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Abstract
Conventional distributed Graph Neural Network
(GNN) training relies either on inter-instance com-
munication or periodic fallback to centralized
training, both of which create overhead and con-
strain their scalability. In this work, we propose
a streamlined framework for distributed GNN
training that eliminates these costly operations,
yielding improved scalability, convergence speed,
and performance over state-of-the-art approaches.
Our framework (1) comprises independent train-
ers that asynchronously learn local models from
locally-available parts of the training graph, and
(2) synchronize these local models only through
periodic (time-based) model aggregation. Con-
trary to prevailing belief, our theoretical analysis
shows that it is not essential to maximize the re-
covery of cross-instance node dependencies to
achieve performance parity with centralized train-
ing. Instead, our framework leverages random-
ized assignment of nodes or super-nodes (i.e., col-
lections of original nodes) to partition the training
graph to enhance data uniformity and minimize
discrepancies in gradient and loss function across
instances. Experiments on social and e-commerce
networks with up to 1.3 billion edges show that
our proposed framework achieves state-of-the-art
performance and 2.31x speedup compared to the
fastest baseline, despite using less training data.

1. Introduction
Graph neural networks (GNNs) achieve state-of-the-art per-
formance on a variety of graph-based machine learning tasks
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with applications to recommendation systems (van den Berg
et al., 2017; Ying et al., 2018; Fan et al., 2019), fraud de-
tection (Wang et al., 2019; 2018; Dou et al., 2020), social
network analysis (Qiu et al., 2018; Breuer et al., 2020; Cao
et al., 2020), and more. As applications scale to massive
social and other networks with billions of edges (Zhu et al.,
2019), they pose scalability challenges to typical multi-layer
GNN models (e.g. GCN (Kipf & Welling, 2017)), which
require a Message Flow Graph (MFG) based on each node’s
multi-hop neighborhood. These MFGs quickly exceed the
storage and computational capacity of modern systems even
under moderate batch sizes and number of GNN layers. This
issue has motivated a productive line of work on scalable
centralized GNN training on a single instance (Hamilton
et al., 2017; Chen et al., 2018; Zeng et al., 2019; Chiang
et al., 2019; Zeng et al., 2021; Fey et al., 2021; Narayanan
et al., 2021), but the size of the graphs that can be trained
on a single machine is ultimately limited by its available
computational resources.

Distributed training overcomes the resource limitation of
a single machine by leveraging parallelism on multiple
machines. By partitioning training samples across mul-
tiple trainers and coordinating distributed updates to model
weights on each trainer (Narayanan et al., 2019), data par-
allelism approaches have facilitated the training of com-
puter vision (Krizhevsky et al., 2017; Goyal et al., 2017; Yu
et al., 2019) and language models (McMahan et al., 2017)
on massive-scale datasets. However, graph datasets pose
additional unique challenges for data parallelism due to
cross-instance node dependencies (i.e., graph connections
that reach across instance boundaries) when the data is parti-
tioned and distributed to multiple trainer instances. Different
strategies have been proposed to address these challenges.

One popular strategy, adopted by DistDGL and other frame-
works (Jiang & Rumi, 2021; Zheng et al., 2020; 2021), is to
respect the cross-instance dependencies and implement com-
munication mechanisms that allow embeddings to traverse
through instance boundaries. To reduce the communication
overhead, these approaches often distribute the training data
by leveraging min-cut based graph partitioning algorithms
(e.g., METIS (Karypis & Kumar, 1998)) and data replica-
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tion. This strategy provides equivalency of a distributed
training setup to a centralized one, but its reliance on ex-
cessive communication to enable unrestricted graph access
across instances creates a bottleneck for further improving
the speed, scalability and robustness to failures.

Another strategy is to initially ignore the cross-instance de-
pendencies by restricting the graph access per trainer to only
local graph data assigned to it, and later compensating for
the lost data with methods like periodic centralized train-
ing (Ramezani et al., 2021). This strategy is usually coupled
with a model aggregation mechanism, which periodically
replaces the local model weights per trainer with aggre-
gated weights (e.g., average) from all trainers (Stich, 2018;
Ramezani et al., 2021). While it overcomes the overhead
of excessively communicating node representations across
machines, different implementations handle the incurred
data loss and its presumed negative impact on performance
by intermittently resorting to centralized training (Ramezani
et al., 2021) or replicating nodes across trainers (Angerd
et al., 2020). These solutions impose new bottlenecks and
additional overhead on distributed training frameworks.

This work. In this study, we reexamine the prevalent
assumptions of distributed GNN training. We propose a
streamlined framework that removes these bottlenecks by
fully discarding cross-instance dependencies, focusing in-
stead on the graph partition schemes and model aggregation
mechanism. We summarize our contributions as follows:

• Simplified time-based model aggregation training
framework: We present a simplified model aggregation
training framework (§3.1) that (1) assembles indepen-
dent trainers, each of which asynchronously learns a local
model on locally-available parts of the training graph only,
and (2) synchronizes the local models by only conducting
periodic, time-based model aggregation that accommo-
dates imbalanced loads and speeds among trainers.

• Randomized graph partition schemes with theoreti-
cal justifications: Contrary to the prevailing belief that
minimizing cross-instance edges is vital to bridge the per-
formance gap between model aggregation and centralized
training, we provide both theoretical (§3.2.1) and empiri-
cal (§4.2) evidence that min-cut partitioning algorithms
adversely impact training performance by inducing dis-
crepancies in data distributions among different partitions.
Consequently, we propose improved partition strategies
(§3.2.2) that employ a randomized assignment of nodes,
thus evading the overhead of graph clustering, or super-
nodes (i.e., mini-clusters of original nodes) to trainers.

• Extensive empirical analysis1: Our extensive experi-
ments, involving over 4,600 GPU hours across 3 ma-
chines, confirm the scalability of our framework for link
prediction on large-scale social and e-commerce networks

1Code is available on GitHub: amazon-science/random-tma.

with up to 1.3 billion edges (§4.1). Despite utilizing
less training data than the baselines, our proposed meth-
ods—RandomTMA and SuperTMA—outperform state-
of-the-art approaches with a 2.31x speedup in conver-
gence time over the fastest baseline (§4.2), and offer en-
hanced robustness to trainer failures (§D.1).

2. Related Work
We focus on works for distributed settings here, and defer
works for scalable GNN training on a single trainer to §A.

Distributed GNN Training. The majority of distributed
GNN training research employs a data parallelism paradigm.
Approaches under this paradigm can be scrutinized from
three perspectives: the graph access scope per trainer, the
data partition schemes and assignments to trainers, and the
model synchronization mechanism across trainers. Dist-
DGL (Zheng et al., 2020; 2021) and DistGNN (Md et al.,
2021) enable unrestricted access to the full training graph
for each trainer, adopts min-cut based graph partitioning
algorithms (e.g., METIS (Karypis & Kumar, 1998)) to parti-
tion training graph, and utilizes fully synchronous Stochastic
Gradient Descent (SGD) to update local model weights after
each training step; they also incorporate extensive optimiza-
tion on training pipeline. To further reduce the communica-
tion cost under a similar setup, Tripathy et al. (2020) opti-
mizes matrix multiplication operations of GNNs, and Jiang
& Rumi (2021) adopts skewed sampling of MFGs to bias to-
wards local neighbors of each node. On the other hand, Par-
allel SGD with Periodic Averaging (PSGD-PA) (Ramezani
et al., 2021) restricts the graph access to local data only per
trainer, adopts METIS to minimize cross-partition edges
ignored in training, and conducts periodic averaging to
synchronize local model weights on the trainers. To re-
cover more ignored cross-partition edges under this setup,
LLCG (Ramezani et al., 2021) further employs fallbacks
to centralized training during the averaging process, while
Angerd et al. (2020), per partition, replicates nodes from
other partitions through breadth first search.

