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ABSTRACT

The origin of adversarial examples is still inexplicable in research fields, and it
arouses arguments from various viewpoints, albeit comprehensive investigations.
In this paper, we propose a way of delving into the unexpected vulnerability
in adversarially trained networks from a causal perspective, namely adversarial
instrumental variable (IV) regression. By deploying it, we estimate the causal
relation of adversarial prediction under an unbiased environment dissociated from
unknown confounders. Our approach aims to demystify inherent causal features
on adversarial examples by leveraging a zero-sum optimization game between a
casual feature estimator (i.e., hypothesis model) and worst-case counterfactuals
(i.e., test function) disturbing to find causal features. Through extensive analyses,
we demonstrate that the estimated causal features are highly related to the correct
prediction for adversarial robustness, and the counterfactuals exhibit extreme
features significantly deviating from the correct prediction. In addition, we present
how to effectively inoculate CAusal FEatures (CAFE) into defense networks for
improving adversarial robustness.

1 INTRODUCTION

Adversarial examples, which are indistinguishable to human observers but maliciously fooling Deep
Neural Networks (DNNs), have drawn great attention in research fields due to their security threats
used to compromise machine learning systems. In real-world environments, such potential risks
evoke weak reliability of the decision-making process for DNNs and pose a question of adopting
DNNs in safety-critical areas (Apruzzese et al., 2019; Wang et al., 2019; Sagduyu et al., 2019).

To understand the origin of adversarial examples, seminal works have widely investigated the adversar-
ial vulnerability through numerous viewpoints such as excessive linearity in a hyperplane (Goodfellow
et al., 2015), aberration of statistical fluctuations (Szegedy et al., 2014; Shafahi et al., 2018), and
phenomenon induced from frequency information (Yin et al., 2019a). Recently, several works (Ilyas
et al., 2019; Kim et al., 2021) have revealed the existence and pervasiveness of robust and non-robust
features in adversarially trained networks and pointed out that the non-robust features on adversarial
examples can provoke unexpected misclassifications.

Nonetheless, there still exists a lack of common consensus (Engstrom et al., 2019a) on underlying
causes of adversarial examples, albeit comprehensive endeavors (Tsipras et al., 2019; Hendrycks
& Dietterich, 2019). Moreover, the earlier analyses have focused on learning associations between
adversarial examples and target labels, namely adversarial training (Madry et al., 2018; Zhang et al.,
2019; Wang et al., 2020; Wu et al., 2020; Rade & Moosavi-Dezfooli, 2022) in canonical supervised
learning. Such approaches easily induce spurious correlation (i.e., statistical bias) in the learned
associations, thereby leading to robustness degradation. This is because they do not learn inherent
causal relation between adversarial examples and their target labels, but learn naïve associations under
the existence of unknown confounders (e.g., excessive linearity, statistical fluctuations, frequency
information, and non-robust features). In order to truly understand where the adversarial vulnerability
comes from and deduce true adversarial causality, we need to employ an intervention-oriented
approach (i.e., causal inference) that brings in possibly estimating causal relations for the given data
population, thereby providing an unbiased environment dissociated from the unknown confounder.

One of the efficient tools for causal inference is instrumental variable (IV) regression when random-
ized controlled trials (A/B experiments) or full controls of unknown confounders are not feasible
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options. It is a popular approach used to identify causality in econometrics (Newey & Powell, 2003;
Darolles et al., 2011; Chen & Pouzo, 2012) and provides an unbiased environment for unknown
confounder that raises the endogeneity of causal inference (Reiersøl, 1945). In IV regression, the
instrument is utilized to eliminate a backdoor path derived from unknown confounders by separating
exogenous portions of treatments, for which IV needs to satisfy three valid conditions: independent
of the outcome error (Unconfoundedness), and not directly affect outcomes (Exclusion Restriction)
but only affect outcomes through a connection of treatments (Relevance).
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Figure 1: Data generating process (DGP)
with IV. By deploying Z, it can estimate
causal relation between treatment T and
outcome Y under exogenous condition
for unknown confounder U .

Once regarding data generating process (DGP) (Phillips &
Hansen, 1990) for causal inference as illustrated in Fig. 1,
the existence of unknown confounders U could create spu-
rious correlation generating a backdoor path that hinders
causal estimator h (i.e., hypothesis model) from estimating
causality between treatment T and outcome Y (T ← U
→ Y ). By adopting an instrument Z, we can acquire the
estimand of true causality from h in an unbiased environ-
ment (Z → T → Y ). Because IV regression can perform
causal inference although unknown confounders remain,
it is a suitable causal approach to uncover adversarial ori-
gins. Bringing such DGP into adversarial settings, the
aforementioned controversial perspectives (e.g., excessive
linearity, statistical fluctuations, frequency information,
and non-robust features) of adversarial origins can be regarded as possible candidates of unknown
confounders U . In most observational studies, everything is endogenous in practice so that we cannot
explicitly specify such confounders and conduct full control of them.

Accordingly, unknown confounders U in adversarial settings easily induce ambiguous interpretation
for the adversarial origin producing spurious correlation between adversarial examples and their
target labels, and consequently lead to degradation of adversarial robustness. In order to uncover the
adversarial causality, we first need to intervene on the intermediate feature representation and focus
on what truly affects adversarial robustness irrespective of unknown confounders U , instead of model
prediction. To do that, we define the instrument Z as feature variation in the feature space of DNNs
between adversarial examples and natural examples, where the variation Z is originated from the
adversarial perturbation in the image domain such that Z derives adversarial features T for the given
natural features. Here, once we find causality-related feature representations on adversarial examples,
then we name them as causal features Y that can encourage robustness of predicting the target labels
despite the existence of adversarial perturbation harming model prediction.

In this paper, we propose adversarial instrumental variable (IV) regression to identify causal features
on adversarial examples with respect to the causal relation of adversarial prediction. Our approach
builds an unbiased environment for the unknown confounder U in adversarial settings and estimates
inherent causal features on adversarial examples by employing generalized method of moments
(GMM) (Hansen, 1982) which is the most flexible estimation for non-parametric IV regression.
Similar to the nature of adversarial learning (Goodfellow et al., 2014; Arjovsky et al., 2017), we
deploy a zero-sum optimization game (Lewis & Syrgkanis, 2018; Dikkala et al., 2020) between a
hypothesis model and test function, where the former tries to unveil causal relation between treatment
and outcome, while the latter disturbs the hypothesis model from estimating the relation. In adversarial
settings, we regard the hypothesis model as a causal feature estimator which extracts causal features
in the adversarial features to be highly related to the correct prediction for the adversarial robustness,
while the test function makes worst-case counterfactuals (i.e., extreme features) compelling the
estimand of causal features to significantly deviate from correct prediction. Consequently, it can
further strengthen the hypothesis model to demystify causal features on adversarial examples.

Through extensive analyses, we corroborate that the estimated causal features on adversarial examples
are highly related to correct prediction for adversarial robustness, and the test function represents the
worst-case counterfactuals on adversarial examples. By utilizing feature visualization (Mahendran
& Vedaldi, 2015; Olah et al., 2017), we interpret the causal features on adversarial examples in a
human-recognizable way. Furthermore, we introduce an inversion of the estimated causal features
to handle them on the possible feature bound and present a way of efficiently injecting these causal
features into defense networks for improving adversarial robustness. We demonstrate the effectiveness
of inoculating CAusal FEatures (CAFE) into the networks with comprehensive experimental results.
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2 RELATED WORKS

In the long history of causal inference, there have been a variety of works (Garcia-Retamero &
Hoffrage, 2006; Kim & LoSavio, 2009; Hagmayer & Witteman, 2017) to discover how the causal
knowledge affects decision-making process. Among various causal approaches, especially in eco-
nomics, IV regression (Reiersøl, 1945) provides a way of identifying the causal relation between the
treatment and outcome of interests despite the existence of unknown confounders, where IV makes
the exogenous condition of treatments for an unbiased environment with the confounders.

Earlier works of IV regression (Angrist et al., 1996; Angrist & Pischke, 2008) have limited the
relation for causal variables by formalizing it with linear function, which is known as 2SLS estima-
tor (Wooldridge, 2010). With progressive developments of machine learning methods, researchers and
data scientists desire to deploy them for non-parametric learning (Newey & Powell, 2003; Darolles
et al., 2011; Chen & Pouzo, 2012; Chen & Christensen, 2018) and want to overcome the linear
constraints in the functional relation between the variables. As extensions of 2SLS, DeepIV (Hartford
et al., 2017), KernelIV (Singh et al., 2019), and Dual IV (Muandet et al., 2020b) have combined
DNNs as non-parametric estimator and proposed effective ways of exploiting them to perform IV
regression. More recently, generalized method of moments (GMM) (Lewis & Syrgkanis, 2018;
Bennett et al., 2019; Dikkala et al., 2020) has been cleverly proposed as a solution for dealing
with the non-parametric hypothesis model on the high-dimensional treatments through a zero-sum
optimization, thereby successfully achieving the non-parametric IV regression.

