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ABSTRACT

Foundation models have achieved remarkable success across various domains,
yet their adoption in healthcare remains limited, particularly in areas requiring the
analysis of smaller and more complex datasets. While foundation models have
made significant advances in medical imaging, genetic biomarkers, and time se-
ries from electronic health records, the potential for patient behavior monitoring
through wearable devices remains underexplored. Wearable device datasets are
inherently heterogeneous and multisource and often exhibit high rates of missing
data, presenting unique challenges. Notably, missing patterns in these datasets
are frequently not-at-random, and when adequately modeled, these patterns can
reveal crucial insights into patient behavior. This paper introduces a novel foun-
dation model based on a modified vector quantized variational autoencoder (VQ-
VAE), specifically designed to process real-world data from wearable devices. Our
model excels at reconstructing heterogeneous multisource time-series data and ef-
fectively models missing data patterns. We demonstrate that our pretrained model,
trained on a broad cohort of psychiatric patients with diverse mental health issues,
can perform downstream tasks without fine-tuning on a held-out cohort of suicidal
patients. This is illustrated through the use of a change-point detection algorithm
that identifies suicide attempts with high accuracy, matching or surpassing patient-
specific methods, thereby highlighting the potential of VQ-VAE as a versatile tool
for behavioral analysis in healthcare.

1 INTRODUCTION

The advent of foundation models (FMs) has catalyzed transformative advancements across various
domains, from natural language processing to computer vision, achieving remarkable generalization
across diverse tasks (Bommasani et al., 2021). However, their integration into healthcare has been
comparatively slower. This delay can be attributed to clinical data’s inherent complexity and vari-
ability and the challenges posed by heterogeneous, high-dimensional, and often incomplete datasets,
such as electronic health records (EHR) (Moor et al., 2023).

An underexplored but crucial area in healthcare is the analysis of time-series data from wearable de-
vices, which are increasingly used in daily life and provide a vast amount of data. This data presents
several challenges: it is multisource (e.g., heart rate, motion, sleep patterns), heterogeneous (coming
from different sensors with varying formats), and often incomplete, with significant portions missing
due to device issues or user behavior (Wu et al., 2022; Lin et al., 2020). Importantly, these missing
data points might hold valuable insights into patient behavior, so properly modeling them is cru-
cial. An emerging field within computational psychiatry leverages data from wearable devices for
early detection and personalized treatment of mental health conditions. By analyzing the continuous
stream of data from sources such as heart rate variability and sleep patterns, researchers can detect
behavioral changes that may indicate the onset or worsening of psychiatric, and more broadly, brain
disorders (Wang et al., 2016; Thieme et al., 2020; Chekroud et al., 2021; Büscher et al., 2024).

To fully harness the potential of this data, models must handle the complexity of multisource, het-
erogeneous samples and account for missing information. Also, models should capture meaningful
patterns from the missing data, as missingness often carries significant details on patient behavior.
For instance, a wearable device that stops collecting data intermittently during certain times may
indicate behavioral patterns such as sleep disturbances or irregular daily routines relevant to mental
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health monitoring. Current state-of-the-art FMs, while powerful, struggle to handle this complexity
or fully extract the valuable information embedded within such datasets.

Much effort has been focused on tasks such as data imputation, synthetic data generation, and
anomaly detection within the broader field of deep generative models. Generative adversarial net-
works (GANs) have set the standard for high-resolution image generation, synthetic data creation,
and domain adaptation. However, GANs do not provide latent-space encoders and are prone to mode
collapse (where the model generates limited output diversity) (Grover et al., 2018). Alternatively,
despite their success as the backbone of FMs in language and vision, transformers autoregressive
models and diffusion models face obstacles in healthcare (Denecke et al., 2024; Xie et al., 2022).
Their high computational cost, less interpretable continuous and hierarchical representations, and
need for large datasets make them less ideal in domains like healthcare, where data is often scarce
or expensive to collect (Wornow et al., 2023).

Variational autoencoders (VAEs) offer structured latent representations that enable data reconstruc-
tion and generation while explicitly modeling uncertainties. Additionally, VAEs naturally handle
missing data by modeling the distribution of the underlying data, allowing them to fill in gaps and
predict missing entries with a probabilistic approach, essential in healthcare applications involving
incomplete and heterogeneous datasets (Collier et al., 2021). However, their extension to temporal
settings is not trivial (Lucas et al., 2019), and they face optimization issues (e.g., posterior collapse,
(Girin et al., 2022)) while employing continuous, rather than discrete, representations. Discrete
representations improve interpretability and capture distinct patterns, particularly useful in applica-
tions where human understanding of the model is critical. As we will show in this work, this can
be achieved with the so-called vector quantized-variational autoencoder (VQ-VAE) (van den Oord
et al., 2018). VQ-VAE uses vector quantization and nearest-neighbor lookup to map features into
discrete latent vectors, which store relevant information and capture complex relationships in the
data. This is especially advantageous in cases where discrete states (e.g., different health states or
behaviors) need to be represented.

In this work, we demonstrate how FMs constructed using VQ-VAEs can be leveraged to handle
missing data in complex temporal databases, focusing on wearable device datasets. These FMs
facilitate data reconstruction and subsequent downstream tasks, such as effective change point de-
tection methods, underscoring the broader implications for personalized healthcare monitoring. Our
contributions are twofold:

• We present a new foundation model built to process real-world data from various wearable
devices and smartphones. This model is based on an enhanced version of the VQ-VAE,
which is pretrained to reconstruct multisource, heterogeneous time-series data, model miss-
ing entries, and capture the underlying patterns of missingness.

• We demonstrate the versatility of our pre-trained model by using its internal discrete latent
codebook to perform downstream medical tasks for which the model was not specifically
trained. We highlight that no fine-tuning is required to achieve our results. Specifically,
we develop a probabilistic change-point detection (CPD) algorithm for suicide detection
that leverages the foundation model in an unsupervised manner. In particular, our model
uses the encoded discrete latent codeword associated with the patient sequences generated
by the VQ-VAE as input to the CPD algorithm. We show that this algorithm achieves an
area under the curve of 0.92 when trying to predict events of suicidal nature based on the
patient’s behavior. We compare this value with a baseline patient-specific profiling method
based on mixture models (AUC of 0.93) which requires an independent model trained per
every patient in the dataset. Conversely, our VQ-VAE choice handles the generation of
profile representations for all patients in the cohort at once in a unique model, thereby
achieving higher computational efficiency and facilitating scalability.

2 BEHAVIORAL DATASET

The widespread use of personal digital devices, such as smartphones and wearables, has enabled
the passive collection of behavioral metrics, such as the pattern of mobile apps used, distance trav-
eled, time spent at home, and sleep patterns. This method, known as passive digital phenotyping
(PDP), allows for continuous, unobtrusive monitoring without requiring active user input, making
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Figure 1: Visualization of data missingness. The availability of step count data is displayed over
approximately one-and-a-half years. The length of registered periods varies from patient to patient,
and most contain scattered days or sequences with no data.

it ideal for long-term monitoring. These data streams have proven valuable for characterizing and
tracking psychiatric patients (Moreno-Muñoz et al., 2020; Romero-Medrano & Artés-Rodrı́guez,
2023; Büscher et al., 2024). Recent research has applied PDP to detect behavioral shifts that may
indicate serious mental health risks. For instance, the SmartCrisis study (Berrouiguet et al., 2019)
developed a personalized suicide prevention strategy by monitoring participants with a history of
suicidal behavior over extended periods.

A common challenge in PDP studies is missing data, often caused by smartphone operating systems
terminating background processes or patients intentionally discontinuing the use of their wearable
devices. These disruptions, essential for passive data collection, result in significant gaps in the data
stream, compromising the quality and completeness of the dataset (see Figure 1 for a representative
example). Additionally, the collected data are heterogeneous: some variables are recorded as daily
summaries with limited dimensions (e.g., sleep duration, start and end times), while others provide
more granular, time-segmented information, such as physical activity or app usage time.

The dataset used in this work was collected via a PDP-enabled mobile application provided by Com-
pany A and serves as the basis for model training, validation, and testing.1 It contains 1,122,233
entries across 64 variables, comprising data from 5,532 patients enrolled in 39 clinical programs.
The collection period spans from January 1, 2016, to March 13, 2024. Each entry encapsulates ag-
gregated daily metrics from original time-stamped recordings captured at 30-minute intervals across
multiple sensors. One of the main challenges this dataset presents is the high proportion of missing
data, particularly for variables where data collection was frequently interrupted. To address this, we
focused on a subset of variables with a missingness rate below 85%. Table 1 overviews the selected
variables, their types, and the corresponding missingness rates. The dataset also contains significant
noise and outliers, likely due to sensor malfunctions, inconsistent user behavior, environmental fac-
tors, and hardware or software issues. A detailed description of the dataset and its preprocessing is
provided in Appendix A.

3 VQ-VAE AS A FOUNDATION MODEL

The vector quantized-variational autoencoder (van den Oord et al., 2018) extends the traditional
VAE by incorporating a discrete latent space, addressing some of the limitations of continuous rep-
resentations. In VQ-VAE, the latent space is composed of K discrete embeddings, ej ∈ RD, where
j ∈ {1, 2, . . . ,K}, forming the codebook E = {ej}Kj=1. The encoder produces a continuous latent
output ze(x), which is quantized to the nearest embedding ek using nearest-neighbor lookup:

q(z = k|x) =
{
1 for k = argminj ∥ze(x)− ej∥2,
0 otherwise

(1)

where z ∈ {1, . . . ,K} indicates that zq(x) = ek from the codebook E to which we map the en-
conder output ze(x). Hence, zq(x) denotes the decoder input. The loss function takes the following
form

L = log p(x|zq(x))︸ ︷︷ ︸
Reconstruction loss

+ ||sg[ze(x)]− ek||22︸ ︷︷ ︸
Codebook loss

+β ||ze(x)− sg[ek]||22︸ ︷︷ ︸
Commitment loss

, (2)

1The company name has been anonymized for the review process.
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Table 1: Type and relative missingness of selected variables.