Our proposed data parallel approach, similar to PSGD-PA,
restricts the graph access to local data per trainer. However,
it adopts randomized partitioning to reduce data discrepancy
across trainers and enhance performance. It also employs
time-based (instead of step-based) intervals for model ag-
gregation, accommodating heterogeneity in instance load
and training speed. These designs largely eliminate commu-
nication wait time between trainers, which, according to a
previous study (Gandhi & Iyer, 2021), accounts for about
80% of the training time for DistDGL. As a result, our data
parallel approach is as efficient as the more complex hybrid
(data and model) parallel approaches like P 3 (Gandhi &
Iyer, 2021). We compare our approaches to existing frame-
works in detail in §B.
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Figure 1: Architecture of our Time-based Model Aggrega-
tion (TMA) framework. We provide the pseudo-code for the
server and trainer in Alg. 1 and 2, respectively. We use solid
purple arrows to represent synchronous communications,
and dashed ones for asynchronous communications.

Model Averaging & Federated Learning. Model Av-
eraging, a technique that averages parameters of models
with identical architecture and initialization, yet trained on
different data subsets, has been proven to enhance perfor-
mance over the individual models being combined (Matena
& Raffel, 2022). This approach is central to federated learn-
ing (McMahan et al., 2017) and the recently proposed model
soup paradigm (Wortsman et al., 2022). While several works
have attempted to provide theoretical underpinnings behind
the success of model averaging from the perspective of con-
vex optimization and estimation theory (Polyak & Juditsky,
1992; Li et al., 2014; Yu et al., 2019; Matena & Raffel, 2022;
Wortsman et al., 2022), this phenomenon largely remains an
empirical observation. Existing research on model averag-
ing is primarily focused on vision and language models, with
only few studies examining its application to GNNs (Angerd
et al., 2020; Ramezani et al., 2021). In this work, we delve
deeper into the potential of model averaging for GNN train-
ing on datasets comprising billions of edges, enhancing
performance and efficiency via asynchronous model ag-
gregation and randomized partitions. While our proposed
methods can be applied within federated learning, as they ac-
commodate independent trainers with diverse computational
capacities, our primary focus in this work is to address GNN
scalability challenges. We leave a comprehensive evaluation
of our approach for federated learning for future research.

3. Time-based Model Aggregation &
Randomized Partition Schemes

In this section, we first give key notation, and then present
our proposed time-based model aggregation training frame-
work (§3.1) and two randomized partition schemes (§3.2).
We defer our theoretical analysis on why partition schemes
that minimize cross-partition edges negatively impact the
performance of model aggregation training to App. §3.2.1.
We discuss related works in details in App. §2 and provide
an in-depth comparison of our proposed framework to prior

distributed GNN training frameworks in §B.

Preliminaries. Let G = (V, E) be a simple graph with node
set V , edge set E , adjacency matrix A ∈ R|V|×|V|, and node
feature matrix X ∈ R|V|×F . Let G′ = (V ′, E ′) ⊂ G be a
subgraph with V ′ ⊂ V and E ′ ⊂ E . Given a node partition
α : V → I on graph G and its inverse α−1(i) = {v | v ∈
V∧α(v) = i}, we define the node-induced subgraph G(i) =
(V(i), E(i)) of partition i ∈ I as V(i) = α−1(i) and E(i) =
{(u, v) | (u, v) ∈ E∧u, v ∈ α−1(i)}. For a graph with node
class labels yv ∈ Y , we define its homophily ratio as the
fraction of homophilic edges linking same-class nodes (Zhu
et al., 2020): h = |{(u, v) | (u, v) ∈ E ∧ yu = yv}|/|E|.
We refer to a graph with h ≥ 0.5 as homophilic.

3.1. TMA: Proposed Time-based Model Aggregation
Framework

We propose a streamlined distributed framework for GNN
training that leverages the idea of Time-based Model Ag-
gregation (TMA). Figure 1 illustrates the architecture of our
TMA framework, which consists of M trainer processes, a
server process, and one or more evaluation processes. These
processes may run on a cluster of machines or a single ma-
chine based on the scale of the dataset and availability of
resources. The design of the server and trainer processes
are formally presented in Algorithms 1 and 2, respectively.

Trainer. Each trainer process i ∈ {1, · · · ,M} loads a part
of the training graph G(i)train ⊂ Gtrain, and conducts stochas-
tic gradient descent on mini-batches sampled solely from
the local training subgraph G(i)train assigned to it via partition
function α. We discuss partition options and propose im-
proved approaches for partitioning and assigning the local
training subgraphs in §3.2.

Server & Evaluator. On the server side, our TMA frame-
work periodically executes a model aggregation operation
ϕ to synchronize the learned model parameters Wi across
trainers. This procedure is triggered on a time-based inter-
val, supporting asynchronous training across heterogeneous
trainers; this is critical for a scalable and efficient framework
as we empirically observe (in §4.3) that the number of train-
ing steps finished on the slowest trainer can be up to 28.8%
less than that on the fastest trainer. For the choice of aggre-
gation operator, we find that simply averaging the model
parameters of the trainers provides better performance over
more complex model aggregation operators that consider
the losses on different trainers. We use a separate evaluator
process to evaluate the aggregated model.

3.2. Improving Time-based Model Aggregation with
Randomized Partition Schemes

Partitioning and assignment of graphs are standard prepro-
cessing steps in distributed GNN training: the full train-
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ing graph Gtrain is first partitioned into smaller subgraphs
G(i)train ⊂ Gtrain, which are then assigned to distinct trainers
i ∈ {1, · · · ,M}. Existing frameworks such as DistDGL,
PSGD-PA, and LLCG strive to maximize the coverage of
cross-instance node dependencies in their partition schemes.
However, our theoretical analysis uncovers that partitions
minimizing cross-machine edges contribute to increased
disparities in training data across localized trainers. This
discrepancy further leads to disparities in gradients and train-
ing losses that hinder the convergence of model aggregation
training (§3.2.1).2 To alleviate the disparity between parti-
tions, we propose randomized partition schemes at the node
or super-node level (§3.2.2), which achieve improved per-
formance and convergence speed despite using less training
data due to discarding the cross-instance edges (§4.2).

3.2.1. MINIMIZING CROSS-PARTITION EDGES HARMS
MODEL AGGREGATION TRAINING

The residual error of the loss function and its gradients
caused by the local-access constraint is considered the key
behind the performance gap between model aggregation
training and centralized training (Ramezani et al., 2021);
in other words, the mismatch of the loss values and their
gradients on different distributed trainers and to those of
a centralized trainer hurts the performance of model ag-
gregation training. Here we provide a theoretical analy-
sis about how the popular approach in existing distributed
frameworks (Zheng et al., 2020; 2021; Md et al., 2021;
Ramezani et al., 2021; Angerd et al., 2020) of one-to-one
mapping of METIS partitions to trainers, which minimizes
the cross-partition edges, contributes to the residual error in
the gradient descent process of model aggregation training
on homophilic graphs.

