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Abstract

This paper introduces a novel ML-based method for Inertial Motion Tracking (IMT) that
fundamentally changes the way this technology is used. The proposed method, named RING1

(Recurrent Inertial Graph-Based Estimator), provides a pluripotent, problem-unspecific
plug-and-play IMT solution that, in contrast to conventional IMT solutions, eliminates the
need for expert knowledge to identify, select, and parameterize the appropriate method.
RING’s pluripotency is enabled by a novel online-capable neural network architecture
that uses a decentralized network of message-passing, parameter-sharing recurrent neural
networks, which map local IMU measurements and nearest-neighbour messages to local
orientations. This architecture enables RING to address a broad range of IMT problems
that vary greatly in aspects such as the number of attached sensors, or the number of
segments in the kinematic chain, and even generalize to previously unsolved IMT problems,
including the challenging combination of magnetometer-free and sparse sensing with unknown
sensor-to-segment parameters. Remarkably, RING is trained solely on simulated data, yet
evaluated on experimental data, which indicates its exceptional ability to zero-shot generalize
from simulation to experiment, while outperforming several state-of-the-art problem-specific
solutions. For example, RING can, for the first time, accurately track a four-segment
kinematic chain (which requires estimating four orientations) using only two magnetometer-
free inertial measurement units. This research not only makes IMT more powerful and less
restrictive in established domains ranging from biomechanics to autonomous systems, but
also opens its application to new users and fields previously untapped by motion tracking
technology. Code and data is available here.

1one to track them all
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Figure 1: RING is a ML-based method that provides a versatile, pluripotent IMT solution applicable
across a broad range of challenging IMT problems, designed for use without the need for expert knowledge.
Remarkably, RING is trained solely on simulated data, yet zero-shot generalizes to real-world experiments
and outperforms several problem-specific state-of-the-art solutions.

1 Introduction

In the domain of multi-agent systems, structural policies have shown great potential for the control of complex
agents; meanwhile, Recurrent Neural Networks (RNNs) are an established choice for sequential data. The
potential of their combination for the analysis of structural sequential data has rarely been investigated and
exploited. This combination seems particularly promising for state estimation in graph-structured systems,
such as, for example, for IMT of Kinematic Chains (KCs).

The need for reliable and accurate estimation of the orientation, attitude, or pose of articulated objects in
three-dimensional (3D) space spans across various application domains ranging from aerospace engineering
(Euston et al., 2008; Givens & Coopmans, 2019) to health applications (Buke et al., 2015; López-Nava &
Muñoz-Meléndez, 2016; Seel et al., 2020). Inertial Measurement Units (IMUs), which typically comprise a 3D
accelerometer, a 3D gyroscope, and a 3D magnetometer, have become smaller and less expensive within the
last two decades and have therefore rapidly become the most promising technology for accurate, reliable, and
inexpensive motion tracking in rigid bodies and KCs, especially since camera-based systems are typically
more expensive, more restrictive, and suffer from occlusion (von Marcard et al., 2017; Huang et al., 2018).

However, fusing the available measurement signals to estimate the desired orientations requires advanced
IMT algorithms that typically need to overcome a combination or all of the following three main IMT
challenges (Seel et al., 2020): (1) inhomogeneous magnetic fields in indoor environments and in proximity of
ferromagnetic material or electric devices; (2) sensor-to-segment calibration, i.e. identifying the joint position
and axis orientations in local sensor coordinates; (3) solving sparse problems in which some segments of the
KC are not equipped with a sensor, to improve the usability and reduce costs.

In recent years, numerous highly specialized methods have been proposed to address these challenges.
Magnetometer-free methods have been developed to estimate the relative orientation between two adjacent
segments by exploiting different kinematic constraints (Kok et al., 2014; Laidig et al., 2017; Lehmann et al.,
2020; 2024). Moreover, numerous general-purpose magnetometer-free attitude estimators have been proposed
(Mahony et al., 2008; Madgwick, 2010; Seel & Ruppin, 2017; Weber et al., 2021; Laidig & Seel, 2023). Several
algorithms were developed to achieve sensor-to-segment calibration for specific kinematics with full sensor
setups (Taetz et al., 2016; McGrath et al., 2018; Olsson et al., 2020). Finally, a variety of sparse IMT methods
have been developed that either use a limited number of sensors while still depending on magnetometers (von
Marcard et al., 2017; Huang et al., 2018; Sy et al., 2020; 2021; Zheng et al., 2021) or are magnetometer-free
(Grapentin et al., 2020; Yi et al., 2021; 2022; Bachhuber et al., 2023; Van Wouwe et al., 2023).

In summary, there exists a plethora of methods, each tailored to a very specific application, such as
magnetometer-free tracking of a single-degree-of-freedom (1-DoF) joint (Lehmann et al., 2020), or human
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pose estimation from six IMUs, as detailed in Yi et al. (2021). To apply IMT, the user must successfully
identify the method that is suitable for the given problem and typically specify various parameters such as
joint axes directions and sensor placement. Therefore, the user must be an expert in the field of IMT, which
strongly limits the use of IMUs in many application domains. To make matters even worse, a given problem
might require a nontrivial combination of methods which may exclude each other, e.g., the tracking of a
sparse three-segment KC currently requires known joint axes directions (Bachhuber et al., 2023), but the
method that estimates the joint axes directions does not allow for a sparse sensor setup (Olsson et al., 2020).

What if, instead of a plethora of methods, we had a single pluripotent method that can be used for, e.g.,
magnetometer-free tracking of 1-DoF joints, and the tracking of sparse sensor setups with known or even
unknown joint axes directions? What if we had one to track them all?

In this work, we demonstrate that ML methods can be used to, for the first time, achieve this goal. We
propose a method, named RING, that combines a novel neural network architecture, named RINGCell, with
an elaborate training data simulation, the Random Chain Motion Generator (RCMG). The key insight that
enables the pluripotency of RING is that a given system in an Inertial Motion Tracking Problem (IMTP)
can be viewed as a graph where nodes represent segments and edges represent a single DoF. Then, a shared
set of parameters can be applied on a decentralized, per-node level, where only local IMU measurements
are observed and only the local estimation problem is solved, i.e., the orientation relative to the parent is
estimated. Information exchange between nodes is enabled by passing messages along the edges of the graph.

We show that RING can be used to plug-and-play solve a range of challenging magnetometer-free sparse or
non-sparse motion tracking problems with a single trained neural network and that it even solves previously
unsolved challenging IMTPs, such as, e.g., the tracking of a triple-hinge-joint system with only two IMUs. We
demonstrate that although RING is trained solely on simulated data, it zero-shot generalizes to experimental
data and aligns with various state-of-the-art (SOTA) results.

2 Related Works

As mentioned above, there exists a plethora of highly specialized methods in the field of IMT, but there is no
single pluripotent solution that solves a variety of IMTPs. Even the use of ML methods for IMT has so far
only led to specific solutions for single IMTPs. RNNs have been used in Weber et al. (2021) to achieve SOTA
attitude estimation, and in Bachhuber et al. (2023) to successfully track a specific sparse KC. Deep learning
has also been used for human motion capture, where the full-body pose is estimated from typically six or
more IMUs, and previous work has shown promising results (von Marcard et al., 2017; Huang et al., 2018;
Zheng et al., 2021; Yi et al., 2021; 2022; Van Wouwe et al., 2023; Puchert & Ropinski, 2023). However, while
addressing a challenging problem, these methods are limited to human motion capture with one specific sensor
setup and assume statistical patterns of human motion (von Marcard et al., 2017), or full-body biomechanical
models (Yi et al., 2022) to constrain the estimated pose.

From a methodological viewpoint, RING uses a decentralized network of message-passing RNNs with shared
parameters that are trained via supervised learning. The concept of decentralized networks, communication,
and collaboration is at the heart of multi-agent systems, and the means of communication can either be
prescribed (Panait & Luke, 2005; Wang et al., 2019) or, more recently, learned (Sukhbaatar et al., 2016;
Foerster et al., 2016; Wang et al., 2018; Pathak et al., 2019; Huang et al., 2020). In deep Reinforcement
Learning (RL), feedforward networks have been used to parameterize structured policies that pass messages
along the edges of a graph in Sukhbaatar et al. (2016); Foerster et al. (2016); Wang et al. (2018); Huang
et al. (2020), and distinct advantages of message-passing have been shown. In particular, in Huang et al.
(2020) it was investigated whether centralised control can emerge from decentralized policies, and they show
that it is possible to learn a global policy that achieves locomotion across various agent morphologies. It is
interesting to note that policies must collaborate in order to achieve a global task, e.g., locomotion, and are
motivated by a global reward. In the present work, the decentralized RNNs must collaborate by exchanging
information in order to solve the task of motion tracking, and are motivated by a decentralized loss function.
The advantages of communication and global coordination emerging in a decentralized structure were also
investigated in Sukhbaatar et al. (2016); Foerster et al. (2016). In particular, the work of Sukhbaatar et al.
(2016) uses supervised learning instead of RL for learning communication protocols.
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3 Preliminaries

3.1 Notation

We use a typical notation with scalars denoted by x, vectors by x, matrices (or higher dimensional tensors)
by X, and quaternions (or higher dimensional arrays of quaternions) by q. Additionally, note that the symbol
1 defines either the unity element of a given space, or the indicator function, such that, e.g., 10(i) is one for
i = 0 and zero else. The symbol ⊗ is used to denote the direct product of vector spaces, and additionally
denotes quaternion multiplication, see Definition B.2. Further details can be found in Appendix A.1.

