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Abstract

Estimating personalized treatment effects from high-dimensional observational data
is essential in situations where experimental designs are infeasible, unethical, or
expensive. Existing approaches rely on fitting deep models on outcomes observed
for treated and control populations. However, when measuring individual outcomes
is costly, as is the case of a tumor biopsy, a sample-efficient strategy for acquiring
each result is required. Deep Bayesian active learning provides a framework
for efficient data acquisition by selecting points with high uncertainty. However,
existing methods bias training data acquisition towards regions of non-overlapping
support between the treated and control populations. These are not sample-efficient
because the treatment effect is not identifiable in such regions. We introduce
causal, Bayesian acquisition functions grounded in information theory that bias data
acquisition towards regions with overlapping support to maximize sample efficiency
for learning personalized treatment effects. We demonstrate the performance of the
proposed acquisition strategies on synthetic and semi-synthetic datasets IHDP and
CMNIST and their extensions, which aim to simulate common dataset biases and
pathologies.

1 Introduction

How will a patient’s health be affected by taking a medication [37]? How will a user’s question be
answered by a search recommendation [34]? We can gain insight into these questions by learning
about personalized treatment effects. Estimating personalized treatment effects from observational
data is essential when experimental designs are infeasible, unethical, or expensive. Observational
data represent a population of individuals described by a set of pre-treatment covariates (age, blood
pressure, socioeconomic status), an assigned treatment (medication, no medication), and a post-
treatment outcome (severity of migraines). An ideal personalized treatment effect is the difference
between the post-treatment outcome if the individual receives treatment and the post-treatment
outcome if they do not receive treatment. However, it is impossible to observe both outcomes for an
individual; therefore, the difference is estimated between populations instead. In the setting of binary
treatments, data belong to either the treatment group (individuals that received the treatment) or the
control group (individuals who did not). The personalized treatment effect is the expected difference
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in outcomes between treated and controlled individuals who share the same (or similar) measured
covariates; as an illustration, see the difference between the solid lines in Fig. 1 (middle pane).

The use of pre-treatment covariates assembled from high-dimensional, heterogeneous measurements
such as medical images and electronic health records is increasing [44]. Deep learning methods have
been shown capable of learning personalized treatment effects from such data [42, 43, 21]. However,
a problem in deep learning is data efficiency. While modern methods are capable of impressive
performance, they need a significant amount of labeled data. Acquiring labeled data can be expensive,
requiring specialist knowledge or an invasive procedure to determine the outcome. Therefore, it is
desirable to minimize the amount of labeled data needed to obtain a well-performing model. Active
learning provides a principled framework to address this concern [8]. In active learning for treatment
effects [10, 45, 39] a model is trained on available labeled data consisting of covariates, assigned
treatments, and acquired outcomes. The model predictions decide the most informative examples
from data comprised of only covariates and treatment indicators. Outcomes are acquired, e.g., by
performing a biopsy for the selected patients, and the model is retrained and evaluated. This process
repeats until either a satisfactory performance level is achieved or the labeling budget is exhausted.

At first sight, this might seem simple; however, active learning induces biases that result in divergence
between the distribution of the acquired training data and the distribution of the pool set data [13]. In
the context of learning causal effects, such bias can have both positive and negative consequences.
For example, while random acquisition active learning results in an unbiased sample of the training
data, we demonstrate how it can lead to over-allocation of resources to the mode of the data at the
expense of learning about underrepresented data. Conversely, while biasing acquisitions toward lower
density regions of the pool data can be desirable, it can also lead to outcome acquisition for data
with unidentifiable treatment effects, which leads to uninformed, potentially harmful, personalized
recommendations.

Figure 1: Observational data. Top: data
density of treatment (right) and control (left)
groups. Middle: observed outcome re-
sponse for treatment (circles) and control
(x’s) groups. Bottom: data density for active
learned training set after a number of acquisi-
tion steps.

