te
r)

0 250 500 750 1000
inference time (seconds)

0

10 3

10 2

10 1

100

op
tim

al
 g

ap
 (l

ow
er

 is
 b

et
te

r) greedy
SCIP (200s)
Gurobi (200s)
Gurobi (optimal)
EGN
EGN-accu
CardNN-S
CardNN-GS
CardNN-HGS

(b) FLP-Synthetic (k=50, m=800)

0 20 40 60 80 100
inference time (seconds)

3.6

3.8

4.0

4.2

4.4

4.6

ob
je

ct
iv

e
(h

ig
he

r i
s b

et
te

r)

1e4

greedy
SCIP (100s)
Gurobi (100s)
EGN
EGN-accu
CardNN-S
CardNN-GS
CardNN-HGS

0 20 40 60 80 100
inference time (seconds)

0
10 5

10 4

10 3

10 2

10 1

ga
p

(lo
we

r i
s b

et
te

r)

(c) MCP-Synthetic (k=50, m=500, n=1000)

0 50 100 150 200
inference time (seconds)

7.0

7.5

8.0

8.5

9.0

ob
je

ct
iv

e
(h

ig
he

r i
s b

et
te

r)

1e4

greedy
SCIP (120s)
Gurobi (120s)
EGN
EGN-accu
CardNN-S
CardNN-GS
CardNN-HGS

0 50 100 150 200
inference time (seconds)

0

10 5

10 4

10 3

10 2

10 1

ga
p

(lo
we

r i
s b

et
te

r)

(d) MCP-Synthetic (k=100, m=1000, n=2000)

Figure 3: Plot of objective score, gap w.r.t. inference time on synthetic CO problems. Each scatter
dot denotes a problem instance, and the average performance is marked by “×”. In terms of both ef-
ficiency and efficacy, our CardNN-S outperforms the EGN CO network whose constraint-violation
is non-controlled. The efficacy is further improved by CardNN-GS and CardNN-HGS, even sur-
passing the state-of-the-art commercial solver Gurobi (better results with less inference time). The
Gurobi solver fails to return the optimal solution within 24 hours for MCP, thus not reported here.

Problem Encoder: To encode the bipartite graph, we exploit three layers of GraphSage (Hamilton
et al., 2017) followed by a fully-connected layer with sigmoid to predict the probability of selecting
each set.
Objective Estimator: Based on Eq. (13), the objective value is estimated as:

J̃i = min(T̃i[2, :]A, 1)⊤ · v, J = mean([J̃1, J̃2, ..., J̃#G]). (14)

Learning and Optimization. Based on whether it is a minimization or a maximization problem, J
or −J is treated as the self-supervised loss, respectively. The Adam optimizer (Kingma & Ba, 2014)
is applied for training. In inference, the neural network prediction is regarded as initialization, and
we also optimize the probabilities w.r.t. the objective score by gradients.

Experiment Setup. We follow the self-supervised learning pipeline proposed by the state-of-the-
art CO network (Karalias & Loukas, 2020), whereby both synthetic data and real-world data are
considered. For synthetic data, we build separate training/testing datasets with 100 samples. We
generate uniform random locations on a unit square for FLP, and we follow the distribution in OR-
LIB (Beasley, 1990) for MCP. Due to the lack of large-scale datasets, real-world datasets are only
considered for testing (training on synthetic data, testing on real-world data). We test the FLP based
on Starbucks locations in 4 cities worldwide with 166-569 stores, and we test MCP based on 6 social
networks with 1912-9498 nodes collected from Twitch by Rozemberczki et al. (2021).

Baselines. 1) Greedy algorithms are considered because they are easy to implement but very strong
and effective. They have the worst-case approximation ratio of (1 − 1/e) due to the submodular
property (Fujishige, 1991) for both FLP and MCP. 2) Integer programming solvers including the
state-of-the-art commercial solver Gurobi 9.0 (Gurobi Optimization, LLC, 2021) and the state-of-
the-art open-source solver SCIP 7.0 (Gamrath et al., 2020). The time budgets of solvers are set to be
higher than our networks. For 3) CO neural networks, we compare with the state-of-the-art Erdos
Goes Neural (EGN) (Karalias & Loukas, 2020) which is adapted from their official implementation:
https://github.com/Stalence/erdos_neu. The major difference between EGN and
ours is that EGN does not enforce CO constraints by its architecture. Besides, we empirically find
out that all self-supervised learning methods converge within tens of minutes. Since the RL methods
e.g. Khalil et al. (2017); Wang et al. (2021a) need much more training time, they are not compared.

Metrics and Results. Fig. 3 and 4 report results on synthetic and real-world dataset, respectively.
The “gap” metric is computed as gap = |J − J∗|/max(J, J∗), where J is the predicted objective

7

https://github.com/Stalence/erdos_neu

Published as a conference paper at ICLR 2023

0 100 200 300 400 500
inference time (seconds)

0

10 2

10 1

100

op
tim

al
 g

ap
 (l

ow
er

 is
 b

et
te

r) greedy
SCIP (60s)
Gurobi (60s)
Gurobi (optimal)
EGN
EGN-accu
CardNN-S
CardNN-GS
CardNN-HGS

(a) FLP-Starbucks (Euclidean)

0 100 200 300
inference time (seconds)

010 3

10 2

10 1

100

op
tim

al
 g

ap
 (l

ow
er

 is
 b

et
te

r) greedy
SCIP (60s)
Gurobi (60s)
Gurobi (optimal)
EGN
EGN-accu
CardNN-S
CardNN-GS
CardNN-HGS

(b) FLP-Starbucks (Manhattan)

0 100 200 300
inference time (seconds)

0
10 5

10 4

10 3

10 2

10 1

op
tim

al
 g

ap
 (l

ow
er

 is
 b

et
te

r)

greedy
SCIP (optimal)
Gurobi (optimal)
EGN
EGN-accu
CardNN-S
CardNN-GS
CardNN-HGS

(c) MCP-Twitch

Figure 4: Plot of optimal gap w.r.t. inference time on real-world CO problems. Our CardNN models
are consistently superior than EGN, and are comparative to state-of-the-art SCIP/Gurobi solvers
and sometimes can even surpass. On the FLP-Starbucks problems, our CardNN-GS/HGS achieve
a lower optimal gap with comparable time cost w.r.t. SCIP/Gurobi. On the MCP-Twitch problems,
our CardNN-HGS is slower than SCIP/Gurobi, but it finds all optimal solutions.

and J∗ is the incumbent best objective value (among all methods). If one of the integer programming
solvers proves an optimal solution, we name it as “optimal gap”. Considering both efficiency and
efficacy, the performance ranking of CO networks is CardNN-HGS > CardNN-GS > CardNN-S
> EGN. This is in line with our theoretical result in Sec. 2: a lower constraint violation will lead
to better performance in CO. To justify our selection of Xie et al. (2020) as the base differentiable
method, we also implement other perturbation-based differentiable methods and report the MCP
results in Table 2. See Appendix E for more details about our deterministic CO experiment.

4 ONE-SHOT SOLVING THE PREDICTIVE CO TASKS

In this section, we study the interesting and important topic of predictive CO problems where the
problem parameters are unknown at the decision-making time. We consider the challenging problem
of predicting the portfolio with the best trade-off in risks and returns in the future, under the practical
cardinality constraint to control the operational costs. Traditionally, such a problem involves two
separate steps: 1) predict the asset prices in the future, probably by some deep learning models;
2) find the best portfolio by solving an optimization problem based on the prediction. However, the
optimization process may be misled due to unavoidable errors in the prediction model. To resolve
this issue, Solin et al. (2019) proposes to differentiate through unconstrained portfolio optimization
via Amos & Kolter (2017), but the more practical cardinality constrained problem is less studied.

Problem Formulation. Cardinality constrained portfolio optimization considers a practical scenario
where a portfolio must contain no more than k assets (Chang et al., 2000). A good portfolio aims to
have a high return (measured by mean vector µ ∈ Rm) and low risk (covariance matrix Σ ∈ Rm×m).
Here we refer to maximizing the Sharpe ratio (Sharpe, 1998). The problem is formulated as

max
x

(µ− rf)
⊤x√

x⊤Σx
, s.t.

m∑
i=1

xi = 1,x ≥ 0, ∥x∥0 ≤ k, (15)

where x denotes the weight of each asset, rf means risk-free return, e.g. U.S. treasury bonds. Note
that µ,Σ are unknown at the time of decision-making, and they are predicted by a neural network.

Network Architecture. An encoder-decoder architecture of Long-Short Term Memory (LSTM)
modules is adopted as the problem encoder (i.e. price predictor). The sequence of historical daily
prices is fed into the encoder module, and the decoder module outputs the predicted prices for
the future. We append a fully-connected layer after the hidden states to learn the probabilities for
cardinality constraints, followed by our CardNN-GS layers.

Objective Estimator. Based on the network outputs µ,Σ, T̃, we estimate the value of x by lever-
aging a closed-form solution of unconstrained Eq. (15): x = Σ−1(µ − rf), and then enforcing
the constraints: x = relu(x ⊙ T̃i[2, :]),x = x/sum(x) (⊙ means element-wise product). After
obtaining x, we compute the Sharpe ratio based on x and µgt,Σgt computed from the ground truth
prices, and use this Sharpe ratio as supervision: J̃i =

(
(µgt − rf)

⊤x
)
/
(√

x⊤Σgtx
)

.