3.2 An Inertial Motion Tracking Problem

We define an IMTP as the task of estimating the trajectory of the complete rotational state of an Articulated
Rigid-Body System (ARBS) from inertial data. Conceptually, an ARBS is a collection of multiple rigid (or
assumed to be rigid) bodies that are interconnected via joints that allow for relative motion between these
bodies. Let there be a singleton, inertial reference coordinate system named base (sometimes world, or Earth),
then an orientation of a body relative to the base is referred to as an absolute orientation. An orientation
of a body relative to the coordinate system of another body is referred to as a relative orientation. Then,
assuming that no additional information about the types of joints is provided, to fully describe the rotational
state of an ARBS that consists of N bodies at a single moment in time, N orientations must be specified. In
this work, we will utilize N − 1 relative orientations and one absolute orientation.

An IMTP is solved by estimating the rotational state from at most N IMUs that are connected to the bodies
of the ARBS (at most one IMU per body), and that provide 3D measurements of angular rates, specific
forces, and the magnetic field density in their local sensor coordinates. A magnetometer-free method solves
an IMTP without the use of the magnetometer, and such IMUs are referred to as 6D IMUs. In this case,
the rotational state of the ARBS can only be estimated up to an absolute heading error, that is, up to an
arbitrary rotation around the gravity (or vertical) direction, and the one absolute orientation is referred to as
the absolute attitude. This is because both accelerometer and gyroscope measurements are invariant under a
rotation around the vertical direction. Finally, note that if at least one body of the ARBS does not have an
IMU attached, then the IMTP is said to be sparse.

3.3 Graph Connectivity

The topology of an ARBS is represented by a Connectivity Graph (CG) (Featherstone, 2008; 2010), which is
an undirected graph where the nodes represent the bodies that constitute the ARBS and the edges represent
its joints.

Before the CG can be encoded, the bodies must be numbered. We adopt the broadly adopted standard
numbering scheme and notation from Featherstone (2008; 2010) which for an ARBS with N bodies proceeds
as follows:

1. The base is assigned the number 0 and it serves as the root node.

2. The remaining bodies are consecutively numbered from 1 to N , so that each body has a higher
number than its parent.

The CG may then be encoded via a parent array λ ∈ NN where λ[i] is the body number of the parent of
body i. Additionally, we define the function µ(i) to return the set of the body numbers of the children of
body i, that is

µλ(i) = {j | λ[j] = i ∀j = 1 . . . N} . (1)
Definition 3.1. The body i of an ARBS with parent array λ is said to be an outer body if it has no children
bodies, i.e., µλ(i) = {}, or if its parent is the base, i.e., λ[i] = 0; otherwise it is said to be an inner body.

As an example, consider an ARBS that is a three-segment KC (see Figure 2). There, the three bodies are
numbered increasingly from top-to-bottom, and then, for this numbering, the parent is given by λ = (0, 1, 2)⊺.
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Note that if the inner body (middle segment) is assumed to connect to the base, then the parent array is
different and given by λ = (0, 1, 1)⊺.

3.4 Minimal and Maximal Coordinates

We refer to the generalized coordinates position vector as the minimal coordinates, denoted by q. It fully
captures the kinematic state of the ARBS using a minimal amount of coordinates. The size of q depends
on the DoFs of the joints in the ARBS. In this work, we will consider ARBSs that can move freely in space
(without any constraints). Therefore, in the corresponding CG, the edges that connect to the base are 6-DoF
free joints and all the remaining edges represent single DoF.
Definition 3.2. For an ARBS with N bodies with a CG given by λ where the joints that connect to the
base are 6-DoF and 1-DoF otherwise, the size of q is given by Nq =

∑N
i 710(λ[i]) + (1− 10(λ[i])). Similarly,

the size of the velocity of minimal coordinates q̇ is given by Nq̇ =
∑N

i 610(λ[i]) + (1− 10(λ[i])).

For an ARBS with N bodies, we refer to the set of all euclidean positions and rotational states from the base
to all bodies in the system as the maximal coordinates, denoted by t ∈

(
H⊗ R3)N . The size of t depends

only on the number of bodies in the system.

3.5 Representing Orientations

We represent 3D orientations with quaternions q due to various advantages over equivalent representations
using orthogonal matrices or Euler angles (Kuipers, 2002). In particular, we use 0

1q ∈ H to denote the
absolute orientation from the base to the body one’s coordinate system. Similarly, we use 1

2q to denote the
relative orientation from body one to body two. In Appendix B, we define various utilized quaternion-related
operations.

3.6 Loss Function For Orientations

In order to train and evaluate ML methods that predict orientations (represented by quaternions), a suitable
metric function must be identified. We can compare the difference between a ground truth orientation q and
the corresponding predicted orientation q̂ by computing the angle of the smallest rotation that makes ground
truth and prediction identical. It is given by angle(q ⊗ q̂∗) where ⊗ denotes quaternion multiplication, ∗

denotes the complex conjugate, and angle extracts the rotation angle of a quaternion (see Appendix B.5).
Then, we use the following mean-squared-error function loss : q ∈ H, q̂ ∈ H → R≥0 to calculate a scalar
error between two quaternions, given by

loss(q, q̂) = angle(q ⊗ q̂∗)2. (2)

The loss function for a single orientation in eq. (2) is then used to compute the mean-squared-error for the
entire rotational state of the KC in eq. (10).

4 Method

In this section, we define the problem under consideration and the proposed method which consists of three
components:

• A virtually infinite, simulated training data set (see Section 4.2).

• A novel, online-capable neural network architecture, named RINGCell, purpose-built for state
estimation in ARBS (see Section 4.3). In contrast to typical RNNs that map a fixed number of
input features to a fixed number of output features using a centralized logic, RINGCell leverages the
graph-structure of ARBS and employs a decentralized, message-passing logic with a shared set of
parameters. This design maps a fixed number of input features per body to a fixed number of output
features per body, and it allows RINGCell to adapt to the size and topology of the ARBS without
the need for retraining.
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Figure 2: System object example (see Defini-
tion 4.2) for a three-segment KC with N = 3
bodies and parent array λ3 = (0, 1, 2)⊺.

• A powerful IMT solution, named RING, that can solve a broad range of IMTPs in the real world
(see Section 4.4). RING is obtained by training RINGCell on the simulated training data.

Finally, Section 4.5 provides a software implementation of the entire method and, more specifically, RING.
Most notably, we provide a single file that trains the here benchmarked version of RING from scratch without
requiring any files that contain real-world training data.

4.1 Problem Formulation: A Class of Inertial Motion Tracking Problems

In this work, we consider the following class of IMTPs. We consider an N -segment KC where N ∈ {1, 2, 3, 4}
with unknown physical geometry and with segments that are interconnected via hinge joints. The axes
directions of these hinge joints may be known or unknown. For each inner body at most one and for each
outer body exactly one 6D IMU, with unknown sensor-to-body position, is rigidly or nonrigidly attached to
each body. For each body and with the KC at rest, the constant sensor-to-body orientation is assumed to be
known. The initial pose of the ARBS is assumed to be unknown. Then, the task is to estimate, for every
timestep, the rotational state of the KC (consisting of N orientations) from the available IMU measurements
and the available joint axes directions. Note that the task requires providing accurate estimates at each
timestep, thus necessitating an online-capable solution focused on online, real-time processing (filtering) as
opposed to retrospective data processing (smoothing). To summarize, two IMTPs of this class of IMTPs can
differ in: 1) the number of bodies N in the KC, 2) the number of attached IMUs, 3) the number of known
joint axes directions, and 4) whether IMUs are attached rigidly or nonrigidly. A broad range of IMTPs from
this class of IMTPs are illustrated in Figure 1 within the grey ellipsoid.
Definition 4.1. The parent arrays λN of the N -segment KC where N ∈ {1, 2, 3, 4} are given by, without
loss of generality, λ1 = (0)⊺, λ2 = (0, 1)⊺, λ3 = (0, 1, 2)⊺, λ4 = (0, 1, 2, 3)⊺, respectively.

4.2 Training Data: The RCMG Algorithm

The RING network is trained on data obtained from simulated random motion of one-, two-, three-, and
four-segment KCs. The procedure that generates this training data (from only PseudoRNG) is called the
Random Chain Motion Generator (RCMG) (Bachhuber et al., 2022). The RCMG procedure (see Algorithm 1)
has three main steps that execute consecutively:

1. Randomized KC (see Section 4.2.1). A randomized KC is drawn to manipulate the downstream
simulation and achieve various forms of domain randomization that enable to bridge the sim-to-real
gap from simulation (training) to real-world (testing).

2. Random Motion Generation (see Section 4.2.2). The KC is simulated to randomly move in space
and the maximal coordinates of all bodies relative to the base are computed for every timestep.

3. Get X, Y Data (see Section 4.2.3). From the maximal coordinates of all bodies, the IMU, joint axes,
and pose data is computed, and returned as training data.

Internally, the RCMG procedure uses a system object sys (see Definition 4.2) which is the collection of
various attributes such as, e.g., a joint axes array J ∈ RN×3.
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Figure 3: Each sequence of training data is simulated using the RCMG. In the first step of the RCMG
a randomized KC is created which involves randomizing the node in the KC to which the base attaches.
Afterwards, the nodes in the graph are numbered according to Section 3.3. For example here, for λ4, the new
numbering array is n = (2, 1, 3, 4)⊺, and the new parent array λ = (0, 1, 1, 3)⊺.

Definition 4.2. We define a system object sys with N bodies as the collection of the following attributes:

• a numbering array of integers n ∈ NN which stores a permutation of the numbers going from 1 . . . N ,

• a parent array of integers λ ∈ NN ,

• a joint axes array J ∈ RN×3 that contains the hinge joint axis direction,

• a relative-to-parent position array R ∈ R2N×3 that contains the position vector of the body’s
coordinate system relative to its parent (expressed in the parent’s coordinate system). In Section 4.2.1,
it is outlined that for each of the N bodies there is a second IMU body. In the R array, the first
N values are used to specify the position vector between two non-IMU bodies (segment-to-segment
positions, physical geometry of the KC), while the last N values are used to specify the position vector
from non-IMU body to the corresponding IMU body (segment-to-body positions, IMU attachment).
This is done to independently randomize both the physical geometry and the IMU attachment,
forcing the network to learn to generalize to scenarios such as an arm robot with unknown segment
lengths, as well as to calibrate for an unknown IMU attachment,

• an array of stiffness parameters for N free joints K ∈ RN×6,

• an array of damping parameters for N free joints Γ ∈ RN×6,

• a float representing the sampling time Ts ∈ R, here always 0.01 s.