To see how training data bias can benefit treatment
effect estimation, consider one difference between
experimental and observational data: the treatment
assignment mechanism is unavailable for observa-
tional data. In observational data, variables that af-
fect treatment assignment (an untestable condition)
may be unobserved. Moreover, the relative propor-
tion of treated to controlled individuals varies across
different sub-populations of the data. Fig. 1 illus-
trates the latter point, where there are relatively equal
proportions of treated and controlled examples for
data in region 3. However, the proportions become
less balanced as we move to either the left or the
right. In extreme cases, say if a group described by
some covariate values were systematically excluded
from treatment, the treatment effect for that group
cannot be known [38]. Fig. 1 illustrates this in re-
gion 1, where only controlled examples reside, and
in region 5, where only treated cases occur. In the
language of causal inference, the necessity of seeing
both treated and untreated examples for each sub-
population corresponds to satisfying the overlap (or
positivity) assumption (see 2.3). The data available
in the pool set limits overlap when treatments cannot
be assigned. In this setting, regions 2 and 4 of Fig. 1
are very interesting because while either the treated
or control group are underrepresented, there may still
be sufficient coverage to estimate treatment effects. D’Amour and Franks [9] have described such
regions as having weak overlap. Training data bias towards such regions can benefit treatment effect
estimation for underrepresented data by acquiring low-frequency data with sufficient overlap.

We hypothesize that the efficient acquisition of unlabeled data for treatment effect estimation focuses
on only exploring regions with sufficient overlap, and uncertainty should be high for areas with
non-overlapping support. The bottom pane of Fig. 1 imagines what a resulting training set distribution
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could look like at an intermediate active learning step. It is not trivial to design such acquisition
functions: naively applying active learning acquisition functions results in suboptimal and sample
inefficient acquisitions of training examples, as we show below. To this end, we develop epistemic
uncertainty-aware methods for active learning of personalized treatment effects from high dimensional
observational data. In contrast to previous work that uses only information gain as the acquisition
objective, we propose ρBALD and µρBALD as “Causal BALD” objectives because they consider
both the information gain and overlap between treated and control groups. We demonstrate the
performance of the proposed acquisition strategies using synthetic and semi-synthetic datasets.

2 Background

2.1 Estimation of Personalized Treatment-Effects

Personalized treatment-effect estimation seeks to know the effect of a treatment T ∈ T on the
outcome Y ∈ Y for individuals described by covariates X ∈ X . In this work, we consider the
random variable (r.v.) T to be binary (T = {0, 1}), the r.v. Y to be part of a bounded set Y , and X to
be a multi-variate r.v. of dimension d (X = Rd). Under the Neyman-Rubin causal model [33, 41],
the individual treatment effect (ITE) for a person u is defined as the difference in potential outcomes
Y1(u) − Y0(u), where the r.v. Y1 represents the potential outcome were they treated, and the r.v.
Y0 represents the potential outcome were they controlled (not treated). Realizations of the random
variables X, T, Y, Y0, and Y1 are denoted by x, t, y, y0, and y1, respectively.

The ITE is a fundamentally unidentifiable quantity, so instead we look at the expected difference
in potential outcomes for individuals described by X, or the Conditional Average Treatment Effect
(CATE): τ(x) ≡ E[Y1 −Y0 | X = x] [1]. The CATE is identifiable from an observational dataset
D = {(xi, ti, yi)}ni=1 of samples (xi, ti, yi) from the joint empirical distribution PD(X,T,Y0,Y1),
under the following three assumptions [41]:

Assumption 2.1. (Consistency) y = tyt + (1 − t)y1−t, i.e. an individual’s observed outcome y
given assigned treatment t is identical to their potential outcome yt.

Assumption 2.2. (Unconfoundedness) (Y0,Y1) ⊥⊥ T | X.

Assumption 2.3. (Overlap) 0 < πt(x) < 1 : ∀t ∈ T ,

where πt(x) ≡ P(T = t | X = x) is the propensity for treatment for individuals described by
covariates X = x. When these assumptions are satisfied, τ̂(x) ≡ E[Y | T = 1,X = x] − E[Y |
T = 0,X = x] is an unbiased estimator of τ(x) and is identifiable from observational data.