We analyze a case of a homophilic graph, where the dis-
parity of partitions is measured by the difference of the
feature distributions, which correlate with two class labels.
In Lem. 1, we show that partitions minimizing the number
of cross-partition edges amplify the differences of feature
distributions among partitions, which in the case we assume
leads to complete separation of nodes from different classes.
Lemma 1. Assume a homophilic graph with two equally-
sized classes and edges modeled by a class compatibility
matrix H (Zhu et al., 2020) as follows: the probability pji
of node j linking to node i satisfies

pji ∝ H(yi, yj) =

{
h ≥ 0.5, for yi = yj

1− h otherwise,

2Although METIS supports balancing nodes with different
labels across partitions, this is incompatible with our focus on link
prediction as (1) this task does not use node labels during training;
and (2) obtaining accurate node labels can be costly for web-scale
applications. Even in node classification, only a small portion of
labels is available during training.

where yi, yj∈{0, 1} are the class labels of nodes i, j. Let
xv = onehot(yv) be features of node v ∈ V , and α : V →
{1, 2} be a function that assigns the nodes into two equally-
sized partitions. Then, the smallest expected edge-cut is
reached when each partition has same-class nodes with the
same features: α(i) = α(j) iff yi = yj or xi = xj .

In Thm. 2, we demonstrate the effects of disparity be-
tween partitions by showing that it leads to discrepancy
between (initial) gradients and loss derived on different
trainers, which is the key factor affecting the performance
under model aggregation training when only local data is
used (Ramezani et al., 2021).

Theorem 2. Given the same homophilic graph with two
classes y ∈ {0, 1} and partition function α : V → {1, 2} as
in Lem. 1, suppose the feature distribution of each partition
is C1,C2 ∈ [0, 1]2, respectively. Consider a 1-layer GNN
formulated as z = f(A,X) = σ(ĀXW) for node classifi-
cation, with row-normalized adjacency matrix Ā, sigmoid
function σ, node features xv = onehot(yv), and a L2-loss
function L(y, z) = 1

2∥y − z∥2 for training. Then, we have:

1. When initializing W = 0, the discrepancies among the
expected initial local gradients E[∇Llocal

i ], i ∈ {1, 2}
on each instance, without considering cross-partition
edges, and the expected initial gradient E[∇Lglobal] for
centralized training increase with the differences of the
group distributions ∥C2 −C1∥.

2. For arbitrary learned model weights W, the expected
loss values E[Llocal

i (W)] on each instance i ∈ {1, 2},
without considering cross-partition edges, is equal if and
only if C1 = C2.

We give the proofs of both Lem. 1 and Thm. 2 in App.
§E. While our theoretical analysis holds under specific as-
sumptions, we discuss the empirical observations on the
discrepancy of loss functions among different trainers under
more generalized settings on real-world datasets in §4.2.

3.2.2. PROPOSED RANDOMIZED PARTITION SCHEMES

Based on our analysis that disparity of training graph parti-
tions stalls the convergence under model aggregation train-
ing, we propose two simple yet effective randomized parti-
tion schemes that reduce this disparity in model aggregation
training, and combine them with our time-based training
framework: RandomTMA employs a randomized partition
of nodes, and SuperTMA utilizes a randomized partition of
super-nodes (i.e., mini-clusters of nodes (Liu et al., 2018)).

RandomTMA: Randomized Node Partition-based TMA.
The idea of randomized node partition is simple: each node
is randomly and independently assigned to one of the graph
partitions, and the node-induced subgraph G(i) of each par-
tition i is assigned to the trainers through a one-to-one map-
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ping. Since the assignment of each node is considered
independently, this partition scheme does not bias towards
minimizing the cross-partition edges: the probability of
each edge that does not connect nodes in different partitions
is 1

M , where M is the number of trainers. Despite hav-
ing less data available for model aggregation training than
clustering-based frameworks, this partition scheme elimi-
nates the time and cost of graph clustering (c.f. Table 7), and
the expected disparity of training data on different partitions.
We formalize the latter next:

Corollary 3. Given the same homophilic graph with two
class labels y ∈ {0, 1} and partition function α : V →
{1, 2} as in Lem. 1, when the nodes are randomly assigned
to each partition under independent and identical distribu-
tions, the following hold:

1. E[C1 −C0] = 0.
2. For training the GNN described in Thm. 2, the expected

loss values E[Llocal
i (W)] and gradients E[∇Llocal

i ] are
equal across trainers i ∈ {0, 1} for arbitrary model
weights W.

We demonstrate the generalizability of this corollary on real-
world datasets and different learning tasks in §4.2. Specifi-
cally, we observe that RandomTMA reduces the differences
in loss functions across different trainers, achieves compara-
ble or better performance than existing distributed training
approaches, and has faster convergence speed despite using
significantly less training data than frameworks that rely on
min-cut partitioning.

SuperTMA: Randomized Super-Node Partition-based
TMA. This partition scheme combines (1) the ability of
node-level randomized partition in RandomTMA to handle
the data disparity issue with (2) the better training data
availability and robustness to overfitting of clustering-based
partitions (as in PSGD-PA and LLCG (Ramezani et al.,
2021)). At a high level, it randomly assigns super-nodes or
mini-clusters3 generated by clustering algorithms to each
partition. Specifically, we first use an efficient clustering
algorithm like METIS to generate N ≫ M mini-clusters
for training on M instances. Each mini-cluster is treated as
a super-node and is randomly assigned to a graph partition
similar to RandomTMA. Then, training subgraph G(i)train is
derived as the subgraph induced by all the collections of
nodes assigned to partition i (i.e., the union of the nodes in
all its assigned super-nodes).

The use of super-nodes generated by clustering algorithms
reduces the loss of cross-partition edges compared to Ran-
domTMA, which mitigates the issue of overfitting on

3Similar to our work, ClusterGCN (Chiang et al., 2019) also
leverages mini-clusters but it does so in order to form mini-batches
for scalable single-instance training; on the other hand, we use
mini-clusters to partition the graph for distributed training.

Table 1: Dataset statistics.

Dataset #Nodes |V| #Edges |E| #Feat. F #Val. / Test Edges

Reddit 232,965 114,615,892 602 114,615 / 114,617
ogbl-citation2 2,927,963 30,561,187 128 86,956 / 86,956
MAG240M-P 121,751,666 1,297,748,926 768 122,088 / 129,781

E-comm 33,886,911 207,157,590 300 1,232,708 / 123,270,705

smaller datasets or smaller graph partitions when using a
large number of trainers. In both cases, SuperTMA shows
better performance than RandomTMA and benefits more
from an increased number of trainers (§4.2, §4.4).

4. Empirical Analysis
In this section, we seek to address the following research
question: (Q1) How does the convergence speed and
performance of the proposed approaches, RandomTMA
and SuperTMA, compare with other training approaches?
(Q2) What factors contribute to the improved convergence
speed and performance of RandomTMA and SuperTMA
over the baselines? (Q3) How robust are RandomTMA and
SuperTMA to different hyperparameters, such as aggrega-
tion interval and number of trainers? In App. §D.1, we
address (Q4): Are the performance and convergence time
of RandomTMA and SuperTMA robust to possible failure
of distributed trainers?