Category Variable name Type Relative missingness (%)
Activity Time Walking (s) R≥0 62.79

App Usage Total (s) R≥0 83.15
Practiced Sport3 {0, 1} 0.00
Total Steps N0 55.30

Location Location Clusters Count4 N0 72.53
Traveled Distance (m) R≥0 73.01
Time at Home (m) R≥0 82.53

Other Weekend5 {0, 1} 0.00

Sleep Sleep Duration (s) R≥0 66.76
Sleep Start (s)6 R 66.11

where sg[·] denotes the stop-gradient operator. The reconstruction loss is optimized by both the
encoder and decoder, forcing them to provide relevant data representations. The codebook loss
ensures that the embeddings capture such representations. The commitment loss enforces stability
during training by limiting the updates in encoder output to match current embeddings.2

3.1 MODELING MISSING DATA

A key challenge in real-world healthcare datasets, especially time-series data from wearable devices,
is missing data. We handle missing data by extending the VQ-VAE architecture to jointly model both
the observed data and the missingness pattern. Let x(i)

d ∈ RT represent the real-valued time-series
data vector of length T for patient i and variable d, where each component corresponds to a data
entry at a sampled time instant and d ∈ {1, . . . , D}. Recall that the set of possible variables are
summarized in Table 1. Let m(i)

d ∈ {0, 1}T denote a binary mask vector where each entry indicates
whether the corresponding entry is observed (entry value equal to 1) or missing (entry value equal
to 0). The corrupted signal, after applying the binary mask m

(i)
d , is defined as:

x̃
(i)
d = m

(i)
d ⊙ x

(i)
d , (3)

where ⊙ denotes the element-wise (Hadamard) product. This formulation applies zero-imputation,
ensuring missing data points do not introduce misleading information, as gradients related to im-
puted values remain zero during backpropagation (Nazábal et al., 2020).

Inspired by (Collier et al., 2021) for VAEs, we propose three VQ-VAE variants (see Figure 2) that
incorporate the missing mask within the VQ-VAE structure: Model A0: No missingness mask con-
ditioning; ii) Model A1: Missingness mask conditioning in the encoder only; iii) Model A2: Miss-
ingness mask conditioning in both encoder and decoder. Model A0 follows a simpler architecture,
where only the input signal is processed, without incorporating any missingness mask in either the
encoder or decoder stages. As a result, model A0 relies solely on the zero-imputed signal.

In models A1 and A2, both the input signal and missingness mask are integrated within the en-
coder. The missingness mask is pre-processed through M convolutional layers, which allow the
model to capture dependencies in the missing data patterns across variables. The processed mask is
concatenated with the input signal along the channel axis, and the combined data is passed through
N convolutional layers, resulting in a continuous latent representation. This latent representation is
then quantized via a nearest-neighbor lookup in the codebook before being passed to the decoder.

2As described in van den Oord et al. (2018), the codebook loss can be replaced by exponential moving
averages (EMA) of ze(x), which is the implementation used for the experiments in this work

3Sports activity is flagged if the combined time spent walking, running, bicycling, and other sports exceeds
one hour.

4Locations are dynamically defined by clustering algorithms grouping related geographical positions.
51 represents weekend data, while 0 represents weekday data.
6The reference time is 23:00. Negative values indicate seconds before this time, and positive values indicate

seconds after.
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(a) Overview of the variant VQ-VAE structure. The complete set corresponds to model A2. Model A1 only
features encoder conditioning and model A0 does not present any missingness mask concatenations, operating
solely on the signal.
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(b) Model A0 (without missing-
ness mask conditioning).
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(c) Model A1 (encoder-only miss-
ingness mask conditioning).
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(d) Model A2 (encoder-decoder
missingness mask conditioning).

Figure 2: Overview of proposed missing-aware VQ-VAE variants.

In model A1, the quantized embeddings are further processed through O deconvolutional layers,
followed by variable-specific activation functions tailored to the data type. In contrast, model A2
employs a more complex structure: the quantized embeddings are concatenated with the separately
processed missingness mask (which is transformed via L convolutional layers) along the channel
axis before passing through additional P convolutional layers. The output is then fed into variable-
specific activation functions.

Using the proposed variant VQ-VAE architectures, we trained the model on the PDP behavioral
dataset described in Section 2. Each data modality was modeled by selecting an appropriate likeli-
hood function tailored to its distributional characteristics. For real-valued variables, we employed a
Gaussian likelihood, while for binary features, a Bernouilli likelihood was used. Count data were
presented over a sufficiently extended array of values, and the Gaussian likelihood was also applied
to them. For more information on data preprocessing, see Appendix A.

Models were trained according to their reconstruction performance on observed data, and they were
analyzed on their ability to impute artificially-introduced missing data (see Section 5). Detailed
architecture specifications are provided in Appendix B of the supplementary material.

4 CHANGE-POINT DETECTION

CPD involves identifying abrupt shifts in a time series. The objective is to segment sequential data
into partitions generated under different underlying conditions, without prior knowledge of when
these changes occur (Page, 1955). The mathematics behind this model are developed in this section,
followed by an explanation of how CPD can be integrated as a downstream task of the VQ-VAE.
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4.1 BAYESIAN ONLINE CPD

A Bayesian online approach, presented in Adams & MacKay (2007), confronts the CPD problem
from a probabilistic perspective. This framework assumes that the observed data at day t—or the
latent profiles constructed from them— are generated by some mathematical distribution with un-
known parameters θt. Each assumed partition is independent of the others and defined by unique
parameters. At the same time, observations are regarded as samples drawn from those partitions in
an independent and identically distributed (i.i.d.) manner. A significant shift in the base parameters
of the distribution will be considered a change point. In the following, subscripts refer to a specific
element or sequence from temporal variables. For example, the term zt refers to the t-th element
of the corresponding sequence, while z1:t indicates the span from the first observed day until the
current date t.

We introduce the counting variable rt ∈ N0 to denote the run length at day t, representing the time
(in units, e.g., days in our setting) that elapsed since the last change point. For a given day t, the
run length can either increase by one if no change is detected or drop to zero otherwise. Hence, our
model focuses on inferring the posterior distribution of this variable, given by

p(rt|z1:t) =
p(rt, z1:t)

p(z1:t)
, (4)

which can be made in a recursive and online manner, meaning that, given all past observations,
the probability that a change occurred is distributed along all previous days. By deriving this run
length distribution for every day, we can have a sense of how our signal behaves in time and when
a substantial change has occurred. The run length rt and the observed data (patient profiles in our
work) zt are jointly modeled as

p(rt, z1:t) =

∫
p(rt, z1:t, θt) dθt, (5)

where the model parameters are marginalized. The joint density within the integral can be factorized
by marginalizing over the run length of the previous day, rt−1, which we assume has been previously
obtained, as follows:

p(rt, z1:t, θt) =
∑
rt−1

p(rt, rt−1, z1:t, θt) (6)

=
∑
rt−1

p(rt|rt−1)︸ ︷︷ ︸
change point prior

p(zt|θt)p(θt|rt−1, z1:t−1)︸ ︷︷ ︸
predictive posterior

p(rt−1, z1:t−1)︸ ︷︷ ︸
recursive term

. (7)

The prior probability of having a change point at any moment, conditioned on past change-points,
is defined by the hazard function H(·) (Ibe, 2014), which in our case was set to a constant that
depends on some hyperparameter λ such that p(rt|rt−1) = H(rt−1) = 1/λ. The recursive term
in Equation 6 is independent of the model parameters and can be computed recursively. Thus, it
follows that

p(rt, z1:t) =
∑
rt−1

p(rt|rt−1)πtp(rt−1, z1:t−1), (8)

where the term πt denotes the predictive posterior of the next datum conditioned to past run length
and observed data, which is given by

πt = p(zt|rt−1, z1:t−1) =

∫
p(zt|θt)p(θt|rt−1, z1:t−1) dθt. (9)

The complexity of this term is determined by the choice of prior and likelihood distributions that
define the data. In fact, its computation is often intractable, unless the underlying process is modeled
after an exponential family with conjugate prior (Turner et al., 2013). However, other strategies can
be employed to obtain an approximation of the predictive posterior, such as Markov chain Monte
Carlo methods (Moreno-Muñoz et al., 2019). In our case, we exploit the simplicity of the VQ-VAE
patient encoding, as it yields a sequence of categorical observations, to implement a robust CPD
with inference in closed-form expression.

Once all probabilities are derived, Equation 4 returns the run length characterization of the complete
temporal sequence: for each day, a distribution explains how the probability of a potential change

6
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Figure 3: Diagram of the VQ-VAE–CPD integration, including the mathematical notation for each
variable at each step: observed data (X1:t), discrete latent profiles (Z1:t), and run length predic-
tion (r1:t). Boldfaced, capitalized notation denotes the concatenation of data examples and their
respective latent representations. The plots below the diagram illustrate a real-world example: three
behavioral sources (step count, distance traveled, and time spent at home) are compressed into a
latent profile, which is then used to compute the run length, i.e., the time since the last change point.
The red line shows its MAP estimation (the most probable run length for each day).

point is shared among all previous days. Subsequently, a maximum a posteriori (MAP) estimation is
performed to identify the most likely run length for every day. The CPD output is a binary prediction
vector, where 1 indicates a detected change point and 0 otherwise. Various methods involving a
decision threshold can be employed to process the MAP estimation into this binary variable, which
is necessary to contrast model predictions against real events. Please refer to Appendix D for a more
in-depth description of the CPD algorithm.

