
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Team formation amidst conflicts
Anonymous Author(s)

ABSTRACT

In this work, we formulate the problem of team formation amidst

conflicts. The goal is to assign individuals to tasks, with given ca-
pacities, taking into account individuals’ task preferences and the
conflicts between them. Using dependent rounding schemes as
our main toolbox, we provide efficient approximation algorithms.
Our framework is extremely versatile and can model many differ-
ent real-world scenarios as they arise in educational settings and
human-resource management. We test and deploy our algorithms
on real-world datasets and we show that our algorithms find as-
signments that are better than those found by natural baselines. In
the educational setting we also show how our assignments are far
better than those done manually by human experts. In the human-
resource management application we show how our assignments
increase the diversity of teams. Finally, using a synthetic dataset
we demonstrate that our algorithms scale very well in practice.

CCS CONCEPTS

• Theory of computation→ Social networks.

KEYWORDS

team formation, conflicts, task assignment, diversity

ACM Reference Format:

Anonymous Author(s). 2018. Team formation amidst conflicts. In Proceedings
of ACMWeb Conference 2024 (WWW ’24), (WWW ’24). ACM, New York, NY,
USA, 15 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

In large project-based classes instructors often need to create teams

of students and assign them to a finite number of projects they have
available. Students are happy if they are in a team with friends and
they work on a project they like. Additionally, student teams are
efficient if there are no time conflicts between the team members;
i.e., conflicts that stem from their class schedule. Traditionally, such
assignments are done in an adhoc manner or manually by some
admin who can spend several days on the task.

Motivated by such applications in the education domain, we
formally define the above problem as a combinatorial optimization
problem. For this, we assume two inputs: the preference graph and
the conflict graph. The former captures the preferences of users
to projects; this is a bipartite graph with edge weights that are
proportional to how much a student likes a project. The latter
captures the conflicts between students, i.e., there is a (weighted)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’24, May 13-17, 2024, Singapore

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

edge between two students if they are incompatible. Our goal is to
find an assignment of students to projects such that every student
is assigned to one project and every project is not assigned more
students than its capacity. The objective is to maximize sum of the
weights of the edges of the preference graph that participate in the
assignment and and the sum of the weights of the conflict edges
across the formed teams. Students assigned to the same project
form a team so we call this problem the Team Formation amidst
Conflicts (TFC) problem and we show it is NP-hard.

In this paper, we present an algorithmic framework for approxi-
mating TFC. This framework, consists of two steps: first, our ob-
jective is replaced by a concave objective – which can be opti-
mized in polynomial time and produce a fractional solution. Then,
the fractional solution is rounded, using dependent-rounding tech-
niques [1, 9]. For our framework to work we need the original
objective and its concave relaxation to match on integral inputs.

This general framework is not new. In fact, it is inspired by the
Max-𝑘-Cut with given part sizes problem [1]. In fact, our problem
is identical to the Max-𝑘-Cut with given part sizes, except for the
fact that we also have an additional linear term in our objective.
We show that their approximation algorithm can be applied to our
problem. Our contribution is a much more efficient randomized
algorithm with better approximation ratio on expectation.

To the best of our knowledge the dependent-rounding techniques
we use here, such as pipage and randomized pipage, have not been
widely used in practical applications; they primarily stem from
work in theoretical computer science [1, 7]. We see the deployment
of these techniques in practice as a contribution by itself.

Using real, anonymized data, from large classes 1, we demon-
strate that our algorithms work extremely well in practice. In our
experiments, we show that the solutions we obtain are much better
compared to the manual solutions produced by a course admin
across different dimensions and metrics.

Our problem formulation is general and goes beyond educational
settings. For example, we can use our framework in human-resource
management in order to increase the diversity of departments in
companies; depending on the dimension across which we want to
diversify we can appropriately define the conflict graph. In our ex-
periments, we show how to achieve gender diversity in a company’s
departments using this idea.

The generality of our framework calls for efficient algorithms.
Part of our contribution is a set of speedup techniques that allow us
to apply our approximation algorithms to reasonably large data. In
our experimental evaluation we demonstrate that these techniques
work extremely well in practice.
Discussion:We note here that it was a design decision from our
part to consider the conflict graph and maximize conflicts across
teams (instead of friends within teams). We believe that this choice
gives us greater modeling flexibility to apply our model to a variety
of settings. For example, the conflict graph better models time
conflicts among collaborators as well as diversity constraints.

1We obtained an IRB exemption to use the anonymized version of this data.

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13-17, 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 RELATEDWORK

To the best of our knowledge, we are the first to define and ap-
proximate the TFC problem. However, our work is related to works
in team formation, in the data-mining literature, as well as other
assignment and clustering problems, in the theoretical computer
science literature. We review these works below.

Team formation: In terms of application, our work belongs to the
team-formation literature [2, 3, 12, 16, 17, 20]. Most of these works
consider the problem of assigning groups of individuals to tasks
(one group per task) such that the tasks are completed and some
objective (usually related to the well-functioning of the team or
the well-being of the individuals) is optimized. Our problem is a
partitioning problem and as such is much more complicated than
problems of finding a good team for each available task. Addition-
ally, in many of the existing works the objective function has a
well-defined structure (e.g., is monotone and submodular, concave).
Our objective does not have such a structure and while this gives us
modeling power, optimizing it requires more advanced techniques.

Partitioning problems: TheMax-𝑘-Cut with given part sizes prob-
lem [1] served as an inspiration for our model. In fact, our 1/2-
approximation algorithm is a very close variant of the algorithm
presented there. However, our objective function is slightly differ-
ent from the one defined by Ageev et al. – due to an additional
linear term. This allows us to design algorithms tailored to our
problem, which achieve better approximation ratios under certain
assumptions. Additionally, we focused on developing scalable algo-
rithms as the running time of the algorithm proposed by Ageev et
al. was not a computationally feasible approach.

Clustering problems: One can view our problem as a clustering
problem with capacity constraints [19, 22]. Our model, however, is
quite different from these works both in the objective function and
the constraints.

Assignment problems: Our problem can be viewed as a general-
ization of theweighted assignment problem [15], where the goal is to
assign individuals to tasks taking into account the task preferences
of individuals. In our problem, apart from task preferences, we also
have a graph capturing the relationships (or conflicts) between
individuals. This additional structure increases the complexity of
the problem significantly. Our problem is also related to the famous
stable marriage [18] problem and its variants [8, 11]. However, we
don’t look for a stable matching. Instead, our goal is to optimize an
objective function capturing the overall satisfaction of individuals.

The metric-labeling problem: A minimization version of our
problem is the metric-labeling problem [14], where the goal is to
assign one of 𝑘 labels to each node (i.e., partition the nodes). Every
assignment incurs assignment costs (based on the choice of label for
each node) and separation costs (based on the choice of labels for
"related" nodes). In the capacitated version of metric-labeling [4]
we are also given a capacity for each partition. The main disad-
vantage of the algorithm developed for this version [4] is that the
capacity constraints are violated by a multiplicative factor. Also,
the algorithm only works for labels with uniform capacities. Finally,
the approximation factor of the proposed algorithm depends on
the number of labels (i.e. tasks). Defining TFC as a maximization
problem allows us to overcome all of the above disadvantages.

3 PROBLEM DEFINITION

In this section, we provide the necessary notation and we formally
define the problem we solve in this paper.
Notation: Throughout the paper, we assume that we are given a
weighted (undirected) graph 𝐺 = (𝑉 , 𝐸𝐺 ,𝑤) with 𝑤 : 𝐸𝐺 → R≥0.
More specifically, each node 𝑣 ∈ 𝑉 corresponds to an individual; the
weight𝑤𝑢𝑣 of an edge (𝑢, 𝑣) ∈ 𝐸𝐺 captures the degree of conflict
between individuals 𝑢 and 𝑣 . We call graph 𝐺 the conflict graph.

In addition to the conflict graph 𝐺 , we also assume a preference
graph 𝑅, which is a bipartite graph, i.e., 𝑅 = (𝑉 ,𝑇 , 𝐸𝑅, 𝑐). The one
side of the graph corresponds to individuals (𝑉), the other side
to items or tasks 𝑇 . The edges (𝐸𝑅) capture the preferences of
individuals to projects. More specifically 𝑐 : 𝑉 × 𝑇 → R≥0 is a
preference function, where 𝑐𝑣𝑡 captures the satisfaction of individual
𝑣 ∈ 𝑉 when assigned to task 𝑡 ∈ 𝑇 . Without loss of generality we
assume that 0 ≤ 𝑐𝑢𝑡 ≤ 1.

Throughout, we assume that each individual 𝑣 ∈ 𝑉 is assigned
to exactly one task and that each task 𝑡 ∈ 𝑇 has capacity 𝑝𝑡 , which
is task-specific.
The Team Formation amidst Conflicts problem: Given the
above, our goal is to assign individuals to tasks such that the overall
satisfaction of individuals is maximized; the satisfaction of each
individual is measured by how much they like the task they are
assigned to and the lack of conflicts with the other individuals
assigned to the same task. We capture this intuition formally in the
form of a (quadratic) program. For this, we define binary variables
𝑥𝑣𝑡 such that 𝑥𝑣𝑡 = 1 if individual 𝑣 is assigned to task 𝑡 and 𝑥𝑣𝑡 = 0
otherwise. Thus, our goal is the following:

max 𝐹 (x) = _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡 +
∑︁

(𝑢,𝑣) ∈𝐸𝐺
𝑤𝑢𝑣 (1 −

∑︁
𝑡 ∈𝑇

𝑥𝑢𝑡𝑥𝑣𝑡)

(1)

s.t.
∑︁
𝑡 ∈𝑇

𝑥𝑣𝑡 = 1, 𝑣 ∈ 𝑉 (2)∑︁
𝑣∈𝑉

𝑥𝑣𝑡 ≤ 𝑝𝑡 , 𝑡 ∈ 𝑇 (3)

𝑥𝑣𝑡 ∈ {0, 1}, 𝑣 ∈ 𝑉 , 𝑡 ∈ 𝑇 (4)

We call the problem captured by the above program Team Forma-
tion amidst Conflicts or TFC for short. The linear term of the ob-
jective captures the satisfaction of assigning individuals to tasks and
we call it the task satisfaction term: 𝐹𝑅 =

∑
𝑣∈𝑉

∑
𝑡 ∈𝑇 𝑐𝑣𝑡𝑥𝑣𝑡 . The

quadratic term captures conflicts in the following sense. The objec-
tive increases by𝑤𝑢𝑣 whenever there is conflict between individuals
𝑢 and 𝑣 and they are assigned to different tasks. We call this term the
social satisfaction term, i.e., 𝐹𝐺 =

∑
(𝑢,𝑣) ∈𝐸𝐺 𝑤𝑢𝑣 (1 −

∑
𝑡 ∈𝑇 𝑥𝑢𝑡𝑥𝑣𝑡);

this term models Max-k-Cut with given sizes of parts [1].
As far as the constraints are concerned: the first constraint en-

forces that every individual is assigned to exactly one task while the
second constraint enforces that we assign at most 𝑝𝑡 individuals to
task 𝑡 ∈ 𝑇 ; 𝑝𝑡 is the capacity of tasks. Observe that our problem as
represented above is a quadratic program with integer constraints
and the objective function 𝐹 is non-convex. This observation hints
that the problem may be computationally hard. In fact, we have the
following result regarding the hardness of TFC:

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Team formation amidst conflicts WWW ’24, May 13-17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Lemma 1. The Team Formation amidst Conflicts problem is

NP-hard.