4.1. Experimental Setup

In this section, we briefly describe the datasets and training
approaches that we study in our experiments. We give more
details on our experiment setups in App. §C.

Dataset and evaluation setup. We consider four large-
scale networks for our experiments: (1) Reddit (Hamil-
ton et al., 2017), (2) ogbl-citation2 (Hu et al., 2020), (3)
MAG240M-P, the paper citation network extracted from
MAG240M (Hu et al., 2021), and (4) E-comm, a propri-
etary heterogeneous dataset of queries and items, which are
sampled from anonymized logs of four different market lo-
cales of an e-commerce store. We list the statistics of these
datasets in Table 1. For link prediction performance, we
report the Mean Reciprocal Rank (MRR) of the predicted
score of each positive candidate in validation/test splits over
1,000 randomly selected negative candidates.

Training Approaches. We compare the convergence speed
and performance for two variants of our proposed training
approach, RandomTMA and SuperTMA (with number of
super-nodes N = 15, 000), along with the following base-
lines: (1) PSGD-PA (Ramezani et al., 2021), which we
implemented as a special case of SuperTMA with the num-
ber of super-nodes N equal to the number of trainers M to
minimize the cross-machine edges; while its original design
conducts synchronization on a step-based interval, we en-
hance it with our time-based model aggregation mechanism
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Table 2: Comparison of different training approaches on link prediction: ratio r of training samples (i.e., edges in the training
graph) available to each approach, performance (Test MRR), convergence time (in minutes). We report the performance for
each training approach as the test MRR obtained on the best encoder (more details in Table 7 and 8), and the convergence
time as the time to reach within 1% interval relative to its maximum validation MRR. The average rank is calculated as the
average rankings of MRR and convergence time for each approach across all datasets.

Training
Approach

#Parts
(N )

Reddit (|E| = 114M) citation2 (|E| = 30.5M) MAG240M-P (|E| = 1.30B) E-comm (|E| = 207M) Average Rank
Ratio

(r)
MRR
(%)

Time
(min)

Ratio
(r)

MRR
(%)

Time
(min)

Ratio
(r)

MRR
(%)

Time
(min)

Ratio
(r)

MRR
(%)

Time
(min) MRR Time

RandomTMA |V| 0.33 47.78
±0.21

67.4
±7.1

0.33 83.28
±0.24

56.4
±14.3

0.33 85.77
±0.09

169.3
±27.6

0.33 84.12
±0.02

52.5
±20.0

2.0 1.5
SuperTMA 15,000 0.35 48.68

±0.64
154.4
±6.9

0.58 83.75
±0.43

126.8
±39.6

0.64 85.27
±0.36

189.5
±0.1

0.76 84.44
±0.45

126.3
±12.8

1.2 3.5

PSGD-PA M = 3 0.88 46.02
±0.35

37.2
±10.0

0.95 82.40
±0.28

130.2
±18.6

0.93 84.13
±0.29

211.8
±16.6

0.96 83.51
±0.27

121.4
±39.9

3.8 3.0

LLCG M = 3 0.88 47.87
±0.31

229.0
±15.5

0.95 81.88
±0.02

134.5
±10.7

0.93 84.43
±0.10

184.8
±2.1

0.96 83.14
±0.40

91.4
±13.4

3.5 3.5

GGS - 1.00 46.63
±0.11

47.5
±4.3

1.00 81.95
±0.20

173.4
±0.8

1.00 79.52
±0.24

240.0
±0.0

1.00 82.13
±0.42

87.4
±0.3

4.5 3.5

0 50 100 150 200 250
0.3

0.4

0.5

0.6

0.7

0.8

Approach
RandomTMA
SuperTMA
PSGD-PA
LLCG
GGS

Training Time (mins)

Va
lid

at
io

n 
M

R
R

Figure 2: Validation MRR vs. training time for different
training approaches on the best-performing GNN on ogbl-
citation2. Table 2 gives the test MRR and convergence time.

and focus our analysis on the effects of its partition scheme.
(2) Learn locally, correct globally (LLCG) (Ramezani et al.,
2021), which behaves similarly to PSGD-PA (we also en-
hance it with our time-based model aggregation mechanism
in our experiments), but has an additional step of global
model correction on the server in the model aggregation pro-
cess; (3) Global Graph Sampling (GGS) (Ramezani et al.,
2021; Zheng et al., 2021; Md et al., 2021), where each
trainer has unrestricted access to the full training graph,
with local models on trainers updated through synchronous
SGD to synchronize the gradients among trainers after each
training step.

4.2. (Q1) Performance and Convergence Speed

Setup. We compare the link prediction performance and
convergence speed of the proposed RandomTMA and Su-
perTMA approaches with other baselines on benchmark
datasets. In Table 2, we list the best performance achieved
by each approach with the best GNN encoder. (Table 7 and
8 in the App. §D.2 provides the full results, and the graph
partitioning runtime per approach, if applicable.) For the
convergence speed of each approach, we report the training
time that each approach takes to reach within 1% interval of
its maximum validation MRR. We also list the ratio r of the
edges in the training graph that are available to each method.
We plot the change of validation MRR with respect to the

training time on ogbl-citation2 in Fig. 2.

Observations. Despite having less training samples avail-
able due to increased cross-partition edges, RandomTMA
and SuperTMA perform against the expectation of the pre-
vious work (Ramezani et al., 2021) and achieve the best
performance on each dataset and the highest average rank-
ings in MRR. Moreover, the faster variant RandomTMA
has the best convergence speed overall (it has the highest
average ranking in convergence time) and is up to 2.31x
faster than the fastest baseline, while still achieving com-
parable performance to SuperTMA. Overall, we find that
RandomTMA strikes the best balance between performance
and convergence speed, while SuperTMA may be preferred
in applications were the best possible task performance is
critical. The superior performance and convergence speed
of RandomTMA and SuperTMA also demonstrate the ef-
fectiveness of our proposed partition schemes.

4.3. (Q2) Advantages over Baselines

To further dive into the reason behind the improved per-
formance by our proposed approaches, we summarize and
discuss two advantages of SuperTMA and RandomTMA
over existing approaches.

Reduced Discrepancy among Trainers with Random-
ized Partitions – Empirical Validation of Theory. We
empirically validate our theoretical analysis by comparing
the discrepancy of training losses among different trainers
for PSGD-PA, SuperTMA and RandomTMA, and show the
plots in Fig. 3. The usual N = M partition scheme, which
is adopted by baseline approaches like PSGD-PA, leads
to significant discrepancies among different trainers in the
converged loss values, as shown in Fig. 3a, despite having
the least cross-partition edges ignored in the training. In
comparison, both the super-node assignment (N = 15000,
Fig. 3b) and random assignment (N = |V|, Fig. 3c), adopted
respectively by SuperTMA and RandomTMA, show better
consistency of the converged loss values across multiple
trainers; they also converge to smaller loss values compared
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Figure 3: Training loss per trainer vs. training time for PSGD-PA, SuperTMA and RandomTMA for SAGE on MAG240M-P.
We show the curves smoothed by exponential moving average (α = 0.1), with raw curves dimmed in the background.

to the classical PSGD-PA partition scheme. We observe
similar trends for other GNN models and datasets. While
smaller loss values on the training split do not always cor-
respond to better performance on the validation and test
splits, as the issue of overfitting can occur, the improved
consistency of loss convergence across trainers explains the
significant improvement in performance of the proposed
approaches over PSGD-PA and LLCG and further validates
Thm. 2 on real-world datasets.