8

Published as a conference paper at ICLR 2023

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

2021/1/1 2021/2/1 2021/3/1 2021/4/1 2021/5/1 2021/6/1 2021/7/1

Ex
p

e
ct

e
d

 A
n

u
al

 R
et

u
rn

Starting Date

CardNN-GS: average return=40.0%

pred-then-opt: average return=24.1%

history-opt: average return=13.9%

S&P500: average return=23.50%

0

0.1

0.2

0.3

0.4

0.5

0.6

2021/1/1 2021/2/1 2021/3/1 2021/4/1 2021/5/1 2021/6/1 2021/7/1

Ex
p

e
ct

e
d

 R
is

k
-

St
an

d
ar

d
 D

e
vi

at
io

n

Starting Date

CardNN-GS: average risk=18.8%

pred-then-opt: average risk=19.5%

history-opt: average risk=16.2%

Figure 5: Return (left) and risk (right) for portfolios by the classic “predict-then-optimize” pipeline
(by LSTM for prediction and Gurobi for optimization) and our CardNN-GS for end-to-end “predict-
and-optimize”. The portfolios proposed by our CardNN-GS has higher returns and lower risks.
Since the batch of S&P500 assets violates the cardinality constraint, it is unfair to compare the risk.

Table 3: Our “predict-and-optimize” achieves better risk-return trade-off (Sharpe ratio) though the
price prediction is less accurate (by mean square error) than “predict-then-optimize” on test set.

Methods predictor+optimizer prediction MSE ↓ Sharpe ratio ↑
history-opt none+Gurobi (no prediction) 0.673

pred-then-opt LSTM+Gurobi 0.153 1.082
pred-and-opt LSTM+CardNN-GS 1.382 1.968

Setup and Baselines. The price predictor is supervised with price labels but the optimizer is self-
supervised (no optimal solution labels). We consider portfolio prediction with the best Sharpe ratio
in the next 120 trading days (∼24 weeks) and test with the real data in the year 2021. The training set
is built based on the prices of 494 assets from the S&P 500 index from 2018-01-01 to 2020-12-30.
We set the annual risk-free return as 3% and the cardinality constraint k = 20. The classic “predict-
then-optimize” baseline learns the same LSTM model as ours to minimize the prediction square
error of the asset prices and optimizes the portfolio by Gurobi based on the price predictions. We
also consider a “history-opt” baseline, whereby the optimal portfolio in historical data is followed.

0.1 0.2 0.3 0.4 0.5 0.6
Risk

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
et

ur
n

efficient frontier
CardNN assets
CardNN portfolio
history-opt assets
history-opt portfolio
pred-then-opt assets
pred-then-opt portfolio

Figure 6: Visualization on 2021-03-25 data of in-
dividual assets. Larger dots mean higher weights.
See more visualizations in Appendix G.

Results. The portfolios are tested on the real
data from 01-01-2021 to 12-30-2021, and the
results are listed in Fig. 5 and Table 3. On av-
erage, we improve the annual return of the port-
folio from 24.1% to 40%. The MSE in Table 3
denotes the mean square error of price predic-
tions, and note that more accurate price predic-
tions do not lead to better portfolios. We visual-
ize the predicted portfolios in Fig. 6 and compare
it to the efficient frontier (portfolios with opti-
mal risk-return trade-off). Being closer to the
frontier means a better portfolio. Also, note that
reaching the efficient frontier is nearly impossi-
ble as the prediction always contains errors.

5 CONCLUSIONS

Towards the ultimate goal of developing general paradigms to encode CO constraints into neural net-
works with controlled constraint-violation bounds, in this paper, we have presented a differentiable
neural network for cardinality-constrained combinatorial optimization. We theoretically character-
ize the constraint-violation of the Sinkhorn network (Sec. 2.1), and we introduce the Gumbel trick
to mitigate the constraint-violation issue (Sec. 2.2). Our method is validated in learning to solve
deterministic CO problems (on both synthetic and real-world problems) and end-to-end learning of
predictive CO problems under the important predict-and-optimize paradigm.

9

Published as a conference paper at ICLR 2023

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In Int. Conf. Mach. Learn., pp. 136–145. PMLR, 2017.

Brandon Amos, Vladlen Koltun, and J. Zico Kolter. The Limited Multi-Label Projection Layer.
arXiv preprint arXiv:1906.08707, 2019.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. Simgnn: A neu-
ral network approach to fast graph similarity computation. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining, pp. 384–392, 2019.

John E Beasley. Or-library: distributing test problems by electronic mail. Journal of the operational
research society, 41(11):1069–1072, 1990.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. Neural Info. Process. Systems, 33:9508–
9519, 2020.

Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization with
cardinality constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Dis-
crete algorithms, pp. 1433–1452. SIAM, 2014.

T-J Chang, Nigel Meade, John E Beasley, and Yazid M Sharaiha. Heuristics for cardinality con-
strained portfolio optimisation. Computers & Operations Research, 27(13):1271–1302, 2000.

Wei Chen, Xiaoming Sun, Jialin Zhang, and Zhijie Zhang. Network inference and influence maxi-
mization from samples. In Int. Conf. Mach. Learn., July 2021.

Xinyun Chen and Yuandong Tian. Learning to perform local rewriting for combinatorial optimiza-
tion. Neural Info. Process. Systems, 32:6281–6292, 2019.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. Neural Info.
Process. Systems, pp. 2292–2300, 2013.

Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranking and sorting using
optimal transport. In Advances in Neural Information Processing Systems, volume 32, pp. 6858–
6868, 2019.

Hanjun Dai, Bo Dai, and Le Song. Discriminative embeddings of latent variable models for struc-
tured data. In Int. Conf. Mach. Learn., pp. 2702–2711. PMLR, 2016.

Adam N Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68(1):
9–26, 2022.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. SplineCNN: Fast geometric
deep learning with continuous b-spline kernels. In Comput. Vis. Pattern Recog., pp. 869–877,
2018.

Matthias Fey, Jan E Lenssen, Christopher Morris, Jonathan Masci, and Nils M Kriege. Deep graph
matching consensus. In Int. Conf. Learn. Rep., 2020.

Satoru Fujishige. Submodular Functions and Optimization. Elsevier, 1991.

10

Published as a conference paper at ICLR 2023

Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime Gasse,
Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel, Christo-
pher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter, Matthias Mil-
tenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter Weninger, and Jakob
Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization Online, March 2020.
URL http://www.optimization-online.org/DB_HTML/2020/03/7705.html.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. In Int. Conf. Learn. Rep., 2019.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.
gurobi.com.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Neural Info. Process. Systems, 2017.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. In
Int. Conf. Learn. Rep., 2017.

Nikolaos Karalias and Andreas Loukas. Erdos goes neural: an unsupervised learning framework for
combinatorial optimization on graphs. In Neural Info. Process. Systems, 2020.

Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. In Neural Info. Process. Systems, pp. 6351–6361, 2017.

Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted maximum coverage problem.
Information processing letters, 70(1):39–45, 1999.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Int. Conf. Learn.
Rep., Dec 2014.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph matching net-
works for learning the similarity of graph structured objects. In International Conference on
Machine Learning, pp. 3835–3845, 2019.

Baoding Liu. Facility Location Problem, pp. 157–165. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2009. ISBN 978-3-540-89484-1. doi: 10.1007/978-3-540-89484-1 11.

Jing Liu, Fei Gao, and Jiang Zhang. Gumbel-softmax optimization: A simple general framework
for combinatorial optimization problems on graphs. Arxiv, abs/1909.07018, 2019.

Hao Lu, Xingwen Zhang, and Shuang Yang. A learning-based iterative method for solving vehicle
routing problems. In Int. Conf. Learn. Rep., 2019.

G. Mena, D. Belanger, S. Linderman, and J. Snoek. Learning latent permutations with gumbel-
sinkhorn networks. Int. Conf. Learn. Rep., 2018.

A. Nowak, S. Villar, A. Bandeira, and J. Bruna. Revised note on learning quadratic assignment with
graph neural networks. In Data Science Workshop, 2018.

Anselm Paulus, Michal Rolı́nek, Vı́t Musil, Brandon Amos, and Georg Martius. Comboptnet: Fit the
right np-hard problem by learning integer programming constraints. In Int. Conf. Mach. Learn.,
pp. 8443–8453. PMLR, 2021.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differ-
entiation of blackbox combinatorial solvers. In Int. Conf. Learn. Rep., 2019.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-Scale Attributed Node Embedding.
Journal of Complex Networks, 9(2), 2021.

Shinsaku Sakaue. Differentiable greedy algorithm for monotone submodular maximization: Guar-
antees, gradient estimators, and applications. In International Conference on Artificial Intelli-
gence and Statistics, pp. 28–36. PMLR, 2021.

11

http://www.optimization-online.org/DB_HTML/2020/03/7705.html
https://www.gurobi.com
https://www.gurobi.com

Published as a conference paper at ICLR 2023

Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue:
Learning feature matching with graph neural networks. In Comput. Vis. Pattern Recog., pp. 4938–
4947, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

William F Sharpe. The sharpe ratio. Streetwise–the Best of the Journal of Portfolio Management,
pp. 169–185, 1998.

Richard Sinkhorn. A relationship between arbitrary positive matrices and doubly stochastic matri-
ces. AoMS, 1964.

Mohammad Maholi Solin, Andry Alamsyah, Brady Rikumahu, and Muhammad Apriandito Arya
Saputra. Forecasting portfolio optimization using artificial neural network and genetic algorithm.
In 2019 7th International Conference on Information and Communication Technology (ICoICT),
pp. 1–7. IEEE, 2019.

Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Neural Info. Process.
Systems, pp. 2692–2700, 2015.

Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and
logical reasoning using a differentiable satisfiability solver. In Int. Conf. Mach. Learn., pp. 6545–
6554. PMLR, 2019a.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning combinatorial embedding networks for
deep graph matching. In Int. Conf. Comput. Vis., pp. 3056–3065, 2019b.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Combinatorial learning of robust deep graph
matching: an embedding based approach. Trans. Pattern Anal. Mach. Intell., 2020.