4.2 CPD AS A DOWNSTREAM TASK

Online CPD has demonstrated promising results in real-world applications, such as water quality
monitoring (Ba & McKenna, 2014) and the analysis of epileptic activity (Malladi et al., 2013).
However, its application to human behavior analysis is just commencing to be explored. This con-
text often involves high-dimensional, heterogeneous, periodic variables with a significant rate of
missing entries (Reinertsen & Clifford, 2018; Bloom et al., 2024), characteristics that impose some
unique challenges in their analysis. Specifically, the high dimensionality of the dataset described
in Section 2 can complicate the estimation of underlying parameters and the posterior probability
of the run length. Past work has employed heterogeneous mixture models (HetMM) to address
this issue as a profiling step prior to the CPD stage (Moreno-Muñoz et al., 2019). Similar to the
VQ-VAE, HetMM assume that the observed high-dimensional data can be generated from a latent,
lower-dimensional variable, allowing to represent each time point with a characteristic profile. The
CPD model can then analyze the pattern of these profiles over time to identify changes in behavior.

HetMM methods have proven effective in integrating variables of diverse statistical types and han-
dling partially missing data, especially for suicide prediction (Moreno-Muñoz et al., 2020). How-
ever, these approaches lack scalability and efficiency, as each individual is represented by a separate
model trained on their own data. While this allows for personalized modeling, it necessitates an
independent model per user, increasing computational requirements and hindering the ability to
identify shared patterns across individuals. Although this may not be problematic for small datasets,
it becomes a major limitation in large-scale applications or real-time analysis, where computational
efficiency is essential.

The VQ-VAE foundation model proposed in this paper offers a compelling alternative to overcome
these limitations. The VQ-VAE encoder’s discrete latent representations serve as lower-dimensional
profiles, analogous to those produced by HetMM, and can be used as inputs to the CPD model for
change-point detection. To evaluate this integration, we tested it on a held-out cohort not involved in
VQ-VAE training. These patients, part of a suicide prevention program, had behavior data collected
through passive digital phenotyping and clinical records of suicide attempts or emergency visits due

7
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to self-harm. As deviations in daily routines often precede such crisis events, this cohort provides a
strong basis to validate CPD accuracy. Figure 3 summarizes the complete pipeline.

One of the main advantages of the foundation model is that, unlike the HetMM case, a single VQ-
VAE model is trained over a broader population to produce latent profiles. This paradigm shift
supposes an improvement in efficiency and scalability: an increase in the number of individuals
does not imply defining and storing more models, each with a new set of parameters to be tuned,
but instead leads to the very same model being trained on a larger dataset (i.e., during more epochs).
Moreover, this approach allows to jointly model behavioral data from various users across several
cohort studies, capturing a richer perspective of human behavior. Still, perhaps the most compelling
aspect of our proposed solution is that no fine-tuning is necessary on the pre-trained VQ-VAE to
produce the patient profiles for CPD. Its success in solving the CPD task is an example of how
the VQ-VAE foundational model presented in this work can be leveraged to potentially aid in the
broader variety of health-related problems, as detailed in Section 3.

5 RESULTS

5.1 SELF-SUPERVISION THROUGH RECONSTRUCTION AND IMPUTATION

We evaluated three variants of our VQ-VAE model—A0, A1, and A2—on the PDP dataset described
in Section 2. These models were trained using a similar objective to the original VQ-VAE in Equa-
tion 2, which includes reconstruction loss and commitment loss. However, instead of optimizing
the codebook loss directly, we updated the codebook using exponential moving averages (EMA), as
outlined in Section 3.

The models were trained specifically to reconstruct observed data, focusing on minimizing the re-
construction error for known data points. This approach prioritizes the quality of reconstructing
available data without explicitly optimizing for imputing missing values. Consequently, evaluat-
ing their performance on data imputation under various missingness mechanisms provides a more
rigorous test of their generalization capabilities in handling unobserved data, which they were not
directly trained to predict.

We assessed the models’ performance on both reconstruction and imputation tasks, which are cru-
cial for evaluating their effectiveness in scenarios involving both observed and unobserved data.
Reconstruction refers to recovering known values based on latent representations, while imputation
involves estimating values that were not observed during training. For the imputation task, the mod-
els were exposed to synthetic missingness, simulating both missing completely at random (MCAR)
and missing not at random (MNAR) mechanisms. In the MCAR setting, missing instances were
introduced uniformly at random, whereas in the MNAR scenario, missingness was conditioned on
the values of the target variables. This setup provides a comprehensive evaluation of the models’
capabilities in both random and structured missingness settings.

Figure 4 presents a selection of representative signal reconstructions for both observed and imputed
instances. These visualizations highlight the variant VQ-VAE models’ ability to accurately recover
data. Additional signal reconstructions and tables showing results on reconstruction and imputation
quality, are provided in Appendix E.1 due to space constraints. Furthermore, our results show
that the codebook usage per sample is usually very sparse for most patients, as can be checked
in Appendix E.2.

5.2 SUICIDE DETECTION (DOWNSTREAM TASK)

The practical validity of the VQ-VAE model was assessed by integrating it with a CPD architecture
to predict risk events in the context of suicide prevention, as explained in Section 4.2. The perfor-
mance of the CPD coupled to the HetMM profiling stage was used as a benchmark for comparison.

When the run length estimation is transformed into a prediction sequence, a hyperparameter is in-
volved to set the decision threshold for marking positives, i.e. crisis events. This threshold was swept
to produce a receiver-operating characteristic (ROC) curve, which we used to assess the model trade-
off between sensitivity (ability to correctly identify crisis events) and specificity (ability to not raise
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(a) Reconstruction of sample 36 for Practiced Sport. (b) Reconstruction of sample 42 for Total Steps.

(c) Reconstruction of sample 180 for Time Walking. (d) Reconstruction of sample 493 for App Usage Total.

Figure 4: Representative signal reconstructions for observed and imputed instances. In cases where
the original signal is not explicitly shown, it is because one or more of the models (whose recon-
structions are plotted) overlap the true signal precisely, obscuring the original data. Additional signal
reconstructions are available in Appendix E.1.

(a) (b) (c)

Figure 5: ROC curves comparing the performance of the CPD with three different versions of the
prior profiling stage: (a) a heterogeneous mixture model, (b) our VQ-VAE using its discrete latent
variable, and (c) the same VQ-VAE but returning the profiles as pseudo-probabilities. The three
colored lines in each plot correspond to three different values of hyperparameter λ. The number
of possible profiles (K) was set to 10 in the HetMM and 20 in the VQ-VAE. Version A0 of the
VQ-VAE was used. AUC values are given in each plot.

false alarms, i.e., not returning a positive when there are no events). These metrics, together with
the commonly used area under the curve (AUC), were used to compare the different model outputs.

Figure 5 compares the CPD performance using HetMM and VQ-VAE as profiling stages. The
CPD implementation accepts either discrete (integer labels for daily profiles) or probabilistic (pro-
file probabilities for each day) sequences. While HetMM naturally returns probabilistic profiles,
VQ-VAE provides discrete profiles, which can increase noise when the confidence is low (i.e., the
profile distribution is flat). To address this, we compute pseudo-probabilities for VQ-VAE profiles
by calculating the Euclidean distances between continuous encoder outputs and latent embeddings,

9
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and then applying a softmax transformation to the inverse of these distances. This way, embeddings
closer to the input have higher probabilities, providing a probabilistic interpretation of the discrete
latent profiles. Figure 5 displays CPD results for HetMM (probabilistic), VQ-VAE (discrete), and
VQ-VAE (pseudo-probabilistic) profiles.

The experiment was run for different values of hyperparameter λ, involved in the so-called hazard
function that defines the prior probability of having a change point at any given time instant. The
performance of the CPD is affected by this hyperparameter, which can be tuned to adapt its sensi-
tivity. Higher λ decreases the change-point prior, minimizing the rate of true positives. The values
we used for λ are 103, 105 and 107, with none of them significantly outperforming the others.

The reference mixture model (Figure 5a) maintained a high sensitivity (y-axis of the plot), often
detecting 100% of the suicide events used as validation. This target was not achieved by the two
VQ-VAE proposals, whose maximum sensitivity was 92.8%. Regarding specificity—represented
in the x-axis of the ROC space—, the VQ-VAE discrete profiles yielded higher rates of false pos-
itives than the HetMM, indicating a lower specificity. Remarkably, the use of the VQ-VAE with
pseudo-probabilities achieves comparable performance to the HetMM approach, sometimes even
outperforming it, especially for large values of λ. Some of the tested models display false positive
rates as little as 0.07 (i.e., 7% of false alarms) while still maintaining their sensitivity close to 80%.
The VQ-VAE model with the best AUC score was the one using pseudo-probabilities for the patient
profiling with λ = 105, achieving an AUC score of 0.92, which competes with the HetMM versions.

We emphasize the significance of this result, as the VQ-VAE approach uses a single model to extract
patient profiles that are then used as inputs for the CPD algorithm, establishing a novel and scalable
approach for suicide detection.

6 CONCLUSION

In conclusion, this paper presents a significant advancement in applying foundation models to the
analysis of heterogeneous, multisource time-series data collected from wearable devices in health-
care. By leveraging the modified VQ-VAE architecture, our model addresses key challenges such
as high rates of missing data and the complex nature of multisource inputs. The model’s capacity
to reconstruct missing entries and capture critical behavioral patterns through discrete latent rep-
resentations enhances interpretability, positioning it as a powerful tool for healthcare applications.
Our results demonstrate that the model, even without patient-specific fine-tuning, performs remark-
ably well in tasks such as change-point detection, accurately identifying critical events like suicide
attempts. This highlights its potential in monitoring patient behavior and supporting early interven-
tions in healthcare.

Moreover, the pre-trained model’s success in downstream tasks, such as clustering patients using
encoded latent sequences, underscores its adaptability and utility beyond the scope of its initial
training. The ability to generalize across datasets and extract meaningful insights from missing data
offers a new paradigm for patient monitoring, where passive behavioral data from wearable devices
can be fully utilized. This work not only broadens the scope of foundation models in healthcare but
also opens new avenues for integrating wearable technology into personalized medicine, with the
potential to enhance patient outcomes through more precise and actionable behavioral analysis.