A variety of parametric [40, 46, 42] and non-parametric estimators [17, 49, 3, 14] have been proposed
for CATE. Here, we focus on parametric estimators for compactness. Parametric CATE estimators
assume that outcomes y are generated according to a likelihood pω(y | x, t), given measured
covariates x, observed treatment t, and model parameters ω. For continuous outcomes, a Gaussian
likelihood can be used: N (y | µ̂ω(x, t), σ̂ω(x, t)). For discrete outcomes, a Bernoulli likelihood can
be used: Bern(y | µ̂ω(x, t)). In both cases, µ̂ω(x, t) is a parametric estimator of E[Y | T = t,X =
x], which leads to: τ̂ω(x) ≡ µ̂ω(x, 1)− µ̂ω(x, 0), a parametric CATE estimator.

Jesson et al. [20] have shown that Bayesian inference over the model parameters ω, treated as
stochastic instances of the random variable Ω ∈ W , yields a model capable of quantifying when
assumption 2.3 (overlap) does not hold. Moreover, they show that such models can quantify when
there is insufficient knowledge about the treatment effect τ(x) because the observed value x lies far
from the support of PD(X,T,Y0,Y1). Such methods seek to enable sampling from the posterior
distribution of the model parameters given the data, p(Ω | D). Each sample, ω ∼ p(Ω | D) induces
a unique CATE function τ̂ω(x). Jesson et al. [20] propose Varω∼p(Ω|D)(µ̂ω(x, 1) − µ̂ω(x, 0)) as
a measure of epistemic uncertainty (i.e., how much the functions “disagree” with one another at a
given value x) [23] for the CATE estimator.

2.2 Active Learning

Formally, an active learning setup consists of an unlabeled dataset Dpool = {xi}
npool

i=1 , a labeled
training set Dtrain = {xi, yi}ntrain

i=1 , and a predictive model with likelihood pω(y | x) parameterized
by ω ∼ p(Ω | Dtrain). The setup also assumes that an oracle exists to provide outcomes y for any
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data point in Dpool. After model training, a batch of data {x∗i }bi=1 is selected from Dpool using an
acquisition function a according to the informativeness of the batch.

By including the treatment, we depart from the standard active learning setting. For active learning of
treatment effects, we define Dpool = {xi, ti}

npool

i=1 , a labeled training set Dtrain = {xi, ti, yi}ntrain
i=1 ,

and a predictive model with likelihood pω(y | x, t) parameterized by ω ∼ p(Ω | Dtrain). The
acquisition function takes as input Dpool and returns a batch of data {xi, ti}bi=1 which are labelled
using an oracle and added to Dtrain. We are specifically examining the case when there is access to
only the treatments observed in the pool data {ti}

npool

i=1 : i.e., scenarios where treatment assignment is
not possible.

An intuitive way to define informativeness is using the estimated uncertainty of our model. In general,
we can distinguish two sources of uncertainty: epistemic and aleatoric uncertainty [11, 23]. Epistemic
(or model) uncertainty, arises from ignorance about the model parameters. For example, this is caused
by the model not seeing similar data points during training, so it is unclear what the correct label
would be. We focus on using epistemic uncertainty to identify the most informative points for label
acquisition.

Bayesian Active Learning by Disagreement (BALD) [18] defines an acquisition function based on
epistemic uncertainty. Specifically, it uses the mutual information (MI) between the unknown output
and model parameters as a measure of disagreement:

I(Y;Ω | x,Dtrain) = H(Y | x,Dtrain)− Eω∼p(Ω|Dtrain) [H(Y | x,ω)] , (1)

where H is the entropy function; a straightforward estimand for discrete outcomes with Bernoulli or
Categorical likelihoods.

The general acquisition function based on BALD for acquiring a batch of data points given the pool
dataset and the model parameters is given by the joint mutual information between the set {Yi} and
the model parameters [26]:

aBALD(Dpool, p(Ω | Dtrain)) = argmax
{xi}bi=1⊆Dpool

I({Yi};Ω | {xi},Dtrain). (2)

This batch acquisition function can be upper-bounded by scoring each point in Dpool independently
and taking the top b; however, this bound ignores correlations between the samples. In fact, for
datasets with significant repetition, this approach can perform worse than random acquisition, and
computing the joint mutual information (introduced as BatchBALD) rectifies the issue [26].