Improved Efficiency with TMA. We compare the effi-
ciency of the proposed approaches to the baselines by mea-
suring their GPU memory usage and the number of training
steps finished on distributed trainers, and present the results
on MAG240M-P dataset in Table 3. These results demon-
strate the improved efficiency of our Time-based Model
Aggregation (TMA) mechanism: all approaches with TMA
(including PSGD-PA and LLCG that we enhanced) finish
2.69x to 6.45x more training steps on their slowest trainer
compared to GGS, which conducts synchronous SGD after
each training step. Though the reduced size of the train-
ing graph on TMA approaches also contributes to reduced
time per training step, the ratio of throughput improvement
far exceeds the ratio of reduced graph size (which is re-
flected by the sampling ratio r and GPU memory usage).
Thus, we attribute the significantly improved efficiency of
TMA-based approaches to the reduced overhead of syn-
chronization among trainers enabled by the TMA mech-
anism: by eliminating the need for synchronization after
each training step, TMA better accommodates the speed
difference among trainers, which is up to 28.8% as we show
in Table 3. In comparison, the slowest trainer controls the
training speed of the distributed system in GGS (and also
in the original design of step-based aggregation interval in
PSGD-PA and LLCG), which results in significantly fewer
completed training steps. We also note that our proposed
approaches, RandomTMA and SuperTMA, by having the
least GPU memory usage among all approaches due to the
reduced training graph size, enable better scalability to large
datasets. Overall, these results show the improved efficiency
of our proposed approaches over the baselines (i.e., larger
number of completed steps), which also contributes to im-

Table 3: Efficiency of training approaches: GPU memory us-
age, convergence time (min), and the range of the amount of
training steps (in thousands) finished on distributed trainers.
Results with the best efficiency are highlighted in green. As
discussed in Sec. 4.1, we enhanced PSGD-PA and LLCG
with our time-based model aggregation; GGS uses syn-
chronous SGD after each training step.

Dataset
(|E|,

GNN)

Train
Approach

Ratio
(r)

GPU
RAM
(GB)

Conv.
Time
(min)

Step Finished (103)

Min Max Diff

MAG
240M-P
(1.30B,
SAGE)

RandomTMA 0.33 7.98
±0.03

169.3
±27.6

6.64
±0.39

7.07
±0.16

6.1%

SuperTMA 0.64 9.32
±0.01

189.5
±0.1

4.74
±0.05

5.70
±0.16

16.9%

PSGD-PA 0.93 11.25
±0.00

211.8
±16.6

3.80
±0.02

5.33
±0.33

28.8%

LLCG 0.93 11.30
±0.04

184.8
±2.1

4.08
±0.01

5.32
±0.01

23.4%

GGS 1.00 12.12
±0.01

240.0
±0.0

1.03
±0.07

1.03
±0.07

0.0%

proved performance and convergence speed.

4.4. (Q3) Robustness to Hyperparameters

Ablation on Aggregation Interval. For approaches that
leverage model aggregation (i.e., RandomTMA, SuperTMA,
PSGD-PA and LLCG), we examine the effect of the aggre-
gation interval ρ by varying it as 2 (default setting), 8 and
30 minutes. In Table 4, we report the performance and con-
vergence time under these scenarios, where we select the
best-performing base model for each training approach and
dataset (cf. Table 7 for the best models).

RandomTMA and SuperTMA show consistent prediction
performance regardless of the choice of the interval: the
differences in test MRR is less than 1% and 0.2% on Red-
dit and MAG240M-P, respectively. On the other hand, the
baseline approaches PSGD-PA and LLCG show significant
sensitivity to the interval: as the aggregation interval in-
creases, the test MRR drops for both methods by up to
7.88% and 1.66% on Reddit and MAG240M-P, respectively.
These observations show that RandomTMA and SuperTMA,
thanks to our proposed partition schemes, do not require
frequent aggregations like PSGD-PA and LLCG to achieve
their peak performance and convergence speed, which en-
ables further reduction of the communication overhead with
longer intervals.
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Table 4: Varying aggregation interval ρ: Comparison of link prediction performance (MRR) and convergence time (min).
Within each row, we highlight the aggregation interval with the best MRR in blue and the least convergence time in green.

Dataset
(|E|,

GNN)

Train
Approach

Test MRR (%) Conv. Time (min)

ρ = 2 ρ = 8 ρ = 30 ρ = 2 ρ = 8 ρ = 30

Reddit
(114M,
GCN)

RandomTMA 47.78±0.21 47.38±0.60 46.86±0.47 67.4±7.1 40.1±11.3 60.0±0.0

SuperTMA 48.68±0.64 48.51±0.09 47.77±0.09 154.4±6.9 76.1±51.0 75.0±21.2

PSGD-PA 46.02±0.35 43.78±0.34 40.21±0.13 37.2±10.0 188.3±51.0 165.1±63.7

LLCG 47.87±0.31 44.54±0.19 39.99±0.61 229.0±15.5 48.2±11.3 165.2±63.7

MAG
240M-P
(1.30B,
SAGE)

RandomTMA 85.77±0.09 85.79±0.17 85.82±0.26 169.3±27.6 164.9±5.6 180.2±0.0

SuperTMA 85.27±0.36 85.38±0.25 85.22±0.10 189.5±0.1 193.2±11.4 210.3±0.0

PSGD-PA 84.13±0.29 83.44±0.25 82.47±0.39 211.8±16.6 201.4±45.7 210.3±0.0

LLCG 84.43±0.10 84.27±0.40 82.95±0.12 184.8±2.1 191.9±6.0 211.3±0.2

Table 5: Varying number of trainers M : Comparison of ratio r of training samples available, link prediction performance
(MRR), and convergence time (min). Within each row, we highlight the number of trainers with the best MRR in blue and
the least convergence time in green. “OOM” denotes that experiments run out of memory.

Dataset
(|E|,

GNN)

Train
Approach

Ratio (r) Test MRR (%) Conv. Time (min)

M=3 M=5 M=23 M=3 M=5 M=23 M=3 M=5 M=23

MAG
240M-P
(1.30B,
SAGE)

RandomTMA 0.33 0.20 0.04 85.77±0.09 85.97±0.32 84.94±0.23 169.3±27.6 158.4±4.1 125.0±5.2

SuperTMA 0.64 0.56 0.48 85.27±0.36 86.02±0.27 86.21±0.53 189.5±0.1 181.8±9.8 190.6±16.3

PSGD-PA 0.93 0.90 0.78 84.13±0.29 84.35±0.07 82.13±0.12 211.8±16.6 206.5±0.1 208.8±17.0

LLCG 0.93 0.90 0.90 84.43±0.10 83.87±0.39 (OOM) 184.8±2.1 194.6±16.6 (OOM)

E-comm
(207M,
GCN)

RandomTMA 0.33 0.20 0.04 84.12±0.02 84.95±0.41 80.73±0.06 52.5±20.0 67.0±23.0 18.4±14.5

SuperTMA 0.76 0.71 0.65 84.44±0.45 84.95±0.27 85.48±0.37 126.3±12.8 129.0±19.1 130.5±2.3

PSGD-PA 0.96 0.96 0.92 83.51±0.27 83.55±0.29 83.40±0.01 121.4±39.9 124.0±11.7 107.6±0.1

LLCG 0.96 0.96 0.92 83.14±0.40 83.46±0.37 83.93±0.55 91.4±13.4 124.1±32.2 111.1±10.2

Ablation on Number of Trainers. To understand the
effect of increased number of trainers for model aggregation
approaches, we compare the performance, convergence time
and ratio of training samples available in the cases of M = 3
(the default setting), M = 5, and a very large number of
M = 23 trainers4 in Table 5. We run this experiment on
the largest MAG240M-P dataset and the proprietary large
E-comm dataset, and select the best-performing GNN (i.e.,
GraphSAGE for MAG240M-P, and GCN with MLP decoder
for E-comm) for all training approaches as the base model.