Future work could explore coupling the VQ-VAE with autoregressive models such as PixelRNN or
PixelCNN for more sophisticated generative tasks. These extensions would enable realistic synthetic
data generation by sampling in the latent space, which is particularly relevant in healthcare for
tasks like simulating patient trajectories or generating synthetic datasets for rare conditions. Such
developments could further advance the model’s capability in predicting long-term health outcomes
and in generating high-fidelity synthetic data, which is crucial for augmenting limited real-world
datasets, particularly in scenarios involving rare diseases or underrepresented populations.
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ETHICS STATEMENT

The clinical program on suicide prevention whose cohort was involved in our downstream task
was approved by Institution B and carried out in compliance with the tenets of the Declaration of
Helsinki. All patients gave written informed consent to participate after a complete description of
the study and they were not compensated for their participation. Similar circumstances surround
the remaining 38 programs whose subjects were involved in the VQ-VAE training phase (additional
details can be provided if our research is accepted). Concerning data protection and confidentiality,
each patient’s identification was ensured by a username and password. The data gathered by the
Company A app were anonymized if it were sensitive data, then translated into a unique data schema,
and finally transmitted through a secure Wi-Fi network to Company A’s backend server where it were
stored.

REPRODUCIBILITY STATEMENT

Our study uses a proprietary dataset collected from wearable devices, as described in detail in Sec-
tion 2 and Appendix A. For data collection and preprocessing steps, we provide a comprehensive
explanation, including methodologies for handling missing data and generating input sequences. If
this work is accepted, we will release the source code for our VQ-VAE model variants introduced
in Section 3 and further detailed in Appendix B in a GitHub repository. This repository will include
code for model training, reconstruction, and imputation, along with pretrained models to facilitate
reproducibility. The profiling preparation process for the CPD algorithm, which uses the encoder
and codebook of the VQ-VAE model, is outlined in Appendix C. The code implementing this pro-
cedure will also be made available in the same GitHub repository.

Regarding the CPD algorithm, the mathematical concept behind is briefly covered in Section 4 and
further details on hyperparameters involved are provided in Appendix D. More in-depth explana-
tions on its implementation and integration with the heterogeneous mixture model are offered in
some of our past research, and code scripts may be shared upon request.

Our supplementary materials and appendices provide all necessary details to enable reproducibility,
including data processing scripts, experimental configurations, and hyperparameters used through-
out the paper.
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A DATA PREPROCESSING FOR THE VQ-VAE

As outlined in Section 2, the original dataset comprises 64 variables, many of which exhibit high
levels of missing data. This poses a significant challenge for standard deep learning techniques,
which typically require large datasets to generalize effectively. Thus, an extensive data processing
pipeline was necessary and is described in detail here.

In order to rigorously assess the performance of the three proposed models (A0, A1, and A2), we im-
plemented a robust evaluation strategy based on an n-partition scheme of the original dataset. Each
partition was systematically allocated for training, validation, and testing—along with reconstructed
signal plots—across all models. Importantly, this design ensured that the data partitions were con-
sistent across all models, precluding any leakage of patient data between partitions within a given
n-partition configuration. This strict partitioning protocol enabled a fair comparison between the
mask-conditioned architectures (A1, A2), and the non-conditioned baseline model (A0), ensuring
identical experimental conditions across different, randomly sampled sections of the dataset.

A key challenge in modeling time-series data is the transformation of the tabular dataset into a
format suitable for deep learning techniques. Specifically, we reshaped the data into observation
batches with dimensions [B,F,L], where B denotes the batch size, F the number of features, and
L the sequence length. The initial preprocessing step involved the removal of uninformative or
redundant variables, coupled with a stringent constraint ensuring that patient records were not split
across training, validation, and test within any n-partition. Instead, all data from a single patient
were placed within the same partition to preserve temporal and contextual consistency.

Several variables were excluded from the analysis due to inconsistencies in missing data reporting.
For instance, features such as the variables measuring the minimum/maximum/average heart rate
used a placeholder value of −1 to indicate missing data, whereas other variables adhered to the
standard Numpy convention of using NaN. Date-related variables also required normalization to a
consistent format. Additionally, certain variables contained erroneous or outlier values, likely due
to faulty sensors or other external factors, as discussed in Section 2. While it was not possible
to completely eliminate all erroneous entries due to the absence of key contextual variables, we
removed the majority of manifestly inaccurate data points. For example, the Sleep Duration variable
is known to be device-dependent, with different vendors applying varying algorithms to detect sleep
patterns. Similarly, the Total Steps variable can be influenced by non-step movements, such as
hand gestures, while the App Usage Total variable is constrained by vendor-specific limitations.
The Location Clusters Count variable, being derived from external algorithms that process raw
geolocation data, also exhibited potential inaccuracies.

To mitigate these issues and improve model stability, we applied the constraints shown in Table 2,
where the columns “Minimum Bound” and “Maximum Bound” specify the ranges to clip the values
in “Original Minimum” and “Original Maximum”. Any value outside these bounds was marked as
missing.

Table 2: Clipping constraints applied to ensure model stability. The Original Minimum and Original
Maximum columns represent the range of raw variable values in the dataset, while the Minimum
Bound and Maximum Bound columns define the clipping thresholds. Values falling outside these
bounds were treated as missing to avoid outliers, erroneous data, and ensure more reliable model
training.

Variable Original Minimum Original Maximum Minimum Bound Maximum Bound
Sleep Start (s) -11,657,590 7,430,400 -22,500 25,000
Traveled Distance (m) 7.891e-10 9,945,435.20 20 95,000
Time at Home (m) 0.0 1,440 120 —
Sleep Duration (s) 1.0 86,400.0 3,600 54,000
Time Walking (s) 0.0 3,098,824.0 120 15,000
App Usage Total (s) 0.0 630,478.0 180 35,000
Location Clusters Count 0 40 1 15
Total Steps 1 99,734 150 25,000

After the initial preprocessing steps, we ensured that each patient’s time-series data remained tem-
porally contiguous. Specifically, if a patient’s records spanned from March 15, 2019, to May 2,
2019, but included a gap until May 15, 2019, the data were split into two distinct sequences: one
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from March 15 to May 2, and the other from May 15 to the end of the recording period (e.g., June
24). Sequences that were shorter than the predefined minimum length, were discarded to maintain
consistency in sequence length across the dataset. This was not applied to the final subset of held-out
psychiatric patients whose time-series—varying in length— were processed in full.

Next, we addressed differences in scale across continuous and counting variables by apply-
ing appropriate transformations. For real-valued continuous features, we utilized scikit-learn’s
RobustScaler, which is well-suited for handling data with outliers by centering the data around
the median and scaling it based on the interquantile range (IQR). These transformations were fitted
on the training set and subsequently applied to the validation and test sets to ensure consistency
across all partitions.

It is important to note that all metrics and signal reconstructions reported in this work reflect the
original feature space. To achieve this, we reversed the scaling transformations prior to computing
evaluation metrics and generating signal plots. This approach ensures that the reported results are
both interpretable and faithful to the original data distributions.

For each model instance, a missingness mask was dynamically generated for each patient sequence,
with synthetic missingness introduced to simulate unobserved data. This missingness mask con-
sisted of three distinct values: “0” for originally missing data, “1” for observed data, and “2” for
synthetically induced missing data. However, for model input, the mask was binarized by collapsing
“2” into “0”, as the model was designed to treat all missing entries uniformly, regardless of whether
the missingness was natural or synthetically generated.

To simulate missing data, we employ two distinct strategies: MCAR (missing completely at random)
and MNAR (missing not at random). Each mode is constructed to introduce missingness in ways
that reflect both random and structure data loss.

In the MCAR setting, missingness is introduced through a random process designed to target ap-
proximately 10% of the observed entries. However, a series of safeguard conditions modulate this
target to ensure data integrity. Specifically:

• If more than 85% of the data for any feature is already missing, no additional missingness
is introduced.

• A flat rate of 10% is tentatively introduced if there is not prior existing missingness for a
given sample.

• For each feature, missing values are added by randomly selecting from the observed entries,
ensuring that only those entries are affected.

The result is a systematic, yet random, distribution of missingness that prevents over-saturation
while maintaining stochasticity.

In contrast, MNAR employs a feature-drive approach, introducing missingness based on relation-
ships between variables and their values. Structured missingness is inserted through a combination
of non-linear conditions and thresholds. The MNAR process unfolds as follows:

• If more than 85% of the data for any feature is already missing, no additional missingness
is introduced.

• Non-linear conditions are applied to enforce missingness. For example, if a feature con-
sistently deviates from its typical range (e.g., extreme values of a continuous variable),
missingness is introduced.

To avoid excessive data sparsity, the same 85% ceiling on missingness per feature is applied, en-
suring that no single features becomes overwhelmingly absent. Furthermore, a small percentage
of random missingness (approximately 2%) is introduced to account for incidental data loss not
captured by the MNAR corruption process.

Finally, a wrapper class for resolution augmentation was developed but was not used in the final ex-
periments. This method was found to exacerbate existing missingness streaks, complicating model
training. To handle varying sequence lengths, random cropping was applied to select sub-sequences
for analysis.
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B VQ-VAE ARCHITECTURAL DETAILS

The architectures for the three models (A0, A1, and A2) are illustrated in Figures 2b, 2c, and
2d, respectively. Throughout the network, spatial length was preserved to ensure that each time
step—representing daily patient states—was captured in the embeddings.

For real-valued features such as Sleep Start, the mean squared error (MSE) loss was employed. This
loss function was extended to continuous positive variables following the transformations described
in Section 3. While the counting variables (Location Clusters Count and Total Steps) could be mod-
eled using a Poisson distribution, the broad range of values (15 and 24, 849, respectively) allowed
for an approximation using the MSE loss.