Runzhong Wang, Zhigang Hua, Gan Liu, Jiayi Zhang, Junchi Yan, Feng Qi, Shuang Yang, Jun Zhou,
and Xiaokang Yang. A bi-level framework for learning to solve combinatorial optimization on
graphs. In Neural Info. Process. Systems, 2021a.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Neural graph matching network: Learning
lawler’s quadratic assignment problem with extension to hypergraph and multiple-graph match-
ing. Trans. Pattern Anal. Mach. Intell., 2021b.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In AAAI Conf. Artificial Intell., volume 33, pp.
1658–1665, 2019.

Lin Xiao and Tong Zhang. A proximal-gradient homotopy method for the sparse least-squares
problem. SIAM Journal on Optimization, 23(2):1062–1091, 2013.

Yujia Xie, Hanjun Dai, Minshuo Chen, Bo Dai, Tuo Zhao, Hongyuan Zha, Wei Wei, and Tomas
Pfister. Differentiable top-k with optimal transport. In Neural Info. Process. Systems, volume 33,
pp. 20520–20531. Curran Associates, Inc., 2020.

Yi Xu, Yan Yan, Qihang Lin, and Tianbao Yang. Homotopy smoothing for non-smooth problems
with lower complexity than o(1/ϵ). Neural Info. Process. Systems, 2016.

Tianshu Yu, Runzhong Wang, Junchi Yan, and Baoxin Li. Learning deep graph matching with
channel-independent embedding and hungarian attention. In Int. Conf. Learn. Rep., 2020.

A. Zanfir and C. Sminchisescu. Deep learning of graph matching. In Comput. Vis. Pattern Recog.,
pp. 2684–2693, 2018.

Cong Zhang, Wen Song, Zhiguang Cao, Jie Zhang, Puay Siew Tan, and Xu Chi. Learning to dispatch
for job shop scheduling via deep reinforcement learning. Neural Info. Process. Systems, 33, 2020.

12

Published as a conference paper at ICLR 2023

A RELATED WORK

CO Networks with Constraints Handling for Deterministic CO. Multi-step methods encode con-
straints by manually programmed action spaces, and the networks can be learned by supervised
labels (Vinyals et al., 2015) or by reinforcement learning (Khalil et al., 2017; Zhang et al., 2020;
Chen & Tian, 2019). Controlling constraint-violation is less an issue for supervised or reinforce-
ment learning because the supervision signals are directly passed to the output of neural networks.
One-shot CO networks construct the solution by a single forward pass thus being more efficient.
The seminal work (Karalias & Loukas, 2020) aims to develop a general pipeline for one-shot CO
networks, by softly absorbing the violation of constraint as part of its final loss. However, our analy-
sis shows that such a non-controlled constraint-violation potentially harms problem-solving. There
also exist embodiments of constrained CO networks for tailored problems, e.g. the constraint can
be encoded as doubly-stochastic matrices in assignment problems (Nowak et al., 2018; Wang et al.,
2021b; 2020). These methods can be viewed as special cases of our paradigm (yet the powerful per-
turbation method is not fully exploited). Liu et al. (2019) can be viewed as a multi-step optimization
variant of ours, yet learning is not considered and the constraint-violation issue is not theoretically
characterized.

Differentiable Optimizers for Predictive CO. The major challenge of joint prediction and opti-
mization is making the optimizers differentiable. In Amos & Kolter (2017); Agrawal et al. (2019),
a family of convex optimization problems is found feasible to differentiate by their KKT condi-
tions. However, for non-convex CO problems, Pogančić et al. (2019) explains that the true gra-
dients are meaningless for neural networks. One family of papers propose to incorporate existing
solvers and estimate the informative and approximate gradients, including tailoring soft algorithms
for specific problems (Zanfir & Sminchisescu, 2018; Wang et al., 2019a; Sakaue, 2021) , or fol-
lowing the perturbation-based blackbox optimization pipeline (Pogančić et al., 2019; Paulus et al.,
2021; Berthet et al., 2020) with certain restrictions such as the formula must be linear. The other
paradigm is incorporating neural-network solvers which are naturally differentiable. For example,
for graph matching on images (Fey et al., 2020; Sarlin et al., 2020), deep feature predictors and
neural matching solvers are learned end-to-end under supervised learning, and their neural solvers
leverage the Sinkhorn algorithm (Cuturi, 2013) as a neural network layer. In this paper, our neural
network solver is incorporated for the new predictive portfolio optimization task, and our predict-
and-optimize pipeline does not require the ground truth labels for the optimization problem.

B LIMITATIONS

We are also aware of the following limitations:

1) Our theoretical analysis mainly focuses on characterizing the constraint-violation. There is an
unexplored theoretical aspect about the approximation ratios of our CO networks w.r.t. the optimal
solution and the optimal objective score, and we plan to study it in future work.

2) The original EGN pipeline is relatively general for all constraints, and we restrict the scope of
this paper within cardinality constraints. We are aware of a potential direction to extend our paper:
the cardinality constraints are handled by our method (encoded in the network’s output), and the
other constraints are handled in a way similar to EGN (encoded as Lagrange multipliers or penalty
terms). In such a sense, the cardinality constraints are handled efficiently while still preserving the
generality of EGN.

3) In the predictive CO tasks, the predictor may be, in some degree, coupled with the follow-up
neural network solver. In our predictive portfolio optimization experiment, our price predictor can-
not generalize soundly for the Gurobi solver, and the Sharpe ratio degenerates to 1.002 if our price
predictions are passed to Gurobi.

C PROOF OF THEOREMS

Before starting the detailed proof of the propositions and corollaries, firstly we recall the notations
used in this paper:

13

Published as a conference paper at ICLR 2023

• T∗ = TopK(D) is the optimal solution of the integer linear programming form of the OT
problem Eq. (3), which is equivalent to the solution by firstly sorting all items and then
selecting the topk items. If the k-th and (k + 1)-th largest items are equal, the algorithm
randomly selects one to strictly satisfy the cardinality constraint;

• Tτ∗ = Sinkhorn(D) is the optimal solution of the entropic regularized form of the OT
problem Eq. (4) solved by Sinkhorn algorithm. It is also the output by CardNN-S;

• Tσ∗ = TopK(D̃) is the optimal solution to the integer linear programming form of the
OT problem after being disturbed by the Gumbel noise Eq. (9), which is equivalent to the
solution by firstly adding the Gumbel noise, then sorting all items and finally select the topk
items. If the perturbed k-th and (k + 1)-th largest items are equal, the algorithm randomly
selects one to strictly satisfy the cardinality constraint;

• T̃∗ = Sinkhorn(D̃) is the optimal solution of the entropic regularized form of the OT
problem after disturbed by the Gumbel noise Eq. (10) solved by Sinkhorn algorithm. It is
also the output of our proposed CardNN-GS.

C.1 PROOF OF PROPOSITION 2.4

We firstly introduce a Lemma which will be referenced in the proof of Proposition 2.4:

Lemma C.1. Given real numbers ϕi, ϕj , and ui, uj are from i.i.d. (0, 1) uniform distribution. After
Gumbel perturbation, the probability that ϕi + gσ(ui) > ϕj + gσ(uj) is:

P (ϕi + gσ(ui) > ϕj + gσ(uj)) =
1

1 + exp−ϕi−ϕj

σ

. (16)

Proof. Since gσ(ui) = −σ log(− log(ui)), P (ϕi + gσ(ui) > ϕj + gσ(uj)) is equivalent to the
probability that the following inequality holds:

ϕi − σ log(− log(ui)) > ϕj − σ log(− log(uj)) (17)

And we have

ϕi − ϕj > σ log(− log(ui))− σ log(− log(uj)) (18)
ϕi − ϕj

σ
> log

(
log(ui)

log(uj)

)
(19)

e
ϕi−ϕj

σ >
log(ui)

log(uj)
(20)

Since uj ∈ (0, 1), log(uj) < 0. Then we have

log(uj) < log(ui)e
−

ϕi−ϕj
σ (21)

log (uj) < log

(
u
exp−

ϕi−ϕj
σ

i

)
(22)

uj < u
exp−

ϕi−ϕj
σ

i (23)

Since ui, uj are i.i.d. uniform distributions, the probability when the above formula holds is

∫ 1

0

∫ u
exp−

ϕi−ϕj
σ

i

0

duj dui =

∫ 1

0

u
exp−

ϕi−ϕj
σ

i dui =
1

1 + exp−ϕi−ϕj

σ

(24)

Thus the probability that ϕi + gσ(ui) > ϕj + gσ(uj) after Gumbel perturbation is:

P (ϕi + gσ(ui) > ϕj + gσ(uj)) =
1

1 + exp−ϕi−ϕj

σ

(25)

14

Published as a conference paper at ICLR 2023

In the following we present the proof of Proposition 2.4:

Proof of Proposition 2.4. Recall that we denote Φ = [ϕ1, ϕ2, ϕ3, ..., ϕm] as the descending-ordered
version of s. By perturbing it with i.i.d. Gumbel noise, we have

Φ̃ = [ϕ1 + gσ(u1), ϕ2 + gσ(u2), ϕ3 + gσ(u3), ..., ϕm + gσ(um)] (26)

where gσ(u) = −σ log(− log(u)) is the Gumbel noise modulated by noise factor σ, and
u1, u2, u3, ..., um are i.i.d. uniform distribution. We define π as the permutation of sorting Φ̃ in
descending order, i.e. ϕπ1

+ gσ(uπ1
), ϕπ2

+ gσ(uπ2
), ϕπ3

+ gσ(uπ3
), ..., ϕπm

+ gσ(uπm
) are in

descending order.

Recall Proposition 2.3, for ϕ1, ϕ2, ϕ3, ..., ϕm we have

∥T∗ −Tτ∗∥F ≤ 2mτ log 2

|ϕk − ϕk+1|
(27)

By substituting Φ with Φ̃ and taking the expectation over u, we have

Eu

[
∥Tσ∗ − T̃∗∥F

]
≤ Eu

[
2mτ log 2

|ϕπk
+ gσ(uπk

)− ϕπk+1
− gσ(uπk+1

)|

]
(28)

Based on Lemma C.1, the probability that πk = i, πk+1 = j is

P (πk = i, πk+1 = j) =
1

1 + exp−ϕi−ϕj

σ

∑
∀π

(
k−1∏
a=1

1

1 + exp−ϕπa−ϕi

σ

m∏
b=k+2

1

1 + exp−ϕj−ϕπb

σ

)
(29)

where the first term denotes ϕi + gσ(ui) > ϕj + gσ(uj), the second term denotes all conditions that
there are (k − 1) items larger than ϕi + gσ(ui) and the rest items are smaller than ϕj + gσ(uj).

