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Abstract: Pointing gestures provide a natural and efficient way to communicate
spatial information in human-machine interaction, yet their potential for 3D object
referral remains largely underexplored. To fill this gap, we introduce the task of
pointing-based 3D segmentation. In this task, given an image of a person pointing
at an object and the 3D point cloud of the environment, the goal is to predict the
3D segmentation mask of the referred object. To enable the standardized evalu-
ation of this task, we introduce POINTR3D, a curated dataset of 65,000 frames
captured with three cameras across four indoor scenes, featuring diverse pointing
scenarios. Each frame is annotated with the information of the active hand, the
corresponding object ID, and the 3D segmentation mask of the object. To show-
case the application of the proposed dataset, we further introduce Pointing3D, a
transformer-based architecture that predicts the pointing direction from RGB im-
ages and uses this prediction as a prompt to segment the referred object in the 3D
point cloud. Experimental results show that Pointing3D outperforms other strong
baselines we introduce and lays the groundwork for future research. The dataset,
source code, and evaluation tools will be made publicly available to support fur-
ther research in this area, enabling a natural human-machine interaction.
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1 Introduction

Robots are increasingly deployed in complex settings, where their ability to interpret human intent
accurately is crucial for effective human-robot interaction (HRI) [1, 2, 3]. A central component of
this interaction is object referral [4, 5], the process by which a human user directs the robot’s at-
tention to a specific object within a shared environment. This capability is critical for a wide range
of applications—from industrial tasks like assembly to everyday household chores—where intuitive
and rapid communication of intent can significantly enhance operational efficiency and safety. Con-
ventional approaches to object referral typically rely on explicit spatial inputs, such as metric-space
coordinates [6, 7] (e.g., “move to x = 22.3, y = —10.1"), often supplied via 2D map interfaces
or external tracking systems. While effective in structured environments, these methods suffer from
several limitations: they are device-dependent, unintuitive for untrained users, and decoupled from
natural human communication modalities [8, 3]. This raises a key research question: Can we enable
natural and efficient object referral in 3D space using only minimal, uninstrumented human input?

Among natural interaction modalities, pointing gestures emerge as a compelling candidate [9, 10].
They are universally understood, require no additional hardware beyond visual perception, and
seamlessly integrate into everyday human behavior. Although numerous methods estimate point-
ing direction [11, 12], they do not focus on the semantic understanding of the scene, making them
unable to resolve the type and the extent of the object being referred to. This limits their effective-
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ness in HRI tasks such as manipulation, inspection, or object handover. Thus, the use of pointing
gestures for 3D object referral remains underexplored.

To achieve the full potential of pointing gestures in HRI, we propose a new task: pointing-based
3D object segmentation. Unlike prior work that solely estimates the pointing direction, this task
aims to infer the full 3D extent of the referred object by jointly reasoning over human gestures
and the semantic structure of the scene. Specifically, given an image showing a person pointing
and the corresponding 3D environment, the objective is to predict a 3D segmentation mask for the
intended object. However, upon reviewing the current literature, we observe that no existing dataset
supports this task. While prior 3D datasets offer extensive instance segmentation annotations in
indoor environments [13, 14, 15, 16], they lack any human interaction, including pointing behavior.
Conversely, datasets that study pointing gestures [11, 17] generally lack a 3D representation of the
environment and do not provide segmentation masks of the referred objects. To bridge this gap, we
introduce POINTR3D, a novel dataset that comprises ~65,000 curated samples capturing pointing
gestures within annotated 3D scenes. Each data sample contains an RGB image of pointing and the
corresponding 3D point cloud, along with the active hand and the object segmentation annotations,
enabling the study and standardized evaluation of this new task.

Building on the proposed task and dataset, we introduce Pointing3D, a two-stage model that com-
bines pointing direction estimation with 3D segmentation. The first stage leverages skeletal joint
positions extracted from a state-of-the-art human pose estimator [18] to predict the pointing vector.
This estimate is then used as a prompt in the second stage, where a transformer-based segmentation
module [19, 20, 21] infers the 3D mask of the referred object within the point cloud. Empirical
evaluations demonstrate that Pointing3D outperforms competitive proposed baselines, establishing
a strong foundation for future research on pointing-based object referral in 3D environments.