Binary features, such as Weekend and Practiced Sport, were trained using a modified binary cross-
entropy (BCE) loss to account for class imbalances. Gradient norm clipping was applied, limiting
the norm to a maximum of 2.0 to ensure stable optimization and prevent gradient explosions in the
early training phases, particularly for challenging variables such as Location Distance. The learning
rate was initially set to 1 × 10−3, with a learning rate scheduler (ReduceLROnPlateau) that
applied a reduction factor of 0.1 when no improvement was observed over 10 epochs.

The vector quantization (VQ) mechanism plays a key role in our architecture, particularly in models
A1 and A2. A codebook of 256 vectors, initialized randomly, was employed, with the embedding
dimensionality set to 80 for all variant architectures.

To combat the issue of codebook collapse—a common challenge in VQ-VAE models—a restart
threshold of 0.1 was applied. Embeddings that were underutilized (i.e., with utilization rates be-
low this threshold) were re-initialized to improve code utilization following Dhariwal et al. (2020).
This technique effectively mitigated collapse, as demonstrated by a monotonic increase in perplex-
ity across training epochs. Both MCAR and MNAR experiments exhibited effective embedding
utilization, which contributed to the overall performance.

As discussed in Section 3, our quantization mechanism leverages an exponential moving average
(EMA) to update the embedding representations during training. This is controlled by a decay
factor and the previously mentioned threshold that prevents underutilized embeddings from being
excessively penalized. As part of the quantization step, a commitment loss is calculated to mea-
sure the difference between the input and its quantized representation, ensuring smooth transitions
between different embeddings. For the experiments contained in this work, we used β = 0.25 in
Equation 2.

To ensure the statistical rigor of our evaluation and to assess whether the observed differences be-
tween model variants are significant, we conducted a series of hypothesis tests. The analysis aims
to determine whether the VQ-VAE model variants demonstrate statistically significant performance
differences when compared to the baseline model A0, across various metrics. For more details, see
Appendix E.1.

Model A0 serves as the baseline. It receives the zero-imputed signal as input, which is passed
through four convolutional layers, each followed by batch normalization and a ReLU activation
function. These layers use 3 × 3 filters with stride and padding set to 1, ensuring that the spatial
dimensions are preserved. The encoder’s output is then quantized using the VQ mechanism and
passed to the decoder, which consists of four deconvolutional layers. Each deconvolutional layer
is followed by batch normalization and ReLU, except for the last layer, where the identity function
is applied to maintain the integrity of the output values for real-valued, continuous, and counting
variables, and logits for binary variables. The complete architecture for model A0 can be seen in
Table 3.

Model A1 incorporates the missingness mask alongside the zero-imputed signal. Prior to concatena-
tion with the input signal, the mask undergoes processing through two convolutional layers, each fol-
lowed by batch normalization and ReLU. After concatenation, the combined input is passed through
six convolutional layers, similar to A0 but with additional depth to account for the mask information.
The output is then quantized using the same VQ process, and the decoder operates identically to A0.
The complete architecture for model A1 is described in Table 4.

Model A2 extends A1 by also passing the missingness mask to the decoder. The encoder processes
the input identically to A1, quantizing the result before passing it to the decoder. In the decoder, the
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quantized vector is processed alongside the mask, which is passed through two additional convolu-
tional layers. These are followed by a block of four fine-tuning layers, which enable the decoder to
integrate missingness information into the final reconstructed signal. The fine-tuning layers consist
of convolutional layers followed by ReLU, except for the last layer, which uses the identity function.
The complete architecture for model A2 is described in Table 5.

Table 3: Model A0 Architecture: Encoder, Quantizer, and Decoder

Encoder
Layer Type Input Dimensions Output Dimensions Details

Input (Signal) [B,F,L] - Model input (signal)
Conv1D [B,F,L] [B,F,L] 3× 3, Stride = 1, Padding = 1

BatchNorm1D [B,F,L] [B,F,L] BatchNorm, after Conv1D
ReLU [B,F,L] [B,F,L] Activation

Conv1D [B,F,L] [B, 2F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B, 2F,L] [B, 2F,L] BatchNorm, after Conv1D

ReLU [B, 2F,L] [B, 2F,L] Activation
Conv1D [B, 2F,L] [B, 4F,L] 3× 3, Stride = 1, Padding = 1

BatchNorm1D [B, 4F,L] [B, 4F,L] BatchNorm, after Conv1D
ReLU [B, 4F,L] [B, 4F,L] Activation

Conv1D [B, 4F,L] [B, 8F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B, 8F,L] [B, 8F,L] BatchNorm, after Conv1D

ReLU [B, 8F,L] [B, 8F,L] Activation
Quantizer

Quantization [B, 8F,L] [B, 8F,L] VQ (Nearest Lookup)
Decoder

Deconv1D [B, 8F,L] [B, 6F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B, 6F,L] [B, 6F,L] BatchNorm, after Deconv1D

ReLU [B, 6F,L] [B, 6F,L] Activation
Deconv1D [B, 6F,L] [B, 4F,L] 3× 3, Stride = 1, Padding = 1

BatchNorm1D [B, 4F,L] [B, 4F,L] BatchNorm, after Deconv1D
ReLU [B, 4F,L] [B, 4F,L] Activation

Deconv1D [B, 4F,L] [B, 4F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B, 4F,L] [B, 4F,L] BatchNorm, after Deconv1D

ReLU [B, 4F,L] [B, 4F,L] Activation
Deconv1D [B, 4F,L] [B, 2F,L] 3× 3, Stride = 1, Padding = 1

BatchNorm1D [B, 2F,L] [B, 2F,L] BatchNorm, after Deconv1D
ReLU [B, 2F,L] [B, 2F,L] Activation

Deconv1D [B, 2F,L] [B,F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B,F,L] [B,F,L] BatchNorm, after Deconv1D

Identity [B,F,L] [B,F,L] Model output: recons. value and logits (for binary)
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Table 4: Model A1 Architecture: Encoder, Quantizer, and Decoder
Encoder

Layer Type Input Dimensions Output Dimensions Details
Input (Signal) [B,F,L] - Model input (signal)
Input (Mask) [B,M,L] - Model input (mask)

Conv1D (Mask) [B,M,L] [B,M,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D (Mask) [B,M,L] [B,M,L] BatchNorm, after Conv1D

ReLU (Mask) [B,M,L] [B,M,L] Activation
Conv1D (Mask) [B,M,L] [B,M,L] 3× 3, Stride = 1, Padding = 1

BatchNorm1D (Mask) [B,M,L] [B,M,L] BatchNorm, after Conv1D
ReLU (Mask) [B,M,L] [B,M,L] Activation

Concatenation (Signal + Mask) [B,F,L], [B,M,L] [B,F +M,L] Concatenate signal and mask. Note: F = M
Conv1D [B,F +M,L] [B,F,L] 3× 3, Stride = 1, Padding = 1

BatchNorm1D [B,F,L] [B,F,L] BatchNorm, after Conv1D
ReLU [B,F,L] [B,F,L] Activation

Conv1D [B,F,L] [B, 2F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B, 2F,L] [B, 2F,L] BatchNorm, after Conv1D

ReLU [B, 2F,L] [B, 2F,L] Activation
Conv1D [B, 2F,L] [B, 4F,L] 3× 3, Stride = 1, Padding = 1

BatchNorm1D [B, 4F,L] [B, 4F,L] BatchNorm, after Conv1D
ReLU [B, 4F,L] [B, 4F,L] Activation

Conv1D [B, 4F,L] [B, 4F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B, 4F,L] [B, 4F,L] BatchNorm, after Conv1D

ReLU [B, 4F,L] [B, 4F,L] Activation
Conv1D [B, 4F,L] [B, 6F,L] 3× 3, Stride = 1, Padding = 1

BatchNorm1D [B, 6F,L] [B, 6F,L] BatchNorm, after Conv1D
ReLU [B, 6F,L] [B, 6F,L] Activation

Conv1D [B, 6F,L] [B, 8F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B, 8F,L] [B, 8F,L] BatchNorm, after Conv1D

ReLU [B, 8F,L] [B, 8F,L] Activation
Quantizer

Quantization [B, 8F,L] [B, 8F,L] VQ (Nearest Lookup)
Decoder

Deconv1D [B, 8F,L] [B, 6F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B, 6F,L] [B, 6F,L] BatchNorm, after Deconv1D

ReLU [B, 6F,L] [B, 6F,L] Activation
Deconv1D [B, 6F,L] [B, 4F,L] 3× 3, Stride = 1, Padding = 1

BatchNorm1D [B, 4F,L] [B, 4F,L] BatchNorm, after Deconv1D
ReLU [B, 4F,L] [B, 4F,L] Activation

Deconv1D [B, 4F,L] [B, 4F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B, 4F,L] [B, 4F,L] BatchNorm, after Deconv1D

ReLU [B, 4F,L] [B, 4F,L] Activation
Deconv1D [B, 4F,L] [B, 2F,L] 3× 3, Stride = 1, Padding = 1

BatchNorm1D [B, 2F,L] [B, 2F,L] BatchNorm, after Deconv1D
ReLU [B, 2F,L] [B, 2F,L] Activation

Deconv1D [B, 2F,L] [B,F,L] 3× 3, Stride = 1, Padding = 1
BatchNorm1D [B,F,L] [B,F,L] BatchNorm, after Deconv1D

Identity [B,F,L] [B,F,L] Model output: recons. value and logits (for binary)
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Table 5: Model A2 Architecture: Encoder, Quantizer, and Decoder
Encoder

Layer Type Input Dimensions Output Dimensions Details
Input (Signal) [B,F, L] - Model input (signal)
Input (Mask) [B,M,L] - Model input (mask)
Conv1D (Mask) [B,M,L] [B,M,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D
(Mask)

[B,M,L] [B,M,L] BatchNorm, after Conv1D

ReLU (Mask) [B,M,L] [B,M,L] Activation
Conv1D (Mask) [B,M,L] [B,M,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D
(Mask)

[B,M,L] [B,M,L] BatchNorm, after Conv1D

ReLU (Mask) [B,M,L] [B,M,L] Activation
Concatenation (Sig-
nal + Mask)