The proof stems from the fact that our problem includes the
Max-Cut problem [13], which is NP-hard. To see this, consider
the instance of our problem that has two tasks 𝑇 = {𝑡1, 𝑡2} such
that 𝑝𝑡1 = 𝑝𝑡2 = |𝑉 |. Set 𝑐𝑣𝑡 = 0,∀𝑣 ∈ 𝑉 ,∀𝑡 ∈ 𝑇 . This is indeed an
instance of theMax-Cut problem; this observation concludes the
proof of Lemma 1.

An interesting question is what is the value of the hyperparam-
eter _ in the linear term and how one should go about setting it.
Observe that _ balances the relative importance of task preferences
and conflicts; when _ = 0, the linear term vanishes and we only
optimize for conflicts. As _ grows task preferences become domi-
nant. In general, tuning the hyperparameter is application specific.
In Section 4.3, we discuss how we tune _ in practice.

4 ALGORITHMS

In this section, we provide approximation algorithms for the TFC
problem. Our approach for solving this problem is the following:
first, we will find a “nice", i.e., concave, relaxation of 𝐹 , which wewill
call 𝐿. Then, we will optimize 𝐿 in the fractional domain. That is, we
transform the original TFC problem described in Equations (1)-(4)
to the following concave program:

max 𝐿(x) (5)

s.t.
∑︁
𝑡 ∈𝑇

𝑥𝑣𝑡 = 1, 𝑣 ∈ 𝑉 (6)∑︁
𝑣∈𝑉

𝑥𝑣𝑡 ≤ 𝑝𝑡 , 𝑡 ∈ 𝑇 (7)

0 ≤ 𝑥𝑣𝑡 ≤ 1, 𝑣 ∈ 𝑉 , 𝑡 ∈ 𝑇 (8)

We call this problemRelaxed-TFC and it is clearly very similar to
the TFC problem except for two important differences: the objective
𝐹 is substituted by its relaxation 𝐿. Also, the integrality constraints
are substituted by the corresponding fractional constraints. The
relaxations of 𝐹 we propose have the following two properties,
which are key for the results we propose:

Property 1. 𝐿(x) is concave.

Property 2. For every x ∈ {0, 1} |𝑉 |× |𝑇 | : 𝐹 (x) = 𝐿(x). I.e., the
original function and the relaxation agree on the integral values of x.

Given that 𝐿 is concave and the constraints are linear, Relaxed-
TFC can be solved using gradient ascent [5].

Finally, by using appropriate rounding techniques we transform
our solution to an integral solution. This general algorithm, which
we call Relax-Round is described in Algorithm 1. Relax-Round
serves as a template for the approximation algorithms we develop.

We present two algorithms that use two different concave re-
laxations and rounding schemes, which in turn give different ap-
proximation guarantees and come with their own running-time
implications.

Algorithm 1 Relax-Round: A general approximation algorithm
for the TFC problem.
Require: Objective function 𝐹 , Rounding scheme Ξ

Relax: Given 𝐹 construct a concave fractional relaxation 𝐿 such
that: 𝐹 (x) = 𝐿(x) for all integral x.
Optimize: y∗ = arg maxy 𝐿(y)
Round: x = Ξ(y∗)

4.1 A deterministic
1
2 - approximation algorithm

We start by describing a 1
2 -approximation algorithm for the TFC

problem. This algorithm was first introduced by Ageev et al. [1]
for the Max-𝑘-Cut with given part sizes. However, we present it
here for completeness. We call this algorithm Pipage, because it
uses pipage rounding [1] in order to instantiate Relax-Round. We
describe the concave relaxation 𝐿1 and pipage rounding below.
The 𝐿1 concave relaxation:

𝐿1 (x) = _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡+
∑︁

(𝑢,𝑣) ∈𝐸𝐺
𝑤𝑢𝑣 min

(
1,min

𝑡
(2 − 𝑥𝑢𝑡 − 𝑥𝑣𝑡)

)
.

(9)
We have the following for 𝐿1:

Proposition 1 ([1]). 𝐿1 satisfies Properties 1 and 2.

The proof of Proposition 1 relies on simple algebra (see [1]) and
thus omitted.
Pipage rounding: pipage rounding takes a fractional solution y of
the TFC problem and transforms it into an integral solution x. The
following is a high-level description of the algorithm. For a more
thorough analysis and description of the algorithm we refer the
reader to Appendix C.1 and the original paper [1].

Pipage rounding is an iterative algorithm; at each iteration the
current fractional solution y is transformed into a new solution
y′ with smaller number of non-integral components. Throughout,
we will assume that any solution y is associated with the bipartite
graph 𝐻y = (𝑉 ,𝑇 , 𝐸y), where the nodes on the one side correspond
to individuals, the nodes on the other side to tasks and there is an
edge 𝑒 (𝑣, 𝑡) for every pair (𝑣, 𝑡) with 𝑣 ∈ 𝑉 and 𝑡 ∈ 𝑇 if and only if
𝑦𝑣𝑡 ∈ (0, 1), i.e., 𝑦𝑣𝑡 is fractional.

Let y be a current solution of the program and 𝐻y the corre-
sponding bipartite graph. If𝐻y contains cycles, then set𝐶 to be this
cycle. Otherwise, set𝐶 to be a path whose endpoints have degree 1.
Since 𝐻y is bipartite, in both cases 𝐶 may be uniquely expressed as
the union of two matchings 𝑀1 and 𝑀2. Suppose we increase all
components of y corresponding to edges in𝑀1, while decreasing all
components corresponding to edges in𝑀2 until some component
reaches an integral value. Denote this solution by y1. Symmetri-
cally, by decreasing the values of the variables corresponding to
𝑀1 and increasing those corresponding to𝑀2, we get solution y2.
We choose the best of these two solutions by calculating 𝐹 (y1) and
𝐹 (y2). We repeat the procedure until all variables are integral.

Observe that each iteration requires evaluating the objective
function 𝐹 twice. This is a significant drawback of this algorithm,
especially for large graphs, where the computation of the function
is expensive. In the next section we present a randomized version
of pipage rounding that overcomes this problem.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13-17, 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Approximation guarantees: Following the analysis of Ageev et
al. [1] we can show that Pipage is an 1/2-approximation algorithm
for the TFC problem. Thus we have:

Theorem 1 ([1]). The Pipage algorithm is an
1
2 -approximation

algorithm for the TFC problem.

For completeness we present this proof in Appendix A.1
Running time: The overall complexity of Pipage consists of the
running time of a gradient-ascent algorithm that finds a fractional
solution y∗ to the Relaxed-TFC problem plus the running time of
pipage rounding. The latter is𝑂

(
(T𝐹 + |𝑉 | + |𝑇 |) |𝐸y∗ |

)
, where T𝐹 is

the time required to evaluate the function 𝐹 and 𝐸y∗ is the number of
fractional components of the initial solution y∗. This is because each
of the 𝐸y∗ steps of pipage rounding requires time𝑂 (T𝐹 + |𝑉 | + |𝑇 |)
since we run a Depth-First-Search and two evaluations of 𝐹 .

4.2 Randomized
3
4 - approximation algorithm

Here, we present a 3
4 -approximation algorithm for TFC. We call

this algorithm RPipage, because we use the randomized pipage
rounding in order to instantiate the Relax-Round algorithm.
The 𝐿2 concave relaxation:

𝐿2 (x) = _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡−𝑤 (𝐸𝐺)+
∑︁

(𝑢,𝑣) ∈𝐸𝐺

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣 min(1, 𝑥𝑢𝑡+𝑥𝑣𝑡).

For 𝐿2 we have the following:

Proposition 2. 𝐿2 satisfies Properties 1 and 2.

The proof of Proposition 2 is given in Appendix A.2.
Randomized pipage rounding Here, we briefly present the ran-
domized pipage scheme originally proposed by Gandhi [9]. Random-
ized pipage rounding proceeds in iterations, just like (deterministic)
pipage rounding. If y is the current fractional solution of the round-
ing algorithm, we calculate y1 and y2 (same as in pipage rounding)
and then we probabilistically set 𝑦′ equal to either y1 or y2. For
more details we refer the reader to Appendix C.2.
Approximation guarantees: In order to prove the 3

4 -approximation
ratio of RPipage for TFC we need the following Lemma:

Lemma 2 ([7]). If we use Ξ to denote the randomized pipage algo-

rithm that rounds a fractional solution y to an integral solution x, i.e.
Ξ(y) = x, then Ξ satisfies the following properties:

• EΞ [x] = y
• EΞ [(1−𝑥𝑢𝑡) (1−𝑥𝑣𝑡)] ≤ (1−𝑦𝑢𝑡) (1−𝑦𝑣𝑡), for all 𝑢, 𝑣 ∈ 𝑉

and 𝑡 ∈ 𝑇

The proof of this lemma is due to Chekuri et al. [7], and thus omit-
ted. The most important consequence of Lemma 2 is the following
proposition, the proof of which is given in Appendix A.3

Proposition 3. Under Assumption 1, for all x, y such that x =

Ξ(y) and Ξ being the randomized pipage rounding, we have that:

EΞ [𝐿(x)] ≥
3
4
𝐿(y)

Now, let y∗ be the optimal fractional solution of the Relaxed-
TFC problem with objective 𝐿2 and Ξ(y∗) = x∗, with Ξ being the

randomized pipage rounding scheme. Also, let xint be the optimal
solution of the integral problem TFC. Then, it holds that:

𝐹 (x∗) = 𝐿2 (x∗) ≥
3
4
𝐿2 (y∗) ≥

3
4
𝐹 (xint).