An exemplary system object is shown in Figure 2.

4.2.1 Step 1) Randomized Kinematic Chain

In order to enrich the simulated training data, several forms of domain randomization are achieved by drawing
a KC with randomized system attributes.

The first domain randomization is the randomization of all downstream forward kinematics applications, and
additionally, randomization of the absolute random translation and orientation in the generation of random
motion. This has been shown to improve the training data such that the trained network more effectively
closes the sim-to-real gap (Bachhuber et al., 2023) This is achieved by re-attaching the bases randomly and
afterwards, the nodes in the graph are re-numbered according to Section 3.3. An example of this is shown
in Figure 3. Secondly, the N randomized hinge joint axes J are drawn. Thirdly, the position array R is
randomized by drawing values from uniform ranges.

Finally, the stiffness K and damping Γ arrays are randomized. These values are used to model nonrigidly
attached IMUs by connecting additional nodes that are connected via passive spring-damper free joints. For
each node i in the CG, we add an additional IMU node with body number i + N that is a child of node i
and that is connected to node i via a passive spring-damper free joint. The stiffness K[i] and damping Γ[i]
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Figure 4: For each node i in the KCs, there exists a second IMU node (that is not counted in the body
count N of the system; here in green) with body number i + N . The IMU node is connected via a passive
spring-damper free joint to the original node in order to simulate nonrigidly-attached IMUs. There is a 25%
chance that the damping and stiffness parameters of the passive free joint are chosen such that the IMU is
effectively rigidly attached and the passive free joint is frozen.

parameters are used during the forward simulation of the KC as the parameters of the 3D spring-damper
dynamics between node i and (IMU) node i + N . For each node i, the stiffness K[i] and damping Γ[i]
parameters are randomized in a way such that, either the IMU is effectively rigidly attached, or such that the
IMU moves relative to the segment node i (which then models nonrigid attachment).

4.2.2 Step 2) Random Motion Generation

As a second step, the RCMG procedure generates random motion of the previously obtained randomized KC.
Random motion is obtained by drawing a random reference trajectory for all joints in the KC. The generation
of such randomized reference trajectories is influenced and constrained by various parameters, e.g., upper
limits on angular velocities or lower limits on the amount of motion (to avoid jittering). Additional details
on the reference trajectory generation can be found in Appendix C.1. Afterwards, a dynamical forward
simulation is performed where joint forces are computed using PD control such that the random reference is
tracked. Note that the additionally added nodes to model nonrigid IMU attachment are passive free joints
and as such they are not actuated. Finally, the trajectories of maximal coordinates of all N bodies and N

IMU bodies, given by T ∈
(
H⊗ R3)2N×T (from base to body), are computed.

4.2.3 Step 3) Get X, Y Data

In the last step, the training tuples of X, Y are computed from the trajectories of maximal coordinates and
afterwards returned. They are:

• X ∈ RT ×N×9, where X[:, i, :6] is the simulated 6D IMU data for body i as measured in its IMU body
i + N (but for each inner body, there is a 2

3 chance that the IMU data gets dropped out and replaced
by zeros), and where X[:, i, 6:] is the joint axis direction J[i] of the hinge joint between body i and
its parent λ[i] and zeros if the parent is the base (but for each body, there is a 1

2 chance that the
joint axis direction data gets dropped out and replaced by zeros), and

• Y ∈ HT ×N where Y[:, i] is the timeseries of: 1) absolute attitudes i
0q(t) if the parent λ[i] is the base;

2) relative orientations i
pq(t) from body i to its parent p = λ[i], and

where T is the number of timesteps (here, 60 s at 100 Hz, thus T = 6000), and N is the number of bodies
in the KC. IMU and joint axes data is dropped out in order to force RING to learn to solve IMTPs with
sparse IMU placement (an inner body may not have an IMU attached to it), and learn to solve IMTPs with
require sensor-to-segment calibration. Finally, multiple sequences are stacked to build a training batch. These
input and output arrays (X and Y) directly align with the provided software implementation of RING, see
Appendix 4.5.
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Algorithm 1 RCMG (Generate One Training Data Pair)
1: Input: λN

2: Output: X ∈ RT ×N×9, Y ∈ HT ×N

3: sys← randSys (λN ) {see Algorithm 2}
4: T← randMotion (sys) {see Algorithm 3}
5: X, Y← getXY(sys, λN , T) {see Algorithm 4}

RINGCellState

RINGCell

RINGCellParams

RING

RINGParams

QuaternionMLP

MessageMLP

MessageMLP

QuaternionMLP

StackedGRUCellConcatenate

StackedGRUCell

Figure 5: The architecture of the plug-and-play IMT solution RING. It consists of the RNN cell RINGCell
and a final MLP head that returns one quaternion per node in the graph. RING is trained to estimate
child-to-parent orientations from the available local IMU and joint axis data and nearest neighbour messages.
To this end, RINGCell applies a shared set of parameters on a decentralized, per-node level and passes
messages along the edges of the graph to allow for information exchange. Note that while the parameters are
shared, the hidden states are not shared across nodes. This architecture allows RING to apply a single set of
parameters across a broad range of IMTPs, which may vary in aspects such as the number of segments, and
it ultimately enables RING’s remarkable pluripotency.
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4.3 The Architecture of RING

RING is based on a decentralized network of message-passing RNNs which allows for information exchange
along the edges of a graph (as given by the CG). RING can be applied to an arbitrary CG (see Section 3.3)
and it maps per-node-input to per-node-output. Most importantly, the parameters of RING are shared across
the nodes of the graph such that the number of parameters of RING does not depend on the given CG. The
hidden state, however, is not shared across the nodes. This allows for the training of a single RING network
which then solves a variety of IMTPs (see Section 4.1).

The introduction of RING stems from the requirement of acquiring a single pretrained network that can
solve different IMTPs with a varying number of inputs and outputs, e.g., estimate two orientations for a
two-segment KC, and three orientations for a three-segment KC. This is possible because on a node (or
segment) level, we can guarantee static input (at most one IMU, at most a known joint axis direction) and
output shapes (one orientation relative to parent). But the per-node-output cannot be estimated from only
the per-node-input as the orientation relative to the parent depends on the orientation state of the parent, and
orientation w.r.t. the base cannot be estimated from 6D IMU data, additionally, the segment may not have
an IMU attached. Thus, we have to allow information exchange between nodes and propose a scheme which
again gives rise to local static input and output shapes of messages. Finally, we claim that the estimation of
the entire pose in a hierarchical approach is inherently natural and provides an advantageous structural prior
to subsequent parameter learning which we explore in Section 5.4.

RING consists of a novel RNN cell, named RINGCell, and a final Multi-Layer Perceptron (MLP) head such
that the network’s per-node-output is a single unit quaternion (per timestep). Note that the network head is
independent of the RINGCell and may easily be replaced to suit different needs.

Let λ be a CG with N ∈ N nodes, let F ∈ N be the number of input features per node, let H ∈ N be the
half-hidden state dimensionality, and let M ∈ N be the dimensionality of the latent messages passed inside
the cell based on the edges in the CG. Then, let ξt-1 ∈ RN×2H be the hidden state of the RINGCell from
the previous timestep t− 1, and let Xt ∈ RN×F be the F inputs for all N nodes at time t. Then, the next
hidden state ξt is obtained by

ξt = ringCell (ξt-1, Xt, λ) ∀t (3)
with ξ0 = 0.

Internally, a RINGCell has the parameters of

• a Message-MLP-network fθ : RH → RM (three layers, single hidden layer, hidden layer size H, ReLU
activations, no final activation), and

• a Stacked-GRUCell-network gθ : R2H × R2M+F → R2H which consists of the sequence of Gated-
Recurrent-Unit(GRU)Cell, LayerNorm, GRUCell (Cho et al., 2014). Note that θ is symbolic for the
whole set of parameters of the Stacked-GRUCell-network and that it is different to the parameters of
fθ.

Note that the two GRUCells each have a hidden state dimensionality of H, thus the hidden state of the
Stacked-GRUCell-network is of dimensionality of 2H.

Then, a RINGCell has three consecutive steps, ∀i = 1 . . . N :

1. Messages Mt ∈ RN×M are computed.

Mt[i] = fθ (ξt-1[i, H:]) (4)

2. Messages are passed and latent input X̃ ∈ RN×(2M+F ) computed.

X̃[i] = concat

Mt

[
λ[i]

]
, 0 +

∑
c∈µλ(i)

Mt[c], Xt[i]

 (5)

where Mt

[
λ[i]

]
is 0 if λ[i] = 0.
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3. Hidden state is updated.
ξt[i] = gθ

(
ξt-1[i], X̃[i]

)
(6)

The architecture of RING is finished by piping the hidden state ξt through a final network head, the
Quaternion-MLP that combines

• a Layernorm, and a MLP-network hθ : RH → R4 (three layers, single hidden layer, hidden layer size
H, ReLU activations, no final activation).

The Quaternion-MLP has two consecutive steps, ∀i = 1 . . . N :

1. Unnormalized output Ỹ ∈ RN×4 is computed.

Ỹ[i] = hθ

(
layernorm (ξt[i, H:])

)
(7)

2. Normalize to allow interpretation as unit quaternions. One unit quaternion per node. Final RING
output Ŷt ∈ HN .

Ŷt[i] = Ỹ[i]√∑4
j=1 Ỹ[i, j]2

(8)

Note that the normalizing operation, due to its square-root operation, requires special care to allow for
successful backpropagation. Also note that the employed loss function, see Section 3.6, is based on a arctan
expression, which does not require any special care, in contrast to seemingly equivalent expressions to extract
the angle from a quaternion that are based on arccos.