In parallel with the various causal approaches utilizing IV, uncovering the origin of adversarial
examples is one of the open research problems that arouse controversial issues. In the beginning,
Goodfellow et al. (2015) have argued that the excessive linearity in the networks’ hyperplane can
induce adversarial vulnerability. Several works (Szegedy et al., 2014; Shafahi et al., 2018) have
theoretically analyzed such origin as a consequence of statistical fluctuation of data population, or
the behavior of frequency information in the inputs Yin et al. (2019a). Recently, the existence of
non-robust features in DNNs (Ilyas et al., 2019; Kim et al., 2021) is contemplated as a major cause of
adversarial examples, but it still remains inexplicable (Engstrom et al., 2019a).

Motivated by IV regression, we propose a way of estimating inherent causal features in adversarial
features easily provoking the vulnerability of DNNs. To do that, we deploy the zero-sum optimization
based on GMM between a hypothesis model and test function (Lewis & Syrgkanis, 2018; Bennett
et al., 2019; Dikkala et al., 2020). Here, we assign the role of causal feature estimator to hypothesis
model and that of generating worst-case counterfactuals to test function disturbing to find causal
features. This strategy results in getting the causal features to have the ability to overcome all trials and
tribulations considered as various types of adversarial perturbation. In the end, we present to inoculate
CAusal FEatures (CAFE) into defense networks and verify they improve adversarial robustness
through empirical evidence in the sense that causal features withstand the unseen perturbations.

3 ADVERSARIAL IV REGRESSION

Our major goal is estimating inherent causal features on adversarial examples highly related to the
correct prediction for adversarial robustness by deploying IV regression. Before introducing the
way of identifying the causal features, we first specify problem setup of IV regression and revisit
non-parametric IV regression with generalized method of moments (GMM).

Problem Setup. We start from conditional moment restriction (CMR) (Chamberlain, 1987; Ai
& Chen, 2003) bringing in an asymptotically efficient estimation with IV, which reduces spurious
correlation (i.e., statistical bias) between treatment T and outcome of interest Y caused by unknown
confounders U (Pearl, 2009). Here, the formulation of CMR can be written with a hypothesis model
h, so-called a causal estimator on the hypothesis spaceH as follows:

ET [ψT (h) | Z] = 0, (1)

where ψT : H → Rd denotes a generalized residual function (Chen & Pouzo, 2012) on treatment
T , such that it represents ψT (h) = Y − h(T ) considered as an outcome error for regression task.
Note that 0 ∈ Rd describes zero vector and d indicates the dimension for the outcome of interest
Y , and it is also equal to that for the output vector of the hypothesis model h. The treatment is
controlled for being exogenous (Nizalova & Murtazashvili, 2016) by the instrument. In addition, for
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the given instrument Z, minimizing the magnitude of the generalized residual function ψ implies
asymptotically restricting the hypothesis model h not to deviate from Y , thereby eliminating the
internal spurious correlation on h from the backdoor path induced by confounders U .

3.1 REVISITING NON-PARAMETRIC IV REGRESSION WITH GMM

Once we find a hypothesis model h satisfying CMR with instrument Z, we can perform IV re-
gression to endeavor causal inference using h under the following formulation: ET [h(T ) | Z] =∫
t∈T

h(t)dP(T = t | Z), where P indicates a conditional density measure. In fact, two-stage least
squares (2SLS) (Angrist et al., 1996; Angrist & Pischke, 2008; Wooldridge, 2010) is a well-known
solver to expand IV regression, but it cannot be directly applied to more complex model such as
non-linear model, since 2SLS is designed to work on linear hypothesis model (Peters et al., 2017).
Later, Hartford et al. (2017) and Singh et al. (2019) have introduced a generalized 2SLS for non-linear
model by using a conditional mean embedding and a mixture of Gaussian, respectively. Nonetheless,
they still raise an ill-posed problem yielding biased estimates (Bennett et al., 2019; Muandet et al.,
2020b; Dikkala et al., 2020; Zhang et al., 2020) with the non-parametric hypothesis model h on the
high dimensional treatment T , such as DNNs. It stems from the curse nature of two-stage methods,
known as forbidden regression (Angrist & Pischke, 2008) according to Vapnik’s principle (de Mello
& Ponti, 2018): “do not solve a more general problem as an intermediate step”.

To address it, recent studies (Lewis & Syrgkanis, 2018; Bennett et al., 2019; Dikkala et al., 2020)
have employed generalized method of moments (GMM) to develop IV regression and achieved
successful one-stage regression alleviating biased estimates. Once we choose a moment to represent
a generic outcome error with respect to the hypothesis model and its counterfactuals, GMM uses the
moment to deliver infinite moment restrictions to the hypothesis model, beyond the simple constraint
of CMR. Expanding Eq. (1), the formulation of GMM can be written with a moment, denoted by
m : H× G → R as follows (see Appendix A):

m(h, g) = EZ,T [ψT (h) · g(Z)] = EZ [ET [ψT (h) | Z]︸ ︷︷ ︸
CMR

·g(Z)] = 0, (2)

where the operator · specifies inner product, and g ∈ G denotes test function that plays a role
in generating infinite moment restrictions on test function space G, such that its output has the
dimension of Rd. The infinite number of test functions expressed by arbitrary vector-valued functions
{g1, g2, · · · } ∈ G cues potential moment restrictions (i.e., empirical counterfactuals) (Blundell et al.,
2001) violating Eq. (2). In other words, they make it easy to capture the worst part of IV which
easily stimulates the biased estimates for hypothesis model h, thereby helping to obtain more genuine
causal relation from h by considering all of the possible counterfactual cases g for generalization.

However, it has an analogue limitation that we cannot deal with infinite moments because we only
handle observable finite number of test functions. Hence, recent studies construct maximum moment
restriction (Dikkala et al., 2020; Zhang et al., 2020; Muandet et al., 2020a) to efficiently tackle
the infinite moments by focusing only on the extreme part of IV, denoted as supg∈G m(h, g) in a
closed-form expression. By doing so, we can concurrently minimize the moments for the hypothesis
model to fully satisfy the worst-case generalization performance over test functions. Thereby, GMM
can be re-written with min-max optimization thought of as a zero-sum game between the hypothesis
model h and test function g:

min
h∈H

sup
g∈G

m(h, g) ≈ min
h∈H

max
g∈G

EZ,T [ψT (h) · g(Z)], (3)

where the infinite number of test functions can be replaced with the non-parametric test function in
the form of DNNs. Next, we bridge GMM of Eq. (3) to adversarial settings and unveil the adversarial
origin by establishing adversarial IV regression with maximum moment restriction.

3.2 DEMYSTIFYING CAUSAL FEATURES ON ADVERSARIAL EXAMPLES

To demystify inherent causal features on adversarial examples, we first define feature variation Z as
the instrument, which can be written with adversarially trained DNNs denoted by f as follows:

Z = fl(Xϵ)− fl(X) = Fadv − Fnatural, (4)

where fl outputs a feature representation in lth intermediate layer, X represents natural inputs, and Xϵ

indicates adversarial examples with adversarial perturbation ϵ such that Xϵ = X + ϵ. To validate our
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IV setup, Appendix B describes its justification on three conditions: Unconfoundedness, Exclusion
Restriction, and Relevance in details. In the sense that we have a desire to uncover how adversarial
features Fadv truly estimate causal features Y which are outcomes of our interests, we set the treatment
to T = Fadv and set counterfactual treatment with a test function to TCF = Fnatural + g(Z).

Note that, if we naïvely apply test function g to adversarial features T to make counterfactual
treatment TCF such that TCF = g(T ), then the outputs (i.e., causal features) of hypothesis model
h(TCF) may not be possibly acquired features considering feature bound of DNNs f . In other words,
if we do not keep natural features in estimating causal features, then the estimated causal features will
be too exclusive features from natural ones. This results in non-applicable features considered as an
imaginary feature we cannot handle, since the estimated causal features are significantly manipulated
ones only in a specific intermediate layer of DNNs. Thus, we set counterfactual treatment to
TCF = Fnatural + g(Z). This is because this formation can preserve natural features, where we
first subtract natural features from counterfactual treatment such that T ′ = TCF − Fnatural = g(Z)
and add the output Y ′ of hypothesis model to natural features for recovering causal features such
that Y = Y ′ + Fnatural = h(T ′) + Fnatural. In brief, we intentionally translate causal features and
counterfactual treatment not to deviate from possible feature bound.