Estimating the joint mutual information is computationally expensive, as evaluating the joint entropy
over all possible outcomes (for classification) or a covariance matrix over all inputs (for regression)
is required. An alternative approach is to use softmax-BALD, which involves importance weighted
sampling across Dpool with the individual importance weights given by BALD [25]. We use softmax-
BALD for batch acquisition because it is computationally more efficient and performs competitively
with BatchBALD. We discuss how BALD maps onto epistemic uncertainty quantification in CATE
and the arising complications stemming from the question of overlap in Section 3.

3 Methods

In this section: we introduce several acquisition functions, we then analyze how they bias the
acquisition of training data, and we show the resulting CATE functions learned from such training
data. We are interested in acquisition functions conditioned on realizations of both x and t:

a(Dpool, p(Ω | Dtrain)) = argmax
{xi,ti}bi=1⊆Dpool

I(• | {xi, ti},Dtrain), (3)

where I(• | x, t,Dtrain) is a measure of disagreement between parametric function predictions
given x and t over samples ω ∼ p(Ω | D). We make assumptions 2.1 and 2.2 (consistency, and
unconfoundedness). We relax assumption 2.3 (overlap) by allowing for its violation over subsets of
the support of Dpool. We present all theorems, proofs, and detailed assumptions in Appendix A.

3.1 How do naive acquisition functions bias the training data?

To motivate Causal–BALD, we first look at a set of naive acquisition functions. A random acquisition
function selects data points uniformly at random from Dpool and adds them to Dtrain. In Fig. 2a we
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(a) Random (b) Propensity (c) τBALD (d) µBALD

Figure 2: Naive acquisition functions: How the training set is biased and how this effects the CATE
function with a fixed budget of 300 acquired points.

have acquired 300 such examples from a synthetic dataset and trained a deep-kernel Gaussian process
[47] on those labeled examples. Comparing the top two panels, we see that Dtrain (middle) contains
an unbiased sample of the data in Dpool (top). However, in the bottom panel, we see that while the
CATE estimator is accurate and confident near the modes of Dpool, it becomes less accurate as we
move to lower-density regions. In this way, the random acquisition of data reflects the biases inherent
in Dpool and over-allocates resources to the modes of the distribution. If the mode were to coincide
with a region of non-overlap, the function would most frequently acquire uninformative examples.

Next, we look at using the propensity score to bias data acquisition toward regions where the overlap
assumption is satisfied.
Definition 3.1. Counterfactual Propensity Acquisition

I(π̂t | x, t,Dtrain) ≡ 1− π̂t(x) (4)

Intuitively, this function prefers points where the propensity for observing the counterfactual is
high. We are considering the setup where Dpool contains observations of both X and T, so it is
straightforward to train an estimator for the propensity, π̂t(x). Figure 2b shows that while propensity
score acquisition matches the treated and control densities in the train set, it still biases data selection
towards the modes of Dpool.

The goal of BALD is to acquire data (x, t) that maximally reduces uncertainty in the model parameters
Ω used to predict the treatment effect. The most direct way to apply BALD is to use our uncertainty
over the predicted treatment effect, expressed using the following information theoretic quantity:
Definition 3.2. τBALD

I(Y1 −Y0;Ω | x, t,Dtrain) ≈ Var
ω∼p(Ω|Dtrain)

(µ̂ω(x, 1)− µ̂ω(x, 0)) . (5)

Building off the result in [20], we show how the LHS measure about the unobservable potential
outcomes is estimated by the variance over Ω of the identifiable difference in expected outcomes in
Theorem 1 of the appendix. Alaa and van der Schaar [4] propose a similar result is for non-parametric
models. Intuitively, this measure represents the information gain for Ω if we observe the difference
in potential outcomes Y1 −Y0 for a given measurement x and Dtrain.