[B,F, L], [B,M,L] [B,F + M,L] Concatenate signal and mask. Note: F = M

Conv1D [B,F + M,L] [B,F, L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D [B,F, L] [B,F, L] BatchNorm, after Conv1D
ReLU [B,F, L] [B,F, L] Activation
Conv1D [B,F, L] [B, 2F,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D [B, 2F,L] [B, 2F,L] BatchNorm, after Conv1D
ReLU [B, 2F,L] [B, 2F,L] Activation
Conv1D [B, 2F,L] [B, 4F,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D [B, 4F,L] [B, 4F,L] BatchNorm, after Conv1D
ReLU [B, 4F,L] [B, 4F,L] Activation
Conv1D [B, 4F,L] [B, 4F,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D [B, 4F,L] [B, 4F,L] BatchNorm, after Conv1D
ReLU [B, 4F,L] [B, 4F,L] Activation
Conv1D [B, 4F,L] [B, 6F,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D [B, 6F,L] [B, 6F,L] BatchNorm, after Conv1D
ReLU [B, 6F,L] [B, 6F,L] Activation
Conv1D [B, 6F,L] [B, 8F,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D [B, 8F,L] [B, 8F,L] BatchNorm, after Conv1D
ReLU [B, 8F,L] [B, 8F,L] Activation

Quantizer
Quantization [B, 4F,L] [B, 4F,L] VQ (Nearest Lookup)

Decoder
Input (Quantized
Signal)

[B, 4F,L] - Model input (quantized signal)

Input (Mask) [B,M,L] - Model input (mask)
Conv1D (Mask) [B,M,L] [B,M,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D
(Mask)

[B,M,L] [B,M,L] BatchNorm, after Conv1D

ReLU (Mask) [B,M,L] [B,M,L] Activation
Conv1D (Mask) [B,M,L] [B,M,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D
(Mask)

[B,M,L] [B,M,L] BatchNorm, after Conv1D

ReLU (Mask) [B,M,L] [B,M,L] Activation
Deconv1D (Signal) [B, 8F,L] [B, 6F,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D (Sig-
nal)

[B, 6F,L] [B, 6F,L] BatchNorm, after Deconv1D

ReLU (Signal) [B, 6F,L] [B, 6F,L] Activation
Deconv1D (Signal) [B, 6F,L] [B, 4F,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D (Sig-
nal)

[B, 4F,L] [B, 4F,L] BatchNorm, after Deconv1D

ReLU (Signal) [B, 4F,L] [B, 4F,L] Activation
Deconv1D (Signal) [B, 4F,L] [B, 4F,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D (Sig-
nal)

[B, 4F,L] [B, 4F,L] BatchNorm, after Deconv1D

ReLU (Signal) [B, 4F,L] [B, 4F,L] Activation
Deconv1D (Signal) [B, 4F,L] [B, 2F,L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D (Sig-
nal)

[B, 2F,L] [B, 2F,L] BatchNorm, after Deconv1D

ReLU (Signal) [B, 2F,L] [B, 2F,L] Activation
Deconv1D (Signal) [B, 2F,L] [B,F, L] 3 × 3, Stride = 1, Padding = 1
BatchNorm1D (Sig-
nal)

[B,F, L] [B,F, L] BatchNorm, after Deconv1D

ReLU (Signal) [B,F, L] [B,F, L] Activation
Concatenation
(Quantized Signal +
Mask)

[B,F, L], [B,M,L] [B,F + M,L] Concatenate signal and mask. Note: F = M

Fine-tuning
Conv1D

[B,F + M,L] [B,F + M,L] 3 × 3, Stride = 1, Padding = 1

BatchNorm1D [B,F + M,L] [B,F + M,L] BatchNorm, after Conv1D
ReLU [B,F + M,L] [B,F + M,L] Activation
Fine-tuning
Conv1D

[B,F + M,L] [B,F, L] 3 × 3, Stride = 1, Padding = 1

BatchNorm1D [B,F, L] [B,F, L] BatchNorm, after Conv1D
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Encoder (continued)
Layer Type Input Dimensions Output Dimensions Details
ReLU [B,F, L] [B,F, L] Activation
Fine-tuning
Conv1D

[B,F, L] [B,F, L] 3 × 3, Stride = 1, Padding = 1

BatchNorm1D [B,F, L] [B,F, L] BatchNorm, after Conv1D
ReLU [B,F, L] [B,F, L] Activation
Fine-tuning
Conv1D

[B,F, L] [B,F, L] 3 × 3, Stride = 1, Padding = 1

BatchNorm1D [B,F, L] [B,F, L] BatchNorm, after Conv1D
Identity [B,F, L] [B,F, L] Model output: recons. value and logits (for binary)

C CONSTRUCTING VQ-VAE LATENT PROFILES FOR CPD

In preparing VQ-VAE profiles for use in the CPD task, we leverage the inherent sparsity of the
learned representations. This sparsity not only enhances the interpretability of the patient time-series
embeddings but also allows for efficient and accurate change-point detection, critical in real-world
applications for patient behavior monitoring for psychiatric patients.

VQ-VAE representations often exhibit significant variations in the frequency of usage across em-
beddings. To capitalize on this, we introduce a ranking system based on the frequency of each em-
bedding’s occurrence. Embeddings that appear frequently within the time-series sample are ranked
higher, as these are likely to represent more common patterns. Conversely, embeddings that are
infrequently used (below a certain number of “most used embeddings”) are considered outliers and
grouped into a special category referred to as the “dummy” embedding. This dummy embedding is
more than a placeholder; it reflects rare or anomalous patterns, which may acquire specific clinical
interpretations, such as periods of abnormal patient behavior or sensor malfunction. In particular,
for the CPD results shown in Figure 5, only a small number of individual embeddings ranging from
5 to 30 (depending on the specific setting)—out of the total 256 in the codebook—were considered,
with the remaining, less-used instances being classified into the “dummy” embedding. A detailed
discussion on the number of individual profiles used can be found in Section 4.2 and ablation study
regarding the number of individual embeddings considered for the CPD algorithm is provided in
Appendix D.

By categorizing uncommon embeddings into a collective representation, we enhance the robustness
of downstream analysis, as this method mitigates the noise introduced by outlier embeddings (them-
selves caused by outlier, and often erroneous, data) while retaining the capacity to detect important
deviations in patient behavior.

As mentioned in Section 4, CPD can be approached in both deterministic and probabilistic modes,
depending on the level of certainty required in detecting shifts in patient behavior. To support both
approaches, we compute pseudo-probabilities derived from the distances between the quantized
embeddings and the original continuous outputs of the encoder. Since the latent space of VQ-VAE is
discrete, pseudo-probabilities are computed by first calculating the Euclidean distances between the
continuous encoder outputs and the set of embeddings in the latent space. These distances quantify
how close or far each input is from each embedding. Next, the softmax function is applied to the
additive inverse of these distances, transforming them into a probability distribution over all possible
embeddings. This transformation ensures that embeddings closer to the continuous encoder output
(i.e., those with smaller Euclidean distances) are assigned higher pseudo-probabilities, while more
distant embeddings are assigned lower pseudo-probabilities, thereby approximating a probabilistic
interpretation for the otherwise discrete latent profiles.

These probabilities provide a soft assignment, offering an interpretable measure of how well an
embedding fits the original data point. This is particularly useful in probabilistic CPD, where
transitions between states are inherently uncertain, and the distances can be used to modulate the
likelihood of a change-point. By integrating both deterministic hard-assignments and probabilis-
tic soft-assignments, our framework allows for flexible CPD that can adapt to different levels of
interpretability and precision, essential for clinical scenarios.
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D CPD ALGORITHM DETAILS AND ABLATION STUDY

The change-point detector (CPD) model used in this work was designed with many customization
options, including CPD versions, hyperparameters, and alternative methods. Some of these options
are explained in detail next.

The most important setting in the CPD is whether to use the hierarchical version (Moreno-Muñoz
et al., 2019), which is designed to accept profile sequences of discrete nature, or the multinomial
CPD presented in (Romero-Medrano et al., 2022) that has been adapted to work with profile distri-
butions, which provide a richer characterization of the latent representation.

• Hierarchical CPD. As explained in Section 4.2, instead of directly analyzing the high-
dimensional observations, the hierarchical CPD is fed with a latent variable (one discrete
profile per day) and infers the posterior distribution of changes in such pseudo-observations.
This approach simplifies the detection process and reduces computational complexity.
However, when the distributions of the latent variables are flat or uncertain, the hierarchical
CPD’s performance can be compromised due to noisy point estimates (i.e., the categorical
estimation of the profiles is not modeled with confidence).

• Multinomial CPD. The multinomial CPD addresses this limitation by incorporating multi-
nomial sampling to better characterize the uncertainty in latent variable inference. Instead
of relying solely on point estimates, the multinomial CPD draws multiple samples from the
posterior distribution of latent variables at each time step and constructs a counting vec-
tor representing the frequency of each latent class within the samples. By considering the
uncertainty in latent variable inference, the multinomial CPD improves detection rate and
enhances robustness to noisy or missing data.

(a) (b)

Figure 6: ROC curves obtained from a hyperparameter analysis on the HetMM–CPD integration,
testing a range of values of (a) the number of profiles K and (b) the size of the temporal window.
The configuration of the baseline HetMM–CPD pipeline used as reference was set to 10 profiles (the
best-performing value) and a 7-day window size.

Some of the hyperparameters involved in the downstream task were fixed based on our previous
experience working with the HetMM–CPD pipeline. A brief description is given for each of them:

• Number of profiles, K. While not a hyperparameter of the CPD stage (but rather involved
in the VQ-VAE or HetMM steps), the number of possible profiles is a crucial setting in
the downstream task. Too few profiles will fail to capture the distinct behavior patterns,
but too many may introduce noisy profiles modeled with low confidence that impede the
correct performance of the CPD. The value of K in the heterogeneous mixture model was
analyzed (Figure 6a) and chosen to be 10.
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• Number of samples in multinomial distribution, S. In the multinomial approach, S
represents the number of samples that are drawn from the posterior distribution of the
latent variables at each time step. A larger value will adapt better to the latent profiles but
also complicates the detection task of the CPD. The results provided in Section 5.2 were
obtained with S = 10.