Now, we newly define Adversarial Moment Restriction (AMR) including the counterfactuals computed
by the test function for adversarial examples, as follows: ET ′ [ψT ′(h) | Z] = 0. Here, the generalized
residual function ψT ′|Z(h) = Y ′−h(T ′) in adversarial settings deploys the translated causal features
Y ′. With them, we re-formulate GMM with counterfactual treatment to fit adversarial IV regression,
which can be written as (Note that h and g consist of a simple CNN structure):

min
h∈H

max
g∈G

EZ [ET ′ [ψT ′(h) | Z]︸ ︷︷ ︸
AMR

·g(Z)] = EZ [ψT ′|Z(h) · g(Z)], (5)

where it satisfies ET ′ [ψT ′(h) | Z] = ψT ′|Z(h) because Z corresponds to only one translated
counterfactual treatment T ′ = g(Z). Here, we cannot directly compute the generalized residual
function ψT ′|Z(h) = Y ′ − h(T ′) in AMR, since there are no observable labels for the translated
causal features Y ′ on high-dimensional feature space. Instead, we make use of onehot vector-valued
target label G ∈ RK (K : class number) corresponding to the natural input X in classification task.
To utilize it, we alter the domain of computing GMM from feature space to log-likelihood space
of model prediction by using the log-likelihood function: Ω(ω) = log fl+(Fnatural + ω), where fl+
describes the subsequent network returning classification probability after lth intermediate layer.
Accordingly, the meaning of our causal inference is further refined to find inherent causal features
of correctly predicting target labels even under worst-case counterfactuals. To realize it, Eq. (5) is
modified with moments projected to the log-likelihood space, which can be written as follows:

min
h∈H

max
g∈G

EZ [ψ
Ω
T ′|Z(h) · (Ω ◦ g)(Z)] = EZ [{Glog − (Ω ◦ h)(T ′)} · (Ω ◦ g)(Z)], (6)

where ψΩ
T ′|Z(h) indicates the generalized residual function on the log-likelihood space, the operator ◦

symbolizes function composition, and Glog is log-target label such that satisfies Glog = logG. Each
element (k = 1, 2, · · · ,K) of log-target label has G(k)

log = 0 when it is G(k) = 1 and has G(k)
log = −∞

when it is G(k) = 0. To implement it, we just ignore the element G(k)
log = −∞ and use another only.

So far, we construct GMM based on AMR in Eq. (6), namely AMR-GMM, to behave adversarial IV
regression, but there is absence of regularizing the test function. This results in the existence of a
generalization gap bringing in bad effect to causal inference (see Appendix D). To become a rich
test function, previous works (Lewis & Syrgkanis, 2018; Bennett et al., 2019; Dikkala et al., 2020;
Wang et al., 2021) have employed Rademacher complexity (Bartlett & Mendelson, 2002; Koltchinskii
& Panchenko, 2002; Yin et al., 2019b) that provides tight generalization bounds for a family of
functions. It has a strong theoretical foundation to control a generalization gap, thus it is related to
various regularizers used in DNNs such as weight decay, Lasso, Dropout, and Lipschitz (Wan et al.,
2013; Zhai & Wang, 2018; Du & Lee, 2018; Wei & Ma, 2019). Following Appendix C, we build a
final objective of AMR-GMM for adversarial IV regression with rich test function as follows:

min
h∈H

max
g∈G

EZ [ψ
Ω
T ′|Z(h) · (Ω ◦ g)(Z)]− |EZ [Z − g(Z)]|2. (7)

Appendix D delineates how rich test function affects causal inference by conducting ablation studies.
In addition, More details for AMR-GMM algorithm are attached in Appendix E.
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Figure 2: Adversarial robustness of Adv, CF, CC, AC on VGG-16 and ResNet-18 under three attack
modes: FGSM(Goodfellow et al., 2015), PGD (Madry et al., 2018), CW∞ (Carlini & Wagner, 2017)
for CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), ImageNet (Deng et al., 2009).

4 ANALYZING PROPERTIES OF CAUSAL FEATURES IN AMR-GMM

In this section, we first notate several conjunctions of feature representation from the result of
adversarial IV regression with AMR-GMM as: (i) Adversarial Feature (Adv): Fnatural + Z, (ii)
CounterFactual Feature (CF): Fnatural + g(Z), (iii) Counterfactual Causal Feature (CC): Fnatural +
(h ◦ g)(Z), and (iv) Adversarial Causal Feature (AC): Fnatural + h(Z). By using them, we estimate
adversarial robustness computed by classification accuracy for which the above feature conjunctions
are propagated through fl+, where standard attacks generate feature variation Z and adversarial
features T . Here, average treatment effects (ATE) (Holland, 1986), used for conventional validation
of causal approach, is replaced with adversarial robustness of the conjunctions. Beyond it, we delve
into semantic information of the above feature conjunctions using feature visualization (Olah et al.,
2017). Note that, all feature representations are treated at the last convolutional layer of DNNs f as
in (Kim et al., 2021), since it mostly contains the high-level object concepts and has the unexpected
vulnerability for adversarial perturbation due to high-order interactions (Deng et al., 2022).

4.1 VALIDATING HYPOTHESIS MODEL AND TEST FUNCTION

After optimizing hypothesis model and test function using AMR-GMM for adversarial IV regression,
we can then control endogenous treatment (i.e., adversarial features) and separate exogenous portion
of it, namely causal features, in adversarial settings. Here, the hypothesis model finds causal features
on adversarial examples, highly related to correct prediction for adversarial robustness even with the
adversarial perturbation. On the other hand, the test function generates worst-case counterfactuals to
disturb estimating causal features, thereby degrading capability of hypothesis model. These learning
strategy enables hypothesis model to estimate inherent causal features overcoming all trials and
tribulations from the counterfactuals. Therefore, the findings of the causal features on adversarial
examples has theoretical evidence by nature of AMR-GMM to overcome various types of adversarial
perturbation. Note that, our IV setup posits homogeneity assumption (Heckman et al., 2006), a
more general version than monotonicity assumption (Angrist et al., 1996), that adversarial robustness
(i.e., average treatment effects) consistently retains high for all data samples despite varying natural
features Fnatural depending on data samples.

As illustrated in Fig. 2, we intensively examine the average treatment effects (i.e., adversarial
robustness) for the hypothesis model and test function by measuring classification accuracy of the
feature conjunctions (i.e., Adv, CF, CC, AC) for all dataset samples. Here, we observe that the
adversarial robustness of CF is inferior to that of CC, AC, and even Adv. Intuitively, it is an obvious
result since the test function violating Eq. (7) forces feature representation to be the worst possible
condition of extremely deviating from correct prediction. For the prediction results for CC and
AC, they show impressive robustness performance than Adv with large margins. Since AC directly
leverages the feature variation acquired from adversarial perturbation, they present better adversarial
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Table 1: Measuring distance metric (unit: m) of KL divergence DKL based on Eq. (8), between the
prediction of causal features and causal inversion, natural input, and adversarial example of which
perturbation budget varies on small and large dataset. The elements below δcausal denote maximum
magnitude of causal perturbation budget chosen by a heuristic search to estimate causal features.

Network CIFAR-10 SVHN Tiny-ImageNet

δcausal Inversion Natural Adversary δcausal Inversion Natural Adversary δcausal Inversion Natural Adversary

VGG 8/255 6.3 55.5 586.0 4/255 4.7 25.6 1011.3 1/255 35.8 83.4 800.4

ResNet 4/255 2.2 16.5 549.5 1/255 2.1 11.6 768.4 .5/255 35.1 80.8 762.5

WRN 2/255 1.2 7.2 671.8 1/255 1.6 6.0 937.9 .5/255 33.4 57.5 1062.1

Image Natural Adv Image Natural Adv
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Figure 3: Feature visualization results of representing natural features, Adv, AC, and CF. From the
top row, CIFAR-10, SVHN, and ImageNet are sequentially used for the feature visual interpretation.

robustness than CC obtained from the test function outputting the worst-case counterfactuals on
the feature variation. Intriguingly, we notice that both results from the hypothesis model generally
show constant robustness even in a high-confidence adversarial attack (Carlini & Wagner, 2017)
fabricating unseen perturbation. Such robustness demonstrates the estimated causal features have
ability to overcome various types of adversarial perturbation.

4.2 INTERPRETING CAUSAL EFFECTS AND VISUALIZATION IN FEATURE SPACE

We have reached the causal features in adversarial examples and analyzed their robustness. After
that, our next question is "Can the causal features have semantic information for target objects?".
Recent works (Engstrom et al., 2019b; Kim et al., 2021) have investigated to figure out the semantic
meaning of feature representation in adversarial settings. Following the recent works, we also utilize
the feature visualization method (Mahendran & Vedaldi, 2015; Olah et al., 2017; Nguyen et al., 2019)
and visualize the feature conjunctions on the input domain to interpret them in a human-recognizable
manner. As shown in Fig. 3, we can generally observe that the results of natural features represent
semantic meaning of target objects. On the other hand, adversarial features (Adv) compel its feature
representation to the orient of adversarially attacked target objects.

As aforementioned, the test function distracts treatments to be the worst-case counterfactuals, which
exacerbates the feature variation from adversarial perturbation. Thereby, the visualization of CF is
remarkably shifted to the violated feature representation for the target objects. For instance, as in
ImageNet (Deng et al., 2009) examples, we can see that the visualization of CF displays Hen and
Langur features, manipulated from Worm fence and Croquet ball, respectively. We note that the red
flowers in the original images have changed into the red cockscomb and patterns of hen feather, in
addition, people either have changed into the distinct characteristics of langur, which accelerates
the disorientation of feature representation to the counterfactuals. Contrastively, the visualization
of AC displays a prominent exhibition and semantic consistency for the target objects, where we
can recognize their semantic information by themselves and explicable to human observers. By
investigating visual interpretations, we reveal that the feature representations acquired from the
hypothesis model and test function both have causally semantic information, and their roles are in
line with the theoretical evidence of our causal approach. In brief, we have verified semantic meaning
of causal features immanent in high-dimensional space despite the existence of the counterfactuals.
Next, we explain how to efficiently implant the causal features into various defense networks for
improving adversarial robustness.
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Table 2: Measuring adversarial robustness and improvement from CAFE on five defense baselines:
ADV, TRADES, MART, AWP, HELP, trained with VGG-16, ResNet-18, WideResNet-34-10 for
CIFAR-10, SVHN, Tiny-ImageNet under six attack modes: FGSM, PGD, CW∞, AP, DLR, AA.