However, a fundamental flaw with this measure exists: observing labels for the random variable
Y1 − Y0 is impossible. Thus, τBALD represents an irreducible measure of uncertainty. That is,
τBALD will be high if it is uncertain about the label given the unobserved treatment t′, regardless
of its certainty about the outcome given the factual treatment t, which makes τBALD highest for
low-density regions and regions with no overlap. Figure 2c illustrates these consequences. We see
the acquisition biases the training data away from the modes of the Dpool, where we cannot know the
treatment effect (no overlap). In datasets where we have limited overlap, it leads to uninformative
acquisitions.

One remedy to the issues of τBALD is to only focus on reducible uncertainty:
Definition 3.3. µBALD

I(Yt;Ω | x, t,Dtrain) ≈ Var
ω∼p(Ω|Dtrain)

(µ̂ω(x, t)) . (6)
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(a) µπBALD (b) ρBALD (c) µρBALD

Figure 3: Causal–BALD acquisition functions: How the training set is biased and how this effects the
CATE function with a fixed budget of 300 acquired points.

This measure represents the information gain for the model parameters Ω if we obtain a label for the
observed potential outcome Yt given a data point (x, t) and Dtrain. We give proof for these results in
Theorem 2 of the appendix.

µBALD only contains observable quantities; however, it does not account for our belief about the
counterfactual outcome. As illustrated in Fig. 2d, this approach can prefer acquiring (x, t) when
we are also very uncertain about (x, t′), even if (x, t′) is not in Dpool. Since we can neither reduce
uncertainty over such (x, t′) nor know the treatment effect, the acquisition function would not be
optimally data efficient.

3.2 Causal–BALD.

In the previous section, we looked at naive methods that either considered overlap or considered
information gain. In this section, we present three measures that account for both factors when
choosing a new point to acquire for model training.

A straightforward to combine knowledge about a data point’s information gain and overlap is to
simply multiply µBALD(6) by the propensity acquisition term (4):
Definition 3.4. µπBALD

I(µπ | x, t,Dtrain) ≡ (1− π̂t(x)) Var
ω∼p(Ω|Dtrain)

(µ̂ω(x, t)) (7)

We can see in Fig. 3a that the acquisition of training data results in matched sampling that we saw for
propensity acquisition in Fig. 2b. However, the tails of the overlapping distributions extend further
into the low-density regions of the pool set support where the overlap assumption is satisfied.

Alternatively, we can take an information-theoretic approach to combine knowledge about a data
point’s information gain and overlap. Let µ̂ω(x, t) be an instance of the random variable µ̂t

Ω ∈ R
corresponding to the expected outcome conditioned on t. Further, let τ̂ω(x) be an instance of the
random variable τ̂Ω = µ̂1

Ω − µ̂0
Ω corresponding to the CATE. Then,

Definition 3.5. ρBALD

I(Yt; τ̂Ω | x, t,Dtrain) '
1

2
log

(
Varω (µ̂ω(x, t))− 2Covω(µ̂ω(x, t), µ̂ω(x, t

′))

Varω (µ̂ω(x, t′))
+ 1

)
. (8)

This measure represents the information gain for the CATE τΩ if we observe the outcome Y for a
datapoint (x, t) and the data we have trained on Dtrain. We give proof for this result in Theorem 3.

In contrast to µ-BALD, this measure accounts for overlap in two ways. First, ρ–BALD will be
scaled by the inverse of the variance of the expected counterfactual outcome µ̂ω(x, t

′). This scaling
biases acquisition towards examples for which we know about the counterfactual outcome, so
we can assume that overlap is satisfied for observed (x, t). Second, ρ–BALD is discounted by
Covω(µ̂ω(x, t), µ̂ω(x, t

′)). This discounting is a concept that we will leave for future discussion.
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In Fig. 3b we see that ρ–BALD has matched the distributions of the treated and control groups
similarly to propensity acquisition in Fig. 2b. Further, we see that the CATE estimator is more
accurate over the support of the data.