In the following we derive the upper bound of Eu

[
1

|ϕπk
+gσ(uπk

)−ϕπk+1
−gσ(uπk+1

)|

]
. We denote

Ai,j as
ui, uj ∈ Ai,j , s.t. ϕi + gσ(ui)− ϕj − gσ(uj) > ϵ (30)

where ϵ is a sufficiently small number. Then we have

Eu

[
1∣∣ϕπk

+ gσ(uπk
)− ϕπk+1

− gσ(uπk+1
)
∣∣
]

=
∑
i ̸=j

P (πk = i, πk+1 = j) Eui,uj∈Ai,j

[
1

|ϕi + gσ(ui)− ϕj − gσ(uj)|

]
(31)

=
∑
i ̸=j

(
1

1 + exp−ϕi−ϕj

σ

∑
∀π

(
k−1∏
a=1

1

1 + exp−ϕπa−ϕi

σ

m∏
b=k+2

1

1 + exp−ϕj−ϕπb

σ

)

Eui,uj∈Ai,j

[
1

|ϕi + gσ(ui)− ϕj − gσ(uj)|

])
(32)

=
∑
i ̸=j

(
1

1 + exp−ϕi−ϕj

σ

∑
∀π

(
k−1∏
a=1

1

1 + exp−ϕπa−ϕi

σ

m∏
b=k+2

1

1 + exp−ϕj−ϕπb

σ

)

Eui,uj∈Ai,j

[
1

|ϕi − σ log(− log(ui))− ϕj + σ log(− log(uj))|

])
(33)

=
∑
i ̸=j

(
f(ϕi − ϕj , σ, z)

∑
∀π

(
k−1∏
a=1

1

1 + exp−ϕπa−ϕi

σ

m∏
b=k+2

1

1 + exp−ϕj−ϕπb

σ

))
(34)

15

Published as a conference paper at ICLR 2023

We denote f (δ, σ, z) as:

f (δ, σ, z) =
1

1 + exp− δ
σ

Eui,uj

[
1

|δ − σ log(− log(ui)) + σ log(− log(uj))|

]
s.t. δ − σ log(− log(ui)) + σ log(− log(uj)) > z > 0

(35)

For the probability terms in Eq. (34), for all permutations π, there must exist πa, πb, such that

1

1 + exp−ϕπa−ϕi

σ

≤ 1

1 + exp−ϕk−ϕi

σ

(36)

1

1 + exp−ϕj−ϕπb

σ

≤ 1

1 + exp−ϕj−ϕk+1

σ

(37)

Thus we have

Eq. (34) ≤
∑
i ̸=j

(
f(ϕi − ϕj , σ, z)

1

1 + exp−ϕk−ϕi

σ

1

1 + exp−ϕj−ϕk+1

σ

)
(38)

≤
∑
i ̸=j

f(ϕi − ϕj , σ, z)

(1 + exp ϕi−ϕk

σ)(1 + exp
ϕk+1−ϕj

σ)
(39)

By Eq. (16) in Lemma C.1 and substituting ϕj − ϕi by y, we have

Eq. (16) ⇒P (gσ(ui)− gσ(uj) > ϕj − ϕi) =
1

1 + exp−ϕi−ϕj

σ

(40)

⇒P (gσ(ui)− gσ(uj) > y) =
1

1 + exp y
σ

(41)

⇒P (gσ(ui)− gσ(uj) < y) = 1− 1

1 + exp y
σ

=
1

1 + exp− y
σ

(42)

where the right hand side is exactly the cumulative distribution function (CDF) of standard Logistic
distribution by setting σ = 1:

CDF(y) =
1

1 + exp (−y)
(43)

Thus − log(− log(ui))+ log(− log(uj)) is equivalent to the Logistic distribution whose probability
density function (PDF) is

PDF(y) =
dCDF(y)

dy
=

1

exp (−y) + exp y + 2
(44)

and in this proof we exploit an upper bound of PDF(y):

PDF(y) =
1

exp (−y) + exp y + 2
≤ 1

y2 + 4
(45)

Based on the Logistic distribution, we can replace −σ log(− log(ui)) + σ log(− log(uj)) by σy
where y is from the Logistic distribution. Thus we can derive the upper bound of f(δ, σ, z) as

16

Published as a conference paper at ICLR 2023

follows

f (δ, σ, z) =
1

1 + exp− δ
σ

·

∫∞
−δ/σ+z

1
δ+σy

1
exp (−y)+exp y+2dy∫∞

−δ/σ+z
1

exp (−y)+exp y+2dy
(46)

=
1

1 + exp− δ
σ

·

∫∞
−δ/σ+z

1
δ+σy

1
exp (−y)+exp y+2dy

1− 1
1+exp (δ/σ−z)

(47)

=
1

1 + exp− δ
σ

·

∫∞
−δ/σ+z

1
δ+σy

1
exp (−y)+exp y+2dy

exp (δ/σ−z)
1+exp (δ/σ−z)

(48)

=
1

1 + exp− δ
σ

·

∫∞
−δ/σ+z

1
δ+σy

1
exp (−y)+exp y+2dy

1
1+exp (−δ/σ+z)

(49)

=
1 + exp (− δ

σ + z)

1 + exp− δ
σ

∫ ∞

−δ/σ+z

1

δ + σy

1

exp (−y) + exp y + 2
dy (50)

≤
1 + exp (− δ

σ + z)

1 + exp− δ
σ

∫ ∞

−δ/σ+z

1

δ + σy

1

y2 + 4
dy (51)

=
1 + exp (− δ

σ + z)

1 + exp− δ
σ

·
2σ log

(
(zσ − δ)2 + 4σ2

)
− 2δ arctan

(
z−δ/σ

2

)
− 4σ log z + πδ

4δ2 + 16σ2

(52)

≤
1 + exp (− δ

σ + z)

1 + exp− δ
σ

·
2σ log

(
(zσ + |δ|)2 + 4σ2

)
− 2δ arctan

(
z−δ/σ

2

)
− 4σ log z + πδ

4δ2 + 16σ2

(53)

=
1 + exp (− δ

σ + z)

1 + exp− δ
σ

·
2σ log

(
(zσ + |δ|)2 + 4σ2

)
− 2δ arctan

(
z−δ/σ

2

)
− 2σ log z2 + πδ

4δ2 + 16σ2

(54)

=
1 + exp (− δ

σ + z)

1 + exp− δ
σ

·
2σ log

(
(zσ+|δ|)2+4σ2

z2

)
− 2δ arctan

(
z−δ/σ

2

)
+ πδ

4δ2 + 16σ2
(55)

≤
1 + exp (− δ

σ + z)

1 + exp− δ
σ

·
2σ log

(
(zσ+|δ|+2σ)2

z2

)
− 2δ arctan

(
z−δ/σ

2

)
+ πδ

4δ2 + 16σ2
(56)

=
1 + exp (− δ

σ + z)

1 + exp− δ
σ

·
4σ log

(
zσ+|δ|+2σ

z

)
− 2δ arctan

(
z−δ/σ

2

)
+ πδ

4δ2 + 16σ2
(57)

=
1 + exp (− δ

σ + z)

1 + exp− δ
σ

·
4σ log

(
zσ+|δ|+2σ

z

)
+ δ

(
π − 2 arctan

(
z−δ/σ

2

))
4δ2 + 16σ2

(58)

≤
1 + exp (− δ

σ + z)

1 + exp− δ
σ

·
4σ log

(
zσ+|δ|+2σ

z

)
+ |δ|

(
π − 2 arctan

(
z−δ/σ

2

))
4δ2 + 16σ2

(59)

≤
1 + exp (− δ

σ + z)

1 + exp− δ
σ

·
4σ log

(
zσ+|δ|+2σ

z

)
+ |δ|

(
π − 2 arctan

(
− δ

2σ

))
4δ2 + 16σ2

(60)

=
1 + exp (− δ

σ + z)

1 + exp− δ
σ

·
4σ log

(
zσ+|δ|+2σ

z

)
+ |δ|

(
π + 2arctan

(
δ
2σ

))
4δ2 + 16σ2

(61)

17

Published as a conference paper at ICLR 2023

where Eq. (51) is because 1
exp (−y)+exp y+2 ≤ 1

y2+4 , and Eq. (59) is because π−2 arctan(z−δ/σ
2) ≥

0. With probability at least (1− ϵ), we have

z = log
1 + ϵ exp δ

σ

1− ϵ
≥ − log (1− ϵ) (62)

1 + exp (− δ
σ + z)

1 + exp− δ
σ

=
1

1− ϵ
(63)

Thus

f(δ, σ, z) ≤ Eq. (61) =
1

1− ϵ

4σ log
(

zσ+|δ|+2σ
z

)
+ |δ|

(
π + 2arctan

(
δ
2σ

))
4δ2 + 16σ2

(64)

≤ 1

1− ϵ

4σ log
(
σ − |δ|+2σ

log(1−ϵ)

)
+ |δ|

(
π + 2arctan

(
δ
2σ

))
4δ2 + 16σ2

(65)

Thus we have

Eq. (39) ≤
∑
i ̸=j

 4σ log
(
σ − |ϕi−ϕj |+2σ

log(1−ϵ)

)
+ |ϕi − ϕj |

(
π + 2arctan

(
ϕi−ϕj

2σ

))
(1− ϵ)(4(ϕi − ϕj)2 + 16σ2)(1 + exp ϕi−ϕk

σ)(1 + exp
ϕk+1−ϕj

σ)