Method CIFAR-10 SVHN Tiny-ImageNet

Natural FGSM PGD CW∞ AP DLR AA Natural FGSM PGD CW∞ AP DLR AA Natural FGSM PGD CW∞ AP DLR AA
V

G
G

ADV 78.5 49.8 44.8 42.6 43.2 42.9 40.7 91.9 64.8 52.1 48.9 48.0 48.5 45.2 53.2 25.3 21.5 21.0 20.2 20.8 19.6
ADVCAFE 78.4 52.2 47.9 44.1 46.4 44.5 42.7 91.5 67.0 55.3 50.0 51.3 49.6 46.1 52.6 26.0 22.8 22.1 21.8 22.0 21.0
∆(%) -0.1 4.8 7.1 3.7 7.5 3.8 4.9 -0.4 3.4 6.1 2.2 6.8 2.3 1.9 -1.2 3.0 6.4 5.2 7.8 5.6 6.9

TRADES 79.5 50.4 45.7 43.2 44.4 42.9 41.8 91.9 66.4 53.6 49.1 49.1 47.7 45.2 52.8 25.9 22.5 21.9 21.5 21.8 20.7
TRADESCAFE 77.0 51.6 47.9 44.0 47.0 43.9 42.7 90.3 67.8 56.1 50.0 53.6 49.1 47.5 52.1 26.5 23.6 22.6 22.5 22.6 21.6
∆(%) -3.1 2.2 4.8 1.8 5.8 2.3 2.3 -1.8 2.1 4.6 1.9 9.3 2.9 5.0 -1.3 2.2 5.2 3.6 4.6 3.7 4.2

MART 79.7 52.4 47.2 43.4 45.5 43.8 42.0 92.6 66.6 54.2 47.9 49.6 47.1 44.4 53.1 25.0 21.5 21.2 20.4 21.0 19.9
MARTCAFE 78.3 54.2 49.7 43.9 48.1 44.5 42.7 91.3 67.6 57.3 49.5 54.2 48.3 46.4 53.0 25.6 22.3 21.6 21.3 21.5 20.5
∆(%) -1.8 3.4 5.1 1.2 5.6 1.6 1.9 -1.4 1.4 5.9 3.3 9.2 2.7 4.6 -0.2 2.4 4.0 1.8 4.3 2.5 3.1

AWP 78.0 51.7 48.2 43.5 47.2 43.4 42.6 90.8 65.5 56.6 50.4 54.0 49.7 48.6 52.6 28.0 25.7 23.6 24.8 23.5 22.8
AWPCAFE 77.4 54.8 51.4 44.2 50.2 44.9 43.5 91.9 67.9 58.6 51.2 55.9 51.1 49.7 52.9 28.8 26.4 24.2 25.6 24.1 23.4
∆(%) -0.8 5.8 6.8 1.7 6.4 3.6 2.2 1.2 3.8 3.4 1.6 3.6 2.7 2.3 0.6 3.0 2.7 2.7 3.3 2.5 2.9

HELP 77.4 51.8 48.3 43.9 47.3 43.9 42.9 91.2 65.8 56.6 50.9 53.9 50.2 48.8 53.0 28.3 25.9 23.9 25.1 23.8 23.1
HELPCAFE 75.6 54.4 51.4 44.6 50.4 44.8 43.7 91.5 67.3 58.5 51.6 56.2 51.4 50.0 52.6 29.4 27.1 24.7 26.4 24.4 23.9
∆(%) -2.3 5.0 6.4 1.5 6.6 2.2 1.8 0.3 2.3 3.3 1.4 4.2 2.4 2.5 -0.8 3.9 4.7 3.1 5.0 2.4 3.5

R
es

N
et

ADV 82.0 52.1 46.5 44.8 44.8 44.8 43.0 92.8 70.4 55.4 51.3 50.9 51.0 47.5 57.2 27.3 24.2 23.2 22.8 23.2 21.8
ADVCAFE 82.6 55.9 50.7 47.6 49.0 47.7 46.2 92.5 73.6 58.9 53.8 54.9 52.6 49.8 56.3 28.6 25.7 24.7 24.4 24.6 23.5
∆(%) 0.7 7.1 9.1 6.3 9.4 6.5 7.4 -0.3 4.5 6.4 4.8 7.8 3.2 5.0 -1.5 4.6 6.2 6.2 7.2 6.1 7.6

TRADES 83.0 55.0 49.8 47.5 48.3 47.3 46.1 93.2 72.8 57.7 52.6 53.0 51.5 48.9 56.5 28.4 25.3 24.4 24.2 24.3 23.2
TRADESCAFE 80.7 56.6 51.4 48.5 50.4 48.3 46.7 91.3 73.9 59.6 54.1 56.7 53.2 51.3 54.5 29.6 27.4 26.3 26.5 26.2 25.4
∆(%) -2.8 2.8 3.4 2.2 4.2 2.1 1.4 -2.0 1.4 3.4 2.9 6.9 3.2 5.0 -3.7 4.0 8.3 8.0 9.3 7.8 9.3

MART 83.5 56.1 50.1 47.1 48.3 47.0 45.5 93.7 74.2 58.3 51.7 53.2 50.8 47.8 57.1 27.4 24.2 23.2 22.9 23.2 22.2
MARTCAFE 82.1 57.3 51.9 48.1 50.2 48.0 46.2 92.2 74.9 61.0 53.4 57.3 51.8 49.7 55.9 28.6 25.9 24.6 24.7 24.5 23.5
∆(%) -1.7 2.1 3.6 2.1 3.9 2.1 1.6 -1.6 1.0 4.7 3.3 7.7 2.1 3.8 -2.1 4.6 7.3 5.7 7.7 5.3 5.8

AWP 81.2 55.3 51.6 48.0 50.5 47.8 46.9 92.2 71.1 59.8 54.3 56.8 53.6 52.0 56.2 30.5 28.5 26.2 27.6 26.2 25.5
AWPCAFE 81.5 57.8 54.2 49.4 52.9 49.0 47.8 93.4 74.0 60.9 55.0 57.8 54.8 52.7 56.6 31.4 29.2 27.1 28.4 27.0 26.5
∆(%) 0.3 4.5 5.0 2.9 4.8 2.4 1.9 1.3 4.2 1.9 1.4 1.8 2.1 1.4 0.8 2.7 2.3 3.3 3.1 3.4 4.0

HELP 80.5 55.8 52.1 48.4 51.1 48.5 47.4 92.6 72.0 59.8 54.4 56.6 53.9 52.0 56.1 31.0 28.6 26.3 27.7 26.3 25.7
HELPCAFE 80.6 57.8 54.5 49.4 53.1 49.5 48.5 92.9 73.9 61.3 55.3 58.8 54.6 52.8 55.4 32.0 29.7 27.4 29.2 27.8 27.3
∆(%) 0.1 3.5 4.6 2.1 3.9 2.2 2.4 0.3 2.6 2.5 1.7 3.9 1.3 1.7 -1.2 3.2 3.8 4.0 5.4 5.7 6.0

W
R

N

ADV 84.3 54.5 48.7 47.8 47.0 47.9 45.6 94.0 71.8 56.7 53.2 51.9 52.8 49.0 60.9 29.8 25.5 25.8 24.2 26.0 23.9
ADVCAFE 85.7 58.5 53.3 51.3 51.8 51.5 49.5 93.7 75.7 59.1 54.9 54.0 54.1 50.2 60.6 31.1 27.3 27.2 25.8 27.4 25.4
∆(%) 1.7 7.4 9.3 7.4 10.2 7.7 8.6 -0.3 5.4 4.3 3.2 4.1 2.3 2.5 -0.5 4.4 7.1 5.4 6.9 5.4 6.4

TRADES 86.3 57.1 52.1 50.8 50.6 50.7 49.0 93.8 74.0 58.1 53.9 53.0 53.4 49.9 60.8 30.5 26.4 26.7 25.0 26.8 24.6
TRADESCAFE 83.7 58.6 54.5 52.0 53.2 52.0 50.1 92.4 75.6 61.0 55.7 58.0 58.0 53.0 60.3 31.7 28.2 28.3 27.0 28.5 26.5
∆(%) -3.0 2.6 4.5 2.4 5.3 2.6 2.3 -1.6 2.2 5.0 3.4 9.5 8.6 6.1 -0.8 3.7 6.7 6.2 8.1 6.4 7.8