Finally, by combining the equations (3), (7), (8) and unrolling the RNN in time, we can view the entire
RING network as a function that maps the timeseries of available input data X ∈ RT ×N×F and CG λ ∈ NN

to the timeseries of predicted output data Ŷ ∈ HT ×N , i.e.

Ŷ = ringθ (X, λ) (9)

where the parameters of RING are given by the set {fθ, gθ, hθ}. The hyperparameters of RING are H ∈ N
and M ∈ N. Note that the set of parameters of RING is influenced by the hyperparameters of RING and the
number of input features per node F , but not by the GC λ or the number of bodies. For example, a single
RING network can be used for predicting the orientations of both two-segment or three-segment KCs even
though the number of bodies and, consequently, the dimensionality of input and output arrays is different,
e.g., X ∈ RT ×2×F compared to X ∈ RT ×3×F .

4.4 RING: A Single IMT Solution to a variety of IMTPs

In this section, we use the simulated training data from Section 4.2 to train a network based on the RINGCell
architecture (see Section 4.3). The trained network is then called RING and, with a single set of parameters,
RING shows its pluripotency in a range of experimental scenarios, from simple single-joint tracking to complex
four-segment KCs, without reliance on magnetometers as will be shown in Section 5.

For each of the four KCs λN (see Definition 4.1), we use the RCMG (see Algorithm 1) to simulate 512
input-output pairs and stack them to create a single batch of training data. This batch of training data is
used to update the parameters of the RING network (see Section 4.3), with H = 400 and M = 200 (total
parameter count: 2 337 404) by minimizing the mean-squared-(orientation-estimation)-error, i.e.,

min
θ

1
10T

∑
N∈{1,2,3,4}

E
X,Y∼RCMG(λN )

T∑
t=1

N∑
i=1

loss (Y, ring(X, λN )) [t, i] (10)

where RCMG is given by Algorithm 1, loss is given by eq. (2), ring is given by eq. (9), and where the
expectation E is estimated using 512 draws.
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1-DoF

Segment

rigidly/nonrigidly 
attached IMUs

Figure 6: Experimental five-segment KC with ten IMUs (orange boxes) and 20 OMC markers (grey spheres).
It uses a single spherical joint followed by three hinge joints, each oriented along the x, y, and z axes,
respectively. Each segment of the KC was equipped with two IMUs: one firmly attached to the segment and
another affixed nonrigidly using foam padding. The experimental KC is moved in space, and the inertial and
optical data is recorded to validate RING and compare it to SOTA methods across a broad range of IMTPs.

We use the LAMB optimizer (You et al., 2020) combined with global (threshold = 0.1) and adaptive (threshold
= 0.2) gradient clipping, a cosine decaying learning rate (initial learning rate = 1 × 10−3, and Truncated
Backpropagation Through Time (TBTT). Borrowing the notation from Williams & Peng (1990), we utilize
TBTT(10 s, 10 s), i.e., the gradients are stopped and applied after 10 s instead of the total length of 60 s.
This results in every batch generation (or episode) corresponding to six parameter updates. We train for
5000 episodes using a single node with eight A40 GPUs (each 48 gigabytes of VRAM). Due to the large
amounts of training data, overfitting is seemingly impossible and any form of early stopping did not prove to
be required. This has been also confirmed with a separate validation dataset. Training has been stopped
after 5000 episodes as the loss has no longer improved.

For practical applications, the inference time and computational requirements of RING are more important
than its training requirements. To this end, a theoretical and empirical analysis of the time complexity of
RING is conducted in Appendix D, and the findings are summarized here. The theoretical time complexity to
advance the prediction of RING by one timestep is O (N ×H × (H + M + F )). This translates in practice
to an efficient NN that enables real-world online application even on low-end hardware. For example, on
a single-core Intel Xeon at 2 GHz, RING can comfortably enable motion tracking of a four-segment KC at
more than 500 Hz, which is well above typical IMU sampling rates that range from 90 to 286 Hz (Laidig et al.,
2021).

4.5 Openly-available Code and Data

The code and experimental validation data is hosted at https://github.com/simon-bachhuber/ring_
supplementary_material and the repository contains implementations of the RCMG, RINGCell, and RING
as decoupled components. Additionally, it includes the code of SOTA methods and validation data to create
the experimental validation results (AMAEs and RMAEs) of RING and the SOTA methods that are discussed
in Section 5. Finally, we also provide files to retrain RING from scratch, without requiring any real-world
training data files. The software, most notably, uses the JAX and Haiku frameworks (Bradbury et al., 2018;
Hennigan et al., 2020). The ease-of-use of RING is demonstrated through a code example in the Appendix E.

5 Experimental Validation of RING

In this section, we evaluate the accuracy of RING with one common set of pretrained parameters (see
Section 4.4) across a broad range of experimental IMTPs (see Section 4.1). In general, RING shows
remarkable pluripotency in zero-shot generalization to real-world experiments across diverse IMTPs. This
underscores its broad applicability.

In Section 5.1, we describe the experimental setup used to evaluate RING on real-world data. We show
that RING successfully solves multiple previously solved challenging IMTPs and competes with the current
SOTA methods (Section 5.2). Impressively, RING further achieves accurate tracking in even more challenging
IMTPs, including two IMTPs that have not been solved before (Section 5.3).
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5.1 Experimental Setup and Evaluation Metric

Experimental evaluation is conducted on a five-segment KC which is shown in Figure 6. The KC is constructed
by a concatenation of a single spherical joint followed by three hinge joints, each oriented along the x, y, and
z axes, respectively. Each segment of the KC was equipped with two IMUs (MTw Awinda, Xsens, Enschede,
the Netherlands): one firmly attached to the segment and another affixed nonrigidly using foam padding.
This foam-attachment of IMU was conducted to investigate the reduction of motion artifacts. The left panel
in Figure 6 shows a close-up of one segment of the KC with one exemplary nonrigidly attached IMU. Each
segment is equipped with at least three noncollinearly placed reflective markers that are used to obtain
ground truth orientations from a twelve camera Optical Motion Capture (OMC) system (OptiTrack Prime
x22, NaturalPoint Inc., Corvalis, USA).

Two distinct trials were conducted, involving random movements of the five-segment KC, by introducing
manual alterations of the KC pose by two experienced scientists. The first trial, spanning a duration of 66 s,
featured a diverse range of motions, extending from very slow to notably rapid movements. Moreover, the
second trial, with a length of 68 s, not only encompassed a variety of motions but also incorporated random
intervals of complete stillness, wherein the KC remained motionless.

All trials were preprocessed in the following way: NaN values were removed, an offline time-synchronization
was employed via cross-correlation between measured (IMUs) and approximated angular velocities (OMC),
and all collected data was resampled to a uniform sampling rate of 100 Hz. Additionally, we correct for
any small misalignment between the rigidly attached IMUs’ local coordinate systems and the corresponding
segments’ body coordinate systems as spanned by the OMC markers. Simultaneously, we align the OMC’s
reference coordinate system with the earth reference coordinate system (the base), as observed by the IMUs.
For more comprehensive details regarding these preprocessing steps and the software implementations utilized,
readers are referred to the study Laidig et al. (2021).

The rich experimental data obtained from the five-segment KC enables us to perform evaluations on subsets of
data and the KC, which represent a variety of different IMTPs. For example, for validation of a one-segment
KC, we use the recorded data of all five segments of the five-segment KC independently for evaluation,
which effectively increases the amount of validation data by a factor of five. Similarly, for validation of a
two-segment KC with a hinge joint, we use three different sub-KCs with a joint axis direction along the x,
y, and z axes (the two-segment sub-KC of segment one and segment two is excluded due to its spherical
joint). Similarly, for a three-segment KC with double hinge joints, we use two different sub-KCs, and for a
four-segment KC with triple hinge joint we use the sub-KC of segment two to five.

Assessing KC pose estimation performance of RING in comparison with existing SOTA and thus solving
the IMTP under consideration, requires the usage of a suitable evaluation metric. As already discussed in
Section 3.6, the expression angle(q ⊗ q̂∗) can be used to compare the difference between a ground truth
orientation q and the corresponding predicted orientation q̂. Thus, in order to compare the timeseries of
ground truth Y ∈ HT ×N and predicted pose Ŷ ∈ HT ×N of an N -segment KC with GC λN , we compute
the Attitude-Mean-Absolute-(orientation)-Error (AMAE) and Relative-Mean-Absolute-(orientation)-Error
(RMAE) which are given by

AMAE
(

Y, Ŷ
)

= 1
T

T∑
t=500

∣∣∣angle
(

zeroHead (Y[t, 1])⊗ zeroHead
(

Ŷ[t, 1]
)∗)∣∣∣ (11)

RMAE
(

Y, Ŷ
)

= 1
TN

T∑
t=500

N∑
i=2

∣∣∣angle
(

Y[t, i]⊗ Ŷ[t, i]∗
)∣∣∣ (12)

where |.| denotes the absolute value and zeroHead removes the heading component (see Definition B.7). Note
that initial 5 s (equaling to an index of 500 at 100 Hertz) of each timeseries were deliberately excluded from
the AMAE and RMAE calculations. This decision was made to ensure that the recorded errors accurately
reflected the method’s performance after convergence.

From Section 3.2, recall that magnetometer-free IMT estimates one absolute attitude, and N − 1 relative
orientations. This difference is captured by the two metrices AMAE and RMAE. Mathematically, AMAE
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reports zero angle error if the ground truth orientation and estimated orientation are equal up to an arbitrary
heading difference. Whereas, RMAE reports zero angle error if and only if both orientations are exactly
identical. The implications are that a low AMAE indicates that the inclination of the system is correctly
estimated but the entire system might still be rotated with an arbitrary yaw angle. A low RMAE means that
the entire internal pose of the system is accurately estimated.