Overall, our contributions are as follows:

* We introduce the task of pointing-based 3D object segmentation, which goes beyond estimating
pointing direction to infer the full 3D extent of the referred object by jointly reasoning over human
gestures and scene semantics.

* We present POINTR3D, the first dataset designed for this task, containing multi-view recordings
of humans pointing in real-world indoor environments, along with 3D point clouds and instance
segmentation masks of the referred objects.

* We propose Pointing3D, a two-stage model that first estimates the pointing direction using human
skeletal joints and then performs promptable 3D segmentation conditioned on this estimate.

2 Related Work

Pointing Gestures. Early studies on pointing primarily focus on gesture recognition rather than
estimating pointing directions, often targeting AR/VR applications using egocentric views [22],
multi-camera setups [23], or wearable IMU devices [24]. Subsequent works extend pointing recog-
nition to 3D pointing direction estimation, either using RGB-D cameras in tabletop settings [17], or
relying on robust 3D hand detection approaches [12] for 3D inference. DeePoint [11] made a signif-
icant advance by introducing a large-scale dataset and a transformer-based model for estimating 3D
pointing directions from videos. However, all these methods focus solely on direction estimation
without identifying the referred object. More recent approaches explore combining pointing with
additional modalities. Nakagawa et al. [25] aligns pointing gestures with speech to recognize the
pointing gesture, while Deguchi ef al. [26] and VGPN [27] leverage pointing mainly to support
language-driven navigation tasks. Object referral methods like Exophora [28], YouRefIt [29], and
GIRAF [30] integrate pointing gestures and language, often assuming a prior map of the environ-
ment or limiting the setting to tabletop scenes. Similarly, Constantin et al. [31] combine pointing
recognition and natural language understanding and resolve ambiguities that might arise with an
LLM. These works demonstrate the value of pointing gestures in object referral, but often depend
on strong language cues, prior exploration, or restricted setups. Other works [32, 33] rely solely on
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Figure 1: POINTR3D scene meshes with segmentation masks overlaid.

language for assigning semantic navigation tasks to a robot. Without gestures, these approaches can
fail to differentiate between multiple identical objects, requiring lengthy and complex descriptions.

In contrast, our work focuses on 3D object referral using only natural pointing gestures, without
assuming prior knowledge about the environment or requiring verbal input. The most closely related
work to ours is ScanERU [34], which tackles 3D visual grounding by integrating gestures into
point cloud-based object referral. They introduce a semi-synthetic dataset that combines synthetic
humans, real-world 3D point clouds, and textual descriptions. However, their focus remains on
multimodal fusion and uses synthetic data for evaluations, while our work targets purely pointing-
driven object referral in 3D scenes on real data.

3D Segmentation. The field of 3D segmentation has seen rapid progress, driven largely by the
introduction of large-scale annotated datasets such as ScanNet [14] and S3DIS [13]. Building on
advances in 2D vision, particularly the success of mask transformers [19] for image segmentation,
researchers adapted this paradigm to 3D segmentation [20, 35], achieving impressive performance
by directly operating on point clouds. Inspired by the success of interactive segmentation approaches
in image segmentation [36], subsequent efforts [21, 37] extend mask transformers to interactive 3D
segmentation, leveraging sparse user inputs—typically in the form of mouse clicks—to guide and
refine instance masks. However, such interactive methods, including the earlier SemanticPaint [38]
that additionally integrates gestures and language, are primarily designed for annotation purposes,
relying on iterative corrections through multiple user interactions.

In contrast, robotics applications demand one-shot, efficient interpretation of human intent from
minimal input. Addressing this gap, Pointing3D predicts fine-grained 3D instance masks from a
single pointing gesture, and operates in real time, making it well-suited for practical human-robot
collaboration.