MART 86.5 58.5 52.6 50.0 50.7 49.9 48.0 94.2 75.0 58.0 53.1 52.8 52.8 48.9 60.7 29.9 25.6 25.9 24.0 25.5 23.6
MARTCAFE 85.7 59.8 54.6 51.4 52.7 50.9 49.3 93.0 76.5 61.9 54.9 57.2 53.8 50.7 60.4 31.2 27.5 26.8 25.5 27.0 25.1
∆(%) -1.0 2.2 3.8 2.8 4.0 2.0 2.7 -1.3 2.0 6.7 3.3 8.4 1.8 3.7 -0.5 4.5 7.3 6.0 6.3 5.9 6.3

AWP 83.7 58.0 54.7 51.3 53.7 51.2 50.1 93.2 73.4 60.8 55.9 57.5 55.5 53.6 61.9 35.5 32.8 31.0 31.6 31.1 29.6
AWPCAFE 84.6 60.6 56.9 52.4 55.5 52.3 51.1 94.2 76.9 62.7 57.5 59.2 57.1 54.6 61.4 36.6 34.2 32.3 33.2 32.5 30.8
∆(%) 1.1 4.5 4.1 2.1 3.4 2.2 2.1 1.1 4.9 3.1 2.9 2.8 2.9 2.0 -0.9 3.1 4.5 4.1 5.2 4.6 4.2

HELP 83.8 58.6 54.9 51.6 53.8 51.6 50.3 93.5 73.4 60.8 56.5 57.6 56.1 54.0 61.8 35.9 33.0 31.3 31.8 31.3 29.8
HELPCAFE 83.1 60.5 57.1 52.7 56.0 52.6 51.3 94.0 76.6 62.6 57.7 58.8 57.2 55.0 61.1 37.0 34.7 32.6 33.8 32.8 31.2
∆(%) -0.9 3.3 4.0 2.1 4.0 2.1 1.9 0.5 4.3 3.0 2.2 2.1 2.0 1.9 -1.1 3.0 5.1 4.3 6.4 4.7 4.8

5 INOCULATING CAUSAL FEATURES INTO DEFENSE NETWORKS

Generating Inversion of Causal Features. To eliminate spurious correlation of networks derived
from the adversary, the simplest approach that we can come up with is utilizing the hypothesis model
to enhance the robustness. However, there is a realistic obstacle that it works only when we already
identify what is natural inputs and their adversarial examples in inference phase. Therefore, it is not
feasible approach to directly exploit the hypothesis model to improve the robustness.

To address it, we introduce an inversion of causal features (i.e., causal inversion) reflecting those
features on input domain. It takes an advantage of well representing causal features within allowable
feature bound regarding network parameters of the preceding sub-network fl for the given adversarial
examples. In fact, causal features are manipulated on an intermediate layer by the hypothesis model
h, thus they are not guaranteed to be on possible feature bound. The causal inversion then serves as a
key in resolving it without harming causal prediction much, and its formulation can be written with
causal perturbation by distance metric of KL divergence DKL as:

δcausal = argmin
∥δ∥∞≤γ

DKL (fl+(FAC) || f(Xδ)) , (8)

where FAC indicates adversarial causal features distilled by hypothesis model h, and δcausal denotes
causal perturbation to represent causal inversion Xcausal such that Xcausal = X + δcausal. Note that,
so as not to damage the information of natural input during generating the causal inversion Xcausal,
we constraint the perturbation δ to l∞ within γ-ball, as known as perturbation budget, to be human-
imperceptible one such that ∥δ∥∞ ≤ γ. Table 1 shows the statistical distance away from confidence
score for model prediction of causal features, compared with that of causal inversion, natural input,
and adversarial examples. It implies how well the generated causal inversion represents causal
features on feasible bound so that networks themselves enable to exhibit the causal features. In
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other words, it does not harm causal prediction much according to the smaller statistical distance
in Table 1, thus we employ it to effectively inject causal features into the defense networks without
direct aid of hypothesis model. As long as being capable of handling causal features using the
causal inversion such that F̂AC = fl(Xcausal), we can now develop how to inoculate CAusal FEatures
(CAFE) to defense networks as a form of empirical risk minimization (ERM) with small population
of perturbation ϵ, as follows:

min
f∈F

ES

[
max

∥ϵ∥∞≤γ
LDefense +DKL(fl+(F̂AC) || fl+(Fadv))

]
, (9)

where LDefense specifies a pre-defined loss for achieving a defense network f on network parameter
space F , and S denotes data samples such that (X,G) ∼ S. The rest term represents a causal
regularizer serving as causal inoculation to make adversarial features Fadv assimilate the causal
features FAC. Specifically, while LDefense robustifies network parameters against adversarial examples,
the regularizer helps to hold adversarial features not to stretch out from the possible bound of causal
features, thereby providing networks to the backdoor path-reduced features dissociated from unknown
confounders. More details for training algorithm of CAFE are attached in Appendix F. Next, we
validate the effectiveness of CAFE for the robustness by comparing it with the defense baselines.

Validating CAFE for Causal Inoculation. We conduct exhaustive experiments on three datasets and
three networks to verify generalization in various conditions. For datasets, we take low-dimensional
datasets: CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011), and a high-dimensional
dataset: Tiny-ImageNet (Le & Yang, 2015). To train the three datasets, we adopt standard networks:
VGG-16 (Simonyan & Zisserman, 2015), ResNet-18 (He et al., 2016), and an advanced large network:
WideResNet-34-10 (Zagoruyko & Komodakis, 2016).

Adversarial Attacks. We use perturbation budget 8/255 for CIFAR-10, SVHN and 4/255 for
Tiny-ImageNet with two standard attacks: FGSM (Goodfellow et al., 2015), PGD (Madry et al.,
2018), and four strong attacks: CW∞ (Carlini & Wagner, 2017), and AP (Auto-PGD: step size-free),
DLR (Auto-DLR: shift and scaling invariant), AA (Auto-Attack: parameter-free) introduced by Croce
& Hein (2020). PGD, AP, DLR have 30 steps with random starts where PGD has step sizes 0.0023
and 0.0011 respectively, and AP, DLR have momentum coefficient ρ = 0.75. CW∞ uses gradient
clamping for l∞ with CW objective (Carlini & Wagner, 2017) on κ = 0 in 100 iterations.

Adversarial Defenses. We adopt a standard defense baseline: ADV (Madry et al., 2018) and four
strong defense baselines: TRADES (Zhang et al., 2019), MART (Wang et al., 2020), AWP (Wu
et al., 2020), HELP (Rade & Moosavi-Dezfooli, 2022). We generate adversarial examples using
PGD (Madry et al., 2018) on perturbation budget 8/255 where we set 10 steps and 0.0072 step size in
training. Especially, adversarially training Tiny-ImageNet is a computational burden, so we employ
fast adversarial training (Wong et al., 2020) with FGSM on the budget 4/255 and its 1.25 times step
size. For all training, we use SGD (Robbins & Monro, 1951) with a learning rate of 0.1 scheduled by
Cyclic (Smith, 2017) in 120 epochs (Rice et al., 2020; Wong et al., 2020).

Adversarial Robustness. We align the above five defense baselines with our experiment setup to
fairly validate adversarial robustness. From Eq. (8), we first acquire causal inversion to straightly deal
with causal features. Subsequently, we employ the causal inversion to carry out causal inoculation
to all networks by adding the causal regularizer to the pre-defined loss of the defense baselines
from scratch, as described in Eq. (9). Table 2 demonstrates CAFE boosts the five defense baselines
and outperforms them even on the large network: WideResNet-34-10 and the large dataset: Tiny-
ImageNet, so that we verify injecting causal features works well in all networks. Appendix G shows
ablation studies for CAFE without causal inversion to identify where the effectiveness comes from.

6 CONCLUSION

In this paper, we build AMR-GMM to develop adversarial IV regression that effectively demystifies
causal features on adversarial examples in order to uncover inexplicable adversarial origin through a
causal perspective. By exhaustive analyses, we delve into causal relation of adversarial prediction
using hypothesis model and test function, where we identify their semantic information in a human-
recognizable way through feature visualization. Furthermore, we introduce causal inversion to handle
causal features on possible feature bound of network and propose causal inoculation to implant
CAusal FEatures (CAFE) into defense networks for improving adversarial robustness.
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A EXPANDING GMM FROM CONDITIONAL MOMENT RESTRICTION

In order to show what connectivity exists between GMM and moment restriction, we start from
Equation (1) of conditional moment restriction (CMR) in our manuscript as:

ET [ψT (h) | Z] =
∫
t∈T

ψT (h)dP(T = t | Z) = 0, (10)

To generate infinite moments by the test function g regarding numerous case of instrumental variables,
GMM selects a moment with the hypothesis model and test function, which can be written as:

m(h, g) = EZ,T [ψT (h) · g(Z)]. (11)

Here, this moment can be expressed with CMR, then it satisfies zero as follows:

EZ,T [ψT (h) · g(Z)] =
∫
z∈Z,t∈T

ψt(h) · g(z)dP(Z = z, T = t),

=

∫
z∈Z,t∈T

ψt(h)dP(T = t | Z = z) · g(z)dP(Z = z)

=

∫
z∈Z

ET [ψT (h) | Z = z] · g(z)dP(Z = z)

= EZ [ET [ψT (h) | Z]︸ ︷︷ ︸
conditional moment

·g(Z)]

= EZ [0 · g(Z)] (∵ Eq. (10))

= 0.