5.2 RING Unifies Prior Work

5.2.1 Attitude Estimation

Attitude estimation in real-world environments using inertial sensors is a vital prerequisite for a wide range
of applications, including tracking human movement and enabling autonomy in air and land vehicles. The
attitude estimation problem is defined as estimating the orientation of an object with respect to the horizontal
plane with a single sensor (Weber et al., 2021).

The widely employed and long-standing methods from Madgwick (2010); Mahony et al. (2008); Seel &
Ruppin (2017) have recently been outperformed with SOTA approaches by Weber et al. (2021); Laidig & Seel
(2023). Table 1 shows that RING aligns with SOTA performance in attitude estimation, as indicated by the
experimental AMAEs. More specifically, the AMAE of the attitude for Madgwick (2010) is (2.25± 0.81)◦, for
Laidig & Seel (2023) is (1.61± 1.04)◦, for Weber et al. (2021) is (2.06± 1.03)◦, for Mahony et al. (2008) is
(2.09± 0.87)◦, for Seel & Ruppin (2017) is (2.56± 0.93)◦, and for RING is (2.13± 0.91)◦.

5.2.2 Magnetometer-free Tracking of 1-DoF Joint

IMT of connected segments without relying on magnetometers is desirable for numerous applications where
the magnetic field is typically disturbed, including control of industrial robotic manipulators, interconnected
drones in automated warehouses, and human motion analysis in hospital environments.

Here, we consider the IMTP of tracking the relative motion between two segments from two 6D IMUs,
assuming a single hinge joint with a known axis direction connects both segments.

Overcoming the use of magnetometers is typically achieved by combining SOTA approaches for attitude
estimation and utilizing joint-specific constraints that exploit knowledge of the hinge joint axis direction
(Laidig et al., 2017; Lehmann et al., 2020). Additionally, a magnetometer-reliant method uses 9D VQF (Laidig
& Seel, 2023) for both IMUs independently and does not exploit any kinematic constraint between the two
body parts. The RMAEs are reported in Table 1, and they are: for the VQF-based baseline (19.36± 8.02)◦,
for Lehmann et al. (2020) (4.15± 2.05)◦, for Laidig et al. (2017) (3.32± 2.12)◦, and for RING (3.52± 1.00)◦.
This shows that RING aligns with the SOTA methods, which are already a non-trivial combination of two
separate methods which, in contrast to applying RING, requires expert knowledge.

5.2.3 Magnetometer-free Tracking of 1-DoF Joint with Unknown Joint Axis Direction

The IMTP of Section 5.2.2 can be made more challenging by assuming that the hinge joint axis direction
is not known. Then, it can first be estimated from the IMU data, and then subsequently a method that
assumes a known joint axis direction can be applied.

A SOTA method for hinge joint axis direction estimation is given by Olsson et al. (2020). RING out-of-the-box
supports an unknown hinge joint axis direction by its versatility to drop out the respective node input and
replacing it with zeros.

The experimental RMAEs are given in Table 1; combining Olsson et al. (2020) with Lehmann et al. (2020)
results in (4.06±2.23)◦, and with Laidig et al. (2017) results in (3.18±2.05)◦, and RING achieves (3.92±1.40)◦.
This shows that RING aligns with SOTA performance, which comprises three distinct methods.

5.2.4 Three-Segment Sparse IMT

Only few recent works have achieved the combination of sparse and magnetometer-free IMT. One such
challenging IMTP is, the tracking of all relative segment orientations of a three-segment KC, with double

14



Published in Transactions on Machine Learning Research (10/2024)

hinge joints and known hinge joint axes directions, by using only two IMUs placed on the outer segments.
The SOTA method for this IMTP is given by Bachhuber et al. (2023). The absolute attitude can be easily
tracked using any of the methods from Section 5.2.1.

As shown in Table 1, the experimental RMAE using Bachhuber et al. (2023) is (5.60 ± 2.35)◦, and using
RING the RMAE is reduced to (4.14± 0.53)◦ and, consequently, RING outperforms the SOTA in this IMTP.

5.3 RING Goes Beyond the SOTA

5.3.1 Motion Artifact Reduction

The efficacy of all SOTA IMT methods heavily rely on a rigid sensor-to-body attachment. In many practical
scenarios, such as human motion analysis, this assumption is rapidly violated, resulting in strongly degraded
estimation accuracies, attributed to a model-reality mismatch.

Here, we consider the IMTP of Section 5.2.2, however here, the IMUs are not rigidly attached to the two
segments, while the estimation target remains the relative orientation between the two segments (and not
between the coordinate systems of the two IMUs), and the absolute attitude of one of the segments.

Currently, there exist no method that does not make the assumption of rigid IMU attachment. Still, the
methods from Section 5.2.1 can be applied to estimate the absolute attitude, and we use the most accurate
estimator VQF (Laidig & Seel, 2023) for comparison purposes. The methods from Section 5.2.2 are applied to
estimate the relative orientation. To compensate for the violation of the rigid-IMU-attachment assumption,
we additionally apply an intuitive low-pass filter (LPF) step to the estimated absolute attitude and relative
orientation for each baseline method to suppress unwanted high frequency artifacts. The cutoff frequency
was grid searched and we report only the best result for each baseline. Alternatively, the use of the LPF on
the estimated orientations prior to computing the relative orientation did not yield better performance.

In Table 1, column 5.3.1A reports the experimental AMAE in the attitude estimate, and demonstrates
RING’s superior performance of (7.59 ± 2.85)◦ over the combination of VQF+LPF with an AMAE of
(9.19 ± 2.31)◦. Similarly, column 5.3.1B reports experimental RMAEs, they are: Lehmann et al. (2020)
achieves (8.00± 2.78)◦, Laidig et al. (2017) achieves (7.00± 1.57)◦, and RING achieves (5.56± 2.33)◦. This
shows that RING outperforms the SOTA methods. Note that the reduced AMAE shows that RING has
learned to fuse the information of the second segment’s IMU into the attitude estimation of the first segment.

5.3.2 Three-Segment Sparse IMT with Unknown Joint Axes Directions

The IMTP considered in Section 5.2.4 can be made even more challenging by not assuming known joint axes
directions.

To the best of the authors’ knowledge, there currently exists no method that is applicable in such a challenging
IMTP. RING can solve this IMTP with only a modest increase in error (Table 1), given the increased
complexity of the task. Note that the direction of the joint axis cannot be estimated using Olsson et al.
(2020) such that the method from Section 5.2.4 may be applied, as Olsson et al. (2020) does not allow for a
sparse sensor setup which inherently requires a pluripotent approach such as RING. We report a RMAE
value of (5.37± 0.71)◦ for RING in this challenging IMTP.

5.3.3 Four-Segment Sparse IMT: 3-DoFs between IMUs

Increasing sensor sparsity will naturally make an IMTP problem more complex. A KC configuration with
four segments and only two 6D IMUs results in three DoFs (three consecutive hinge joints) between the
two outer-segment 6D IMUs and it represents the limit of accurate sparse IMT. Despite the complexity, the
estimation target remains to capture all three relative orientations.

To the best of the authors’ knowledge, there currently is no method that is applicable in such a challenging
IMTP. RING can solve this problem formulation sufficiently well. When assuming known joint axes directions
for the three hinge joints, RING achieves a RMAE of (6.78± 1.41)◦. An exemplary trial is shown in Figure 7.
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Table 1: Motion tracking accuracy (in degrees) of RING compared to various SOTA methods across a variety
of IMTPs. While previous methods are problem-specific and Not Applicable (NA) to many IMTPs, RING is
the only method that accurately solves all problems. All columns report the RMAE, see eq. (12), as metric,
except for the columns 5.2.1 and 5.3.1A which report AMAE as metric, see eq. (11).

IMTPs 5.2.1 5.2.2 5.2.3 5.2.4 5.3.1a 5.3.1b 5.3.2 5.3.3

Method 0

00
3 3

3
4

3

(1) 2.06± 1.03 NA NA NA ≥(5) NA NA NA
(2) 2.25± 0.81 ≥(5) ≥(5) NA ≥(5) NA NA NA
(3) 2.09± 0.87 ≥(5) ≥(5) NA ≥(5) NA NA NA
(4) 2.56± 0.93 ≥(5) ≥(5) NA ≥(5) NA NA NA
(5) 1.61± 1.04 → 19.3± 8.02 NA 9.20± 2.31 24.9± 17.6 NA NA
(5)+(6) ↑ 3.32± 2.12 NA NA ↑ 7.00± 1.57 NA NA
(5)+(7) ↑ 4.15± 2.05 NA NA ↑ 8.00± 2.78 NA NA
(5)+(6)+(8) ↑ → 3.18± 2.05 NA ↑ 8.50± 2.60 NA NA
(5)+(7)+(8) ↑ → 4.06± 2.23 NA ↑ 7.90± 2.48 NA NA
(9) NA NA NA 5.60± 2.35 NA NA NA NA
RING 2.13± 0.91 3.52± 1.00 3.92± 1.40 4.14± 0.53 7.59± 2.85 5.56± 2.33 5.37± 0.71 6.78± 1.41

Methods: Weber et al. (2021)(1), Madgwick (2010)(2), Mahony et al. (2008)(3), Seel & Ruppin (2017)(4), Laidig & Seel (2023)(5), Laidig et al. (2017)(6),
Lehmann et al. (2020)(7),Olsson et al. (2020)(8), Bachhuber et al. (2023)(9)
≥ (i) refers to the AMAE or RMAE of being expected to be larger or equal than for method (i)
↑ or → indicate that the AMAE or RMAE is equal to the AMAE or RMAE of the cell above or to the cell to the right

t=0s
Render Optical Motion 
Capture

Real-world Experiment

Render RING's prediction

t=40s t=50s

Figure 7: Exemplary frames that showcase RING’s performance for the IMTP that involves a four-segment
KC with sparse IMU attachments and known joint axes directions (see Section 5.3.3). It is a remarkable first
that RING can accurately estimate the four orientations (one absolute and three relative orientations) from
only two magnetometer-free IMUs. A video of the trial is available here.