 (66)

In conclusion, with probability at least (1− ϵ), we have

Eu

[
∥Tσ∗ − T̃∗∥F

]
≤
∑
i ̸=j

(2 log 2)mτ
(
4σ log

(
σ − |ϕi−ϕj |+2σ

log(1−ϵ)

)
+ |ϕi − ϕj |

(
π + 2arctan

ϕi−ϕj

2σ

))
(1− ϵ)(4(ϕi − ϕj)2 + 16σ2)(1 + exp ϕi−ϕk

σ)(1 + exp
ϕk+1−ϕj

σ)

(67)

=
∑
i ̸=j

(log 2)mτ
(
2σ log

(
σ − |ϕi−ϕj |+2σ

log(1−ϵ)

)
+ |ϕi − ϕj |

(
π
2 + arctan

ϕi−ϕj

2σ

))
(1− ϵ)((ϕi − ϕj)2 + 4σ2)(1 + exp ϕi−ϕk

σ)(1 + exp
ϕk+1−ϕj

σ)

(68)

=(log 2)mτ
∑
i ̸=j

Ω(ϕi, ϕj , σ, ϵ) (69)

And we denote Ω(ϕi, ϕj , σ, ϵ) as

Ω(ϕi, ϕj , σ, ϵ) =
2σ log

(
σ − |ϕi−ϕj |+2σ

log(1−ϵ)

)
+ |ϕi − ϕj |

(
π
2 + arctan

ϕi−ϕj

2σ

)
(1− ϵ)((ϕi − ϕj)2 + 4σ2)(1 + exp ϕi−ϕk

σ)(1 + exp
ϕk+1−ϕj

σ)
(70)

C.2 PROOF OF COROLLARY 2.5

Corollary 2.5 is the simplified version of Proposition 2.4 by studying the dominant components.

Proof. For Ω(ϕi, ϕj , σ, ϵ) in Proposition 2.4, we have

Ω(ϕi, ϕj , σ, ϵ) ≤
2σ log

(
σ − |ϕi−ϕj |+2σ

log(1−ϵ)

)
+ |ϕi − ϕj |

(
π
2 + arctan

ϕi−ϕj

2σ

)
(1− ϵ)((ϕi − ϕj)2 + 4σ2)

(71)

≤
2σ log

(
σ − |ϕi−ϕj |+2σ

log(1−ϵ)

)
+ |ϕi − ϕj |π

(1− ϵ)((ϕi − ϕj)2 + 4σ2)
(72)

= O

(
σ log (σ + |ϕi − ϕj |) + |ϕi − ϕj |

(ϕi − ϕj)2 + σ2

)
(73)

= Õ

(
σ + |ϕi − ϕj |

(ϕi − ϕj)2 + σ2

)
(74)

18

Published as a conference paper at ICLR 2023

φk φk+1φi φj

φk φk+1φj φi

Condition 1

Condition 2

φk φk+1φi φj

φk φk+1 φjφi

Condition 3

Condition 4

Figure 7: Four conditions are considered in our proof. It is worth noting that ϕi, ϕj must not lie
between ϕk, ϕk+1, because we define ϕk, ϕk+1 as two adjacent items in the original sorted list.

where we regard (1− ϵ) as a constant (i.e. assuming high probability), and Õ(·) means ignoring the
logarithm terms.

Then we have

Eu

[
∥Tσ∗ − T̃∗∥F

]
≤ (log 2)mτ

∑
i̸=j

Õ

(
σ + |ϕi − ϕj |

(ϕi − ϕj)2 + σ2

)
(75)

= (log 2)mτÕ

(
σ + |ϕi − ϕj |

(ϕi − ϕj)2 + σ2

)
∀i ̸=j

(76)

= Õ

(
mτ(σ + |ϕi − ϕj |)
(ϕi − ϕj)2 + σ2

)
∀i ̸=j

(77)

C.3 PROOF AND REMARKS ON COROLLARY 2.6

In the following, we prove Corollary 2.6 and add some remarks about the relationship between the
Sinkhorn and the Gumbel-Sinkhorn methods: the Sinkhorn method (CardNN-S) is a special case
of the Gumbel-Sinkhorn method (CardNN-GS) when we set σ → 0+. To more formally address
Corollary 2.6, we have the following proposition:

Proposition C.2. Assume the values of ϕk, ϕk+1 are unique1, under probability at least (1− ϵ), we
have

lim
σ→0+

Eu

[
∥Tσ∗ − T̃∗∥F

]
≤ (π log 2)mτ

(1− ϵ)|ϕk − ϕk+1|
(78)

which differs from the conclusion of Proposition 2.3 by only a constant factor.

Proof. Since σ → 0+, the first term in Ω(ϕi, ϕj , σ, ϵ)’s numerator becomes 0. For the second
term, we discuss four conditions as shown in Fig. 7, except for the following condition: ϕi = ϕk,
ϕj = ϕk+1.

1For a compact proof, we make this assumption that the values of ϕk, ϕk+1 are unique. If there are duplicate
values of ϕk, ϕk+1, the bound only differs by a constant multiplier, therefore, does not affect our conclusion:
Sinkhorn method (CardNN-S) is a special case of the Gumbel-Sinkhorn method (CardNN-GS) when σ → 0+.

19

Published as a conference paper at ICLR 2023

Condition 1. If ϕi ≥ ϕk, ϕj ≤ ϕk+1 (equalities do not hold at the same time), we have at least
ϕi − ϕk > 0 or ϕk+1 − ϕj > 0. Then we have

lim
σ→0+

1

(1 + exp ϕi−ϕk

σ)(1 + exp
ϕk+1−ϕj

σ)
= 0 (79)

⇒ lim
σ→0+

Ω(ϕi, ϕj , σ, ϵ) = 0 (80)

Condition 2. For any case that ϕi < ϕj , we have ϕi − ϕj < 0, thus

lim
σ→0+

arctan
ϕi − ϕj

σ
= −π

2
(81)

⇒ lim
σ→0+

π

2
+ arctan

ϕi − ϕj

σ
= 0 (82)

⇒ lim
σ→0+

Ω(ϕi, ϕj , σ, ϵ) = 0 (83)

Condition 3. If ϕi ≥ ϕj ≥ ϕk (equalities do not hold at the same time), we have ϕi−ϕk > 0. Then
we have

lim
σ→0+

1

1 + exp ϕi−ϕk

σ

= 0 (84)

⇒ lim
σ→0+

Ω(ϕi, ϕj , σ, ϵ) = 0 (85)

Condition 4. If ϕk+1 ≥ ϕi ≥ ϕj (equalities do not hold at the same time), we have ϕk+1 −ϕj > 0.
Then we have

lim
σ→0+

1

1 + exp
ϕk+1−ϕj

σ

= 0 (86)

⇒ lim
σ→0+

Ω(ϕi, ϕj , σ, ϵ) = 0 (87)

Therefore, if ϕi ̸= ϕk and ϕj ̸= ϕk+1, the second term Ω(ϕi, ϕj , σ, ϵ) degenerates to 0 when
σ → 0+. Thus we have the following conclusion by only considering ϕi = ϕk, ϕj = ϕk+1:

lim
σ→0+

Eu

[
∥Tσ∗ − T̃∗∥F

]
≤
(log 2)mτ

(
|ϕk − ϕk+1|

(
π
2 + arctan ϕk−ϕk+1

2σ

))
(1− ϵ)(ϕk − ϕk+1)2

(88)

≤ (π log 2)mτ

(1− ϵ)|ϕk − ϕk+1|
(89)

Remarks. Based on the above conclusion, if |ϕk − ϕk+1| > 0, with σ → 0+, Eq. (11) degenerates
to the bound in Eq. (6) and only differs by a constant factor:

lim
σ→0+

Eu

[
∥Tσ∗ − T̃∗∥F

]
≤ (π log 2)mτ

(1− ϵ)|ϕk−ϕk+1|
(90)

where a strong assumption that |ϕk − ϕk+1| > 0 is made, and the bound diverges if ϕk = ϕk+1.
Since ϕk, ϕk+1 are predictions by a neural network, such an assumption may not be satisfied. In
comparison, given σ > 0, the conclusion with Gumbel noise in Eq. (11) is bounded for any ϕk, ϕk+1.
The strength of the theoretical results is also validated in experiment (see Tables 5 and 4), including
the homotopy version CardNN-HGS.

D ALGORITHM DETAILS FOR SOLVING DETERMINISTIC CO PROBLEMS

Due to limited pages, we do not include detailed algorithm blocks on how to solve deterministic CO
problems in the main paper. Here we elaborate on our implementation for solving facility location
problem (FLP) in Alg. 2, and max covering problem (MCP) in Alg. 3.

20

Published as a conference paper at ICLR 2023

Algorithm 2: CardNN-GS/HGS for Solving the Facility Location Problem
Input: the distance matrix ∆; learning rate α; softmax temperature β; CardNN-GS parameters

k, τ, σ, #G.
1 if Training then
2 Randomly initialize neural network weights θ;
3 if Inference then
4 Load pretrained neural network weights θ; Jbest = +∞;
5 while not converged do
6 s = SplineCNNθ(∆); [T̃1, T̃2, ..., T̃#G] = CardNN-GS(s, k, τ, σ, #G);
7 for all i, J̃i = sum(softmax(−β∆ ◦ T̃i[2, :]) ◦∆);
8 J = mean([J̃1, J̃2, ..., J̃#G]);
9 if Training then

10 update θ with respect to the gradient ∂J
∂θ and learning rate α by gradient descend;

11 if Inference then
12 update s with respect to the gradient ∂J

∂s and learning rate α by gradient descend;
13 for all i, J̃i = sum(min(∆ ◦ TopK(T̃i[2, :]

⊤))); Jbest = min([J̃1, J̃2, ..., J̃#G], Jbest);

14 if Homotopy Inference then
15 Shrink the value of τ and jump to line 5;

Output: Learned network weights θ (if training)/The best objective Jbest (if inference).