We observe that the amount of available training samples
decreases for all approaches as the number of trainers in-
creases, due to the increase of cross-partition edges. Ran-
domTMA has a sweet spot for edge ratio r and the number
of trainers M : compared to M = 3, it shows slightly im-
proved performance for M = 5, but worse performance
for M = 23, especially for the smaller E-comm dataset.
We attribute this to the trade-off between increased data
throughput and decreased amount of training samples for
an increased number of trainers. SuperTMA, on the other
hand, effectively mitigates the side-effect of data loss under
increased number of trainers, has significantly more training

4Number of trainers M = 23 maps to the maximum number
of trainers we can set up with 24 GPUs, as we reserve one GPU
for model evaluation on the server process.

samples compared to RandomTMA, and shows consistently
improved performance; this demonstrates the effectiveness
of conducting randomized partitions on mini-clusters. De-
spite leveraging the most training edges under all cases,
PSGD-PA and LLCG consistently perform worse than Su-
perTMA (and RandomTMA in most cases), which high-
lights the importance of data uniformity over the amount of
available training samples.

5. Conclusion
Reexamining prior assumptions linking distributed GNN
training performance with cross-instance node dependency
coverage, we find, both theoretically and empirically, that
min-cut partitioning algorithms negatively impact training
by causing data distribution discrepancies across trainers.
Consequently, we introduce the Time-based Model Ag-
gregation (TMA) framework for distributed GNN training,
along with randomized partition schemes of nodes or super-
nodes to minimize data discrepancy across localized trainers.
Despite utilizing significantly fewer edges in training, our
proposed methods, RandomTMA and SuperTMA, deliver
state-of-the-art link prediction performance and rapid con-
vergence. Future evaluations will encompass a broader array
of graph learning tasks such as node classification.
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Appendix
A. Additional Related Works
Scalable GNN Training on Single Instance. Scalable
single-instance training approaches can be grouped into
three categories:

• Sampling of the Message Flow Graph (MFG): This ap-
proach is popular for reducing the complexity of message
passing. For example, GraphSAGE (Hamilton et al., 2017)
and VR-GCN (Chen et al., 2018) aggregate embeddings
from a subset of neighbors for each node encountered
in a training step to cap the size of MFG, while Clus-
terGCN (Chiang et al., 2019), GraphSAINT (Zeng et al.,
2019) and shaDow-GNN (Zeng et al., 2021) sample a sub-
graph per training step and confine the training of GNN on
the sampled subgraph.

• Message passing pre-computation: This approach re-
lies on pre-computing aggregated features in the neighbor-
hood of each node and using them to learn embeddings for
each node independently (e.g., SIGN (Frasca et al., 2020),
NARS (Yu et al., 2020)). However, it requires models like
SGC (Wu et al., 2019) that are capable of decoupling feature
aggregations from (usually linear) transformations, which
restricts the GNN expressiveness.

• Caching and lazy updates of stale representations or gra-
dients: Methods in this category aim to limit the expan-
sion of MFG. For example, IGLU (Narayanan et al., 2021)
uses these techniques on backward propagation; GNNAu-
toScale (Fey et al., 2021) stores the historical node embed-
dings per layer, and only updates the stored embeddings for
nodes in the mini-batch, while using the historical embed-
dings for the other nodes.

Our approach on model aggregation training is orthogonal
to these efforts as we focus on distributed settings with
multiple trainers. Any of the approaches mentioned above
can be adopted in our framework to further speed up each
individual trainer.

B. Comparison of TMA with Existing
Frameworks

In this section, we formally present (in addition to Fig. 1)
the design of the server and trainer processes in Algorithm 1
and 2, respectively, and provide an in-depth comparison of
our proposed TMA framework to prior distributed GNN
training frameworks.

TMA vs. DistDGL. DistDGL (Zheng et al., 2021) assumes
that each trainer (or mini-batch sampler) has access to the
full training graph Gtrain; whereas our Time-based Model

Aggregation (TMA) framework only allows each trainer i to
access its local training subgraph G(i)train ⊂ Gtrain. The more
restrictive access to the training data in the TMA framework
reduces the amount of available training samples and is
widely believed to result in inferior performance in previous
works (Ramezani et al., 2021). However, we show in §3.2
that with our proposed partition schemes, which minimize
the discrepancy of gradient and loss function across train-
ers, the TMA framework can achieve better or comparable
performance to DistDGL with improved convergence speed.
In addition, DistDGL synchronizes the gradients and SGD
of all trainers after each training step; TMA only periodi-
cally synchronizes the model weights (instead of gradients)
among trainers, which significantly reduces the number of
synchronizations and allows asynchronous training steps
before time-based model aggregation.

TMA vs. PSGD-PA and LLCG. While the PSGD-PA and
LLCG approaches (Ramezani et al., 2021) are also designed
upon the model aggregation mechanism, they adopt a dif-
ferent approach to mitigate the performance gap compared
to global-access and fully-synchronous approach like Dist-
DGL: PSGD-PA uses one-to-one mapping of METIS clus-
ters to trainers to minimize the number of cross-partition
edges, and LLCG further employs periodical fallbacks to
centralized training to recover more cross-instance edges. In
contrast, our TMA framework discards the cross-instance de-
pendencies (resulting in significantly fewer training edges)
and leverages randomized partition schemes that reduce the
disparity of training data among trainers. Also, the design
of PSGD-PA and LLCG requires more synchronization of
the training progress across different trainers, as averag-
ing is triggered after a certain number of training steps per
trainer, while our framework utilizes time-based aggregation
intervals to accommodate different speeds across instances.

C. Additional Details on Experiment Setups
In this section, we give additional details on the experimen-
tal setups presented in §4.1.

Details in dataset and evaluation setup. We list the
statistics of all datasets in Table 1. To our knowledge,
MAG240M-P is the largest publicly-available homogeneous
benchmark network with 768-dimensional node features
(175 GB in storage) and over 1.29 billion edges. For ogbl-
citation2, we use the train / validation / test splits provided
with the dataset; for Reddit and MAG240M-P which are
originally proposed as node classification benchmarks, we
create the validation / test splits by randomly selecting and
removing one outgoing edge per node in the validation / test
splits of node classification; for E-comm, we use all item
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Algorithm 1: Time-based Model Aggregation Server
Input: Total training time ∆Ttrain, model aggregation

interval ∆Tint & operator ϕ, validation & test
sample splits and subgraphs Gval & Gtest,
trainer IDs {1, · · · ,M} and network addresses,
optimizer function, model configurations &
hyperparameters.