Thus, we have the following theorem:

Theorem 2. Under Assumption 1, RPipage is a
3
4 -randomized

approximation algorithm for the TFC problem.

Running time: The overall complexity of RPipage consists of the
running time of a gradient-ascent algorithm that finds a fractional
solution y∗ to the Relaxed-TFC problem with objective 𝐿2 plus the
running time of the randomized pipage rounding scheme, which is
𝑂 ((|𝑇 | + |𝑉 |) |𝑇 | |𝑉 |); assuming that the number of tasks |𝑇 | < |𝑉 |,
this becomes𝑂 (|𝑇 | |𝑉 |2). In contrast to deterministic pipage round-
ing, observe that randomized pipage rounding does not require
evaluating the objective function. This results in a significant com-
putational speed-up.
Discussion: In the future, it would be interesting to examine if swap
rounding [7], can be used in place of randomized pipage rounding
and whether such a scheme can lead to more efficient algorithms.
We leave this as an open problem.

4.3 Tuning the hyperparameter _

In order for Theorem 2 to hold, we need to make the following
assumption:

Assumption 1. (Balancing Assumption) Consider a feasible frac-

tional solution y. We assume that the following holds:

_
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑦𝑣𝑡 −𝑤 (𝐸𝐺) ≥ 0

_ ≥ 𝑤 (𝐸𝐺)∑
𝑣∈𝑉

∑
𝑡 ∈𝑇 𝑐𝑣𝑡𝑦𝑣𝑡

,

where𝑤 (𝐸𝐺) =
∑

(𝑢,𝑣) ∈𝐸𝐺 𝑤𝑢𝑣 . If we also assume that 0 ≤ 𝑐𝑣𝑡 ≤ 1
for all 𝑣 ∈ 𝑉 and 𝑡 ∈ 𝑇 , then we have

_ ≥ 𝑤 (𝐸𝐺)
|𝑉 | =

𝑑avg

2
,

where 𝑑avg is the average degree of the nodes in the conflict graph 𝐺

and we used the fact that

∑
𝑡 ∈𝑇 𝑥𝑣𝑡 = 1,∀𝑣 ∈ 𝑉 .

The above assumption provides a way to tune the balancing
parameter _. In practice, we do the following: we introduce the
balancing factor 𝛼 ∈ R>0 and we set _ to be _ = 𝛼× 𝑑avg

2 . In practice,
we tune 𝛼 as follows: for different values of 𝛼 we evaluate the task
and the social satisfaction terms

(
𝐹
(𝛼)
𝑅

, 𝐹
(𝛼)
𝐺

)
. Then, we pick the

value of 𝛼 that gives the desired balance between the two terms.

5 COMPUTATIONAL SPEEDUPS

We discuss here a few methods we use in order to speedup our
algorithms. All heuristics we discuss here can be applied to both
Pipage as well as RPipage.
Converting convex to linear programs: The algorithms we de-
veloped in Section 4 are based on the fact that the Relaxed-TFC
problem with objective functions 𝐿1 and 𝐿2 is a concave problem
with linear constraints and it can be solved in polynomial time via
an application of gradient ascent. In fact, we show that there is a

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Team formation amidst conflicts WWW ’24, May 13-17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

way to rewrite the Relaxed-TFC problems with objectives 𝐿1 and
𝐿2 as linear programs, by adding some extra variables.

For the Relaxed-TFC problemwith objective 𝐿1, this can be done
as follows: first, we substitute the term min(1,min𝑡 (2 − 𝑥𝑢𝑡 + 𝑥𝑣𝑡))
with the new variable 𝑧𝑢𝑣 and the objective becomes:

𝐿1 (x) = _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡 +
∑︁

(𝑢,𝑣) ∈𝐸𝐺
𝑤𝑢𝑣𝑧𝑢𝑣 .

Then we also add the constraints 𝑧𝑢𝑣 ≤ 1 and 𝑧𝑢𝑣 ≤ 2−𝑥𝑢𝑡 −𝑥𝑣𝑡 , 𝑡 ∈
𝑇 . The full linear program is given in Appendix A.4

The corresponding linearization of the 𝐿2 objective can be done
as follows: we substitute the term min(1, 𝑥𝑢𝑡 + 𝑥𝑣𝑡) with a new
variable 𝑥𝑢𝑣𝑡 such that:

𝐿2 (x) = _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡 −𝑤 (𝐸𝐺) +
∑︁

(𝑢,𝑣) ∈𝐸𝐺

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣𝑥𝑢𝑣𝑡 .

We also add the constraints 𝑥𝑢𝑣𝑡 ≤ 1 and 𝑥𝑢𝑣𝑡 ≤ 𝑥𝑢𝑡 + 𝑥𝑣𝑡 . The
complete linear program is given in Appendix A.5.

The advantage of converting the convex problems into linear is
that solving a linear program is much more efficient than solving
a convex program with linear constraints. In practice, using the
Gurobi solver we obtained speedups up to 500x (see Table 4).
Sparsification:When the task capacities are small and the conflict
graph is dense, a heuristic, we named Sparsify, that works well
in practice is randomly removing conflict edges. That is, we keep
each conflict edge with a certain probability 𝑝 . Otherwise, with
probability (1 − 𝑝) we discard the edge. This greatly reduces the
number of termswe need to evaluate 𝐹𝐺 in our objective resulting in
computational speedups when optimizing the fractional relaxation.

Note that when 𝑝 = 1, we don’t alter the objective. As 𝑝 de-
creases, we remove more conflict edges, resulting in computational
speedups, although our fractional solution might not be optimal.
Selecting 𝑝 is problem specific. A rule of thumb is that the denser
the conflict graph, the lower we can set 𝑝 .
Compact: Our intuition, but also our real-world datasets (see Sec-
tion 6.2 and Appendix D.2), reveal that our data have the following
pattern: the complement of the conflict graph, i.e., the friend graph,
consists of relatively small densely-connected communities with
similar task preferences. Intuitively, for two individuals 𝑢, 𝑣 that
belong in the same community and have similar preferences we
would expect that the vectors of 𝑥𝑢𝑡 ’s and 𝑥𝑣𝑡 ’s will be similar for
all 𝑡 ∈ 𝑇 . Taking this to the extreme: individuals 𝑢, 𝑣 with the same
neighbors in the conflict graph 𝐺𝐺 and the same preferences for
tasks in 𝑇 should have identical values 𝑥𝑢𝑡 , 𝑥𝑣𝑡 .

Formally, this is captured in the following theorem, which is
proved in Appendix A.6:

Theorem 3. Consider two individuals 𝑢, 𝑣 ∈ 𝑉 which have iden-

tical neighbors in 𝐺𝐺 (i.e.,(𝑢,𝑤) ∈ 𝐸𝐺 ⇔ (𝑣,𝑤) ∈ 𝐸𝐺) and have

identical project preferences (i.e., 𝑐𝑢𝑡 = 𝑐𝑣𝑡 ,∀𝑡 ∈ 𝑇). Then, there exists

an optimal solution y of Relaxed-TFC such that 𝑥𝑢𝑡 = 𝑥𝑣𝑡 ,∀𝑡 ∈ 𝑇 .

Motivated by the above theorem we define the Compact algo-
rithm. On a high-level the idea is to compact densely-connected
subgraphs into supernodes. Note that the supernodes need not be
nodes that have identical neighborhood in 𝐺 ; after all, it may be
unreasonable to assume that this will happen in practice. However,
using a graph-partitioning algorithm (e.g., spectral clustering [21],

finding dense components [6]) we can partition the original set of
nodes into supernodes with similar neighborhoods. Let 𝑆 be the set
of supernodes, which is a partition of the original set of nodes 𝑉 .
Then, we create a conflict graph between supernodes; the number
of conflict edges between two supernodes𝐴 and 𝐵 is approximately
|𝐴| × |𝐵 | (almost every node of 𝐴 is in conflict with every node
of 𝐵). Thus, we set in this new conflict graph we set the weight
of edge (𝐴, 𝐵) to be 𝑤𝐴𝐵 = |𝐴| × |𝐵 | (assuming that each edge of
the original graph has unit weight). The next step is to solve the
following compact Relaxed-TFC problem:

max 𝐿(x) (10)

s.t.
∑︁
𝑡 ∈𝑇

𝑥𝑣𝑡 = 1, 𝑣 ∈ 𝑆 (11)∑︁
𝑣∈𝑆

|𝑣 |𝑥𝑣𝑡 ≤ 𝑝𝑡 , 𝑡 ∈ 𝑇 (12)

0 ≤ 𝑥𝑣𝑡 ≤ 1,∀𝑣 ∈ 𝑆,∀𝑡 ∈ 𝑇 . (13)

where we use |𝑣 | to denote the number of simple nodes in the
supernode 𝑣 .

Then, we unroll the solution to obtain a fractional solution for
the original graph. That is, for each 𝑣 ∈ 𝑉 we set 𝑥𝑣𝑡 = 𝑥𝑆𝑡 , where
𝑆 is the supernode 𝑣 belongs to. Finally, we round the fractional
solution to obtain an integral solution. Depending on whether we
use 𝐿1 or 𝐿2 as our objective, we then round the fractional solution
using Pipage or RPipage respectively.