(12)

From this proof, we can infer that once GMM achieves a reduction of moment magnitude, then
it successfully expands CMR to perform infinite moment restriction, where the intractable infinite
number of moments generated by g is replaced with (infinite-dimensional) non-parametric test
function g such as DNNs.

B VALIDITY OF OUR IV SETUP

The instrumental variable needs to satisfy the following three valid conditions in order to successfully
achieve non-parametric IV regression based on previous works (Hartford et al., 2017; Muandet et al.,
2020b): independent of the outcome error such that ψ ⊥ Z (Unconfoundedness) where ψ denotes
outcome error, and do not directly affect outcomes such that Z ⊥ Y | T, ψ (Exclusion Restriction)
but only affect outcomes through a connection of treatments such that Cov(Z, T ) ̸= 0 (Relevance).

For Unconfoundedness, various works (Madry et al., 2018; Zhang et al., 2019; Wang et al., 2020;
Wu et al., 2020; Rade & Moosavi-Dezfooli, 2022) have proposed adversarial training that learns
DNNs f with adversarial examples inducing feature variation we consider as IV to earn and improve
adversarial robustness. In other words, when we see them in perspective of IV regression, we can
regard them as the efforts satisfying conditional moment restriction (CMR) of DNNs f given feature
variation Z. In causal perspective, the formulation of adversarial training can be written with CMR
as follows:

14



Under review as a conference paper at ICLR 2023

min
f
{EZ [ET [G− fl+(T ) | Z]︸ ︷︷ ︸

CMR

]}2, (13)

where adversarial features T , their onehot vector-valued target labelsG, and fl+ describes subsequent
network from lth intermediate layer to model prediction. Aligned with our causal viewpoints, the
first row in Table 3 below shows the existence of adversarial robustness with adversarial features T .
Therefore, we can say that our IV (i.e., feature variation) on adversarially trained model satisfies valid
condition of Unconfoundedness so that IV is independent of the outcome error.

For Exclusion Restriction, feature variation Z itself cannot solely serve as enlightening information
to model prediction in the absence of natural features, because only propagating the residual feature
representation has no effect to model prediction by the learning nature of DNNs. Empirically, the
second row in Table 3 demonstrates that feature variation Z cannot be helpful representation to DNNs.
Thereby, our IV is not encouraged to be correlated directly with the outcome, so our IV setup satisfies
valid condition of Exclusion Restriction.

For Relevance, when taking a look at the estimation procedure of adversarial feature T such that
T = Z + Fnatural, feature variation Z explicitly has a causal influence on adversarial features T .
This is because, in our IV setup, the treatment T is directly estimated by instrument Z given natural
features Fnatural. By using all data samples, we empirically compute Pearson correlation coefficient
to prove there is a highly related connection between them as described in the last row of Table 3.
Therefore, our IV satisfies valid condition of Relevance.

Table 3: Empirical validation for three conditions of our IV with VGG-16, ResNet-18, WRN-
34-10 for CIFAR-10, SVHN, Tiny-ImageNet. The first row indicates model performance (%) of
adversarial robustness by propagating adversarial features T with subsequent network fl+. The
second row shows model performance (%) of residual feature representation itself by propagating
feature variation Z with subsequent network fl+. The last row represents Pearson correlation
coefficient: ρ = Cov(Z, T )/σZσT in the range of −1 ≤ ρ ≤ 1.

Network VGG ResNet WRN

Dataset CIFAR-10 SVHN Tiny-ImageNet CIFAR-10 SVHN Tiny-ImageNet CIFAR-10 SVHN Tiny-ImageNet

fl+(T ) 44.8 52.1 21.5 46.5 55.4 24.2 48.7 56.7 25.5
fl+(Z) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ρ 0.9 0.8 0.8 0.9 0.8 0.7 0.9 0.9 0.8

C REALIZING GENERALIZATION GAP

We employ Rademacher Complexity, Taylor Expansion, and Identity mapping to realize the gen-
eralization gap. By using them, we elaborate the equation to feasibly calculate the generalization
gap.

C.1 RADEMACHER COMPLEXITY

Although we construct GMM based on AMR in Eq. (6), namely AMR-GMM, to behave adversarial
instrumental variable regression, there happens generalization gap between ideal m(h∗, g∗) and
empirical moments m(h∗, g) for test functions due to the absence of regularizing the direction for
learning a test function. To become a rich test function (Lewis & Syrgkanis, 2018; Bennett et al.,
2019; Dikkala et al., 2020), therefore, we introduce Rademacher complexity (Bartlett & Mendelson,
2002; Koltchinskii & Panchenko, 2002; Yin et al., 2019b) that provides tight generalization bounds
as a strong theoretical foundation for a family of functions, which can be written on AMR-GMM as
follows:

ϕ(g∗, g) = m(h∗, g∗)︸ ︷︷ ︸
ideal

−m(h∗, g)︸ ︷︷ ︸
empirical

≤ 2bR(G) +O(
√
n−1 log δ−1), (14)
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where b describes the upper bound of empirical moments m(h∗, g), andR(G) denotes Radamecher
complexity for all test functions ∀g ∈ G with probability greater than 1 − δ for any δ ∈ (0, 1). In
addition, h∗ and g∗ represent the most accurate estimator on each H, G. Besides, n indicates total
number of training data samples, so that big-O term converges to 0 as n is large enough. Here, so
as to close the gap in Eq. 14, we should tractably calculate and minimize Rademacher complexity
measuring tight upper bound of generalization gap ϕ(g∗, g), such that supg∈G |ϕ(g∗, g)| = 2bR(G).

C.2 TAYLOR EXPANSION

When we make use of AMR-GMM for adversarial instrumental variable regression, there happens
generalization gap between ideal m(h∗, g∗) and empirical moments m(h∗, g) for test functions due
to the absence of regularizing the direction for learning a test function. Here, the generalization gap
can be written as follows:

ϕ(g∗, g) = m(h∗, g∗)−m(h∗, g), (15)

where we suppose the empirical moment has sufficiently converged generalized residual function
ψΩ
T ′|Z(h

∗) to a small constant value from the best estimator h∗, which can be written as:

m(h∗, g) = EZ [ψ
Ω
T ′|Z(h

∗) · (Ω ◦ g)(Z)]. (16)

Note that, the generalized residual function ψΩ
T ′|Z(h

∗) of the ideal moments m(h∗, g∗) is either a
small constant value. From their assumption of moments, we can indicate the generalization gap of
Eq. (16) with simple subtraction terms with inner product on the small constant of the generalized
residual function, which can be written as follows:

ϕ(g∗, g) = EZ [ψ
Ω
T ′|Z(h

∗) · {(Ω ◦ g∗)(Z)− (Ω ◦ g)(Z)}]. (17)

In this spot, we unpack the log-likelihood function Ω by using Taylor Expansion that it satisfies:

Ω(ω +∆ω) ≈ Ω(ω) + Ω′(ω)⊗∆ω, (18)

with a vector-valued function Ω : RH×W×C → RK (class number K) and its derivation function
Ω′ : RH×W×C → RK×HWC . In addition, the operator⊗ denotes dimension squeeze (i.e., vectorize)
and multiplication due to its tensor dimension of ∆ω ∈ RH×W×C such that it satisfies a ⊗ b :=
a× Vec(b). Then, Taylor Expansion of the log-likelihood function Ω in Eq. (18) can be also applied
to a simple setup ω = 0 for the following equation:

Ω(0 +∆ω) ≈ Ω(ω = 0) + Ω′(ω = 0)⊗∆ω. (19)

Eventually, the generalization gap can be possibly approximated by the following equation:

ϕ(g∗, g) = EZ [ψ
Ω
T ′|Z(h

∗) · {(Ω ◦ g∗)(Z)− (Ω ◦ g)(Z)}]

= EZ [ψ
Ω
T ′|Z(h

∗) · {Ω(ω = 0) + Ω′(ω = 0)⊗ g∗(Z)︸ ︷︷ ︸
(Ω◦g∗)(Z)

− (Ω(ω = 0) + Ω′(ω = 0)⊗ g(Z))︸ ︷︷ ︸
(Ω◦g)(Z)

}]

= EZ [ψ
Ω
T ′|Z(h

∗) · {Ω′(ω = 0)⊗ (g∗(Z)− g(Z))}].
(20)
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C.3 IDENTITY MAPPING

However, once we directly compute this equation, we will take a striking computational burden from
the repeated procedure of tensor derivation Ω′ and its dimension squeeze and multiplication ⊗. To be
specific, computing the generalization gap in Eq. (20) naïvely induces a computational complexity
O(K2H2W 2C2), at least, per one iteration.