3 POINTR3D Dataset

While datasets for pointing direction estimation [11, 12] and synthetic 3D object referral [34] exist,
none, to the best of our knowledge, simultaneously provide (i) images of humans pointing at objects,
(i1) corresponding 3D point clouds of the environment, and (iii) 3D segmentation masks of the
referred objects. We fill this gap by introducing POINTR3D, a novel dataset designed to enable the
development and standardized evaluation of pointing-based 3D object segmentation methods.

Data Acquisition. We collect data of indoor scenes in two distinct locations, with each scene
recorded under two configurations featuring different object arrangements, resulting in four unique
environmental setups, shown in Figure 1. The scenes include a diverse set of objects at varying
sizes, such as a mobile manipulator with a robotic arm, a quadruped robot, a conveyor, a forklift, a
pushcart, a power supply, a desktop computer, a backpack, a trash can, cardboard and plastic trays,
beverage bottles and spray cans, a watering can, a potted plant, a sofa and multiple chairs and tables.
At the beginning of each session, the 3D geometry of each scene was captured using an iPhone 14
Pro [16], ensuring a clean, static reconstruction. During this process, no humans were present in the
scene to minimize domain gaps with common 3D segmentation datasets [14, 15, 16].
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Figure 2: Two examples from POINTR3D dataset showing RGB images with pointing gestures
(left) and their corresponding 3D segmentation masks (right).

Following 3D scene reconstruction, participants were equipped with only a tiny clip-on microphone,
but no other measurement devices (such as IMU suits) to reflect realistic use cases. Then, they were
allowed to freely point at objects and provide verbal descriptions of the objects without any time
constraints. Since our dataset focuses on 3D object referral rather than precise pointing direction
estimation, we do not require participants to point at markers at known locations as in [11]. Three
synchronized Azure Kinect cameras, placed at varying angles and heights to enhance viewpoint di-
versity, recorded RGB videos at 2048 x 1536 resolution and 15 FPS. All cameras were intrinsically
and extrinsically calibrated and registered to the reconstructed point cloud via manually provided
pixel-to-point correspondences. While participants pointed at objects, synchronized audio record-
ings have been collected to assist with the disambiguation of pointed objects during the annota-
tion process. The resulting raw data, including both pointing and non-pointing frames, consists of
254,073 images, camera calibration parameters, synchronized audio, and four point cloud recon-
structions of the scenes.

Data Postprocessing. To eliminate ambiguous cases, we discard frames in which the participant
faces away from the camera, resulting in occlusion of the pointing hand. We first extract skeletal
joint positions using a state-of-the-art human pose estimation model [18], and then assess whether
the hand joints are occluded by the torso from the camera’s perspective. Frames identified as oc-
cluded are automatically flagged and subsequently verified through manual inspection, resulting in
the removal of approximately 13% of the data. Finally, we partition the data based on recording
locations to prevent information leakage between the validation and testing sets, resulting in 34,795
frames in the validation split and 30,108 in the test split.

Data Annotation. The annotation process consists of two main components: 3D object segmenta-
tion in point clouds and temporal labeling of pointing actions in videos. For 3D segmentation, we
adopt Agile3D [21], an interactive annotation tool that allows annotators to iteratively refine seg-
mentation masks through mouse clicks. This enables efficient and accurate labeling with minimal
manual effort. Over 24 man-hours, a total of 243 distinct object instances have been annotated by
the authors of this paper. For temporal annotation of pointing actions, we first align the video record-
ings with transcriptions obtained from synchronized audio using WhisperX [39]. Annotators then
utilized both the video and the aligned transcript to identify the time intervals during which pointing
gestures occur, the active pointing hand (left/right), and the corresponding object ID. This temporal
annotation effort required an additional 43 man-hours. In total, the dataset includes 832 annotated
pointing actions, with an average duration of 5.20 seconds per gesture, distributed across 64,903
video frames performed by seven different participants, providing diversity in both appearance and
motion patterns. Two representative examples are shown in Figure 2.