There is, however, a shortcoming of ρ–BALD that may lead to suboptimal data efficiency. Con-
sider two examples in Dpool, (x1, t1) and (x2, t2) where Varω(µ̂ω(x1, t1)) = Varω(µ̂ω(x1, t

′
1))

and Varω(µ̂ω(x2, t2)) = Varω(µ̂ω(x2, t
′
2)): for each point, we are as uncertain about the condi-

tional expectation given the factual treatment as we are uncertain given the counterfactual treat-
ment. Further, let Covω(µ̂ω(x1, t1), µ̂ω(x1, t

′
1)) = Covω(µ̂ω(x2, t2), µ̂ω(x2, t

′
2)). Finally, let

Varω(µ̂ω(x1, t1)) > Varω(µ̂ω(x2, t2)): we are more uncertain about the conditional expectation
given the factual treatment for data point (x1, t1) than we are for data point (x2, t2). Under these
three conditions, ρ–BALD would rank these two points equally, and so this method would bias
training data to the modes of Dpool when (x2, t2) is more frequent than (x1, t1). In practice, it may
be more data-efficient to choose (x1, t1) over (x2, t2) as it would more likely be a point as yet unseen
by the model.

To combine the positive attributes of µ–BALD and ρ–BALD, while mitigating their shortcomings,
we introduce µρBALD.
Definition 3.6. µρBALD

I(µρ | x, t,Dtrain) ≡ Var
ω

(µ̂ω(x, t))
Varω(τ̂ω(x))

Varω(µ̂ω(x, t′))
. (9)

Here, we scale Equation 8, which has equivalent expression Varω(τ̂ω(x))
Varω(µ̂ω(x,t′)) by our measure for

µBALD such that in the cases where the ratio may be equal, there is a preference for data points the
current model is more uncertain about. We can see in Fig. 3c that the training data acquisition is
distributed more uniformly over the support of the pool data where the overlap assumption is satisfied.
Furthermore, the accuracy of the CATE estimator is highest over that region.

4 Related Work

Deng et al. [10] propose the use of Active Learning for recruiting patients to assign treatments that
will reduce the uncertainty of an Individual Treatment Effect model. However, their setting is different
from ours – we assume that suggesting treatments are too risky or even potentially lethal. Instead,
we acquire patients to reveal their outcome (e.g., by having a biopsy). Additionally, although their
method uses predictive uncertainty to identify which patients to recruit, it does not disentangle the
sources of uncertainty; therefore, it will also recruit patients with high outcome variance. Closer to
our proposal is the work from Sundin et al. [45]. They propose using a Gaussian process (GP) to
model the individual treatment effect and use the expected information gain over the S-type error
rate, defined as the error in predicting the sign of the CATE, as their acquisition function. Although
GPs are suitable for quantifying uncertainty, they do not work well on high-dimensional input spaces.
In this work, we use Neural network methods to obtain uncertainty: Deep Ensembles [28] and
DUE [47], a Deep Kernel Learning GP, both of which work well even on high dimensional inputs.
Additionally, the authors assume that noisy observations about the counterfactual treatments are
available at training time where we make no such assumptions. We compare to this in our experiment
by limiting the access to counterfactual observations (γ baseline) and adapting it to Deep Ensembles
[28] and DUE [47] (we provide more details about the adaptation in Appendix B.1). Recent work by
Qin et al. [39] looks at budgeted heterogeneous effect estimation but does not factor weak or limited
overlap into their acquisition function.
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5 Experiments

Figure 4: Visualizing CMNIST dataset.
Model inputs are MNIST digits and assigned
treatments. The MNIST digits are high-
dimensional proxies for the latent confound-
ing covariate φ. Digits are projected onto φ
by ordering them first by image intensity and
then by digit class (0 - 9). Methods must be
able to implicitly learn this non-linear map-
ping in order to predict the conditional ex-
pected outcomes.

In this section, we evaluate our acquisition objectives
on synthetic and semi-synthetic datasets. Code to
reproduce these experiments is available at https:
//github.com/anndvision/causal-bald.