When assuming unknown joint axes directions, RING achieves (13.66±3.07)◦. This shows that with unknown
joint axes directions, this IMTP pushes the limits of observability (Bachhuber et al., 2022).

5.4 The Decentralized Approach of RING Provides an Advantageous Structural Prior

In this section, we showcase a second advantage of the decentralized approach of RING over a centralized
approach that is typically employed, e.g., by stacking multiple LSTM- or GRU-Cells. First, recall that RING
is based on a decentralized network of message-passing RNNs which allows for the training of a single set of
parameters despite a varying number of bodies in the KC and, while the latter aspect is the core motivation
behind this architecture it is, interestingly, not the sole motivation behind the decentralized approach. The
second motivation is that the estimation of the entire pose in RING’s decentralized approach provides an
advantageous structural prior compared to an RNN that utilizes a centralized approach. For this purpose, we
compare RING to the RNN-based Observer (RNNO), a deep GRU network with intermediate Layernorm
layers, as it was proposed in Bachhuber et al. (2023). RNNO maps all available input data to the entire
targeted pose data and does not utilize the specific graph structure of the IMTP. RNNO has been proposed
as the solution of a specific IMTP (see Section 5.2.4) and, for this IMTP, both RING and RNNO achieve
similar performance. However, this is not the case if the IMTP becomes vastly more complex. Consider, e.g.,
the IMTP of Section 5.3.3, which is arguably the most challenging IMTP under consideration in this work.
We have trained RNNO on the subset of training data of RING that corresponds to this IMTP. Despite
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Table 2: Motion tracking accuracy of RING solving the IMTP defined in Section 5.2.3 on external datasets.
RING provides consistently low errors demonstrating robustness across different IMU hardware.

Dataset IMU Hardware T[s] Native Rate [Hz] RMAE [◦]
Ours Xsens MTw Awinda 402 40 3.92± 1.40
RepoIMU (1) microIMU (2) 390 90 3.44± 0.06
OpenAXES (3) Bosch BMI160 + Analog Devices ADXL355 227 ≈ 125 2.52± 0.29

Szczęsna et al. (2016) (1), Jędrasiak et al. (2013) (2), Webering et al. (2023) (3)

varying several hyperparameters, the best reported RMAE of RNNO is (18.72± 5.12)◦. This is significantly
higher compared to RING’s RMAE of (6.78± 1.41)◦, even though RING is maintaining its applicability to a
broad range of IMTPs, and is not purpose-trained for a single IMTP. This showcases that the decentralized
approach of RING provides an advantage even if only the solution of a single, specific IMTP is required.

5.5 RING’s Robustness to Different IMUs

IMUs in general, and especially across vendors, differ in properties like noise density and bias offset. RNN-
based inertial sensor fusion has been demonstrated to generalize across different sensor hardware (Weber
et al., 2021). Nonetheless, to ensure broad real-world applicability, we investigate RING’s robustness to
different IMU hardware. First, we analyze how RING’s performance scales as noise and bias properties are
incrementally increased. Then, we evaluate RING on openly-available, real-world datasets that use IMUs
from different vendors.

To simulate reasonable noise density and bias offset ranges, we constructed a worst-case IMU by combining
the worst properties of various IMU manufacturers, as summarized in Table 3. Then, those worst-case noise
and bias values are incrementally (in seven equidistant steps) increased from 0 to 120%, and a corresponding
amount of simulated noise and bias is added to our real-world IMU data (see Section 5.1), which yields seven
modified datasets. RING and all SOTA methods are validated on the modified dataset, and this procedure is
repeated using ten different seeds. The AMAEs and RMAEs of all methods are plotted for all IMTPs as a
function of the seven steps in Figure 9. The figure shows that, whilst the performance of all methods (as
expected) slightly worsens as noise and bias are increased, RING maintains accuracy comparable to SOTA
methods in all IMTPs and, especially in two-segment KC tracking, substantially outperforms them.

The RepoIMU dataset (Szczęsna et al., 2016) contains real-world IMU and ground truth data from passive
motions of a swinging pendulum. It uses non-commercial micro IMUs (Jędrasiak et al., 2013) with a focus on
low cost and small size over accuracy. The OpenAXES Robot Dataset contains data from motions of a robot
arm drawing different shapes at different speeds. IMUs are attached to each segment, and the ground truth
is known from the robot’s encoders. Table 2 reports RING’s performance for both external datasets.

6 Discussion

We have shown that a single RNN, named RING, can accurately solve a broad range of IMTPs even if
two IMTPs do not have same input-output dimensionality. This pluripotent behavior originates from a
decentralized architecture that provides an advantageous structural prior compared to the more typical
centralized approach which, in contrast to RING, has the additional limitation that it can only be utilized
if the solution of a single IMTP is sufficient. In summary, for the set of IMTPs under consideration (see
Section 4.1), we have shown that RING can enable accurate IMT for one-, two-, and three-segment KCs as
long as the IMUs are rigidly attached. Most notably, this includes an IMTP that is sparse, magnetometer-free,
and requires sensor-to-segment calibration. If IMUs are nonrigidly attached, then RING is shown to provide
accurate orientation estimates for a two-segment KC. RING can achieve accurate IMT for a four-segment
KC, provided that the IMUs are rigidly attached and sensor-to-segment calibration is not required. It is a
remarkable first, that RING can track the pose of the four-segment KC (which requires in total four distinct
orientations) using only two IMUs. Note that RING does not require problem specific priors, although their
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introduction, i.e., a known joint axes direction, or an additionally attached IMU is straightforwardly possible
as additional input data to improve the motion tracking accuracy even further. This can be seen in Table 1
where, e.g., for a three-segment KC, providing joint axes directions decreases the mean RMAE from 5.37◦

(Section 5.3.2) to 4.14 (Section 5.2.4).

7 Conclusion

In the presented work, we combined ideas from the domain of multi-agent systems with RNNs to propose
an architecture based on a decentralized network of message-passing, parameter-sharing RNNs. We have
successfully exploited this combination for the analysis of structural sequential data and solved a challenging
state estimation problem, which is IMT of KCs, by letting the decentralized network map local IMU
measurements and nearest-neighbour messages to local orientations. In particular, we introduced RING,
a pluripotent IMT solution that, unlike all previous, problem-specific approaches, enables plug-and-play
non-expert use. RING outperforms a range of problem-specific SOTA solutions and even generalizes to
previously unsolved scenarios, including the challenging combination of magnetometer-free and sparse sensing
with unknown sensor-to-segment parameters. Remarkably, RING demonstrates the ability to zero-shot
generalize to experimental scenarios, despite being trained solely on simulated data. For example, RING can,
for the first time, accurately track a real-world four-segment kinematic chain (which requires estimating four
orientations) using only two magnetometer-free IMUs.

RING’s pluripotency greatly simplifies the application of IMT by eliminating the need for expert knowledge
to identify, select, and fine-tune problem-specific methods. This is expected to not only make IMT more
powerful and less restrictive in established domains but also to facilitate the accessibility of IMT technology
by non-expert users and broadens its applicability to previously untapped domains.
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A Preliminaries

A.1 Notation

• Scalars are lowercase or uppercase, italic, non-bold, e.g., x ∈ R, or, e.g., N ∈ N.

• (Column) vectors are lowercase, italic, bold, e.g., x ∈ R3, and, e.g., x = (1, 2, 3)⊺.

• Matrices (or higher) are uppercase, upright, bold, e.g., X and X ∈ R3×4.

• Individual quaternions are denoted with q ∈ H. One-dimensional arrays of quaternions with q, e.g.,
q ∈ H5. Two dimensional arrays of quaternions with q, e.g., q ∈ H5×5.

• (Programming) functions and structures are written in typewriter typestyle, e.g., sys.

• The equal symbol = is overloaded and used for definitions, assignments, and comparison, and the
context defines the current meaning.

• The symbol 0 defines an arbitrarily large array of zeros that is automatically broadcasted to the
required dimensionality.

• The symbol 1 defines either the unity element of a given space, or the indicator function, such that,
e.g., 10(i) is one for i = 0 and zero else.

• The symbol ⊗ is used to denote the direct product of vector spaces, and additionally denotes
quaternion multiplication, see Definition B.2.

A.2 Array Indexing and Slicing

Vectors and matrices are array-like objects that can be indexed and sliced dynamically. Indexing starts with
1 and slicing is inclusive on both sides. For example, let X ∈ R3×4, then X[1]∈ R4, or X[1:2]∈ R2×4.

Additionally, we define the following auto-completion rules by example, such that X[:2] is equivalent to X[1:2],
and X[2:] is equivalent to X[2:3], and X[:] is equivalent to X[1:3]. Finally, multiple dimensions can be indexed
or sliced simultaneously and are separated by a comma, e.g., X[:, 3:]∈ R3×2.