4 Method

Building on recent advances in 3D interactive segmentation [21, 37] and human pose estimation [18,
40], we introduce Pointing3D, a unified framework for pointing-based 3D object segmentation.
Given (i) a single RGB image depicting a user in a pointing pose, (ii) a colored point cloud of
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Figure 3: Pointing3D model. We extract multi-scale point cloud features F" via the feature back-
bone [J and concurrently estimate the 3D skeletal joint positions J from an input image. Using these
joint positions, the pointing direction dpeq is estimated and used for initializing [J the segmentation
query Q. Then, the transformer decoder [J iteratively refines this query with point features F7,
producing pointwise heatmaps H and yielding the final object segmentation.

the scene, and (iii) camera intrinsics and extrinsic transform between point cloud and RGB image,
our goal is to predict the 3D instance mask of the object being referred to by the user. Importantly,
the RGB image may be captured by a (mobile) robot-mounted camera and does not necessarily
contain the target object due to occlusions or a non-overlapping field of view.

Our framework consists of two main components: (1) a Pointing Direction Module that estimates
the 3D pointing vector from the RGB image, and (2) a 3D Instance Segmentation Module that uses
this direction as a prompt to segment the target object in 3D space. An overview of our model
architecture is shown in Figure 3.

4.1 Pointing Direction Module

The goal of this module (Fig. 3, ) is to estimate the position of the active hand and the pointing
direction from a single RGB image. To supervise this module during training, we utilize the DP
dataset [11], which provides images of individuals pointing at known 3D marker locations in the
environment. We first estimate absolute, metric-scale 3D human poses from the input image using
a state-of-the-art method [18], which returns both 3D joint positions J € R?4**3 and the SMPL [41]
mesh vertices V € R%90%3_ Let ji..a € R? denote the position of the active hand joint, and m € R3
be the known 3D marker location corresponding to the pointing gesture. The ground truth pointing
direction, dg € R3, is defined as the normalized vector from the hand joint to the marker:
_ m .!hand - (1)
||m — Jhand ||

Then, we regress the pointing direction dpeq from the SMPL mesh vertices V using a multilayer
perceptron (MLP). The model is trained using a combined cosine similarity and L1 loss:

d red d t
L(dpreq, dot) = 1—H)+d -d )
( pred gt) ( HdpredH”dgt” || pred gt”l

During evaluation on the POINTR3D dataset, we use the human pose estimation model and the
trained MLP to predict the active hand joint jhang and the pointing direction dpq from input images.

gt



4.2 3D Instance Segmentation Module

This module takes as input the active hand joint jhang, the predicted pointing direction dpeq, and
the 3D point cloud of the environment. The objective is to predict a binary mask that segments
the object referred by the user. At its core, the module uses a transformer-based architecture that
leverages the pointing gesture as a prompt to guide segmentation. The process begins by encoding
the point cloud with a 3D backbone that extracts multi-scale feature representations. A segmentation
query—representing the referred object—is then initialized using the pointing ray, capturing both
geometric locality and semantic cues. This query is iteratively refined to better represent the object
of interest using the extracted point features, and the final refined query is used for segmentation.

3D Backbone. (Fig. 3, 0) The input colored point cloud P € RV *6 is first quantized into a sparse
voxel grid V € RM*6 for memory-efficient processing with sparse convolutions. A 3D U-Net
built on sparse convolutional networks [42, 43] extracts multi-scale point features F” € RM*P"
capturing both local geometry and semantic context. These features are later used by the transformer
decoder to refine the segmentation query and predict the segmentation mask.

Query Initialization. (Fig.3, 0) To initialize the segmentation query Q° € RP’, we cast a ray
from the estimated hand position jhang along the predicted pointing direction dpreq. Points within
a fixed angular threshold 6 from the ray define a conical region of interest. The closest point to
the hand within this region, denoted as Pyarger, is selected and assumed to lie on the referred object.
This target point is used to initialize the segmentation query Q° by summing its Fourier positional
encoding [44] PE,e: and feature embedding ]—'tgrge[ extracted from the 3D backbone.

Q" = PEurget + Foget 3)

This initial query Q° encodes both geometric and semantic context, serving as the input to the
transformer decoder and guiding attention toward the referred object for subsequent instance seg-
mentation.