1 Establish communication with trainers and distributed
Key-Value Store KV; broadcast optimizer function,
model configurations & hyperparameters.

2 Setup model and initialize model weights Wglobal[0].
3 Wait until all([KV[ready][i] for

i ∈ {1, · · · ,M}]).
4 KV[agg] = KV[stop] = False
5 Broadcast initialized model weights Wglobal[0] to

trainers.
6 Tstart = Tagg = current time(); t = 0.
7 while not KV[stop] do
8 if current time()− Tagg ≥ ∆Tint then
9 KV[agg] = True

10 Receive weights Wi[t] from trainer
i ∈ {1, · · · ,M}.

11 KV[agg] = False
12 Wglobal[t+ 1] = ϕ(W1[t], · · · ,WM [t]).
13 Broadcast global weights Wglobal[t+ 1] to

trainers.
14 Invoke metrics[t+1] = eval(Wglobal[t+ 1],

Gval) on an evaluation process.
15 t = t+ 1

16 if current time()− Tstart > ∆Ttrain then
17 KV[stop] = True
18 Wait until metrics[t] is ready;

t∗ = arg best(metrics).
19 metrics[t∗] = eval(Wglobal[t∗], Gtest).

Output: Best model weights Wglobal[t∗], metrics
and t∗.

correlations and 3 months of query-item associations for
training, and use the next month of query-item associations
for model evaluation. We do not use neighborhood sam-
pling in the evaluation process as it introduces additional
randomness to the test results. The E-comm dataset has
two types of edges: (1) edges connecting two items that are
related, and (2) edges connecting items that are related to
one or more queries. The node features E-comm dataset is
generated by a fine-tuned BERT model.

GNN Encoders. We consider two GNN choices for en-
coders on homogeneous graphs: GCN (Kipf & Welling,
2017) and GraphSAGE (Hamilton et al., 2017). In addition,
we adopt MLP as an additional baseline, as previous works
have revealed that GNNs are not guaranteed to perform bet-
ter than a graph-agnostic baseline (Zhu et al., 2020). For

Algorithm 2: Time-based Model Aggregation Trainer
Input: Trainer ID i ∈ 1, · · · ,M ;

assigned training subgraph G(i)train ⊂ Gtrain.
1 Establish communication with the server and

distributed Key-Value Store KV; receive optimizer
function, model configurations & hyperparameters.

2 Initialize KV[ready][i] = False.
3 Load G(i)train; prepare data for training; set up GNN

model.
4 KV[ready][i] = True
5 Receive initialized model weights Wglobal[0] from

server.
6 t = 0
7 while not KV[stop] do
8 Construct mini-batch ξ

(t)
i on local subgraph G(i)train.

9 Wi[t] = optimizer(ξ(t)i ,Wi[t])
10 if KV[agg] then
11 Send local model weights Wi[t] to the server.
12 Get global model weights Wglobal[t+ 1] from

server.
13 Overwrite local weights Wi[t]←

Wglobal[t+ 1].
14 t = t+ 1

the heterogeneous E-comm dataset, we test GCN (Kipf &
Welling, 2017) and RGCN (Schlichtkrull et al., 2018) as
encoders. For all models, we follow Chen et al. (2018) and
You et al. (2020) and use PReLU as non-linear activation
function, and Layer Normalization (Ba et al., 2016) before
activation to improve performance of all encoders. We list
more hyperparameters for encoder in App. §C.

Link Prediction Decoder. On homogeneous graphs, we
use an MLP decoder to predict the link probability between
a pair of nodes: we find in our experiments that multi-layer
MLP with non-linearity significantly improves the link pre-
diction performance over a vanilla dot product decoder. We
elaborate on the formulation of MLP decoder in App. §C.
We additionally test DistMult (Yang et al., 2015) as a de-
coder for heterogeneous graphs on E-comm dataset. To en-
sure a fair comparison between different training approaches
and encoders, we fix on each dataset the number of layers
and the sizes of hidden states for the decoder; we list these
parameters in App. §C.

Mini-batch and Negative Sampling. For all trainings,
we randomly select edges in the training set to form the
mini-batches, and use GraphSAGE sampler (Hamilton et al.,
2017) to reduce the size of Message Flow Graph (MFG).
For each positive edge sample (u, v) in the mini-batches,
we randomly sample one edge (u, v′) with a different tail
v′ ∈ V as the negative sample.
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Hardware Specifications. We spend ∼4,600 GPU hours
on a maximum of three AWS EC2 p3.16xlarge instances
for our experiments, with each instance featuring 64 CPU
cores, 488 GB RAM, and 8 NVIDIA Tesla V100 GPU with
16 GB Memory per GPU.

Details on Trainer Setup. To keep the empirical analysis
resource- and cost-efficient, we run experiments with M =
3 training processes on Reddit and ogbl-citation2 on a single
physical instance; for MAG240M-P, we run M = 3 training
processes on 2 physical instances by default. In §4.4, we
further report the results of M = 5 and the maximum
M = 23 training processes using all 3 physical instances.

We give the distribution of the trainers on physical instances
as follows: For the largest dataset, MAG240M-P, with
M = 3 trainers, we run the TMA server and one trainer
on physical instance #1 and the other two trainers on in-
stance #2. For M = 5 trainers, we run the two additional
trainers on instance #3. For the smaller datasets (Reddit,
ogbl-citation2 and E-comm), we run the TMA server and
M = 3 or M = 5 trainers on a single physical instance.
For all experiments with M = 23 trainers, we use all 24
GPUs on three physical instances, with one GPU reserved
for model evaluation on the server process.

Hyperparameter Choices. We tune and select the best-
performing hyperparameters on the GGS baseline, and
adopt the same hyperparameters for distributed training
approaches for a fair comparison.
• For Reddit and ogbl-citation2, we use 2-layer models

with the size of hidden representations as 256 for both the
encoder and decoder;

• For the larger MAG240M-P dataset, we use 2-layer mod-
els with the size of hidden representations as 64.

• For E-comm, we use 2-layer GCN or RGCN models as
the encoder, and DistMult or 2-layer MLP as the decoder.
For GCN, we set the dimension of hidden representations
as 128. To reduce the memory usage of RGCN, we adopt
basis decomposition (Schlichtkrull et al., 2018) with 4
bases (equal to the total number of forward and inverse
relations), each with 128 dimension, and added an MLP
layer before RGCN input to reduce the dimension of input
representations to 128. For DistMult decoder, we set
the dimension of each relational embedding as 128. For
MLP decoder, we use 2 layers with the size of hidden
representations as 128.

We set the learning rate lr = 0.001 in all the experiments,
since we find that it significantly improves the performance
compared to lr = 0.01. For all experiments, we allocate
4-hour training time; in most cases, this is sufficient time
for models to reach convergence (as shown in Fig. 2), while
not incurring excessive time and monetary cost.

Implementation of Training Approaches. We implement

Table 6: Robustness to trainer failures: Comparison of link
prediction performance (MRR) and convergence time (min)
when one of the M = 3 trainers fails to start. For F = 1, we
run M experiments per random seed by dropping a different
subgraph at a time, and report the average metrics.