B Quaternion Algebra

Definition B.1. We use H to denote the space of all unit quaternions, and we denote a unit quaternion
with q = qw + qxi + qyj + qzk.
Definition B.2. Let q1, q2 ∈ H be two unit quaternions, then we use ⊗ to denote quaternion multiplication
of the two unit quaternions, that is

q1 ⊗ q2 = (q1wq2w − q1xq2x − q1yq2y − q1zq2z) + (q1wq2x + q1xq2w + q1yq2z − q1zq2y)i
+ (q1wq2y − q1xq2z + q1yq2w + q1zq2x)j + (q1wq2z + q1xq2y − q1yq2x + q1zq2w)k

Note that the space of unit quaternions H in combination with quaternion multiplication ⊗ forms a closed
group, i.e., (q1 ⊗ q2) ∈ H ∀q1, q2.
Definition B.3. The inverse of a quaternion q−1 is given by the complex conjugate denoted by q∗.
Definition B.4. The quaternion that corresponds to a certain rotation around an axis j = (jx, jy, jz)⊺ ∈ R3

by an angle α ∈ R is given by q = quat(j, α) = cos( α
2 ) + (jx sin( α

2 ))i + (jy sin( α
2 ))j + (jz sin( α

2 ))k.
Definition B.5. Extracting the angle α from a given quaternion q (the inverse operation of B.4) can be

done using angle(q) = 2 arctan
(√

q2
x+q2

y+q2
z

qw

)
.
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Definition B.6. We define the projection project of a quaternion q onto a (primary) axis J as the
decomposition into two quaternions, the primary rotation qp and the residual rotation qr, such that
q = qr ⊗ qp while the angle of the residual rotation is minimized. This can be done with

1. αp ← arctan
(

jxqx+jyqy+jzqz

qw

)
2. qp ← quat(j, αp)

3. qr ← q ⊗ q∗
p

Definition B.7. We define the function zeroHead as the function that maps a quaternion q to the quaternion
qr with zero heading component and returns qr. It can be obtained via

1. qp, qr ← project (q, (0, 0, 1)⊺)

where project is given in Definition B.6.
Definition B.8. The function randQuat that returns a random quaternion, uniform on the sphere, can be
obtained by drawing i.i.d. four numbers from a normal distribution, interpreting them as the components
qw, qx, qy, qz of a quaternion, and then normalizing the quaternion to obtain a unit quaternion.
Definition B.9. The function rotate(q, r) applies a quaternion q to a vector r ∈ R3. If the quaternion is
interpreted as 0

1q (from 0 to 1) and the vector is expressed using the unit-vectors of coordinate system 0,
then the function rotate returns the same vector but using the unit-vectors of coordinate system 1. Let
r = (rx, ry, rz)⊺, then the rotate(q, r) function is given by (q ⊗ (0, rx, ry, rz)⊺ ⊗ q∗) [1:].

C Training Data: The RCMG Algorithm

Algorithm 2 randSys (RCMG First Step)
1: Input: λN

2: Output: sys
3: sys← initSys(λN ) {allocate empty structure}
4: sys← randBase(sys, λN ) {see Definition C.1}
5: for i = 1 to N do
6: sys.J[i] = rotate(randQuat(), êx) {random hinge joint axis direction; unused if sys.λ[i] = 0}
7: for d = 1 to 3 do
8: sys.R[i, d] = randSegmentToSegment(d) {see Definition C.2}
9: sys.R[i + N, d] = randSensorToSegment(d) {see Definition C.2}

10: end for
11: {IMU of node 1 of the standard system is always rigidly attached, as there is no second IMU whose

measurements may be fused to effectively eliminate motion due to the nonrigid attachment.}
12: if sys.n[1] = i or randBernoulli(0.25) then
13: k← getRigidStif() {see Definition C.4}
14: γ ← getRigidDamp() {see Definition C.4}
15: else
16: k← randNonRigidStif() {see Definition C.5}
17: γ ← randNonRigidDamp() {see Definition C.5}
18: end if
19: sys.K[i] = k
20: sys.Γ[i] = k · γ {element-wise multiplication}
21: end for
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Algorithm 3 randMotion (RCMG Second Step)
1: Input: sys, (motionConfig) {motionConfig object is used only by randFreeTraj and randHingTraj

and it influences and constraints the random motion (see Appendix C.1)}
2: Output: T ∈

(
H⊗ R3)2N×T

3: T ← int
(

60
sys.Ts

)
{# timesteps; duration of training sequences is 60 seconds}

4: Q = 0 {timeseries of minimal coordinates Q ∈ RNq×T of system without IMU bodies; see Definition 3.2}
5: a← 0
6: for i = 1 to N do
7: if sys.λ[i] = 0 then
8: b← a + 7
9: Q[a:b] = randFreeTraj (motionConfig, T ) {see Definition C.6}

10: else
11: b← a + 1
12: Q[a:b] = randHingTraj (motionConfig, T ) {see Definition C.6}
13: end if
14: a← b
15: end for
16: Q̃ = 0 {timeseries of minimal coordinates Q̃ ∈ RT ×(Nq+7N) of system with IMU bodies; see Definition 3.2}
17: q̃ ← 0
18: ˙̃q ← 0 { ˙̃q ∈ RNq̇+6N ; see Definition 3.2}
19: for t = 1 to T do
20: τ ← PDControl (sys, Q[:, t], q̃[:Nq]) {see Definition C.7}
21: τ ← concat

(
τ , 0 ∈ R6N

)⊺ {N IMUs’ passive free joints}
22: q̃, ˙̃q ← forDyn

(
sys, q̃, ˙̃q, τ

)
{see Definition C.8}

23: Q̃[t] = q̃
24: end for
25: T← forKin

(
sys, Q̃

)
{see Definition C.8}
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Algorithm 4 getXY (RCMG Third Step)
1: Input: sys, λN , T ∈

(
H⊗ R3)2N×T

2: Output: X ∈ RN×9×T , Y ∈ HN×T

3: X← 0
4: Y← 0
5: for i = 1 to N do
6: p← λN [i]
7: ĩ← sys.n[i]
8: p̃← 0
9: if p ̸= 0 then

10: p̃← sys.n[p]
11: end if
12: Oi ← isOuter(i, sys.λ) {true if body i is an outer body; see Definition 3.1}
13: if Oi or randBernoulli(0.33) {inner IMU data might not be made available} then
14: j ← ĩ + N {body number IMU node}
15: X[i, :6] = simIMU (T[j], sys.Ts) {see Definition C.9}
16: end if
17: if p ̸= 0 and randBernoulli(0.5) {for hinge joints, joint axis might not be made available} then
18: X[i, 7:] = sys.J[̃i]
19: end if
20: 0

pq← 1

21: if p̃ ̸= 0 then
22: 0

pq← T[p̃, :4]
23: end if
24: 0

iq← T[̃i, :4]
25: i

pq ← 0
pq ⊗ 0

iq∗ {note that the expression 0
pq∗ ⊗ 0

iq can not be used instead of 0
pq ⊗ 0

iq∗, as it can
dramatically reduce the network’s ability to learn. The reason is that in the expression 0

pq ⊗ 0
iq∗ the

joint axis direction is expressed in the (more meaningful) local coordinate system and not in the base’s
coordinate system.}

26: if p̃ = 0 then
27: i

pq← zeroHead
(

i
pq

)
{see Definition B.7}

28: end if
29: Y[i] = i

pq
30: end for
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               RCMG
Simulates Random Motion
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Random 6DoF
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Figure 8: RCMG generates random motion by drawing random trajectories of the minimal coordinates
of the system. Exemplary random trajectories of the hinge joint’s minimal coordinates are shown for the
four different motionConfigs (see Appendix C.1). They are drawn using the function randHingeTraj, see
Definition C.6. RCMG also draws the random trajectory of the minimal coordinates of the free joint, but
they are not shown here for simplicity.

C.1 The motionConfig Object

In the second step of the RCMG (see Section 4.2.2), random motion of the KC is simulated and, subsequently,
training data is generated. Random motion of the KC is obtained by using PD control during a dynamical
forward simulation such that the minimal coordinates of the KC track a randomly drawn set of reference
trajectories for the minimal coordinates. The functions randFreeTraj and randHingTraj (see Definition C.6)
are used to draw the minimal coordinates reference trajectories in Algorithm 3. Furthermore, the type of
motion generated by these functions can be manipulated with a motionConfig object which defines various
parameters, e.g., upper limits on angular velocities or lower limits on the amount of motion. For an exhaustive
list of parameters, the reader is referred to the software implementation (see Appendix 4.5).

In this work, we use in total four different motionConfigs to generate training data. For each generated
sequence, we randomly and uniformly draw from these four. The four motionConfigs are used to ensure
that a wide range of different motion patterns are covered in the training data. Exemplary trajectories of the
hinge joints’ minimal coordinates are shown in Figure 8.

C.2 Support Functions used in Algorithms 2/3/4

In the following, the functions used in Algorithms 2/3/4 will be discussed. And while no pseudo-code is
provided for these support functions, it should be noted that the majority of these functions should be
understandable despite a textual description only. Additionally, the reader may always refer to the software
implementation for additional details (see Appendix 4.5).

Definition C.1. The function randBase(sys, λN ) randomly re-attaches the base of the system sys and
afterwards the nodes in the graph are re-numbered according to Section 3.3. This process yields a new parent
array λ. Additionally, the permutation of the new numbers of the nodes expressed in the numbering scheme
that was used to obtain λN is captured in the numbering array n.

Consider the three-segment KC given in Figure 2. The parent array is given by λ3 = (0, 1, 2)⊺ and we assume,
without loss of generality, the numbering scheme that is shown in the figure. Here, the function randBase
has three choices for attaching the base. The first is trivial and given by node 1. The second is given by node
2. In this case the parent array is always given by λ = (0, 1, 1)⊺, and two scenarios for the numbering array
are possible. They are n = (2, 1, 3)⊺ and n = (3, 1, 2)⊺. The third and last option is given by node 3. In this
case the parent array is unchanged but n = (3, 2, 1)⊺.