6 EXPERIMENTS

In this section, we evaluate our framework using both real-world as
well as synthetic datasets. The experiments prove the effectiveness
and efficiency of our algorithms as well as the versatility of our
model to encompass many different real-world scenarios involving
assignment problems with conflicts.

6.1 Baselines and Setup

Baselines: For our experiments we use the following baselines:
Quadratic: This is the optimal algorithm, i.e., the algorithm that

solves the original TFC problem as expressed in Equations (1)-(4).
We use an off-the shelf solver to implement Quadratic, but even
though this is a powerful solver, we can run Quadratic only for
small datasets since the solver is asked to optimize a non-convex
quadratic function subject to integral constraints.

Greedy: The Greedy algorithm sequentially assigns an individual
to the best team (i.e., the team that maximizes the objective function
𝐹) given that the constraints are satisfied. The algorithm terminates
when all individuals are assigned.We refer the reader to Appendix B
for a detailed analysis of Greedy.

Random: This is an algorithm that randomly assigns each indi-
vidual to a team until all individuals are assigned.

Manual: This is the manual assignment of individuals to tasks as
made by a human expert, which is available only in some datasets.

Experimental setup:Our experimental setup is descried in Appen-
dix D.1. Unless otherwise stated we use the “linearization” speedup
presented in Section 5.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13-17, 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Number of nodes |𝑉 |, tasks |𝑇 | and conflict edges |𝐸 |
for each dataset.

Dataset |𝑉 | |𝑇 | |𝐸 |

Class-B 28 7 359
Class-C 26 6 311
Class-A 168 14 13952
Class-D 37 8 648
Company 4000 4 10166
Synth-TF 1000 10 450454

6.2 Datasets

For our experiments, we use three different types of data: (a) data of
preferences of students with respect to projects and collaborators in
educational settings, (b) data from the Bureau of Labor statistics that
concern employees and their assignment to company departments
and, finally, (c) a synthetic dataset that we use to test the scalability
of our algorithms and the speedups described in Section 5. We
describe these datasets below. A summary of the characteristics of
each dataset is shown in Table 1.
Education data: This is data coming from courses in a US institu-
tion 2. In the classes we considered, there were a number of projects
(with fixed capacities) available to students and each student filled
in a form with their project preferences (each student ranked the
projects from best to worst) and their preferences with respect to
other students they want to work with in the same project. We have
data from four such classes: Class-A, Class-B, Class-C and Class-D.
These datasets do not contain a conflict graph between students,
but instead a friend graph (indicative such graphs are shown in
Appendix D.2), i.e. two students that have an edge between them
are friends and want to work together. We define the conflict graph
as the complement of the friend graph. We assign unit weight to
each edge of the conflict graph.

Next, we have to construct the preference graph by assigning
weight 𝑐𝑢,𝑝 for each student 𝑢 and project 𝑡 . Let 𝑟𝑎𝑛𝑘𝑢 (𝑡) ∈ [|𝑇 |]
be the rank of project 𝑡 in student’s 𝑢 preference list (1 is the best,
|𝑇 | is the worst). We considered the following functions:
• inverse (Inverse): 𝑐𝑢,𝑡 = 1

rank𝑢 (𝑡)

• linear-normalized (LinNorm): 𝑐𝑢,𝑡 = |𝑇 |−rank𝑢 (𝑡)+1
|𝑇 |

Employee data: Based on statistics from the U.S. Bureau of Labor

Statistics
3 for 2022, we built a dataset of employees in an company.

Specifically, we created a company with 4000 employees and four
departments: IT, Sales, HR, PR. Each department has 1000 employ-
ees. IT and Sales departments are male dominated while HR and
PR are female dominated. The distribution of males and females
in each department are according to the data in the Management

occupations section of the U.S. Bureau of Labor Statistics. In our
experiments, we add conflict edges between all male employees,
since our objective is to distribute the male employees more evenly.
Equivalently, we could have added conflict edges between all fe-
males. Generally, depending on the diversity goal, one can add

2IRB exception was obtained in order to use an anonymized version of the data.
3bls.gov/cps/cpsaat11.htm

Class-A Class-B Class-C Class-D0.0

0.5

1.0

Ap
pr

ox
im

at
io

n
ra

tio Pipage
RPipage
Greedy
Random

Figure 1: Education data; approximation ratio of the differ-

ent algorithms. For all datasets we used the Inverse project-
preference function and 𝛼 = 10.

conflicts judiciously to guide the diversification process. For em-
ployee preferences, we set 𝑐𝑢𝑡 = 1, if 𝑡 is the original department
of 𝑢, otherwise 𝑐𝑢𝑡 = 0. We assume that with probability 1% an
employee is suitable for switching to a new department. For those
employees we set 𝑐𝑢𝑡 = 1, where 𝑡 is the department to which
employee 𝑢 may switch.

Synthetic data: We also created a synthetic dataset (Synth-TF) to
test the speedups we discussed in Section 5. For this we created
|𝑉 | = 1000 individuals. The conflict graph is defined as the comple-
ment of the following friend graph: the friend graph is a planted
partition graph where each partition has 100 nodes connected with
probability 0.99. Edges across partitions are added with probability
10−5. For each partition we select a primary project 𝑡 and set 𝑐𝑣𝑡 = 1
for all nodes 𝑣 in the partition. Next, for each node 𝑣 we choose
uniformly at random a project 𝑡 ′ and set 𝑐𝑣𝑡 ′ = 1.

6.3 Forming teams in education settings

In this section, we evaluate the quantitative and qualitative perfor-
mance of our algorithms using the education datasets.

Quantitative performance of our algorithms: We evaluate the
qualitative performance of our algorithms using the approximation

ratio AR, i.e. the ratio of the objective function evaluated at the
solution and the optimal value.

Figure 1 shows the approximation ratios achieved by our al-
gorithms and the different baselines. For all datasets we used the
LinNorm project preference function. The results for the Inverse
preference function are presented in Appendix D.3). The results
demonstrate that our algorithms have approximation ratio very
close to 1.

Interestingly, and despite the fact that in Appendix B we show
that the worst-case approximation ratio of Greedy is unbounded,
in practice Greedy has AR score very close to 1. We conjecture that
this is true due to the correlation between students’ friendships and
preferences. In fact, we believe that one can bound the approxima-
tion ratio of Greedy under such correlation patterns; we leave this
as future work.

Somewhat surprisingly, the performance of Random is quite good,
although not comparable to the other algorithms. This can be ex-
plained by the high density of the conflict graph (or the sparseness
of the friend graph) and the fact that the capacities of projects
are small relative to the number of individuals. Since the conflict
graph is almost a complete graph, small random teams inevitably
have large number of conflict edges between them. That said, our
analysis demonstrates that the solution given by Random has poor
qualitative characteristics.

6

bls.gov/cps/cpsaat11.htm

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Team formation amidst conflicts WWW ’24, May 13-17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

For these experiments we used 𝛼 = 10 for all datasets, since our
primary goal was to assign students to projects they like. Assigning
students with their friends was a secondary objective according
to the course instructors. We chose the value of 𝛼 following the
grid-search procedure of Section 4.3; the details are given in Appen-
dix D.4. Note that by our selection of 𝛼 , the balancing assumption
holds and thus the approximation guarantees of RPipage hold.
Qualitative performance of our algorithms: In applications
such as the assignment of students to teams, what matters is not just
the value of the objective function, but the per-student satisfaction.
In this section, we analyze the solutions provided by our algorithms
and our baselines and compare those with the manual solution
provided by a domain expert who tries to find an empirically good
assignment based on the input data.

In order to evaluate the quality of the results, we compute the
following metrics. Given a solution x to our problem we define
𝑟 (𝑣, x) to be the rank𝑣 (𝑡), where 𝑥𝑣𝑡 = 1, i.e. 𝑟 (𝑣, x) is the rank –
according to 𝑣 – of the task to which 𝑣 was assigned. Then, we
define the M-preference metric to be:

M𝑄𝑅 (x) = M(𝑟 (𝑣, x) | 𝑣 ∈ 𝑉).
In the above equation, M can be substituted by max or avg and
the preference metric corresponds to the maximum and average
ranking of the projects assigned to students; note that the minimum
is not used as it is identical across algorithms and does not provide
any insight. Intuitively, the lower the value of M𝑄𝑅 (xA) for a
solution provided by an algorithm A, the better the algorithm.

Similarly, we define M𝑄𝐺 (x) to be the max or avg number of
friends (non-conflicts) assigned to students in 𝑣 . In this case, the
larger the valueM𝑄𝐺 (xA) for a solution provided by an algorithm
A, the better the algorithm.

Table 2 shows that students got a better project on average when
using the Quadratic, Pipage and RPipage algorithms compared to
the Manual assignment. Table 5 shows that students got the same (or
almost the same) average number of friends using the Quadratic,
Pipage and RPipage algorithms as in the manual assignment.

6.4 Forming teams of employees

In this section, we use the Company dataset in order to evaluate
our algorithms’ ability to form diverse teams of employees.

 = 1 = 2 = 3 = 40.0
0.2
0.4
0.6
0.8
1.0
1.2

Ap
pr

ox
im

at
io

n
ra

tio Pipage
RPipage
Greedy
Random

Figure 2: Employee data; approximation ratio of the different

algorithms for 𝛼 = 1, 2, 3, 4.

Quantitative performance of our algorithms: Figure 2 shows
the approximation ratios of our algorithms and baselines for the
Company dataset and for 𝛼 = 1, 2, 3, 4. Somewhat surprisingly,
for 𝛼 = 1 our algorithms have a approximation ratio close to 0.8,
while Greedy is almost optimal. Random has significantly lower
approximation ratio than the other algorithms; most of the times

Table 2: Education data; M𝑄𝑅 (xA) for M = {max, avg} of
assigned project preferences and A being all algorithms; we

also report std - the standard deviation for avg𝑄𝑅 ; Inverse
project preference function and 𝛼 = 10.