Datasets Starting from the hypothesis that differ-
ent objectives can target different types of imbal-
ances and degrees overlap, we construct a synthetic
dataset [22] demonstrating the various biases. We
depict this dataset graphically in Fig. 1. We use this
dataset primarily for illustrative purposes. By design,
we have constructed a primary data mode and have
regions of weak or no overlap. Additionally, we study
the performance of our acquisition functions on the
IHDP dataset [17, 42], which is a standard bench-
mark in causal treatment effect literature. Finally, we
demonstrate that our method is suitable for high di-
mensional, large-sample datasets on CMNIST [21],
an MNIST [29] based dataset adapted for causal treat-
ment effect studies. In Fig. 4, we see that CMNIST is
an adaptation of the synthetic dataset. Model inputs
are MNIST digits and assigned treatments, and the
response surfaces are generated based on a projection
of the digits onto a latent 1-dimensional manifold.
The observed digits are high-dimensional proxies for
the confounding covariate φ. Detailed descriptions
of each dataset are available in Appendix C.

Model Our objectives rely on methods that are ca-
pable of modeling uncertainty and handling high-
dimensional data modalities. DUE [47] is an instance of Deep Kernel Learning [48] that uses a
deep feature extractor to transform the inputs and defines a Gaussian process (GP) kernel over the
extracted feature representation. In particular, DUE uses a variational inducing point approximation
[16] and a constrained feature extractor that contains residual connections and spectral normalization
to enable reliable uncertainty. Due obtains SotA results on IHDP [47]. In DUE, we distinguish
between the model parameters θ and the variational parameters ω, and we are Bayesian only over the
ω parameters. Since DUE is a GP, we obtain a full Gaussian posterior over outcomes from which
we can use the mean and covariance directly. When necessary, sampling is very efficient and only
requires a single forward pass in the deep model. We describe all hyperparameters in Appendix F.

Baselines We compare against the following baselines: Random. This acquisition function selects
points uniformly at random. Propensity. An acquisition function based on the propensity score
(Eq. 4). We train a propensity model on the pool data, which we then use to acquire points based
on their propensity score. Please note that this is a valid assumption as training a propensity model
does not require outcomes. γ (S-type error rate) [45]. This acquisition function is the S-type error
rate based method proposed by Sundin et al. [45]. We have adapted the acquisition function to
use with Bayesian Deep Neural Networks. The objective is defined as I(γ;Ω | x,Dtrain), where

γ(x) = probit−1
(
− |Ep(τ|x,Dtrain)[τ ]|√

Var(τ |x,Dtrain)

)
and probit−1(·) is the cumulative distribution function of

normal distribution. In contrast to the original formulation, we do not assume access to counterfactual
observations at training time.

5.1 Experimental Results

For each of the acquisition objectives, dataset, and model we present the mean and standard error
of empirical square root of precision in estimation of heterogenous effect (PEHE) 2. We summarize

2√εPEHE =
√

1
N

∑
x (τ̂(x)− τ(x))2
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Table 1: Summary of active learning parameters for each dataset.
Dataset Warm-up size Acquisition size Acquisition steps Pool Size Valid Size
Synthetic 10 10 30 10k 1k
IHDP 100 10 38 471 201
CMNIST 250 50 55 35k 15k

Figure 5:
√
εPEHE performance (shaded standard error) for DUE models. (left to right) synthetic

(40 seeds), and IHDP (200 seeds). We observe that BALD objectives outperform the random, γ and
propensity acquisition functions significantly, suggesting that epistemic uncertainty aware methods
that target reducible uncertainty can be more sample efficient.

each active learning setup in Table 1. The warm up size is the number of examples in the initial pool
dataset. Acquisition size is the number of examples labeled at each acquisition step. Acquisition steps
is the number of times we query a batch of labels. Pool size is the number of examples in the pool
dataset. Finally, valid size is the number of examples used for model selection when optimizing the
model at each acquisition step.

In Fig. 5, we see that epistemic uncertainty aware µρBALD outperforms the baselines, random,
propensity, and S-Type error rate (γ). As analyzed in section 3, we expect this improvement as
our acquisition objectives target reducible uncertainty – that is, epistemic uncertainty when there
is overlap between treatment and control. Additionally, µρBALDshows superior performance over
the other objectives in the high dimensional dataset CMNIST verifying our qualitative analysis in
Figure 3c.