A second example is given in Figure 3.
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Definition C.2. The functions randSegmentToSegment and randSensorToSegment randomize the body-to-
body- and sensor-to-body positions expressed in the local coordinate, respectively. Internally, they both draw
these vectors randomly from uniform values ranges. These value ranges are chosen such that there exists a
dominant longitudinal direction (x-component), and two equal transversal directions.
Definition C.3. The function randBernoulli(p) returns 1 (or true) with probability p and zero (or false)
else.
Definition C.4. The functions getRigidStif and getRigidDamp return the stiffness and damping parameters
(both are six-dimensional) of the free joint that connects body i to IMU body i + N . This mechanism is used
to simulate nonrigid IMU attachment. However, these functions provide a fixed set of values that leads to
highly stiff and critically damped spring-damper system such that there is effectively no motion between
body i and IMU body i + N .
Definition C.5. The functions randRigidStif and randRigidDamp return the stiffness and damping
parameters of the free joint that connects body i to IMU body i + N . Internally, both functions draw these
six-dimensional vector randomly from log-uniform values ranges.
Definition C.6. The function randFreeTraj(motionConfig, T ) returns a random trajectory of minimal
(for free joint minimal=maximal) coordinates ∈

(
H⊗ R3)T with T timesteps for a free 6-DoF joint. The

function randHingeTraj(motionConfig, T ) returns a random trajectory of minimal coordinates ∈ RT with
T timesteps for a hinge joint. Internally, they both use the motionConfig (see Appendix C.1) to constraint
the random motion to physically relevant motion, i.e., the, e.g., angular velocity is bounded from above.
Exemplary trajectories are shown in Figure 8. For additional details, the reader is referred to the software
implementation, see Appendix 4.5.
Definition C.7. The function PDControl(sys, qr, q) computes the generalized force vector τ ∈ RNq̇ using a
decentralized scheme using N independent PD controllers, and where qr ∈ RNq denotes the reference minimal
coordinates and q ∈ RNq denotes the observed minimal coordinates. Note that the provided system object
sys has 2N bodies but only the first N bodies are actuated. The remaining bodies are passive free joints.
Definition C.8. The function forDyn (sys, q, q̇, τ ) applies forward dynamics in the system sys and integrates
the minimal coordinates position and velocity vector q, q̇ by sys.Ts. The function forKin (sys, Q) applies
forward kinematics in the system sys, i.e., it provides a map from minimal Q to maximal coordinates T. Here,
it is additionally vectorized over the time dimension. A text-book reference for both well-known algorithms
can be found in Featherstone (2008).
Definition C.9. The function simIMU(T, Ts) simulates a 6D IMU from a trajectory of maximal coordinates.
First, the maximal coordinates are butter-worth low-pass-filtered (both the quaternion and position trajectory).
Then, a second-order numerical differentiation for both gyroscope and accelerometer is used. The accelerometer
is low-pass-filtered. Gravity and simulated noise and bias terms are added. The cutoff frequencies have
been optimized such that experimental IMU data is recovered with the highest fidelity from the maximal
coordinate trajectories from OMC. Additional details can be found in Bachhuber et al. (2022).

D RING’s Time Complexity and Computational Requirements at Inference

For practical applications, the inference time and computational requirements of RING are critical to enable
real-world online applications. Therefore, we conduct a theoretical and empirical time complexity analysis of
RING at inference.

The theoretical time complexity of RING depends on the operations involved when advancing the prediction
by one timestep. First, we assume a naive matrix multiplication complexity, i.e, let A ∈ RC×D and B ∈ RD×E

then AB is O(C ×D × E). Now, recall that N is the number of bodies, F the number of features per body
(here F = 9), M is the message dimension, and H is the hidden state dimension, then

• eq. (4) is O(N ×H ×H + N × 1×H2 + N ×M ×H) (fθ),

• eq. (5) is O(N ×M) (summation operation, a tree with N nodes has at most N − 1 edges),
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Table 3: Non-exhaustive list of IMU hardware and their typical (typ.) noise and bias properties as provided
in the manufacturers’ technical specifications. Unfortunately, not all manufacturers provide this information.

Hardware Gyr. N.D. [◦/s/
√

Hz] Gyr. Of. [◦ s−1] Acc. N.D. [µg/
√

Hz] Acc. Of. [mg]
Bosch BMI160 (1) 0.007 ±3 180 ±40
A.D. ADXL355 (2) Acc. only Acc. only 22.5 ±25
Xsens MTi 10 (3) 0.03 ±0.2 60 ±5
Xsens MTi 100 (3) 0.01 ±0.2 60 ±5
Xsens MTw (ours) (4) 0.01 N.P. 200 N.P.
Movella Dot (5) 0.007 N.P. 120 N.P.
K. KXTC9-2050 (6) Acc. only Acc. only 125 N.P.
max (worst-case) 0.03 ±3 200 ±40

Noise Density (N.D.), Offset (Of.), Not Provided (N.P.)
Accelerometer units are micro-gravity per square-root of Hertz and milli-gravity
Sources in supplementary materials: bosch_bmi160.pdf (1), analog_devices_adxl355.pdf (2),
xsens_mti.pdf (3), xsens_mtw.pdf (4), movella_dot.pdf (5), kionix_kxtc9− 2050.pdf (6)
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1Figure 9: Comparison of the robustness of RING and SOTA methods as the level of noise and bias is increased.
To simulate reasonable noise density and bias offset ranges, we constructed a worst-case IMU by combining
the worst properties of various IMU manufacturers, as summarized in Table 3. Then, those worst-case noise
and bias values are incrementally (in seven equidistant steps) increased from 0 to 120%, and a corresponding
amount of simulated noise and bias is added to our real-world IMU data (see Section 5.1), which yields seven
modified datasets. RING and all SOTA methods are validated on the modified dataset, and this procedure
is repeated using ten different seeds. The AMAEs and RMAEs of all methods are plotted for all IMTPs
as a function of the seven steps. The 25%/50%/75%-percentiles across all trials and seeds are shown, and
they show that RING maintains accuracy comparable to SOTA methods in all IMTPs and, especially in
two-segment KC tracking, substantially outperforms them. Methods are Weber et al. (2021)(1), Madgwick
(2010)(2), Mahony et al. (2008)(3), Seel & Ruppin (2017)(4), Laidig & Seel (2023)(5), Laidig et al. (2017)(6),
Lehmann et al. (2020)(7),Olsson et al. (2020)(8), Bachhuber et al. (2023)(9).
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Table 4: Performance comparison across different hardware configurations.

Hardware Computation Time [µs] Latency [µs]
λ1 λ2 λ3 λ4 λ1 λ2 λ3 λ4

(1) 131± 8 757± 143 881± 128 916± 228 158± 7 789± 137 912± 84 975± 172
(2) 132± 5 172± 20 181± 17 192± 19 206± 5 241± 25 251± 31 267± 30
(3) 78± 5 127± 8 129± 8 127± 9 152± 14 199± 20 197± 11 201± 11
(4) 376± 90 681± 148 647± 96 879± 361 603± 167 834± 174 947± 211 1106± 377
(5) 214± 55 327± 69 325± 51 338± 60 494± 53 692± 133 684± 426 704± 153

Apple M2 Pro (1), W-1390P (2), W-1390P + RTX A5000 (3), Intel Xeon @ 2.0 Ghz, 1 Core, 2 Threads (Google Colab) (4),
Intel Xeon @ 2.0 Ghz, 1 Core, 2 Threads + Tesla T4 GPU (Google Colab) (5)

• eq. (6) is O(N × H × (2M + F ) + N × H2) (first GRU cell of gθ), O(N × H) (Layernorm),
O(N ×H ×H + N ×H2) (second GRU cell of gθ),

• eq. (7) is O(N ×H) (Layernorm), O(N ×H ×H + N × 1×H2 + N × 4×H) (hθ),

• eq. (8) is O(N) (normalization).

This leads to an overall complexity of O (N ×H × (H + M + F )). Note that the leading N term is imple-
mented in a way such that it corresponds to an efficient batch operation and not a for loop. This is crucial
for performance (especially on GPUs).

We conduct the empirical analysis for various types of hardware and report computation time and latency
required for advancing the prediction by one timestep. Latency includes overheads such as conversion
of the NumPy array to the deep-learning-framework-specific array type and potential to-and-from-device
transfer overheads. Effectively, latency measures the time required from NumPy array input to NumPy array
prediction, i.e.,

Xt

np.ndarray to device→
Xt

jax.Array → ring→︸ ︷︷ ︸
Computation Time

Ŷt

jax.Array to host→

︸ ︷︷ ︸
Latency

Ŷt

np.ndarray.

Consequently, latency needs to be lower than the time delta due to the IMU sampling rate to enable lag-free
real-time application (excluding a delay of one frame). Table 4 reports the timings for various hardware and
the different IMTPs that include either one-, two-, three-, or four-segment KCs.

E Software Example

This example code uses the published software (see Section 4.5) and showcases how RING is applied in
Section 5.3.2, i.e., it solves an IMTP that consists of a three-segment KC with sparse 6D IMU attachment
and with unknown joint axes directions.

1 import ring
2 import numpy as np
3

4 T : int = 30 # sequence length [s]
5 Ts : float = 0.01 # sampling interval [s]
6 B : int = 1 # batch size
7 lam: list[int] = [-1, 0, 1] # parent array; because of Python's conventions body counting starts at 0, as a

consequence the base body is indicated by -1 and not 0↪→

8 N : int = len(lam) # number of bodies
9 T_i: int = int(T/Ts) # number of timesteps

10

11 X = np.zeros((B, T_i, N, 9))
12 # where X is structured as follows:
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13 # X[..., :3] = acc
14 # X[..., 3:6] = gyr
15 # X[..., 6:9] = jointaxis
16

17 # let's assume we have an IMU on each outer segment of the
18 # three-segment kinematic chain
19 X[..., 0, :3] = acc_segment1
20 X[..., 2, :3] = acc_segment3
21 X[..., 0, 3:6] = gyr_segment1
22 X[..., 2, 3:6] = gyr_segment3
23

24 ringnet = ring.RING(lam, Ts)
25 yhat, _ = ringnet.apply(X)
26 # yhat: unit quaternions, shape = (B, T_i, N, 4)
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