Dataset Algorithm max𝑄𝑅 avg𝑄𝑅 std

C
l
a
s
s
-
A

Quadratic 14.0 1.80 2.45
Pipage 14.0 1.82 2.51
RPipage 14.0 1.81 2.50
Greedy 14.0 1.95 2.50
Random 14.0 9.09 4.29
Manual 14.0 2.79 2.44

C
l
a
s
s
-
B

Quadratic 4.0 1.57 0.90
Pipage 4.0 1.57 0.90
RPipage 4.0 1.57 0.90
Greedy 7.0 2.18 1.79
Random 9.0 4.75 2.76
Manual 3.0 1.71 0.80

C
l
a
s
s
-
C

Quadratic 6.0 1.62 1.15
Pipage 6.0 1.62 1.15
RPipage 6.0 1.62 1.15
Greedy 6.0 2.12 1.48
Random 6.0 3.42 1.67
Manual 6.0 2.04 1.09

C
l
a
s
s
-
D

Quadratic 2.0 1.05 0.23
Pipage 2.0 1.06 0.23
RPipage 2.0 1.06 0.23
Greedy 2.0 1.05 0.23
Random 8.0 4.45 2.29

less than 0.5. In general, all other algorithms have approximation
ratio close to 1. It is interesting to observe that in this dataset Greedy
performs almost optimally for all choices of 𝛼 ; despite the fact that
its worst case approximation factor is unbounded (see Appendix B).
As we discussed before, we believe that the reason for this is the
correlation between conflicts and task preferences.

Figure 3: Employee data; Diversity per department before

(1
st
row) and after (2

nd
row) we run the Quadratic algorithm

(𝛼 = 2). 8% of the employees changed department. The average

male-female percentage gap decreased from 35% to 26%.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13-17, 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Education data; M𝑄𝐺 (xA) for M = {max, avg} of
number of friends per student and A being all algorithms;

we also report std - the standard deviation for avg𝑄𝐺 ; Inverse
project preference function and 𝛼 = 10.

Dataset Algorithm max𝑄𝐺 avg𝑄𝐺 std

C
l
a
s
s
-
A

Quadratic 4 0.65 0.78
Pipage 2 0.1 0.34
RPipage 1 0.08 0.26
Greedy 3 0.65 0.74
Random 1 0.4 0.49
Manual 3 0.63 0.63

C
l
a
s
s
-
B

Quadratic 2 0.64 0.77
Pipage 2 0.64 0.77
RPipage 2 0.57 0.78
Greedy 3 0.79 1.08
Random 2 1.5 0.87
Manual 2 0.64 0.67

C
l
a
s
s
-
C

Quadratic 2 0.54 0.57
Pipage 1 0.38 0.49
RPipage 1 0.38 0.49
Greedy 2 0.69 0.67
Random 1 0.54 0.5
Manual 2 0.69 0.54

C
l
a
s
s
-
D

Quadratic 3 0.43 0.72
Pipage 1 0.29 0.45
RPipage 1 0.23 0.42
Greedy 2 0.38 0.54
Random 0 0.0 0.0

Qualitative performance of our algorithms: In this dataset, we
evaluate the qualitative performance of our framework by showing
how the optimal solution to our problem (obtained by Quadratic),
affected the diversification of the teams. Figure 3 demonstrates
exactly this. While only 8% of the employees changed department,
the average male-female percentage gap decreased from 35% to 26%.
Varying the value of 𝛼 we can control this balance. Specifically,
if we decrease the value of 𝛼 the number of people who change
department increases, while the average male-female gap decreases.
Hyperparameter tuning for the Company dataset is further dis-
cussed in Appendix D.7.

6.5 Evaluating the speedup techniques

In this section, we use the Synth-TF dataset to demonstrate the
speedups obtained by the different techniques we discussed in Sec-
tion 5. As we discussed, solving the TFC problem as described in
Equations (5)-(8) using a convex solver does not scale up. Thus,
we apply to this original problem sparsification and then run the
convex solver; we call this algorithm Sparsify-Concave. For the
Sparsify algorithm we used 𝑝 = 0.01, i.e., we kept only 1% of the
edges of the conflict graph. Alternatively, we transform the problem
into a problem with a linear objective by adding auxiliary variables
and constraints (as discussed in Section 5) and run the RPipage
algorithm. We call this algorithm Linear. Another algorithm we
use is Sparsify-Linear, which combines sparsification and lin-
earization. Finally, we also combine Compactwith Linear to obtain

Table 4: Running time (seconds) for the speed-ups

Algorithm Time (seconds)

Concave time out
Sparsify-Concave 1095

Linear 342
Sparsify-Linear 2
Compact-Linear 3

the Compact-Linear algorithm. Note that for the implementation
of Compactwe use the spectral clustering algorithm ([21]) available
in scikit-learn 4.

Figure 4 shows the approximation ratios of the above heuristics
and Table 4 the running times of the same heuristics on the Synth-TF
dataset. For this experiment, we set the value of 𝛼 = 10.

Although all algorithms perform almost optimally, speed-ups
vary. First, trying to directly optimize the Concave relaxation results
in a time-out of our solver. Using Sparsify before optimizing the
Concave relaxation renders the problem solvable in 1000 seconds.
Using the Linear algorithm yields an extra 3x speedup. Finally,
combining Linear with either Sparsify or Compact further re-
duces the running time down to 2 − 3 seconds which is a 100x
speedup. In total, we managed to reduce the time from 1095 sec-
onds using Sparsify-Concave to 2 − 3 seconds combining Linear
with one of Sparsify or Compact.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ap
pr

ox
im

at
io

n
ra

tio

Linear
Sparsify-Linear
Sparsify-Concave
Compact-Linear
Random

Figure 4: Synth-TF dataset; approximation ratios of the

speedups; We used 𝛼 = 10.

7 CONCLUSIONS

Motivated by the need to form teams of students in large project-
based classes we defined the TFC problem and showed that (a) it is
NP-hard and that (b) it is closely related to Max-𝑘-Cut with given
part sizes [1]. For TFC, we designed a new efficient randomized
approximation algorithm and practical methods for speeding it up.
We applied our algorithms to real-world datasets and demonstrated
their efficacy across different dimensions.

In the future, we want to further explore possible speedups for
our algorithm and also formally investigate the extremely good
performance of Greedy in practice – despite its unbounded worst-
case approximation ratio.

4scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html

8

scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Team formation amidst conflicts WWW ’24, May 13-17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES

[1] Alexander A Ageev and Maxim I Sviridenko. 2004. Pipage rounding: A new
method of constructing algorithms with proven performance guarantee. Journal
of Combinatorial Optimization 8 (2004), 307–328.

[2] Aris Anagnostopoulos, Luca Becchetti, Carlos Castillo, Aristides Gionis, and
Stefano Leonardi. 2010. Power in unity: forming teams in large-scale community
systems. In Proceedings of the 19th ACM international conference on Information

and knowledge management. 599–608.
[3] Aris Anagnostopoulos, Carlos Castillo, Adriano Fazzone, Stefano Leonardi, and

Evimaria Terzi. 2018. Algorithms for hiring and outsourcing in the online labor
market. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining. 1109–1118.
[4] Matthew Andrews, Mohammad Taghi Hajiaghayi, Howard Karloff, and Ankur

Moitra. 2011. Capacitated metric labeling. In Proceedings of the Twenty-Second

Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 976–995.
[5] Stephen P Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge

university press.
[6] Moses Charikar. 2000. Greedy approximation algorithms for finding dense

components in a graph. In International workshop on approximation algorithms

for combinatorial optimization. Springer, 84–95.
[7] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. 2010. Dependent random-

ized rounding via exchange properties of combinatorial structures. In 2010 IEEE

51st Annual Symposium on Foundations of Computer Science. IEEE, 575–584.
[8] David Gale and Lloyd S Shapley. 1962. College admissions and the stability of

marriage. The American Mathematical Monthly 69, 1 (1962), 9–15.
[9] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan.

2002. Dependent rounding in bipartite graphs. In The 43rd Annual IEEE Sympo-

sium on Foundations of Computer Science, 2002. Proceedings. IEEE, 323–332.
[10] Michel X Goemans and David P Williamson. 1994. New 34-approximation

algorithms for the maximum satisfiability problem. SIAM Journal on Discrete

Mathematics 7, 4 (1994), 656–666.
[11] Dan Gusfield and Robert W Irving. 1989. The stable marriage problem: structure

and algorithms. MIT press.
[12] Mehdi Kargar, Morteza Zihayat, and Aijun An. 2013. Finding affordable and

collaborative teams from a network of experts. In Proceedings of the 2013 SIAM

international conference on data mining. SIAM, 587–595.
[13] Richard M Karp. 2010. Reducibility among combinatorial problems. Springer.
[14] Jon Kleinberg and Eva Tardos. 2002. Approximation algorithms for classification

problems with pairwise relationships: Metric labeling and Markov random fields.
Journal of the ACM (JACM) 49, 5 (2002), 616–639.

[15] Harold W Kuhn. 1955. The Hungarian method for the assignment problem.
Naval research logistics quarterly 2, 1-2 (1955), 83–97.

[16] Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in
social networks. In Proceedings of the 15th ACM SIGKDD international conference

on Knowledge discovery and data mining. 467–476.
[17] Anirban Majumder, Samik Datta, and KVM Naidu. 2012. Capacitated team

formation problem on social networks. In Proceedings of the 18th ACM SIGKDD

international conference on knowledge discovery and data mining. 1005–1013.
[18] David G McVitie and Leslie B Wilson. 1971. The stable marriage problem.

Commun. ACM 14, 7 (1971), 486–490.
[19] Marcos Negreiros and Augusto Palhano. 2006. The capacitated centred clustering

problem. Computers & operations research 33, 6 (2006), 1639–1663.
[20] Karan Vombatkere and Evimaria Terzi. 2023. Balancing Task Coverage and

ExpertWorkload in Team Formation. In Proceedings of the 2023 SIAM International

Conference on Data Mining (SDM). SIAM, 640–648.
[21] Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Statistics and

computing 17 (2007), 395–416.
[22] Shunzhi Zhu, Dingding Wang, and Tao Li. 2010. Data clustering with size

constraints. Knowledge-Based Systems 23, 8 (2010), 883–889.