Mask Prediction. (Fig. 3, [J) At each transformer decoder layer | = 0, ..., L—1, the segmentation
query Q' is used to predict a binary mask M! € {0, 1}%, indicating whether a point belongs to the
referred object. To achieve this, per-point features FO are projected into the dimensionality of Q
with a linear layer. The instance heatmap H' € RM is then calculated as follows:

H' =0(F°-Q") 4)
where o represents the sigmoid function and - is the dot product operation. Points with features sim-
ilar to the query will have higher values in the heatmap, indicating a higher likelihood of belonging

to the referred object. During training, the predicted mask is supervised with binary cross-entropy
loss and dice loss against the ground truth instance masks.

Query Refinement. (Fig. 3, @) The segmentation query Q' is iteratively refined through transformer
decoder layers, each integrating contextual information from the 3D scene via cross-attention to
multi-scale point features . During attention, the query can only attend to points predicted as part
of the object in the previous mask prediction step, guiding it toward relevant regions. The query is
then passed through a feed-forward network with layer normalization and residual connections to
produce the refined query for the next stage. Unlike traditional mask transformer approaches [19,
20], we do not apply self-attention between queries, as only a single segmentation query is used.

Q"' = FFN (Norm (Q" + CrossAttention(Q", Fipieet))) (5)
Inference. The final segmentation query Q~' produced by the last query refinement layer is used

to predict the 3D object mask by taking the dot product with the point features F° and applying a
threshold to separate the object foreground from the background.

S Experiments

Training Datasets. To train the pointing direction estimation module, we leverage the DP
dataset [11], which contains multi-view video sequences of individuals pointing at calibrated 3D



Table 1: Pointing accuracy, angular deviation from target centroid (AD.) and from the nearest target
point (AD,), and frames per second comparison on validation and test splits of POINTR3D.

Validation Test Overall
Method
Acc.T AD.| AD,| Acc.t AD.| AD,l FPStT

Deepoint [11] 34.9% 28.9° 13.6° 30.1% 23.4° 14.5° 0.5
Elbow to Hand 53.2% 22.3° 7.4° 37.0% 17.4° 8.9° 41
Head to Hand 54.1% 20.7° 7.2° 50.5% 14.4° 7.4° 41
Shoulder to Hand 66.5% 18.5° 4.8° 56.8% 13.3° 5.6° 41
Pointing3D (ours) 72.2% 17.4° 4.4° 64.6 % 12.4° 4.5° 35

markers within indoor environments. Captured from 15 distinct viewpoints with varying elevations
and orientations, it provides precise 3D target locations and temporal annotations for pointing in-
tervals. However, the temporal intervals often include transitional frames (e.g., during arm lifting)
where the gesture does not align with the intended target. We address this by filtering out non-
representative frames, as detailed in the supplementary material.

For training the 3D instance segmentation module, we use the ScanNet200 dataset [15], which com-
prises 1,513 colored point clouds from diverse indoor scenes, annotated with instance-level masks
across 200 object categories. As ScanNet200 does not include humans or pointing gestures, we
simulate pointing by randomly sampling locations on object instances and treating the correspond-
ing segmentation masks as targets. This synthetic supervision enables independent training of the
segmentation module while ensuring exposure to a wide variety of environments and object types.

Evaluation. Both the pointing direction estimation and the 3D instance segmentation modules
are evaluated on the POINTR3D dataset. To assess pointing direction estimation, we report two
metrics. First, we measure pointing accuracy, which captures whether the predicted pointing vector
intersects the ground-truth object mask. Second, we report angular deviation, using two variants:
(i) deviation to the target object centroid (AD,), and (ii) deviation to the nearest point on the target
object (AD,). These metrics together provide a comprehensive assessment of the precision of the
estimated pointing direction. For segmentation performance, we compute the Intersection-over-
Union (IoUpean) between the predicted mask and the ground-truth mask of the pointed object. We
also report the Intersection-over-Union separately for the accurate (IoU. ) and inaccurate pointing
cases (IoU_) to give a better insight. We use the validation set for hyperparameter selection, and
the test set, whose labels remain hidden, for final evaluation, establishing a benchmark to enable
fair comparisons across future methods. Notably, POINTR3D is not used during training, creating a
zero-shot setting that allows us to assess how well the approach generalizes to unseen objects.