Therefore, we should practically compute the generalization gap and get its fast convergence. Here,
localized Rademacher enables the operator⊗ and the two weighted factors (ψΩ, Ω′) for g∗(Z)−g(Z)
to be ignored in computing the generalization gap, and it allows the generalization gap to be uniform
bound, such that

|ϕ(g∗, g)| ≈ |EZ [g
∗(Z)− g(Z)]|, (21)

where its complexity is evenO(1) to our satisfaction. Then, we use an elementary algebraic trick with
identity mapping I to approximate tight upper bound of the generalization gap by triangle inequality
for its feasible computation within reach as follows:

|ϕ(g∗, g)| = |m(h∗, g∗)−m(h∗, g)| = |m(h∗, g∗)−m(h∗, I)︸ ︷︷ ︸
ϕ(g∗,I)

+m(h∗, I)−m(h∗, g)︸ ︷︷ ︸
ϕ(I,g)

|

≤ |ϕ(g∗, I)|+ |ϕ(I, g)| ≈ |EZ [g
∗(Z)− Z]|+ |EZ [Z − g(Z)]|,

(22)

where |ϕ(g∗, I)| in the upper bound is constant value with respect to g. Once we subtract |ϕ(g∗, I)|
to the above inequality, we can get the supremum value of |ϕ(g∗, g)| − |ϕ(g∗, I)|, as follows:

sup
g∈G
|ϕ(g∗, g)| − |ϕ(g∗, I)| ≤ sup

g∈G
|ϕ(I, g)|. (23)

Here, we suppose that the absence of regularizing test function forges a significant difference
between a feature variation (i.e., instrument) Z and its counterfactuals (i.e., test function) g(Z).
This postulation implies that the output of test function strays from the possible feature bound and
the infimum value infg∈G |ϕ(I, g)| ≈ |EZ [Z − g(Z)]| becomes large enough, thus we can realign
Eq. (23) with total range of |ϕ(I, g)|, which can be written as follows:

sup
g∈G
|ϕ(g∗, g)| − |ϕ(g∗, I)| ≤ inf

g∈G
|ϕ(I, g)| ≤ |ϕ(I, g)| ≤ sup

g∈G
|ϕ(I, g)|. (24)

From this inequality, we can show the existence of the triangle inequality supg∈G |ϕ(g∗, g)| ≤
|ϕ(g∗, I)|+ infg∈G |ϕ(I, g)| described in our manuscript. In addition, as our manuscript has already
explained the connection between the generalization gap and Rademacher complexity, such that
supg∈G |ϕ(g∗, g)| = 2bR(G), we eventually get an indirect method to reduce Rademacher complexity
once minimizing |ϕ(I, g)| efforlessly. Then, we practically optimize the squared |ϕ(I, g)|2, namely
localized Rademacher regularizer, together with the main objective of AMR-GMM to maintain a low
generalization gap for getting rich test function, which can be written as follows:

min
h∈H

max
g∈G

EZ [ψ
Ω
T ′|Z(h) · (Ω ◦ g)(Z)]− |EZ [Z − g(Z)]|2. (25)

This ensures the successful achievement of AMR-GMM where the output of test function does
not deviate appreciably from the feature variation Z, so that it enables to find out the worst-case
counterfactuals within adversarial feature bound. Appendix D describes the triangle inequality clearly
with figure and delineates how sufficiently rich test function works, through the lens of empirical
evidence by conducting AMR-GMM without the localized Rademacher regularizer.
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D RICH TEST FUNCTION BY RADEMACHER COMPLEXITY

In Appendix C, we have verified the realization of the generalization gap on the triangle inequality
supg∈G |ϕ(g∗, g)| ≤ |ϕ(g∗, I)| + infg∈G |ϕ(I, g)|. To clearly understand it, we then transform
representation domain of the triangle inequality to feature and counterfactual space as below figure.

𝐹𝐹adv

𝐹𝐹natural

𝐹𝐹CF

𝐹𝐹CF

Feature Space Counterfactual Space Rademacher Distance

𝐹𝐹adv

𝐹𝐹natural

𝐹𝐹CF∗

𝐹𝐹CF∗

(a) AMR-GMM w/o Regularizer (b) AMR-GMM w/ Regularizer

Figure 4: Representing feature space, counterfactual space, and their space interval (Rademacher
Distance) according to whether localized Rademacher regularizer is applied in AMR-GMM.

From Fig. 4, we can draw three factors |ϕ(g∗, g)|, |ϕ(g∗, I)|, |ϕ(I, g)| of the triangle inequality to
|EZ [F

∗
CF−FCF]|, |EZ [F

∗
CF−Fadv]|, |EZ [Fadv−FCF]| and then the inequality for the given instrument

can be obviously shown to: supFCF|Z |F
∗
CF−FCF| ≤ |F ∗

CF−Fadv|+ infFCF|Z |Fadv−FCF|. Therefore,
it becomes a more intuitively understandable formulation to explain their relationship.

Here, we newly define |Fadv − FCF| = |Z − g(Z)| as Rademacher Distance (red dotted lines)
measuring space interval between feature space and its counterfactual space. These red dotted lines
are highly related to the localized Rademacher regularizer |ϕ(I, g)|2 ≈ |EZ [Z−g(Z)]|2 as explained
in Appendix C. Consequently, using this regularizer makes their space interval close compared to not
using it, thereby pushing the conterfactual space towards possible feature space.

(a) CIFAR-10 (b) SVHN

Figure 5: Displaying box distribution statistics of Rademacher Distance for all of the test data samples,
compared with w/ Regularizer and w/o Regularizer on (a) CIFAR-10 and (b) SVHN for VGG-16.

To validate that the regularizer actually works in practice, we measure Rademacher Distance and
display its box distribution as illustrated in Fig. 5. Here, we can apparently observe the existence of
the regularization efficiency from narrowed generalization gap. Concretely, both median and average
of Rademacher Distance for the regularized test function are larger than the non-regularized one.
Next, in order to investigate how rich test function helps causal inference, we examine imbalance
ratio of prediction results for the hypothesis model, which is calculated as # of minimum predicted
classes divided by # of maximum predicted classes. If the counterfactual space deviates from possible
feature bound much, the attainable space that hypothesis model can reach is only restricted areas.
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Hence, the hypothesis model may predict biased prediction results for the target objects. As our
expectation, we observe the ratio 0.5896 of CIFAR-10 with the regularizer, which is an improvement
of 47.8% compared to that 0.3989 with non-regularizer. For SVHN, the ratio with the regularizer
either shows better balanced ratio 0.7454 than non-regularizer 0.5699. Therefore, we can wind
up that rich test function acquired from the localized Rademacher regularizer serves as a key in
improving the generalized capacity of causal inference.

E ALGORITHM DETAIL OF AMR-GMM

Algorithm 1 Adversarial Moment Restriction based Generalized Method of Moments (AMR-GMM)
Require: Data Samples S, Pre-trained Network f , Log-likelihood Function Ω

1: Initialize parameters θh and θg of hypothesis model h and test function g
2: for (X,G) ∼ S do
3: Xϵ ← Attack(X,G) ▷ PGD Attack
4: Fadv ← fl(Xϵ), Fnatural ← fl(X) ▷ Adversarial/Natural Features
5: Z ← Fadv − Fnatural ▷ Instrumental Variables
6: T ′ ← g(Z), Glog ← logG ▷ Counterfactual Treatment and Log-Target Label
7: ψΩ

T ′|Z(h)← Glog − (Ω ◦ h)(T ′) ▷ Generalized Residual Function for AMR
8: LAMR-GMM(θh, θg)← ψΩ

T ′|Z(h) · (Ω ◦ g)(Z) ▷ Main objective of AMR-GMM
9: LReg(θg)← |Z − g(Z)|2 ▷ Localized Rademacher Regularizer

10: θg ← θg + α ∂
∂θg

(LAMR-GMM − LReg) ▷ Update θg (α: lr) for Maximizing AMR-GMM Loss

11: θh ← θh − α ∂
∂θh
LAMR-GMM ▷ Update θh (α: lr) for Minimizing AMR-GMM Loss

12: end for

Both hypothesis model and test function comprise a bundle of the convolutional layers as a simple
CNN structure, trained on AdamW with a learning rate of α = 10−4 in 10 epochs. For ImageNet
described in Fig. 2, we train it with perturbation budget 2/255 and its 1.25 times step size using fast
adversarial training (Wong et al., 2020) based on FGSM and validate its robustness with equal budget.
More details are described in our code at supplementary material.

F ALGORITHM DETAIL OF CAFE

Algorithm 2 CAusal FEatures (CAFE)
Require: Data Samples S, Pre-trained Network f and Hypothesis Model h, Defense Loss Ldefense

1: for (X,G) ∼ S do
2: Xϵ ← Attack(X,G) ▷ PGD Attack
3: Fadv ← fl(Xϵ), Fnatural ← fl(X) ▷ Adversarial/Natural Features
4: Z ← Fadv − Fnatural ▷ Instrumental Variables
5: FAC ← Fnatural + h(Z) ▷ Calculating Adversarial Causal Features
6: δcausal = argmin∥δ∥∞≤γ DKL (fl+(FAC) || f(Xδ)) ▷ Causal Perturbation
7: Xcausal ← X + δcausal ▷ Causal Inversion
8: F̂AC ← fl(Xcausal) ▷ Estimated Causal Features
9: LCAFE(θf )← LDefense +DKL(fl+(F̂AC) || fl+(Fadv)) ▷ CAFE Loss with parameter θf of f

10: θf ← θf − α ∂
∂θf
LCAFE ▷ Update θf (α: lr) for Minimizing CAFE Loss

11: end for

As described in line 9, we readily add a causal regularizer DKL to pre-defined defense loss LDefense
and train all networks from scratch to show the true effectiveness of CAFE. Note that, the number
of steps for causal inversion is each 10 for CIFAR-10, SVHN and 3 for Tiny-ImageNet (regarding
speed). More details are either described in our code at supplementary material.