A PROOFS

A.1 Proof of Theorem 1

We begin with the following lemma:

Lemma 3. Let y be a (fractional) feasible solution to the TFC-1

problem. Then, for every 𝑢, 𝑣 ∈ 𝑉 we have:

1 −
∑︁
𝑡 ∈𝑇

𝑦𝑢𝑣𝑦𝑣𝑡 ≥ 1
2

min
(
1,min

𝑡 ∈𝑇
(2 − 𝑦𝑢𝑣 − 𝑦𝑣𝑡)

)
Proof. Let 𝑧𝑢𝑣 = min (1,min𝑡 (2 − 𝑦𝑢𝑣 − 𝑦𝑣𝑡)). Define

𝑡 ′ = arg max
𝑡 ∈𝑇

(𝑦𝑢𝑡 + 𝑦𝑣𝑡)

and

𝑞𝑢𝑣 = 𝑦𝑢𝑡 ′ + 𝑦𝑣𝑡 ′ . (14)

Then,

𝑧𝑢𝑣 = min(1, 2 − 𝑞𝑢𝑣) . (15)

Also, it holds that∑︁
𝑡 ∈𝑇

𝑦𝑢𝑡 + 𝑦𝑣𝑡 =
∑︁
𝑡 ∈𝑇

𝑦𝑢𝑡 +
∑︁
𝑡 ∈𝑇

𝑦𝑣𝑡 = 1 + 1 = 2 (16)

as well as the arithmetic-geometric mean inequality which says
that for any two positive numbers 𝑎, 𝑏:(

𝑎 + 𝑏
2

)2
≥ 𝑎𝑏. (17)

Thus, we have:

1 −
∑︁
𝑡 ∈𝑇

𝑦𝑢𝑡𝑦𝑣𝑡 = 1 − 𝑦𝑢𝑡 ′𝑦𝑣𝑡 ′ −
∑︁
𝑡≠𝑡 ′

𝑦𝑢𝑡𝑦𝑣𝑡

≥ 1 −
(𝑦𝑢𝑡 ′ + 𝑦𝑣𝑡 ′

2

)2
−

∑︁
𝑡≠𝑡 ′

(𝑦𝑢𝑡 + 𝑦𝑣𝑡
2

)2
(using 17)

≥ 1 −
(𝑞𝑢𝑣

2

)2
−

(∑
𝑡≠𝑡 ′ 𝑦𝑢𝑡 + 𝑦𝑣𝑡

2

)2
((14) and convexity)

= 1 −
(𝑞𝑢𝑣

2

)2
−

(
2 − (𝑦𝑢𝑡 ′ + 𝑦𝑣𝑡 ′)

2

)2
(using (16))

= 1 −
(𝑞𝑢𝑣

2

)2
−

(
1 − 𝑞𝑢𝑣

2

)2
(using (14))

= 𝑞𝑢𝑣 −
𝑞2
𝑢𝑣

2
.

Case 1. 1 ≤ 𝑞𝑢𝑣 ≤ 2. Then, by Eq. (15), 𝑧𝑢𝑣 = 2 − 𝑞𝑢𝑣 , and

1 −
∑︁
𝑡 ∈𝑇

𝑦𝑢𝑡𝑦𝑣𝑡 ≥ 𝑞𝑢𝑣 −
𝑞2
𝑢𝑣

2
≥ 1

2
𝑧𝑢𝑣 . (18)

Case 2. 0 ≤ 𝑞𝑢𝑣 ≤ 1. Then, by Eq. (15), 𝑧𝑢𝑣 = 1. By the assumption
of this case, for every 𝑡 it holds that

0 ≤ 𝑦𝑢𝑡 + 𝑦𝑣𝑡 ≤ 1. (19)

Using the arithmetic-geometric mean inequality (Eq. (17)), we have

1 −
∑︁
𝑡 ∈𝑇

𝑦𝑢𝑡𝑦𝑣𝑡 ≥ 1 −
∑︁
𝑡 ∈𝑇

(𝑦𝑢𝑡 + 𝑦𝑣𝑡
2

)2

= 1 − 1
4

∑︁
𝑡 ∈𝑇

(𝑦𝑢𝑡 + 𝑦𝑣𝑡)2

≥ 1 − 1
4

∑︁
𝑡 ∈𝑇

(𝑦𝑢𝑡 + 𝑦𝑣𝑡) (using (16))

= 1 − 1
4

2

=
1
2
𝑧𝑢𝑣

□

A corollary of Lemma 3 is the following:

Corollary 1. If y is a (fractional) feasible solution to problem

Relaxed-TFC with objective 𝐿1, then

𝐹 (y) ≥ 1
2
𝐿1 (y).

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13-17, 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Let 𝐹 ∗ be the value of the optimal (integral) solution to TFC
. If y∗ is the optimal (fractional) solution to Relaxed-TFC with
objective 𝐿1, it holds that 𝐿1 (y∗) ≥ 𝐹 ∗. From Corollary 1 we have
that 𝐹 (y∗) ≥ 1

2𝐿1 (y∗). Using pipage rounding we can round the
fractional solution y∗ to an integral solution x̄ such that 𝐹 (x̄) ≥
𝐹 (y∗). Thus,

𝐹 (x̄) ≥ 𝐹 (y∗) ≥ 1
2
𝐿1 (y∗) ≥

1
2
𝐹 ∗ .

A.2 Proof or Proposition 2

Property 1 To prove concavity it suffices to see that 𝐿2 (x) is the
sum of concave functions. Note that min(1, 𝑥𝑢𝑡 + 𝑥𝑣𝑡) is concave.
Property 2: For the proof of Property 2, we need the following
lemmas:

Lemma 4. For all 𝑥,𝑦 ∈ {0, 1} it holds that

1 − (1 − 𝑥) (1 − 𝑦) = 𝑥 + 𝑦 − 𝑥𝑦 = min(1, 𝑥 + 𝑦).

The proof of this lemma consists of checking equality for all
combinations of integral values of 𝑥 and 𝑦.

Lemma 5 ([10]). For all 𝑥,𝑦 ∈ [0, 1] it holds that

1 − (1 − 𝑥) (1 − 𝑦) ≥ 3
4

min(1, 𝑥 + 𝑦).

Now we are ready to prove the following:

Proposition 4. For all integral x it holds that 𝐹 (x) = 𝐿2 (x).

Proof. It holds that∑︁
(𝑢,𝑣) ∈𝐸

𝑤𝑢𝑣 (1 −
∑︁
𝑡 ∈𝑇

𝑥𝑢𝑡𝑥𝑣𝑡) =

𝑤 (𝐸) −
∑︁

(𝑢,𝑣) ∈𝐸

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣𝑥𝑢𝑡𝑥𝑣𝑡 =

𝑤 (𝐸) +
∑︁

(𝑢,𝑣) ∈𝐸

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣 min(1, 𝑥𝑢𝑡 + 𝑥𝑣𝑡)

−
∑︁

(𝑢,𝑣) ∈𝐸

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣 (𝑥𝑢𝑡 + 𝑥𝑣𝑡) =

𝑤 (𝐸) +
∑︁

(𝑢,𝑣) ∈𝐸

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣 min(1, 𝑥𝑢𝑡 + 𝑥𝑣𝑡) − 2𝑤 (𝐸) =∑︁
(𝑢,𝑣) ∈𝐸

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣 min(1, 𝑥𝑢𝑡 + 𝑥𝑣𝑡) −𝑤 (𝐸),

where in the second equality we used lemma 4.
Using the above we have that

𝐹 (x) = _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡 +
∑︁

(𝑢,𝑣) ∈𝐸
𝑤𝑢𝑣 (1 −

∑︁
𝑡 ∈𝑇

𝑥𝑢𝑡𝑥𝑣𝑡)

=
∑︁

(𝑢,𝑣) ∈𝐸

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣 min(1, 𝑥𝑢𝑡 + 𝑥𝑣𝑡) + _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡 −𝑤 (𝐸)

= 𝐿2 (x).

□

A.3 Proof of Proposition 3

Proof.

EΞ [𝐿(x)] = EΞ [
∑︁

(𝑢,𝑣) ∈𝐸

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣 min(1, 𝑥𝑢𝑡 + 𝑥𝑣𝑡)

+ _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡 −𝑤 (𝐸)]

= EΞ [
∑︁

(𝑢,𝑣) ∈𝐸

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣 (1 − (1 − 𝑥𝑢𝑡) (1 − 𝑥𝑣𝑡))

+ _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡 −𝑤 (𝐸)]

≥
∑︁

(𝑢,𝑣) ∈𝐸

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣 (1 − (1 − 𝑦𝑢𝑡) (1 − 𝑦𝑣𝑡))

+ _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑦𝑣𝑡 −𝑤 (𝐸)

≥ 3
4

∑︁
(𝑢,𝑣) ∈𝐸

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣 min(1, 𝑦𝑢𝑡 + 𝑦𝑣𝑡)

+ 3
4

(
_

∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑦𝑣𝑡 −𝑤 (𝐸)
)

=
3
4
𝐿(y)

where in the second line we used Lemma 4, in the third line we
used the properties of the rounding operator, and in the fourth line
we used Lemma 5 and Assumption 1. □

A.4 Linearization of 𝐿1

max 𝐿1 (x) = _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡 +
∑︁

(𝑢,𝑣) ∈𝐸𝐺
𝑤𝑢𝑣𝑧𝑢𝑣 (20)

s.t.
∑︁
𝑡 ∈𝑇

𝑥𝑣𝑡 = 1, for every 𝑣 ∈ 𝑉 (21)∑︁
𝑣∈𝑉

𝑥𝑣𝑡 ≤ 𝑝𝑡 , for every 𝑡 ∈ 𝑇 (22)

𝑧𝑢𝑣 ≤ 1, for every (𝑢, 𝑣) ∈ 𝐸𝐺 , (23)
𝑧𝑢𝑣 ≤ 2 − 𝑥𝑢𝑡 − 𝑥𝑣𝑡 , for every (𝑢, 𝑣) ∈ 𝐸𝐺 , 𝑡 ∈ 𝑇 . (24)