Algorithm 3: CardNN-GS/HGS for Solving the Max Covering Problem
Input: bipartite adjacency A; values v; learning rate α; CardNN-GS parameters k, τ, σ, #G.

1 if Training then
2 Randomly initialize neural network weights θ;
3 if Inference then
4 Load pretrained neural network weights θ; Jbest = 0;
5 while not converged do
6 s = GraphSageθ(A); [T̃1, T̃2, ..., T̃#G] = CardNN-GS(s, k, τ, σ, #G);
7 for all i, J̃i = min(T̃i[2, :]A, 1)⊤ · v; J = mean([J̃1, J̃2, ..., J̃#G]);
8 if Training then
9 update θ with respect to the gradient ∂J

∂θ and learning rate α by gradient ascent;
10 if Inference then
11 update s with respect to the gradient ∂J

∂s and learning rate α by gradient ascent;
12 for all i, J̃i = (TopK(T̃i[2, :])A)⊤ · v; Jbest = max([J̃1, J̃2, ..., J̃#G], Jbest);

13 if Homotopy Inference then
14 Shrink the value of τ and jump to line 5;

Output: Learned network weights θ (if training)/The best objective Jbest (if inference).

E MORE DETAILS ABOUT DETERMINISTIC CO EXPERIMENT

E.1 DATASET DETAILS

The Starbucks location dataset for FLP. This dataset is built based on the project named Starbucks
Location Worldwide 2021 version2, which is scraped from the open-accessible Starbucks store lo-
cator webpage3. We analyze and select 4 cities with more than 100 Starbucks stores, which are
London (166 stores), New York City (260 stores), Shanghai (510 stores), and Seoul (569 stores).
The locations considered are the real locations represented as latitude and longitude. For simplic-

2https://www.kaggle.com/datasets/kukuroo3/starbucks-locations-worldwide-2021-version
3https://www.starbucks.com/store-locator

21

https://www.kaggle.com/datasets/kukuroo3/starbucks-locations-worldwide-2021-version
https://www.starbucks.com/store-locator

Published as a conference paper at ICLR 2023

Table 4: Objective score ↓, optimal gap ↓ and inference time (in seconds) ↓ comparison of the
facility location problem, including mean and standard deviation computed from all test instances.
The problem is to select k facilities from m locations.

k=30, m=500 k=50, m=800
EGN/CardNN are CO networks objective ↓ optimal gap ↓ time ↓ (sec) objective ↓ optimal gap ↓ time ↓ (sec)

greedy 2.841±0.093 0.167±0.026 1.771±0.017 2.671±0.066 0.168±0.018 4.779±0.035

SCIP 7.0 (t=120s/200s) 4.470±1.918 0.348±0.295 118.068±48.055 5.258±1.018 0.552±0.146 243.919±54.118
Gurobi 9.0 (t=120s/200s) 2.453±0.142 0.033±0.042 125.589±0.606 3.364±0.268 0.335±0.055 214.360±3.785

Gurobi 9.0 (optimal) 2.365±0.063 0.000±0.000 314.798±116.858 2.221±0.041 0.000±0.000 648.213±194.486

EGN (efficient) 3.032±0.195 0.217±0.048 0.830±0.308 2.879±0.155 0.226±0.039 0.988±0.140
EGN (accurate) 2.795±0.140 0.152±0.035 123.559±12.278 2.697±0.116 0.175±0.031 191.091±13.141

CardNN-S (Sec. 2.1) 2.753±0.154 0.139±0.041 7.127±1.241 2.462±0.079 0.097±0.023 6.427±1.050
CardNN-GS (Sec. 2.2) 2.420±0.072 0.023±0.009 76.534±6.321 2.283±0.050 0.027±0.008 120.689±2.405

CardNN-HGS (Sec. 2.2) 2.416±0.073 0.021±0.009 103.742±4.778 2.275±0.048 0.023±0.007 158.400±3.498

ity, we do not consider the real-world distances between any two stores; instead, we test with both
Euclidean distance and Manhattan distance. We set k=30, and the objective values reported are
distances ×100km.

The Twitch dataset for MCP. This social network dataset is collected by Rozemberczki et al.
(2021) and the edges represent the mutual friendships between streamers. The streamers are cat-
egorized by their streaming language, resulting in 6 social networks for 6 languages. The social
networks are DE (9498 nodes), ENGB (7126 nodes), ES (4648 nodes), FR (6549 nodes), PTBR
(1912 nodes), and RU (4385 nodes). The objective is to cover more viewers, measured by the sum
of the logarithmic number of viewers. We took the logarithm to enforce diversity because those top
streamers usually have the dominant number of viewers. We set k=50.

E.2 IMPLEMENTATION DETAILS

Our algorithms are implemented by PyTorch and the graph neural network modules are based on
Fey & Lenssen (2019). In our paper, we optimize the hyperparameters by greedy search on a small
subset of problem instances (∼5) and set the best configuration of hyperparameters for CardNN-
S/GS/HGS. The hyperparameters of EGN (Karalias & Loukas, 2020) are tuned in the same way.
Here are the hyperparameters used to reproduce our experiment results:

• For the Max Covering Problem (MCP), we empirically set the learning rate α = 0.1. For
the hyperparameters of CardNN, we have τ = 0.05, σ = 0.15 for CardNN-GS, τ = 0.05
for CardNN-S, and τ = (0.05, 0.04, 0.03), σ = 0.15 for the Homotopy version CardNN-
HGS. We set #G = 1000 samples for CardNN-GS and CardNN-HGS.

• For the Facility Location Problem (FLP), we set the learning rate α = 0.1. For the
hyperparameters of CardNN, we have τ = 0.05, σ = 0.25 for CardNN-GS, τ = 0.05
for CardNN-S, and we set τ = (0.05, 0.04, 0.03), σ = 0.25 for the Homotopy version
CardNN-HGS. We set #G = 500 samples for CardNN-GS and CardNN-HGS. The soft-
max temperature for facility location is empirically set as twice of the cardinality constraint:
T = 100 if k = 50, T = 60 if k = 30.

• For the Predictive Portfolio Optimization Problem, we set the learning rate α = 10−3.
For our CardNN-GS module, we set τ = 0.05, σ = 0.1, and set the Gumbel samples
as #G = 1000. During inference, among all 1000 portfolio predictions, we return the
best portfolio found based on the predicted prices, and we empirically find such a strategy
beneficial for finding better portfolios on the real test set.

All experiments are done on a workstation with i7-9700K@3.60GHz CPU, 16GB memory, and
RTX2080Ti GPU.

E.3 DETAILED EXPERIMENT RESULTS

In the main paper, we only plot the experiment results on both synthetic datasets and real-world
datasets due to limited pages. In Table 4 and 5, we report the digits from the synthetic experiments,
which are in line with Fig. 3.

22

Published as a conference paper at ICLR 2023

Table 5: Objective score ↑, gap ↓, and inference time (in seconds) ↓ of max covering. Under
cardinality constraint k, the problem is to select from m sets to cover a fraction of n objects. For
the gray entry, the Gurobi solver fails to return the optimal solution within 24 hours, thus reported
as out-of-time.

k=50, m=500, n=1000 k=100, m=1000, n=2000
EGN/CardNN are CO networks objective ↑ gap ↓ time ↓ (sec) objective ↑ gap ↓ time ↓ (sec)

greedy 44312.8±818.4 0.011±0.007 0.024±0.000 88698.9±1217.5 0.008±0.004 0.089±0.001
SCIP 7.0 (t=100s/120s) 43497.4±875.6 0.029±0.011 100.136±0.097 86269.9±1256.3 0.035±0.006 120.105±0.498

Gurobi 9.0 (t=100s/120s) 43937.2±791.5 0.019±0.008 100.171±0.085 86862.1±1630.5 0.028±0.011 120.277±0.139
Gurobi 9.0 (optimal) OOT OOT OOT OOT OOT OOT

EGN (efficient) 37141.4±896.0 0.171±0.015 0.244±0.107 74633.7±1449.6 0.165±0.010 0.525±0.229
EGN (accurate) 39025.2±791.9 0.129±0.008 40.542±4.056 77488.9±1088.2 0.133±0.006 93.670±8.797

CardNN-S (Sec. 2.1) 42034.9±773.1 0.062±0.008 4.935±1.167 83289.0±1331.0 0.068±0.007 5.368±1.014
CardNN-GS (Sec. 2.2) 44710.3±770.9 0.002±0.002 28.104±0.465 89264.8±1232.1 0.001±0.002 60.685±0.045

CardNN-HGS (Sec. 2.2) 44723.9±763.2 0.002±0.002 39.575±0.595 89340.8±1221.6 0.000±0.001 89.764±0.128

Some remarks about EGN on real-world dataset. Since the sizes of our real-world problems are
relatively small, we mainly adopt a transfer learning setting: the CO networks are firstly trained
on the synthetic data, and then tested on the corresponding real-world datasets. All our CardNN
models follow this setting. However, the transfer learning ability of EGN seems less satisfying,
and we empirically find the performance of EGN degenerates significantly when transferred to a
different dataset. In Fig. 4, we exploit the advantage of self-supervised learning for EGN: we allow
EGN to be trained in a self-supervised manner on the real-world dataset. To avoid the scatter plots
looking too sparse, we ignore the training time cost when plotting Fig. 4 since it does not affect our
main conclusion (performance rank: CardNN-HGS > CardNN-GS > CardNN-S > EGN).

We list the detailed experiment results on real-world problems in Tables 6-19.