Pointing Direction Results. We compare Pointing3D against a range of baselines, including heuris-
tic approaches commonly used in the literature [11, 12], such as vectors from the head to the hand
or from the shoulder to the hand, which offer simple approximations of pointing direction. We also
evaluate DeePoint [11], the current state-of-the-art method for pointing direction estimation. Ta-
ble 1 presents the results on the validation and test splits of POINTR3D, using pointing accuracy
and angular deviation metrics, along with frames per second. While heuristic methods perform sur-
prisingly well, likely due to the robustness and generalization capabilities of the pose estimation
backbone [18], Pointing3D consistently outperforms all baselines across metrics and splits. We at-
tribute this to our model’s ability to learn effectively from a large and diverse dataset. In contrast,
DeePoint performs suboptimally in this zero-shot evaluation setting. Its reliance on image features,
while effective within its training dataset, limits its generalization when applied to new scenes with-
out fine-tuning. Moreover, the use of multi-frame (15 per prediction) processing results in high
computational overhead, making it less suitable for real-time deployment scenarios.

Segmentation Results. To evaluate the effectiveness of Pointing3D, we compare it against several
segmentation baselines in Table 2, all using the same pointing predictions from our model to isolate
differences in segmentation performance. As a non-learned baseline, we use the predicted pointing
location as a seed and apply a classical 3D region growing algorithm [45] to generate a segmentation



Table 2: Segmentation performance comparison on validation and test splits of the POINTR3D
dataset across segmentation methods.

Validation Test Overall
Method
IoUmean T IoU4+ 1 ToU_ 71 IoUmean T IoU4 T ToU_ 1 FPS1
Region Growing 122%  16.4% 1.3% 164%  23.5% 3.2% 5.1
Interactive 2D [36] 35.6%  48.7% 1.9% 334%  45.6% 10.7% 2.2
Non-interactive 3D [20] 36.1% 472% 13.0% 394% 519% 16.2% 35
Pointing3D (ours) 439% 60.0% 2.1% 42.6% 59.6% 11.1% 19

mask. This approach performs poorly, underscoring the need for learning-based methods that can
capture semantic structure in complex scenes. Next, we evaluate a 2D interactive baseline using
SAM [36]. An image of the scene is rendered from the mesh, with the virtual camera positioned at
the active hand and oriented along the predicted pointing direction. The projected pointing location
is then used to prompt SAM, and the resulting 2D mask is unprojected back into 3D. While concep-
tually appealing, this pipeline suffers from occlusions and projection errors. In contrast, Pointing3D
operates directly in 3D, leading to more accurate segmentation. Finally, as a non-interactive 3D seg-
mentation baseline, we adopt Mask3D [20] and perform instance segmentation on the point cloud
independently of the pointing gesture. Then, the pointing ray is used to select the best object in
terms of spatial proximity. However, if the corresponding object is not segmented correctly in the
first place, the pointing cue cannot correct the error. Pointing3D outperforms this baseline as well,
demonstrating the benefit of integrating pointing cues into the segmentation process.

(a) Interactive 2D (b) Non-interactive 3D (c) Pointing3D (ours) (d) Ground truth
(IoU =44.1%) (IoU =1.2%) (IoU = 66.3%) (IoU = 100%)

Figure 4: Qualitative comparison of predicted segmentation masks of a gray box by various models
and the ground truth. The interactive 2D baseline [36] tends to overestimate the mask while the
non-interactive 3D baseline [20] tends to underestimate.

Qualitative Results. Figure 4 presents a comparison of segmentation performance across different
models. The SAM [36]-based interactive 2D baseline segments both the box and its contents as a
single object, failing to distinguish between them. The Mask3D baseline does not recognize the
gray box as a distinct object, resulting in a low segmentation score despite being spatially close.
Pointing3D produces a reasonable segmentation, although the object boundaries are not perfect.