19



Under review as a conference paper at ICLR 2023

G ABLATION STUDIES FOR CAFE WITHOUT CAUSAL INVERSION

We experiment ablation studies of CAFE without causal inversion to show the effectiveness of the
causal inversion for CAusal FEatures (CAFE). In Algorithm 2, we first remove the procedures of get-
ting the causal inversion and the estimated causal features in line 6-8, and we name it CAusal FEatures
without causal inversion (CAFE†) of which algorithm is explained in the following Algorithm 3.

Algorithm 3 CAusal FEatures without Causal Inversion (CAFE†)
Require: Data Samples S, Pre-trained Network f and Hypothesis Model h, Defense Loss Ldefense

1: for (X,G) ∼ S do
2: Xϵ ← Attack(X,G) ▷ PGD Attack
3: Fadv ← fl(Xϵ), Fnatural ← fl(X) ▷ Adversarial/Natural Features
4: Z ← Fadv − Fnatural ▷ Instrumental Variables
5: FAC ← Fnatural + h(Z) ▷ Calculating Adversarial Causal Features
6: LCAFE† ← LDefense +DKL(fl+(FAC) || fl+(Fadv)) ▷ CAFE† Loss
7: θf ← θf − α ∂

∂θf
LCAFE† ▷ Update θf (α: lr)

8: end for

Table 4: Measuring adversarial robustness of CAFE† not using causal inversion (Algorithm 3)
and comparing the robustness with original CAFE (Algorithm 2) on five defense baselines: ADV,
TRADES, MART, AWP, HELP, trained with VGG-16 for CIFAR-10, SVHN, Tiny-ImageNet under
six attack modes: FGSM, PGD, CW∞, AP, DLR, AA.

Method CIFAR-10 SVHN Tiny-ImageNet

Natural FGSM PGD CW∞ AP DLR AA Natural FGSM PGD CW∞ AP DLR AA Natural FGSM PGD CW∞ AP DLR AA

ADV 78.5 49.8 44.8 42.6 43.2 42.9 40.7 91.9 64.8 52.1 48.9 48.0 48.5 45.2 53.2 25.3 21.5 21.0 20.2 20.8 19.6
ADVCAFE† 79.5 50.6 45.0 43.8 43.5 44.1 41.7 92.0 64.9 52.0 49.5 47.6 48.7 45.4 53.7 25.4 21.8 21.2 20.6 21.1 20.0
ADVCAFE 78.4 52.2 47.9 44.1 46.4 44.5 42.7 91.5 67.0 55.3 50.0 51.3 49.6 46.1 52.6 26.0 22.8 22.1 21.8 22.0 21.0
∆CAFE†(%) 1.3 1.5 0.4 3.0 0.8 2.6 2.4 0.2 0.2 -0.2 1.2 -0.8 0.5 0.4 0.9 0.6 1.7 1.2 2.2 1.5 1.8
∆CAFE(%) -0.1 4.8 7.1 3.7 7.5 3.8 4.9 -0.4 3.4 6.1 2.2 6.8 2.3 1.9 -1.2 3.0 6.4 5.2 7.8 5.6 6.9

TRADES 79.5 50.4 45.7 43.2 44.4 42.9 41.8 91.9 66.4 53.6 49.1 49.1 47.7 45.2 52.8 25.9 22.5 21.9 21.5 21.8 20.7
TRADESCAFE† 78.2 50.0 45.1 43.5 43.9 43.6 41.9 90.6 64.1 52.8 49.5 48.5 48.8 45.9 53.5 25.5 22.1 21.5 20.9 21.5 20.3
TRADESCAFE 77.0 51.6 47.9 44.0 47.0 43.9 42.7 90.3 67.8 56.1 50.0 53.6 49.1 47.5 52.1 26.5 23.6 22.6 22.5 22.6 21.6
∆CAFE†(%) -1.7 -0.8 -1.4 0.5 -1.0 1.6 0.4 -1.4 -3.4 -1.5 1.0 -1.1 2.2 1.5 1.3 -1.9 -1.6 -1.4 -3.0 -1.4 -2.0
∆CAFE(%) -3.1 2.2 4.8 1.8 5.8 2.3 2.3 -1.8 2.1 4.6 1.9 9.3 2.9 5.0 -1.3 2.2 5.2 3.6 4.6 3.7 4.2

MART 79.7 52.4 47.2 43.4 45.5 43.8 42.0 92.6 66.6 54.2 47.9 49.6 47.1 44.4 53.1 25.0 21.5 21.2 20.4 21.0 19.9
MARTCAFE† 79.4 51.7 45.8 43.3 44.1 43.7 41.6 92.0 65.8 53.1 49.1 48.2 48.2 44.9 53.5 25.4 21.8 21.3 20.7 21.3 20.2
MARTCAFE 78.3 54.2 49.7 43.9 48.1 44.5 42.7 91.3 67.6 57.3 49.5 54.2 48.3 46.4 53.0 25.6 22.3 21.6 21.3 21.5 20.5
∆CAFE†(%) -0.5 -1.3 -3.0 -0.2 -3.2 -0.3 -0.8 -0.6 -1.2 -2.0 2.3 -2.8 2.4 1.1 0.7 1.5 1.7 0.9 1.7 1.5 1.5
∆CAFE(%) -1.8 3.4 5.1 1.2 5.6 1.6 1.9 -1.4 1.4 5.9 3.3 9.2 2.7 4.6 -0.2 2.4 4.0 1.8 4.3 2.5 3.1

AWP 78.0 51.7 48.2 43.5 47.2 43.4 42.6 90.8 65.5 56.6 50.4 54.0 49.7 48.6 52.6 28.0 25.7 23.6 24.8 23.5 22.8
AWPCAFE† 76.3 50.9 47.0 43.8 45.9 44.0 42.4 83.2 58.0 51.8 49.0 49.8 48.7 47.0 52.5 26.5 23.4 22.6 22.4 22.5 21.6
AWPCAFE 77.4 54.8 51.4 44.2 50.2 44.9 43.5 91.9 67.9 58.6 51.2 55.9 51.1 49.7 52.9 28.8 26.4 24.2 25.6 24.1 23.4
∆CAFE†(%) -2.2 -1.6 -2.4 0.6 -2.7 1.5 -0.4 -8.3 -11.4 -8.6 -2.9 -7.9 -2.0 -3.3 -0.2 -5.4 -8.7 -4.0 -9.6 -4.3 -5.3
∆CAFE(%) -0.8 5.8 6.8 1.7 6.4 3.6 2.2 1.2 3.8 3.4 1.6 3.6 2.7 2.3 0.6 3.0 2.7 2.7 3.3 2.5 2.9

HELP 77.4 51.8 48.3 43.9 47.3 43.9 42.9 91.2 65.8 56.6 50.9 53.9 50.2 48.8 53.0 28.3 25.9 23.9 25.1 23.8 23.1
HELPCAFE† 76.2 51.0 47.2 43.9 46.1 44.2 42.7 87.6 61.7 53.7 49.6 51.3 49.2 47.3 52.9 27.0 24.1 23.0 23.2 23.0 22.1
HELPCAFE 75.6 54.4 51.4 44.6 50.4 44.8 43.7 91.5 67.3 58.5 51.6 56.2 51.4 50.0 52.6 29.4 27.1 24.7 26.4 24.4 23.9
∆CAFE†(%) -1.6 -1.6 -2.2 0.0 -2.4 0.9 -0.4 -4.0 -6.3 -5.1 -2.4 -5.0 -2.0 -3.0 -0.1 -4.4 -7.0 -3.8 -7.8 -3.2 -4.2
∆CAFE(%) -2.3 5.0 6.4 1.5 6.6 2.2 1.8 0.3 2.3 3.3 1.4 4.2 2.4 2.5 -0.8 3.9 4.7 3.1 5.0 2.4 3.5

Table 4 shows that CAFE without causal inversion (CAFE†) cannot further enhance adversarial
robustness of networks compared with that of original CAFE with causal inversion, and even CAFE†

has mostly worse robustness than its corresponding baselines. Totally, CAFE† produces a negative
effect on pre-defined defense loss. This is because adversarial features cannot easily assimilate causal
features far from possible feature bound. This is why we introduce a causal inversion that helps
to estimate causal features and fit their prediction. We can then enlighten causal inversion has a
remarkable effect to elevate robustness in all of the defense networks and conclude the effectiveness
of the CAFE comes from the causal inversion.
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