Each of (µBALD, ρBALD, µπBALD, and µρBALD) outperform the baseline methods on these
tasks. Of note, the performance ρBALD improves as the dimensionality of the covariates increases.
In contrast, the performance of the propensity score-based µπBALD worsens as the dimensionality
of the covariates increases. Propensity score estimation is known to be a problem in high-dimensions
[12]. We see that both µBALD and µρBALD perform consistently as dimensionality increases, with
µρBALD showing a statistically significant improvement over µBALD on two of the three tasks.
These improvements indicate that µρBALD is more robust for data with high-dimensional covariates
than µπBALD ; moreover, µρBALD does not need an additional propensity score model.
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6 Conclusion

We have introduced a new acquisition function for active learning of individual-level causal-treatment
effects from high dimensional observational data, based on Bayesian Active Learning by Disagree-
ment [18]. We derive our proposed method from an information-theoretic perspective and compare it
with acquisition strategies that either do not consider epistemic uncertainty (i.e., random or propensity-
based) or target irreducible uncertainty in the observational setting (i.e., when we do not have access
to counterfactual observations). We show that our methods significantly outperform baselines, while
also studying the various properties of each of our proposed objectives in both quantitative and quali-
tative analyses, potentially impacting areas like healthcare where sample efficiency in the acquisition
of new examples implies improved safety and reductions in costs.

7 Broader Impact

Active Learning for learning treatment effects from observational data is highly actionable research,
and there are several sectors where our research can have an impact. Take, for example, a hospital
that needs to decide whom to treat, based on some model. To these choices, the decision-maker
needs to have a confident and accurate treatment effect prediction model. However, improving the
performance of such a model requires data from patients, which might be costly and perhaps even
unethical to acquire. With this work, we assume that we cannot assign new treatments to patients
but only perform biopsies or questionnaires post-treatment to reveal the outcome. We believe that
this is an impactful and realistic scenario that will directly benefit from our proposal. However, our
method can also impact fields like computational-advertisement, where the goal is to learn a model to
predict the captivate the attention of users, or policymaking where a government wants to decide how
to intervene for beneficial or malicious reasons.

Active learning inherently biases the acquisition of training data. We attempt to show how this can be
beneficial or detrimental for learning treatment effects under different acquisition functions under the
unconfoundedness assumption. We are not making guarantees on the overall unbiasedness of our
methods. We guarantee only that our results are conditional on the unconfoundedness assumption.
Unobserved confounding can result in the biased sampling of training data concerning the hidden
confounding variable. This bias can result in performance inequality between groups and a biased
estimate of the unconfounded CATE function. Further, the models’ uncertainty estimates are not
informative of when this may occur.

An anonymous reviewer writes, “one risk is that the method could, e.g., lead to a biased, non-
representative sampling in terms of ethnicity and other protected attributes - particularly, if the
unconfoundedness assumption this work is based on is blindly trusted” Recent work by Andrus
et al. [5] does a great job of highlighting the difficulties practitioners face when accounting for
algorithmic bias across protected attributes. In such cases, model uncertainty is not enough to identify
non-representative sampling concerning the protected attribute. They report about a practitioner’s use
of structural causal models in concert with domain expert feedback as a means to inform clients of
potential sources of bias. Perhaps such methodology could be used with causal sensitivity analysis
for CATE [22, 50, 21] as a way to model beliefs about the protected attribute without observing it.

Impactful avenues for future work include relaxing the unconfoundedness assumption, incorporating
beliefs about hidden confounding into the acquisition function. Furthermore, in addition to uncovering
the outcome, we think it is interesting to revisit the active treatment assignment problem. On the
active learning side, exploring more rigorous batch acquisition methods could yield improvements
over the current stochastic sampling estimation we use. Finally, in this work, we assume access
to a validation set, which may not be available in practice, so exploration of active acquisition of
validation data will also have an impact [27].
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