• Prior change-point probability, λ. As explained in Section 4.1, λ is involved in the
hazard function that defines the prior probability of having a change-point at any instant.
This constant can be tuned to adapt the CPD’s sensitivity and a few values were included
in the results offered in Figure 5 of Section 5.2.

• Size of the temporal window, w. The CPD model focuses on a temporal frame to assess
whether its predictions are successful or not. For example, for each true event, a true pos-
itive is returned if an alarm was given by the model within the temporal window previous
to that event. If the CPD did not predict any change, then a false negative is counted. This
window hyperparameter allows therefore to select how long in advance we aim to predict
suicide events. We chose a prediction period of one week (w = 7 days), which obtained
a high AUC in our analysis (see Figure 6b) and is brief enough to serve as short-term
prediction.

• Threshold, τ . The last hyperparameter affects the definition of alarms or positive predic-
tions (i.e., the conversion from run length to a binary detection vector). Three methods are
implemented in the CPD model. The first one, named MAP ratio, was used in this work.

– MAP ratio (default) → based on the MAP estimates of the run length, an alarm is
returned if the ratio of current rt over the previous day rt−1 is below the threshold:

rt
rt−1

< τ

– MAP difference → based on the MAP estimates of the run length, an alarm is returned
if the difference between current rt and previous rt−1 is above the threshold:

rt − rt−1 > τ

– Cumulative sum → based on the cumulative probability of the run length of previous
days (within the specified window of size w), an alarm is returned if this sum is above
the threshold:

w∑
i=0

rt−i > τ

Regarding the incorporation of the VQ-VAE encoded space as input to the CPD, we tested the
different model types A0, A1 and A2 explained in Appendix B, and for a range of numbers of
embeddings (i.e., the number of possible profiles used in the subject characterization, K). The
results are displayed in Figure 7. These graphs were obtained using the VQ-VAE’s discrete profiles,
not their pseudo-probabilities. The three VQ-VAE model variations yielded similar results, with
version A1 often reaching a 100% of sensitivity. In the case of models A0 and A2, performance
depended heavily on the value of K, with poorer outcomes when less profiles were used (K = 5,
K = 10). The optimum number of profiles seemed to be 20, a reason why this value would be used
to produce Figures 5b and 5c in the results section.
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Figure 7: ROC curves resulting of the VQ-VAE–CPD integration using discrete profiles. The figure
compares models A0, A1 and A2 (columns) and different numbers of embeddings or profiles K
(rows). The three colored lines in each plot correspond to three different values of hyperparameter
λ.
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E EXTENDED RESULTS ON THE VQ-VAE FOUNDATION MODEL

E.1 SIGNAL RECONSTRUCTION AND IMPUTATION

Table 6 presents the reconstruction performance in terms of MAE (or F1 score for the binary vari-
ables Weekend and Practice Sport) for observed data, as well as for missing data under both MCAR
and MNAR mechanisms. The results indicate that all three models perform comparably across most
variables, with some nuanced differences. For example, Model A2 performs better on reconstruct-
ing observed instances of Sleep Start, achieving lower Mean Absolute Error (MAE) compared to
A0 and A1. Conversely, Models A0 and A1 perform better than A2 for reconstructing observed
instances of Time at Home and Sleep Duration. Additionally, A0 achieves the lowest error for the
observed instances of Total Steps.

Despite not being explicitly optimized for imputation, the models performed competently in this
task. These results highlight the models’ ability to generalize beyond their training objective, par-
ticularly under the MNAR condition, where missingness is more structured and challenging. This
is compounded by the fact that the discrete profile representation provided by VQ-VAE is sparse,
i.e., out of the total 256 embeddings in the codebook, only a few were used for each patient, thereby
enhancing interpretability (see Appendix E.2 for embedding utilization histograms).

It is important to note that no synthetic missingness was applied to the variables Weekend and Prac-
ticed Sport, as these were fully observed across the dataset. Consequently, the MCAR and MNAR
scenarios were not applicable for these variables. Nonetheless, the consistently high F1 scores (close
to 1.0) achieved by all models for these categorical variables reinforce the robustness of the learned
representations, even for variables without missing data.

Hypothesis testing was performed for a more in-depth analysis to assess the statistical significance
of the observed differences between the models. We began by testing the normality of the data
using the Shapiro-Wilk test. The null hypothesis (H0) for this test states that the data comes from
a normally distributed population. Conversely, the alternative hypothesis (H1) posits that the data
is not normally distributed. We employed a significance level of α = 0.05. If the p-value from the
Shapiro-Wilk test is greater than 0.05, we fail to reject the null hypothesis, indicated that the data
can be assumed to follow a normal distribution.7

The Shapiro-Wilk test results are provided in Table 7. If both models’ result (i.e., the variant model
and baseline A0) for a given variable and type passed the normality test, we proceeded with the
paired Welch t-test. If the null hypothesis was rejected for either one of the two models (i.e., the
data is not normally distributed), we opted for the non-parametric Wilcoxon signed-rank test.

When the data for both the baseline and the variant model were found to be normally distributed,
we used the paired Welch’s t-test to compare their means. The null hypothesis for this test asserts
that there is not difference between the means of the two models, while the alternative hypothesis
suggests a significant difference between them. We again used a significance level of α = 0.05,
rejecting the null hypothesis if the p-value was below this threshold. The results for the paired
Welch t-tests are summarized in Table 8.

For cases where the data for one or both models did not pass the Shapiro-Wilk normality test, we
employed the Wilcoxon signed-rank test. This non-parametric test does not assume normality.8 The
null hypothesis here is that the distributions of the two models are identical, while the alternative
hypothesis suggests a significant difference between them. Similar to the Welch t-test, we used
α = 0.05 as the significance level. Table 9 provides a detailed summary of the Wilcoxon signed-
rank test results.

Figure 8 and Figure 9 present reconstructed and imputed sample examples, where white shading
indicates observed data, grey shading denotes originally missing data, and purple shading represents
synthetically induced missingness. The remaining time steps (in this case, days) are fully visible to
the model. When the original signal is obscured in observed intervals, it is due to one or more model

7The significance levels used in these tests ensure that any rejection of the null hypothesis corresponds to a
less than 5% probability of a Type I error, i.e., that it is rejected while being true. In the case of the Shapiro-Wilk
and Wilcoxon signed-rank tests this would represent the scenario in which it is incorrectly concluded that the
models differ when they do not.

8A requirement of the Wilcoxon signed-rank test is symmetry.
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reconstructions perfectly overlapping the true signal, demonstrating accurate recovery. As shown in
Figure 8a and Figure 9a all models perform well with binary variables. Notably, the proposed VQ-
VAE variants exhibit strong imputation capabilities even under high proportions of missingness, as
evidenced by Figure 8c, Figure 8f, and Figure 9e. Whether the missing data spans large temporal
segments (e.g., the first three-quarters of the sample in Figure 8f), appears centrally (Figure 9g),
or is intermittently distributed (Figure 8d), the models consistently maintain robust representations
and plausible imputations. This performance generalizes across all variable types—continuous real-
valued, continuous positive, count data, and binary—highlighting the versatility of the models across
different data ranges and types.

E.2 EMBEDDING USAGE HISTOGRAMS

The discrete quantization of VQ-VAE facilitates the construction of latent representations, making
it particularly suited for applications that benefit from codifying instances, as demonstrated in this
work. Unlike traditional methods that rely on handcrafted features—often tailored to individual
patients and limiting generalizability—VQ-VAE learns patient-agnostic embeddings, enabling gen-
eralization across subpopulations and tasks. These discrete embeddings can be effectively applied
to tasks such as time-series data imputation and extended to critical downstream tasks, such as iden-
tifying critical health events or suicide risk detection. As illustrated in Figure 10, the usefulness
of these embeddings is enhanced by their sparsity—typically, only a small subset of the 256 avail-
able embeddings is used per sample. This results in a more interpretable solution, with infrequent
embeddings classified as ”dummy” embeddings, which can themselves acquire meaningful interpre-
tations (e.g., representing rare or unstable states). In turn, this sparsity in then leveraged to provide
contained, yet expressive profiles sequences for the CPD algorithm, as discussed in Appendix C.

Table 6: Performance of Models A0, A1, and A2. Metrics for Variables 0-7 are reported in MAE
(lower is better), and Variables 8-9 are evaluated using F1 (higher is better).