Table 6: FLP-Starbucks London dataset (Euclidean distance)
m=166, k=30 objective↓ time (sec)↓

Greedy 0.047 0.6
SCIP 7.0 (t=60s) 0.040 2.8

Gurobi 9.0 (t=60s) 0.040 7.2
Gurobi 9.0 (optimal) 0.040 7.2

EGN (train on synthetic) 0.171 0.2
EGN-accu (train on synthetic) 0.171 25.6

EGN (train on test) 0.080 0.1
EGN-accu (train on test) 0.078 17.2

CardNN-S 0.054 8.2
CardNN-GS 0.042 19.8

CardNN-HGS 0.042 50.3

Table 7: FLP-Starbucks NewYork dataset (Euclidean distance)
m=260, k=30 objective↓ time (sec)↓

Greedy 0.033 0.9
SCIP 7.0 (t=60s) 0.028 16.5

Gurobi 9.0 (t=60s) 0.028 60.6
Gurobi 9.0 (optimal) 0.028 126.5

EGN (train on synthetic) 0.174 0.1
EGN-accu (train on synthetic) 0.174 26.0

EGN (train on test) 0.089 0.1
EGN-accu (train on test) 0.057 27.0

CardNN-S 0.174 2.3
CardNN-GS 0.030 20.2

CardNN-HGS 0.029 50.8

23

Published as a conference paper at ICLR 2023

Table 8: FLP-Starbucks Shanghai dataset (Euclidean distance)
m=510, k=30 objective↓ time (sec)↓

Greedy 0.172 1.9
SCIP 7.0 (t=60s) 10.484 106.1

Gurobi 9.0 (t=60s) 0.222 62.3
Gurobi 9.0 (optimal) 0.139 313.1

EGN (train on synthetic) 1.561 0.3
EGN-accu (train on synthetic) 1.561 58.5

EGN (train on test) 0.360 0.3
EGN-accu (train on test) 0.360 56.5

CardNN-S 0.165 9.0
CardNN-GS 0.162 20.7

CardNN-HGS 0.155 51.3

Table 9: FLP-Starbucks Seoul dataset (Euclidean distance)
m=569, k=30 objective↓ time (sec)↓

Greedy 0.245 2.1
SCIP 7.0 (t=60s) 14.530 145.2

Gurobi 9.0 (t=60s) 0.424 62.9
Gurobi 9.0 (optimal) 0.188 540.8

EGN (train on synthetic) 2.680 0.3
EGN-accu (train on synthetic) 2.680 57.9

EGN (train on test) 0.497 0.3
EGN-accu (train on test) 0.497 63.7

CardNN-S 0.373 9.0
CardNN-GS 0.284 21.8

CardNN-HGS 0.212 52.7

Table 10: FLP-Starbucks London dataset (Manhattan distance)
m=166, k=30 objective↓ time (sec)↓

Greedy 2.441 0.5
SCIP 7.0 (t=60s) 2.390 2.9

Gurobi 9.0 (t=60s) 2.390 2.2
Gurobi 9.0 (optimal) 2.390 2.2

EGN (train on synthetic) 4.793 0.2
EGN-accu (train on synthetic) 4.793 19.4

EGN (train on test) 3.210 0.1
EGN-accu (train on test) 3.008 18.4

CardNN-S 2.688 4.4
CardNN-GS 2.457 20.6

CardNN-HGS 2.424 51.6

24

Published as a conference paper at ICLR 2023

Table 11: FLP-Starbucks NewYork dataset (Manhattan distance)
m=260, k=30 objective↓ time (sec)↓

Greedy 2.734 0.9
SCIP 7.0 (t=60s) 2.565 9.6

Gurobi 9.0 (t=60s) 2.565 22.9
Gurobi 9.0 (optimal) 2.565 22.8

EGN (train on synthetic) 4.066 0.2
EGN-accu (train on synthetic) 4.066 30.6

EGN (train on test) 3.998 0.1
EGN-accu (train on test) 3.500 27.5

CardNN-S 4.066 2.4
CardNN-GS 2.898 15.2

CardNN-HGS 2.845 30.1

Table 12: FLP-Starbucks Shanghai dataset (Manhattan distance)
m=510, k=30 objective↓ time (sec)↓

Greedy 9.024 1.8
SCIP 7.0 (t=60s) 59.626 101.8

Gurobi 9.0 (t=60s) 8.931 62.2
Gurobi 9.0 (optimal) 8.439 201.7

EGN (train on synthetic) 21.566 0.3
EGN-accu (train on synthetic) 21.566 55.2

EGN (train on test) 17.951 0.3
EGN-accu (train on test) 11.601 53.0

CardNN-S 10.780 5.1
CardNN-GS 8.784 26.0

CardNN-HGS 8.774 58.8

Table 13: FLP-Starbucks Seoul dataset (Manhattan distance)
m=569, k=30 objective↓ time (sec)↓

Greedy 10.681 2.0
SCIP 7.0 (t=60s) 83.952 95.2

Gurobi 9.0 (t=60s) 14.579 65.7
Gurobi 9.0 (optimal) 9.911 335.7

EGN (train on synthetic) 18.206 0.3
EGN-accu (train on synthetic) 18.206 56.6

EGN (train on test) 15.168 0.3
EGN-accu (train on test) 15.069 64.6

CardNN-S 13.154 5.1
CardNN-GS 10.146 28.6

CardNN-HGS 10.003 63.2

25

Published as a conference paper at ICLR 2023

Table 14: MCP-Twitch DE dataset
m=n=9498, k=50 objective↑ time (sec)↓

Greedy 51452 0.3
SCIP 7.0 (optimal) 51481 1.5

Gurobi 9.0 (optimal) 51481 5.8
EGN (train on synthetic) 850 15.5

EGN-accu (train on synthetic) 11732 303.0
EGN (train on test) 43036 15.4

EGN-accu (train on test) 43069 303.2
CardNN-S 51478 16.0

CardNN-GS 51481 28.7
CardNN-HGS 51481 56.1

Table 15: MCP-Twitch ENGB dataset
m=n=7126, k=50 objective↑ time (sec)↓

Greedy 26748 0.1
SCIP 7.0 (optimal) 26757 0.3

Gurobi 9.0 (optimal) 26757 0.8
EGN (train on synthetic) 5066 7.6

EGN-accu (train on synthetic) 7749 147.6
EGN (train on test) 18725 7.5

EGN-accu (train on test) 19296 147.2
CardNN-S 26745 15.6

CardNN-GS 26757 21.7
CardNN-HGS 26757 42.6

Table 16: MCP-Twitch ES dataset
m=n=4648, k=50 objective↑ time (sec)↓

Greedy 25492 0.1
SCIP 7.0 (optimal) 25492 0.3

Gurobi 9.0 (optimal) 25492 1.1
EGN (train on synthetic) 1183 3.1

EGN-accu (train on synthetic) 1489 57.6
EGN (train on test) 17612 3.1

EGN-accu (train on test) 17872 58.0
CardNN-S 25492 15.7

CardNN-GS 25492 12.6
CardNN-HGS 25492 24.9

Table 17: MCP-Twitch FR dataset
m=n=6549, k=50 objective↑ time (sec)↓

Greedy 39665 0.2
SCIP 7.0 (optimal) 39694 1.2

Gurobi 9.0 (optimal) 39694 10.7
EGN (train on synthetic) 21508 6.2

EGN-accu (train on synthetic) 21701 119.2
EGN (train on test) 32439 6.2

EGN-accu (train on test) 32533 119.4
CardNN-S 39687 15.8

CardNN-GS 39693 19.9
CardNN-HGS 39694 39.1

26

Published as a conference paper at ICLR 2023

Table 18: MCP-Twitch PTBR dataset
m=n=1912, k=50 objective↑ time (sec)↓

Greedy 14141 0.0
SCIP 7.0 (optimal) 14163 0.1

Gurobi 9.0 (optimal) 14163 0.3
EGN (train on synthetic) 1402 0.8

EGN-accu (train on synthetic) 7329 14.4
EGN (train on test) 10173 0.3

EGN-accu (train on test) 10173 5.3
CardNN-S 14155 15.6

CardNN-GS 14163 10.1
CardNN-HGS 14163 19.7

Table 19: MCP-Twitch RU dataset
m=n=4385, k=50 objective↑ time (sec)↓

Greedy 25755 0.1
SCIP 7.0 (optimal) 25778 0.2

Gurobi 9.0 (optimal) 25778 0.5
EGN (train on synthetic) 7762 2.7

EGN-accu (train on synthetic) 7917 51.5
EGN (train on test) 18148 2.6

EGN-accu (train on test) 18156 48.3
CardNN-S 25776 15.9

CardNN-GS 25778 11.9
CardNN-HGS 25778 23.6

E.4 ABLATION STUDY ON HYPERPARAMETERS

Firstly, we want to add some remarks about the selection of hyperparameters:

• #G (number of Gumbel samples): #G affects how many samples are taken during train-
ing and inference for CardNN-GS. A larger #G (i.e. more samples) will be more appealing,
because CardNN-GS will have a lower variance when estimating the objective score, and
it will have a higher probability of discovering better solutions. However, #G cannot be
arbitrarily large because the GPU has limited memory, also it is harmful to the efficiency
if #G is too large. In experiments, we set an adequate #G (e.g. #G = 1000) and ensure
that it can fit into the GPU memory of our workstation (2080Ti, 11G).

• τ (entropic regularization factor of Sinkhorn): Theoretically, τ controls the gap of the
continuous Sinkhorn solution to the discrete solution, and a smaller τ will lead to a tight-
ened gap. This property is validated by our theoretical findings in Proposition 2.4. Unfortu-
nately, τ cannot be arbitrarily small, because a smaller τ requires more Sinkhorn iterations
to converge. Besides, a smaller τ means the algorithm being closer to the discrete ver-
sion, and the gradient will be more likely to explode. Therefore, given a fixed number of
Sinkhorn iterations (100) to ensure the efficiency of our algorithm, we need trial-and-error
to discover the suitable τ for both CardNN-S and CardNN-GS. The grid search results be-
low show that our selection of τ fairly balances the performances of both CardNN-S and
CardNN-GS.