A.5 Linearization of 𝐿2

max 𝐿2 (x) =
∑︁

(𝑢,𝑣) ∈𝐸𝐺

∑︁
𝑡 ∈𝑇

𝑤𝑢𝑣𝑥𝑢𝑣𝑡 + _
∑︁
𝑣∈𝑉

∑︁
𝑡 ∈𝑇

𝑐𝑣𝑡𝑥𝑣𝑡 −𝑤 (𝐸𝐺)

(25)

s.t.
∑︁
𝑡 ∈𝑇

𝑥𝑣𝑡 = 1, for every 𝑣 ∈ 𝑉 (26)∑︁
𝑣∈𝑉

𝑥𝑣𝑡 ≤ 𝑝𝑡 , for every 𝑡 ∈ 𝑇 (27)

𝑥𝑢𝑣𝑡 ≤ 1, for every (𝑢, 𝑣) ∈ 𝐸𝐺 , 𝑡 ∈ 𝑇 (28)
𝑥𝑢𝑣𝑡 ≤ 𝑥𝑢𝑡 + 𝑥𝑣𝑡 , for every (𝑢, 𝑣) ∈ 𝐸𝐺 , 𝑡 ∈ 𝑇 . (29)

A.6 Proof of Theorem 3

Proof. Let y be an optimal solution of the fractional relaxation
of TFC such that it does not hold that 𝑦𝑢𝑡 = 𝑦𝑣𝑡 ,∀𝑡 ∈ 𝑇 . Since∑
𝑡 𝑦𝑢𝑡 =

∑
𝑡 𝑦𝑣𝑡 = 1, there exist 𝑡1, 𝑡2 ∈ 𝑇 such that 𝑦𝑢𝑡1 ≠ 𝑦𝑣𝑡1

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Team formation amidst conflicts WWW ’24, May 13-17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

and 𝑦𝑢𝑡2 ≠ 𝑦𝑣𝑡2 . Let ỹ be the "symmetrical" solution where we have
replaced 𝑢 with 𝑣 and vice versa. That is,

• 𝑦𝑢𝑡 = 𝑦𝑣𝑡 , 𝑡 ∈ 𝑇

• 𝑦𝑣𝑡 = 𝑦𝑢𝑡 , 𝑡 ∈ 𝑇

• 𝑦𝑢𝑣′𝑡 = 𝑦𝑣𝑣′𝑡 , 𝑡 ∈ 𝑇, (𝑢, 𝑣 ′) ∈ 𝐸

• 𝑦𝑣𝑣′𝑡 = 𝑦𝑢𝑣′𝑡 , 𝑡 ∈ 𝑇, (𝑣, 𝑣 ′) ∈ 𝐸

For the last two equalities note that since nodes𝑢 and 𝑣 are symmet-

rical it holds that (𝑢, 𝑣 ′) ∈ 𝐸 ⇔ (𝑣, 𝑣 ′) ∈ 𝐸. Then, x = (y+ỹ)/2 is an
optimal feasible solution where 𝑥𝑢𝑡 = 𝑥𝑣𝑡 ,∀𝑡 ∈ 𝑇 . To see that note
that the constraints are linear and thus any convex combination of
feasible solutions is also feasible. Moreover, the objective function
is linear and thus any convex combination of optimal solutions is
also optimal. Finally, concluding our proof observe that

𝑥𝑢𝑡1 = 𝑥𝑣𝑡1 =
𝑦𝑢𝑡1 + 𝑦𝑣𝑡1

2
and

𝑥𝑢𝑡2 = 𝑥𝑣𝑡2 =
𝑦𝑢𝑡2 + 𝑦𝑣𝑡2

2
□

B ANALYSIS OF THE GREEDY ALGORITHM

Unbounded approximation ratio of Greedy: We have the fol-
lowing result in terms of the performance of greedy with respect
to our objective function:

Proposition 5. Greedy has unbounded approximation ratio.

Proof. Consider the following instance of our problem. 𝑉 =

{𝑢, 𝑣, 𝑧}, with task preferences 𝑐𝑢𝑡1 = 1 − 𝜖 , 𝑐𝑣𝑡2 = 𝜖 and all other
preferences equal to 0. 𝑇 = {𝑡1, 𝑡2}, with capacities 𝑝𝑡1 = 1 and
𝑝𝑡2 = 2. The conflict graph consists of the edge (𝑣, 𝑧) with weight
𝑤𝑣𝑧 = W. For the objective function assume that _ = 1. Running
the Greedy yields the assignment: 𝑢 assigned to 𝑡1 and 𝑣, 𝑧 are
assigned to 𝑡2. The optimal assignment is 𝑧 assigned to 𝑡1 and 𝑢, 𝑣
to 𝑡2. The approximation ratio is:

AR =
(1 − 𝜖) + 𝜖

W + 𝜖
≤ 1

W .

As W → ∞, the approximation ratio AR → 0. □

Running time of Greedy:The complexity of Greedy is𝑂 (|𝑉 |2 |𝑇 |T𝐹),
where T𝐹 is the cost of calculating 𝐹 . We have |𝑉 | iterations in total,
since at each iteration we assign one individual to a team. Each
iteration costs |𝑉 | |𝑇 |T𝐹 , since we calculate the change in the ob-
jective function when considering the addition of each remaining
individual to each team which is not full.

C DEPENDENT ROUNDING SCHEMES

C.1 Pipage rounding

In this section we give a description of the pipage rounding al-
gorithm. For a more detailed analysis we refer the reader to the
original paper [1]. Pipage rounding is an iterative algorithm; at
each iteration the current fractional solution y is transformed into
a new solution y′ with smaller number of non-integral components.
Throughout, we will assume that any solution y is associated with
the bipartite graph 𝐻y = (𝑉 ,𝑇 , 𝐸y), where the nodes on the one
side correspond to individuals, the nodes on the other side to tasks

and there is an edge 𝑒 (𝑣, 𝑡) for every pair (𝑣, 𝑡) with 𝑣 ∈ 𝑉 and 𝑡 ∈ 𝑇

if and only if 𝑦𝑣𝑡 ∈ (0, 1), i.e., 𝑦𝑣𝑡 is fractional.
Let y be a current solution satisfying the constraints of the pro-

gram and 𝐻y the corresponding bipartite graph. If 𝐻y contains
cycles, then set 𝐶 to be this cycle. Otherwise, set 𝐶 to be a path
whose endpoints have degree 1. Since 𝐻y is bipartite, in both bases
𝐶 may be uniquely expressed as the union of two matchings 𝑀1
and𝑀2. Given this, define a new solution y(𝜖,𝐶) as follows:
• if 𝑒 ∈ 𝐸y \𝐶 , then 𝑦𝑒 (𝜖,𝐶) = 𝑦𝑒 .
• Otherwise, 𝑦𝑒 (𝜖,𝐶) = 𝑦𝑒 + 𝜖, 𝑒 ∈ 𝑀1 and 𝑦𝑒 (𝜖,𝐶) = 𝑦𝑒 − 𝜖, 𝑒 ∈
𝑀2.

For the above, set

𝜖1 = min{𝜖 > 0 : (∃𝑒 ∈ 𝑀1 : 𝑦𝑒 + 𝜖 = 1) ∨ (∃𝑒 ∈ 𝑀2 : 𝑦𝑒 − 𝜖 = 0)}
and

𝜖2 = min{𝜖 > 0 : (∃𝑒 ∈ 𝑀1 : 𝑦𝑒 − 𝜖 = 0) ∨ (∃𝑒 ∈ 𝑀2 : 𝑦𝑒 + 𝜖 = 1)}.
Let y1 = y(−𝜖1,𝐶) and y2 = y(𝜖2,𝐶). Set y′ = y1, if 𝐹 (y1) > 𝐹 (y2),
and y′ = y2 otherwise. Note that y′ has smaller number of fractional
components than y and, thus, Pipage terminates after at most |𝐸y∗ |
iterations, i.e., as many as the number of fractional values in the y∗
vector output by the optimization algorithm. The following theorem
states that y′ satisfies the following constraints:

Theorem 4 ([1]). Consider performing pipage roudning starting

from the fractional solution y. Let x be the integral solution produced

when Pipage terminates. Then,

⌊
∑︁

𝑒 (𝑣,𝑡) ∈𝛿 (𝑣)
𝑦𝑣𝑡 ⌋ ≤

∑︁
𝑒 (𝑣,𝑡) ∈𝛿 (𝑣)

𝑥𝑣𝑡 ≤ ⌊
∑︁

𝑒 (𝑣,𝑡) ∈𝛿 (𝑣)
𝑦𝑣𝑡 ⌋ + 1,

where for every 𝑣 ∈ 𝑉 𝛿 (𝑣) is the set of edges in the preference graph

𝑅, that are incident to 𝑣 .

Since all 𝑝𝑡 ’s are integers (see Eq. 3), the above theorem implies
that x is a feasible solution.

C.2 Randomized pipage rounding

Here, we briefly present the randomized pipage scheme originally
proposed byGandhi [9] adapted to our problem. Randomized pipage
rounding proceeds in iterations, just like (deterministic) pipage
rounding. If y is the fractional solution at the current iteration of
the rounding algorithm, we update y as follows:

If 𝑒 ∈ 𝐸y \ 𝐶 , then 𝑦𝑒 (𝜖,𝐶) = 𝑦𝑒 . If 𝑒 ∈ 𝐶 , then y′ = y1, with
probability 𝜖2/(𝜖1 + 𝜖2). Otherwise, with probability 𝜖1/(𝜖1 + 𝜖2),
y′ = y2. Note 𝐶 , 𝜖1, 𝜖2, y1 and y2 are the same as the ones defined
in the description of pipage rounding. As the number of fractional
elements of y decrease in every iteration, randomized pipage round-
ing terminates after at most 𝑂 (|𝐸y∗ |) iterations, where y∗ is the
solution to the Relaxed-TFC problem with objective 𝐿1.