6 Conclusion

While pointing gestures are a natural way to refer to objects, their use for 3D object referral remains
largely underexplored in human-robot interaction. To address this gap, we introduce a new task
and benchmark, POINTR3D, for evaluating pointing-based object referral with 3D segmentation in
indoor scenes. We provide several strong baselines that lay the groundwork for future research, and
propose our method Pointing3D, a unified model that combines human pose estimation with interac-
tive 3D instance segmentation. Our zero-shot evaluations demonstrate that Pointing3D outperforms
both non-interactive 3D and interactive 2D baselines, highlighting the benefits of interactive segmen-
tation and operating directly in 3D. We believe that this work lays a solid ground for the development
and evaluation of future research on pointing-based HRI.



7 Limitations

While Pointing3D demonstrates promising results for pointing-based 3D object segmentation, it has
several limitations. To minimize the domain gap between POINTR3D and other commonly used
3D indoor segmentation datasets, our framework assumes a static point cloud of the environment.
This limits its application to a static environment or requires continuous reconstruction of the scene
using SLAM. Besides, our pipeline assumes the presence of only a single user in the scene at a time.
Although the human pose estimation module can predict multiple poses, POINTR3D is designed
for single-user interactions. This limits its applications to environments containing one person at
a time. Also, it is important to remark the fact that pointing behavior can vary significantly across
individuals due to differences in age, gender, cultural background, and situational context. A larger
dataset with greater participant diversity would likely further improve generalization.
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Pointing3D: A Benchmark for 3D Object Referral via
Pointing Gestures

Supplementary Material

A Dataset Details and Ethics

Our study involved seven participants (one female, six males) aged 25—41 (mean: 35.4). While
we did not formally assess technological affinity, all participants had engineering backgrounds and
were familiar with modern technologies. None reported motor impairments affecting their ability to
perform pointing gestures. The ethics board of our research project has approved the consent form
signed by the participants before participation.

B Implementation Details

The pointing head is implemented as a three-layer MLP with a hidden dimension of 256 and ReLU
activations. We train the model for 30 epochs using the AdamW optimizer [46] and a one-cycle
learning rate schedule [47], with a peak learning rate of 1e-4. Each batch contains 64 samples. To
improve generalization, we apply random scaling and rotations around the z-axis as data augmenta-
tions.

We use MinkUNet Res16UNet34C [42] as the 3D backbone and extract feature maps from all five
resolution levels, with channel dimensions of (96, 96, 128, 256, 256). The transformer decoder
consists of 12 layers, each comprising a mask prediction and a query refinement module, with a
hidden dimensionality of 128. We train the model for 300 epochs using the AdamW optimizer [46]
and a one-cycle learning rate schedule [47], with a peak learning rate of 2e-3. Training with a 2 cm
voxel size takes 48 hours on an NVIDIA 4090 GPU. To enhance robustness, we apply data augmen-
tations including horizontal flipping, elastic distortion, random scaling, and z-axis rotations. Color
augmentations consist of jittering, brightness, and contrast adjustments. For faster convergence, we
synthesize 100 pointing gestures per point cloud during training.

C DP Dataset Filtering

(a) Transitional pointing frame (b) Final pointing frame

Figure 5: DP Dataset samples.

We use the DP Dataset [11] to train our pointing head. As shown in Fig. 5, in this dataset, par-
ticipants point at markers with known 3D positions, providing accurate ground truth for pointing
direction annotations. The dataset includes annotated start and end frames of each pointing se-
quence; however, it also labels intermediate transition frames, such as when the arm is still being



raised, as part of the gesture. For example, in Fig. 5 (left), a frame showing the participant in the
process of lifting their arm is still labeled as pointing, even though the gesture is not yet stable as
in Fig. 5 (right). This labeling approach is compatible with their proposed DeePoint model, which
predicts a single pointing direction over the entire interval. In contrast, our method operates at the
frame level and requires precise frame-wise annotations. To address this, we first estimate shoulder
and hand joint positions using a state-of-the-art human pose estimation model [18]. We compute
the direction vector from the shoulder to the hand and compare it with the ground truth pointing
direction. Frames with an angular deviation greater than 20 degrees are flagged as transitional. We
then manually review these cases to produce a cleaner, filtered subset of the DP dataset.
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