Variable Type Model A0 Model A1 Model A2

Sleep Start (s)
XO 1315.63± 47.06 1242.66± 57.88 1177.78± 57.75
MCAR 5777.24± 229.41 5651.99± 245.31 5578.96± 496.26
MNAR 5896.85± 492.96 5718.97± 417.62 5607.64± 593.95

Traveled Distance (m)
XO 12202.43± 1296.66 11627.66± 937.86 12874.13± 836.27
MCAR 17008.33± 7488.46 16681.98± 13920.55 15190.03± 3520.84
MNAR 15100.38± 2035.91 14232.06± 1821.58 15175.21± 2363.39

Time at Home (m)
XO 146.17± 4.95 143.58± 8.58 174.94± 9.70
MCAR 289.52± 17.03 290.18± 17.87 291.85± 18.18
MNAR 287.52± 16.05 282.68± 15.94 286.16± 13.35

Sleep Duration (s)
XO 4149.40± 120.98 4055.13± 151.20 5005.76± 211.03
MCAR 6563.44± 282.73 6615.74± 309.10 6738.00± 398.30
MNAR 6422.58± 340.45 6373.11± 232.31 6585.21± 300.78

Time Walking (s)
XO 1341.44± 65.39 1298.03± 61.20 1279.72± 67.14
MCAR 1779.98± 145.89 1742.47± 101.91 1734.54± 73.66
MNAR 1676.90± 82.56 1657.30± 96.37 1744.46± 105.72

App Usage Total (s)
XO 3784.17± 348.70 3714.48± 315.91 3968.00± 357.25
MCAR 5045.95± 528.72 4973.86± 558.61 4946.72± 744.72
MNAR 4436.77± 669.15 4303.00± 760.17 4310.54± 655.41

Location Clusters Count
XO 1.0887± 0.0716 1.0746± 0.0833 1.2469± 0.0987
MCAR 1.3234± 0.1120 1.3143± 0.1094 1.3980± 0.1100
MNAR 1.3210± 0.1887 1.2900± 0.1907 1.3835± 0.1645

Total Steps
XO 2101.48± 348.70 3714.48± 315.91 3968.00± 357.25
MCAR 3056.67± 137.87 3002.53± 230.60 2993.74± 204.87
MNAR 3042.64± 130.44 2986.37± 175.30 2986.15± 164.41

Weekend XO 0.9950± 0.0010 0.9960± 0.0015 0.9967± 0.0013

Practiced Sport XO 0.9932± 0.0016 0.9941± 0.0023 0.9929± 0.0021
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Table 7: Shapiro-Wilk test for normality for models A0, A1, and A2. The table reports the test
statistic (W) and p-values for each model and variable under different conditions (XO, MCAR, and
MNAR). α = 0.05 was used and ✗ denotes the rejection of the null at the α significance level,
implying non-normal distribution.

Variable Condition Model A0 (W) Model A0 (p) Model A1 (W) Model A1 (p) Model A2 (W) Model A2 (p)

Sleep Start (s)
XO 0.9870 0.9197 0.9515 0.0854 0.9639 0.2274
MCAR 0.9654 0.2542 0.9877 0.9358 0.9758 0.5371
MNAR 0.9544 0.1074 0.9352 0.0240 (✗) 0.9839 0.8290

Traveled Distance (m)
XO 0.7935 5× 10−6 (✗) 0.9768 0.5723 0.9827 0.7863
MCAR 0.4596 5.9× 10−11 (✗) 0.2506 5× 10−13 (✗) 0.4973 1.6× 10−10 (✗)
MNAR 0.9714 0.3969 0.9756 0.5311 0.9748 0.5023

Time at Home (m)
XO 0.9645 0.2387 0.9537 0.1016 0.9589 0.1530
MCAR 0.9862 0.8978 0.9402 0.0351 (✗) 0.9700 0.3595
MNAR 0.9668 0.2833 0.9604 0.1734 0.9576 0.1387

Sleep Duration (s)
XO 0.9720 0.4141 0.9548 0.1113 0.9639 0.2270
MCAR 0.9658 0.2636 0.9640 0.2292 0.9803 0.7008
MNAR 0.9654 0.2545 0.9782 0.6245 0.9484 0.0668

Time Walking (s)
XO 0.9682 0.3155 0.9617 0.1913 0.9706 0.3751
MCAR 0.7455 5.9× 10−7 (✗) 0.9734 0.4593 0.9868 0.9138
MNAR 0.9747 0.4988 0.8987 0.0017 (✗) 0.9864 0.9046

App Usage Total (s)
XO 0.9629 0.2106 0.9611 0.1821 0.9596 0.1620
MCAR 0.9700 0.3602 0.9782 0.6242 0.7979 6.1× 10−6 (✗)
MNAR 0.9259 0.0119 (✗) 0.9248 0.010 (✗) 0.9733 0.4549

Location Clusters Count
XO 0.9576 0.1386 0.9642 0.2321 0.9838 0.8272
MCAR 0.9754 0.5245 0.9567 0.1290 0.9443 0.0487 (✗)
MNAR 0.9612 0.1841 0.9717 0.4063 0.9742 0.4836

Total Steps
XO 0.9574 0.1366 0.9696 0.3496 0.9790 0.6536
MCAR 0.9745 0.4929 0.9057 0.0028 (✗) 0.9232 0.0097 (✗)
MNAR 0.9800 0.6911 0.9818 0.7552 0.9487 0.0683

Weekend XO 0.9849 0.9849 0.9752 0.5162 0.9617 0.9617

Practiced Sport XO 0.9397 0.0338 (✗) 0.7819 2.9× 10−6 (✗) 0.9503 0.0779
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Table 8: Paired Welch’s t-test results comparing model variant models A1 and A2 to the baseline
(A0). The table reports the test statistic (t) and p-values for each model and variable under different
conditions (XO, MCAR, and MNAR). α = 0.05 was used and ✗ denotes the rejection of the null
hypothesis at the α significance level.

Variable Condition A0 vs A1 (t) A0 vs A1 (p) A0 vs A2 (t) A0 vs A2 (p)

Sleep Start (s)
XO −6.1860 3× 10−8 (✗) −11.7016 1.4× 10−18 (✗)
MCAR −2.3585 0.0209 (✗) −2.2937 0.0257 (✗)
MNAR — — −2.3697 0.0203 (✗)

Traveled Distance (m)
XO — — — —
MCAR — — — —
MNAR −2.0102 0.0479 (✗) 0.1517 0.8798

Time at Home (m)
XO −1.6511 0.1037 16.7191 7.4× 10−24 (✗)
MCAR — — 0.5906 0.5564
MNAR −1.0755 0.2854 −0.4124 0.6812

Sleep Duration (s)
XO −3.0788 0.0029 (✗) 22.2654 2.6× 10−31 (✗)
MCAR 0.7896 0.4322 2.2603 0.0268 (✗)
MNAR −0.7592 0.4503 2.2641 0.0264 (✗)

Time Walking (s)
XO −3.0425 0.0031 (✗) −4.1449 8.6× 10−5 (✗)
MCAR — — — —
MNAR — — 3.1853 0.0021 (✗)

App Usage Total (s)
XO −0.9368 0.3518 2.3289 0.0225 (✗)
MCAR −0.5927 0.5551 — —
MNAR — — — —

Location Clusters Count
XO −0.8132 0.4186 8.2048 6.9× 10−12 (✗)
MCAR −0.3650 0.7160 — —
MNAR −0.7398 0.4616 1.5771 0.1189

Total Steps
XO −0.1357 0.8924 5.2860 1.1× 10−6 (✗)
MCAR — — — —
MNAR −1.6286 0.1078 −1.7023 0.0929

Weekend XO 3.6438 0.0005 (✗) 6.3882 1.5× 10−8 (✗)

Practiced Sport XO — — — —
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Table 9: Wilcoxon signed-rank test results comparing model variant models A1 and A2 to the base-
line (A0). The table reports the test statistic (t) and p-values for each model and variable under
different conditions (XO, MCAR, and MNAR). α = 0.05 was used and ✗ denotes the rejection of
the null hypothesis at the α significance level.

Variable Condition A0 vs A1 (t) A0 vs A1 (p) A0 vs A2 (t) A0 vs A2 (p)

Sleep Start (s)
XO — — — —
MCAR — — — —
MNAR 272.0 0.0641 — —

Traveled Distance (m)
XO 217.0 0.0086 (✗) 200.0 0.0041 (✗)
MCAR 263.0 0.0482 (✗) 353.0 0.4517
MNAR — — — —

Time at Home (m)
XO — — — —
MCAR 394.0 0.8368 — —
MNAR — — — —

Sleep Duration (s)
XO — — — —
MCAR — — — —
MNAR — — — —

Time Walking (s)
XO — — — —
MCAR 333.0 0.3074 310.0 0.1831
MNAR 301.0 0.1461 — —

App Usage Total (s)
XO — — — —
MCAR — — 301.0 0.1460
MNAR 330.0 0.2887 369.0 0.5900

Location Clusters Count
XO — — — —
MCAR — — 206.0 0.0053
MNAR — — — —

Total Steps
XO — — — —
MCAR 283.0 0.0892 280.0 0.0817
MNAR — — — —

Weekend XO — — — —

Practiced Sport XO 236.0 0.0185 (✗) 353.0 0.5360
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(a) Recons. of sample 30 for Weekend. (b) Recons. of sample 42 for Traveled Distance.

(c) Recons. of sample 42 for Time at Home. (d) Recons. of sample 47 for Location Clusters Count.

(e) Recons. of sample 60 for Sleep Duration. (f) Recons. of sample 64 for Time Walking.

(g) Recons. of sample 110 for Sleep Start. (h) Recons. of sample 138 for App Usage Total.

Figure 8: Representative signal reconstructions for observed and imputed instances. In cases where
the original signal is not explicitly shown, it is because one or more of the models (whose recon-
structions are plotted) overlap the true signal precisely, obscuring the original data.
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(a) Recons. of sample 164 for Practiced Sport. (b) Recons. of sample 182 for Sleep Duration.

(c) Recons. of sample 383 for Time at Home. (d) Recons. of sample 441 for Sleep Duration.

(e) Recons. of sample 33 for Sleep Start. (f) Recons. of sample 43 for Total Steps.

(g) Recons. of sample 346 for App Usage Total. (h) Recons. of sample 354 for Sleep Start.

Figure 9: Representative signal reconstructions for observed and imputed instances. In cases where
the original signal is not explicitly shown, it is because one or more of the models (whose recon-
structions are plotted) overlap the true signal precisely, obscuring the original data.
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(a) Embedding usage for sample 35 by model A0. (b) Embedding usage for sample 124 by model A1.

(c) Embedding usage for sample 402 by model A1. (d) Embedding usage for sample 109 by model A2.

(e) Embedding usage for sample 169 by model A2. (f) Embedding usage for sample 198 by model A2.

(g) Embedding usage for sample 291 by model A2. (h) Embedding usage for sample 458 by model A2.

Figure 10: Embedding usage histograms for different samples. Out of the total 256 available em-
beddings, we observe that only a small subset is typically used, resulting in a sparse and more
interpretable solution. Embeddings that are individually uncommon are categorized as belonging to
the ”dummy” embedding, emphasizing the model’s focus on a limited number of relevant embed-
dings.
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