• σ (Gumbel noise factor): As derived in Proposition 2.4, a larger σ is beneficial for a tight-
ened constraint-violation term. However, it is also worth noting that σ cannot be arbitrarily
large because our theoretical derivation only considers the expectation but not the variance.
A larger σ means a larger variance, demanding a larger number of samples and bringing
computational and memory burdens. In the experiments, we first determine a τ , and then
find a suitable σ by greedy search on a small subset (∼5) of problem instances.

27

Published as a conference paper at ICLR 2023

We conduct an ablation study about the sensitivity of hyperparameters by performing an exten-
sive grid search near the configuration used in our max covering experiments (τ = 0.05, σ =
0.15,#G = 1000). We choose the k=50, m=500, n=1000 max covering problem, and we have the
following results for CardNN-GS and CardNN-S (higher is better):

Table 20: Ablation study result of CardNN-GS with #G = 1000.

σ =
τ = 0.01 0.05 0.1

0.1 42513.4 44759.2 45039.5
0.15 41456.5 44710.3 44837.2
0.2 41264.3 44638.1 44748.2

Table 21: Ablation study result of CardNN-GS with #G = 800.

σ =
τ = 0.01 0.05 0.1

0.1 42511.6 44754.6 45037.6
0.15 41421.4 44705.8 44841.5
0.2 41235.9 44651.5 44748.6

Table 22: Ablation study result of CardNN-S.
τ = 0.001 0.005 0.01 0.05 0.1

objective score 35956.6 42013.3 42520.8 42034.9 40721.2

Under the configuration used in our paper, both CardNN-S and CardNN-GS have relatively good
results. Our grid search result shows that our CardNN-GS is not very sensitive to σ if we have
τ = 0.05 or 0.1, and the result of τ = 0.01 is inferior because the Sinkhorn algorithm may not
converge. The results of #G = 1000 are all better than #G = 800, suggesting that a larger #G
is appealing if we have enough GPU memory. It is also discovered that CardNN-S seems to be
able to accept a smaller value of τ compared to CardNN-GS, possibly because adding the Gumbel
noise will increase the divergence of elements thus performs in a sense similar to decreasing τ when
considering the convergence of Sinkhorn.

F DETAILS OF PREDICTIVE PORTFOLIO OPTIMIZATION

Some details of the portfolio optimization model is omitted due to limited pages. Here we elabo-
rate on the entire process of doing portfolio optimization under the “pred-and-opt” paradigm, with
LSTM and our CardNN-GS.

Training steps:

1. Denote the index of “now” as t = 0. {pt|t < 0} means the percentage change of prices of each
day in history, {pt|t ≥ 0} means the percentage change of prices of each day in future.

2. An encoder-decoder LSTM module predicts the prices in the future:

{pt|t ≥ 0},h = LSTM({pt|t < 0}),

where h denotes the hidden state of LSTM.

3. Compute risk and return for the future:

µ = mean({pt|t ≥ 0}),Σ = cov({pt|t ≥ 0}).

4. In the CardNN-GS module, predict s (the probability of selected each asset) from h:

s = fully-connected(h).

28

Published as a conference paper at ICLR 2023

5. Enforce the cardinality constraint by Gumbel-Sinkhorn layer introduced in Sec 3.2, whereby
there are #G Gumbel samples:

{T̃i|i = 1, 2, ...,#G} = Gumbel-Sinkhorn(s)

6. Compute the weights of each asset based on the second row of T̃i (rf is risk-free return, set as
3%):

xi = Σ−1(µ− rf),xi = relu(xi ⊙ T̃i[2, :]),xi = xi/sum(x)

7. Based on the ground-truth prices in the future {pgtt |t ≥ 0}, compute the ground truth risk and
return:

µgt = mean({pgtt |t ≥ 0}),Σgt = cov({pgtt |t ≥ 0}).

8. Estimate the ground-truth Sharpe ratio in the future, if we invest based on xi:

J̃i =
(µgt − rf)

⊤xi√
x⊤
i Σ

gtxi

.

9. The self-supervised loss is the average over all Gumbel samples:

Loss = −mean(J̃1, J̃2, J̃3, ..., J̃#G)

Testing steps:

Follow training steps 1-6 to predict µ,Σ, {xi|i = 1, 2, ...,#G}.

7. Estimate the predicted Sharpe ratio in the future, if we invest based on xi:

J̃i =
(µ− rf)

⊤xi√
x⊤
i Σxi

.

8. Return xbest = xi with the highest J̃i and enforce hard cardinality constraint on xbest by hard
topk.

9. Evaluate based on the ground-truth Sharpe ratio:

J =
(µgt − rf)

⊤xbest√
x⊤
bestΣ

gtxbest

.

G VISUALIZATION OF MORE PORTFOLIOS

In Fig. 8, we provide more visualizations of the portfolios predicted by our “predict-and-optimize”
CardNN pipeline (blue), the traditional “predict-then-optimize” pipeline based on LSTM and Gurobi
(orange), and the historical-data based “history-opt” (purple). In general, portfolio optimization
means a trade-off between risks and returns, and we can draw an efficient frontier where the port-
folios on this frontier are the Pareto optimal for risks and returns, i.e. for a portfolio on the efficient
frontier, one cannot achieve higher returns unless s/he could accept higher risks. Being closer to
the efficient frontier means a portfolio is better. Besides, it is also worth noting that reaching the
efficient frontier is nearly infeasible in predictive portfolio optimization because our predictions of
future asset prices are always with errors.

H DETAILS ON USING EXISTING ASSETS

The following open-source resources are used in this paper and we sincerely thank the authors and
contributors for their great work.

• Implementation of Erdos Goes Neural. Paper: Karalias & Loukas (2020). URL:
https://github.com/Stalence/erdos_neu. No open-source license is found
on the GitHub webpage.

29

https://github.com/Stalence/erdos_neu

Published as a conference paper at ICLR 2023

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Risk

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
et

ur
n

efficient frontier
CardNN assets
CardNN portfolio
history-opt assets
history-opt portfolio
pred-then-opt assets
pred-then-opt portfolio

(a) 2021-01-27

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Risk

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
et

ur
n

efficient frontier
CardNN assets
CardNN portfolio
history-opt assets
history-opt portfolio
pred-then-opt assets
pred-then-opt portfolio

(b) 2021-02-25

0.1 0.2 0.3 0.4 0.5
Risk

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
et

ur
n

efficient frontier
CardNN assets
CardNN portfolio
history-opt assets
history-opt portfolio
pred-then-opt assets
pred-then-opt portfolio

(c) 2021-04-23

0.1 0.2 0.3 0.4 0.5
Risk

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

R
et

ur
n

efficient frontier
CardNN assets
CardNN portfolio
history-opt assets
history-opt portfolio
pred-then-opt assets
pred-then-opt portfolio

(d) 2021-05-21

0.1 0.2 0.3 0.4 0.5 0.6
Risk

1.0

0.5

0.0

0.5

1.0

R
et

ur
n

efficient frontier
CardNN assets
CardNN portfolio
history-opt assets
history-opt portfolio
pred-then-opt assets
pred-then-opt portfolio

(e) 2021-06-21

0.1 0.2 0.3 0.4 0.5
Risk

0.2

0.0

0.2

0.4

0.6

0.8

1.0

R
et

ur
n

efficient frontier
CardNN assets
CardNN portfolio
history-opt assets
history-opt portfolio
pred-then-opt assets
pred-then-opt portfolio

(f) 2021-07-06

Figure 8: Visualization of predicted portfolios. The labels denote the starting dates of the portfolios.

• SCIP solver. Paper: Gamrath et al. (2020). URL: https://scip.zib.de/. ZIB
Academic License.

• ORLIB. Paper: Beasley (1990). URL: http://people.brunel.ac.uk/
˜mastjjb/jeb/orlib/scpinfo.html. MIT License.

• Starbucks Locations Worldwide (2021 version). URL:
https://www.kaggle.com/datasets/kukuroo3/
starbucks-locations-worldwide-2021-version. CC0: Public Domain
License.

• Twitch Social Networks (from MUSAE project). Paper: Rozemberczki et al. (2021).
Project URL: https://github.com/benedekrozemberczki/MUSAE Data

30

https://scip.zib.de/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/scpinfo.html
https://www.kaggle.com/datasets/kukuroo3/starbucks-locations-worldwide-2021-version
https://www.kaggle.com/datasets/kukuroo3/starbucks-locations-worldwide-2021-version
https://github.com/benedekrozemberczki/MUSAE

Published as a conference paper at ICLR 2023

URL: http://snap.stanford.edu/data/twitch-social-networks.
html. GPL-3.0 License.

And we are also using the Gurobi commercial solver under academic license. See
details about Gurobi’s academic license at https://www.gurobi.com/academia/
academic-program-and-licenses/.

31

http://snap.stanford.edu/data/twitch-social-networks.html
http://snap.stanford.edu/data/twitch-social-networks.html
https://www.gurobi.com/academia/academic-program-and-licenses/
https://www.gurobi.com/academia/academic-program-and-licenses/

	Introduction
	Cardinliaty-Constrained Combinatorial Networks
	CardNN-S: Sinkhorn Layer for Cardinality Constraint
	CardNN-GS: Gumbel-Sinkhorn Layer for Cardinality Constraint

	One-Shot Solving the Deterministic CO Tasks
	One-Shot Solving the Predictive CO Tasks
	Conclusions
	Related Work
	Limitations
	Proof of Theorems
	Proof of Proposition 2.4
	Proof of Corollary 2.5
	Proof and Remarks on Corollary 2.6

	Algorithm Details for Solving Deterministic CO Problems
	More Details about Deterministic CO Experiment
	Dataset Details
	Implementation Details
	Detailed Experiment Results
	Ablation Study on Hyperparameters

	Details of Predictive Portfolio Optimization
	Visualization of More Portfolios
	Details on Using Existing Assets