D EXPERIMENTS

D.1 Experimental setup

All of the experiments were run on a machine with an Intel(R)
Xeon(R) Gold 6242 CPU @ 2.80GHz and 16GB memory. All of our
code is written in Python 3.6.8. For linear and quadratic optimiza-
tion we used Gurobi 5. For optimizing concave functions we used
5https://www.gurobi.com/

11

https://www.gurobi.com/

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’24, May 13-17, 2024, Singapore Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Figure 5: Friend graph for dataset Class-B. On top of nodes

are the anonymized student ids.

CVXPY 6. In all our experiments, unless otherwise explicitly stated,
we use the “linearization” speedup we presented in Section 5. Com-
bining this with the Gurobi solver we obtain reasonable running
times for all our experiments. We also demonstrate the effect of
this linearization in Section 6.5. In fact, when we tried optimiz-
ing the concave relaxation with linear constraints as expressed
in Equations (9)-(8), our solver could not terminate. For this con-
cave problem we used CVXPY as Gurobi only solves linear (and
quadratic) problems. Our code will be made publicly available.

D.2 Indicative education datasets and their

characteristics

Figures 5 and 6 show the friend graphs (i.e., the complement of
the conflict graphs) which is the input in the education datasets.
Observe the sparsity of both friend graphs.

Figure 7 and figure 8 show the friend graph for Class-A and Class-
B respectively, where the nodes with the same color are assigned
to the same project.

D.3 Approximation ratios for LinNorm
preference function

Figure 9 shows the approximation ratios for the LinNorm preference
function.

D.4 Hyperparameter tuning for the education

datasets

In Section 4.3, we gave a preview of how to tune the hyperparam-
eter _ or 𝛼 by computing the terms

(
𝐹𝛼
𝐺
, 𝐹𝛼

𝑅

)
for different values

of 𝛼 . This results in an "elbow" plot that illustrates the trade-off
between the two terms and allows us to tune the hyperparameter
in a informed way. We present the plots for the LinNorm project
preference function in Figure 10; the plots for the Inverse project
preference function are very similar and are presented in Figure 11.
6https://www.cvxpy.org/

Figure 6: Friend graph for dataset Class-A.

Figure 7: Friend graph colored using the optimal team assign-

ment (Quadratic) for Class-A. Labels are omitted for clarity.

Note that when 𝛼 = 0, the conflict term is almost equal to the
number of conflict edges, i.e. almost all individuals in conflict are
placed in different teams. When 𝛼 = 10, the project preference
term is almost equal to the number of individuals, i.e. almost all
individuals get their highest-ranked project. This is because 𝑐𝑣𝑡 = 1,
if the highest-ranked project of 𝑣 is 𝑡 .

D.5 Qualitative results for education datasets

using the Inverse project preference
function

Table 5 shows that students got the same (or almost the same) aver-
age number of friends using the Quadratic, Pipage and RPipage
algorithms as in the Manual assignment.

12

https://www.cvxpy.org/

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Team formation amidst conflicts WWW ’24, May 13-17, 2024, Singapore

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Figure 8: Friend graph colored using the optimal team as-

signment (Quadratic) for Class-B. On top of nodes are the

anonymized student ids.

Class-A Class-B Class-C Class-D0.0

0.5

1.0

Ap
pr

ox
im

at
io

n
ra

tio Pipage
RPipage
Greedy
Random

Figure 9: Education data; approximation ratios for education

datasets. For all datasets we used the LinNorm project prefer-

ence function and 𝛼 = 10.

Figure 10: Education data; hyperparameter 𝛼 tuning.We used

the LinNorm project preference function.

Figure 11: Education data; hyperparameter 𝛼 tuning.We used

the Inverse project preference function.

Table 5: Education data; M𝑄𝐺 (xA) for M = {max, avg} of
number of friends per student and A being all algorithms;

we also report std - the standard deviation for avg𝑄 . For all
datasets we used the Inverse project preference function and

𝛼 = 10.

Dataset Algorithm max𝑄𝐺 avg𝑄𝐺 std

C
l
a
s
s
-
A

Quadratic 4 0.65 0.78
Pipage 2 0.1 0.34
RPipage 1 0.08 0.26
Greedy 3 0.65 0.74
Random 1 0.4 0.49
Manual 3 0.63 0.63

C
l
a
s
s
-
B

Quadratic 2 0.64 0.77
Pipage 2 0.64 0.77
RPipage 2 0.57 0.78
Greedy 3 0.79 1.08
Random 2 1.5 0.87
Manual 2 0.64 0.67

C
l
a
s
s
-
C

Quadratic 2 0.54 0.57
Pipage 1 0.38 0.49
RPipage 1 0.38 0.49
Greedy 2 0.69 0.67
Random 1 0.54 0.5
Manual 2 0.69 0.54

C
l
a
s
s
-
D

Quadratic 3 0.43 0.72
Pipage 1 0.29 0.45
RPipage 1 0.23 0.42
Greedy 2 0.38 0.54
Random 0 0.0 0.0

D.6 Qualitative results for education datasets

using the LinNorm project preference

function

Tables 6 and 7 contain the qualitative results for the LinNorm project
preference function. Our algorithms are again comparable or better

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

WWW ’24, May 13-17, 2024, Singapore Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 7: Education data; M𝑄𝐺 (xA) for M = {max, avg} of
number of friends per student and A being all algorithms;

we also report std - the standard deviation for avg𝑄 . For all
datasets we used the LinNorm project preference function

and 𝛼 = 10.

Dataset Algorithm max𝑄𝐺 avg𝑄𝐺 std

C
l
a
s
s
-
A

Quadratic 3 0.71 0.79
Pipage 2 0.15 0.37
RPipage 1 0.10 0.30
Greedy 3 0.65 0.74
Random 0 0.00 0.00
Manual 3 0.63 0.63

C
l
a
s
s
-
B

Quadratic 2 0.64 0.77
Pipage 2 0.5 0.63
RPipage 2 0.43 0.62
Greedy 3 0.79 1.08
Random 2 1.5 0.87
Manual 2 0.64 0.67

C
l
a
s
s
-
C

Quadratic 1 0.54 0.50
Pipage 1 0.38 0.49
RPipage 1 0.46 0.50
Greedy 2 0.69 0.67
Random 1 0.46 0.50
Manual 2 0.69 0.54

C
l
a
s
s
-
D

Quadratic 3 0.43 0.72
Pipage 1 0.23 0.42
RPipage 1 0.29 0.45
Greedy 2 0.38 0.54
Random 0 0.00 0.00

Figure 12: Employee data; Hyperparameter 𝛼 tuning for the

Company dataset.

Figure 13: Employee data; Controlling the balance between

the fraction of people who changed department PER and

average gender gap per department AVG-GAP using 𝛼 .

Table 6: Education data; M𝑄𝑅 (xA) for M = max, avg of as-

signed project preferences and A being all algorithms; we

also report std - the standard deviation for avg𝑄𝑅 . For all

datasets we used the LinNorm project preference function

and 𝛼 = 10.

Dataset Algorithm max𝑄𝑅 avg𝑄𝑅 std

C
l
a
s
s
-
A

Quadratic 14.0 1.79 2.42
Pipage 14.0 1.81 2.47
RPipage 14.0 1.81 2.48
Greedy 14.0 1.95 2.50
Random 14.0 7.20 4.33
Manual 14.0 2.79 2.44

C
l
a
s
s
-
B

Quadratic 4.0 1.57 0.86
Pipage 4.0 1.57 0.90
RPipage 4.0 1.57 0.90
Greedy 7.0 2.18 1.79
Random 7.0 4.36 2.24
Manual 3.0 1.71 0.80

C
l
a
s
s
-
C

Quadratic 6.0 1.62 1.11
Pipage 6.0 1.62 1.15
RPipage 6.0 1.62 1.15
Greedy 6.0 2.12 1.48
Random 6.0 3.54 1.67
Manual 6.0 2.04 1.09

C
l
a
s
s
-
D

Quadratic 1.875 1.05 0.20
Pipage 1.875 1.05 0.20
RPipage 1.875 1.05 0.20
Greedy 1.875 1.05 0.20
Random 7.125 4.17 1.92

than the baselines. An observation is that using the LinNorm project
preference function does not make a significance difference in the
qualitative results. Note again that our main focus on the education
datasets was assigning students to projects they like. Assigning
them with friends was a secondary goal.

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

Team formation amidst conflicts WWW ’24, May 13-17, 2024, Singapore

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

D.7 Hyperparameter tuning for the Company
dataset

Figure 13 shows the trade-off between the percentage of people
who changed department and the average percentage of the male-
female gap per department. Note that for values of 𝛼 between
0.5 and 2 there is a plateau. That is, the average gender gap per

department remains almost constant although more employees
change department. After 𝛼 drops below 0.5 the average male-
female gap drops significantly, but the percentage of people who
change departments grows very fast. According to the above plot a
reasonable choice for 𝛼 is 𝛼 = 2.

Figure 12 shows the trade-off between the task and social satis-
faction terms.

15

	Abstract
	1 Introduction
	2 Related work
	3 Problem definition
	4 Algorithms
	4.1 A deterministic 12 - approximation algorithm
	4.2 Randomized 34 - approximation algorithm
	4.3 Tuning the hyperparameter

	5 Computational speedups
	6 Experiments
	6.1 Baselines and Setup
	6.2 Datasets
	6.3 Forming teams in education settings
	6.4 Forming teams of employees
	6.5 Evaluating the speedup techniques

	7 Conclusions
	References
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof or Proposition 2
	A.3 Proof of Proposition 3
	A.4 Linearization of L1
	A.5 Linearization of L2
	A.6 Proof of Theorem 3

	B Analysis of the Greedy algorithm
	C Dependent rounding schemes
	C.1 Pipage rounding
	C.2 Randomized pipage rounding

	D Experiments
	D.1 Experimental setup
	D.2 Indicative education datasets and their characteristics
	D.3 Approximation ratios for LinNorm preference function
	D.4 Hyperparameter tuning for the education datasets
	D.5 Qualitative results for education datasets using the Inverse project preference function
	D.6 Qualitative results for education datasets using the LinNorm project preference function
	D.7 Hyperparameter tuning for the Company dataset