Dataset
(|E|,

GNN)

Train
Approach

Test MRR (%) Conv. Time (min)

F = 1 F = 0 F = 1 F = 0

MAG
240M-P
(1.30B,
SAGE)

RandomTMA 85.54
±0.08

85.77
±0.09

161.8
±13.6

169.3
±27.6

SuperTMA 85.17
±0.11

85.27
±0.36

191.7
±12.5

189.5
±0.1

PSGD-PA 82.09
±4.09

84.13
±0.29

199.0
±16.0

211.8
±16.6

LLCG 82.20
±3.45

84.43
±0.10

203.2
±22.3

184.8
±2.1

GGS using the MultiGPU training functionality, where each
trainer runs on a separate GPU of the physical machine;
though DistDGL (Zheng et al., 2021) is not directly compat-
ible with our implementation, our implementation emulates
its training pipeline and represents an ideal version of Dist-
DGL without the communication overhead of accessing
node embeddings remotely. For all approaches, we create
a separate process for model evaluation as in Fig. 1, and
adopt the same interval for model evaluation to ensure a fair
comparison.

Formulation of MLP Decoder. Given the embeddings ru
and rv for nodes u, v by GNN encoder, respectively, the
k-th layer of the MLP decoder is formulated as e(k+1)

u,v =

σ(e
(k)
u,vΘ(k)), where Θ(k) is the learnable weight matrix,

and e
(0)
u,v = ru ⊙ rv is the element-wise product of ru and

rv; the predicted link probability ŷu,v = e
(K)
u,v equals to the

output scalar for a K-layer decoder. We adopt PReLU as
the activation function σ, as we do for the encoders.

D. Additional Experiment Results
D.1. (Q4) Robustness to Trainer Failures

Distributed systems can suffer from failure of workers as a
result of unexpected faults or issues with the communication
network. Fortunately, model aggregation training allows the
frameworks to be robust to partial failures (e.g., when some
trainers go offline), as the training can continue with only
the remaining trainers. However, the subgraphs assigned to
failed instances will be unavailable in the remaining of the
training process, unless the server reassigns these subgraphs
to any available back-up training instances.

Setup. Here we emulate a simple scenario of failure where
F = 1 of the M = 3 trainers in previous experiments fail
to start, with no back-up trainer in place; in this case, we
complete the training with the remaining graph information
on M − 1 trainers. Our goal is to understand the robust-
ness of RandomTMA and SuperTMA to trainer failures in
comparison with model aggregation baselines.
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Table 6 reports the performance and convergence time of
the training approaches when a worker fails to start (F = 1),
compared with the case where all workers proceed normally
(F = 0). For the F = 1 case, we run the M experiments
per random seed by dropping a different partition at a time
to emulate failure of different trainers under the same as-
signment, and report the average results.

Observations. We observe that the performance and con-
vergence speed of RandomTMA and SuperTMA are more
robust to the failure of the trainers compared to PSGD-
PA and LLCG: the test MRR decreases by less than 0.3%
for RandomTMA and SuperTMA as a result of the single
trainer failure; in comparison, the test MRR of PSGD-PA
and LLCG decreases more than 2.0% in the case of fail-
ure. These results demonstrate the improved robustness of
RandomTMA and SuperTMA: less discrepancy among data
assigned to different trainers minimizes the information loss
in the case of failures.

D.2. Ablation on Base Models

We list in Table 7 the performance and convergence time
of the training approaches on different base models for ho-
mogeneous datasets (i.e., GCN (Kipf & Welling, 2017),
GraphSAGE (Hamilton et al., 2017) and MLP encoders;
all with MLP decoder), with results on base models in Ta-
ble 8 for E-comm dataset (i.e., GCN (Kipf & Welling, 2017)
and RGCN (Schlichtkrull et al., 2018) with MLP or Dist-
Mult (Yang et al., 2015) decoder); in Table 2 of the main
paper, we report the results for the best-performing base
model per approach and dataset. We did not test MLP for
LLCG, as MLP is graph-agnostic and does not benefit from
the LLCG global model correction process for recovering
cross-partition edges (Ramezani et al., 2021).

On homogeneous datasets (Table 7), we observe that GCN
and GraphSAGE are the best-performing base models for
all approaches on Reddit and MAG240M-P, respectively;
on ogbl-citation2, the best-performing base models vary for
different training approaches.

On the heterogeneous E-comm dataset (Table 8), we sur-
prisingly observe that GCN, which ignores the heteroge-
neous edge types in the dataset, outperforms RGCN de-
signed for heterogeneous graphs by a large margin. Prior
works have also observed that modeling heterogeneous re-
lations in GNN models may not be as crucial as widely
presumed (Zhang et al., 2022; Li et al., 2022), and we leave
for the future works for further investigation of this finding.

E. Proofs of Theorems
Proof for Lemma 1. Following the assumption, the prob-
ability pji of node j to connect to node i can be written

as

pji =
H(yi, yj)∑
l∈V H(yl, yj)

=
1

C
H(yi, yj)

=

{
h/C, if yi = yj

(1− h)/C, if yi ̸= yj

Now assume that the ratio of nodes v with label yv = 0
in partition 1 as β1, and in partition 2 as β2, then we have
the feature distributions C1 and C2 in each partition, which
follow the distributions for class labels 0 and 1 under onehot-
encoded node features xv , as C1 = [β1, 1− β1] and C2 =
[β2, 1− β2]. Since we assume that the two partitions have
equal sizes η, and two class labels with equal sizes, we have
β1η + β2η = (1 − β1)η + (1 − β2)η and β2 = 1 − β1.
Thus, we denote β1 = β ∈ [0, 1] and simplify C1 and C2

as C1 = [β, 1 − β] and C2 = [1 − β, β]; without loss of
generality, we assume β ≥ 0.5.

We denote the random variable Aij = 1 if an edge exists
between node i and j, and Aij = 0 otherwise. Then we have
E[Aij ] = pji. The expected number of edge cuts between
the two partitions λ is

λ =
∑

i∈α−1(1)

j∈α−1(2)

E[Aij ] =
∑

i∈α−1(1),yi=0

j∈α−1(2)

E[Aij ] +
∑

i∈α−1(1),yi=1

j∈α−1(2)

E[Aij ] := (λ0 + λ1)/C,

(1)
and it is straightforward to show that λ0 = βη((1− β)ηh+
βη(1 − h)) and λ1 = (1 − β)η((1 − β)η(1 − h) + βηh).
As a result, we have

λ =
(
1− 2(1− β)β − (2β − 1)2h

) η2
C

(2)

For β ∈ [0.5, 1] and homophilic graph with h ≥ 0.5, it is
easy to show that λ reaches the minimal value when β = 1,
and C1 = [1, 0] and C2 = [0, 1]. Therefore, we show
that the minimal expected edge cut is reached when each
partition contains only the node from a single class with the
same features.

Proof for Theorem 2. We note that under the L2-loss func-
tion L(y, z) = 1

2∥y − z∥2, the loss value (or gradient) for
a training batch with multiple nodes is the sum of the loss
value (or gradient) calculated individually on each node;
thus, we can simplify our discussion by only examining the
loss value and gradient for a single node. For an arbitrary
node v ∈ V for training, we have

zv = σ

 ∑
u∈NG(v)

1

dv
xT
uw

 := σ(g(w)) =
1

1 + e−g(w)

(3)
Without loss of generality, we assume the class label of
node v as yv = 1. In this case, we have the loss function
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Table 7: Comparison of link prediction performance (MRR) and convergence time (minutes) under different base models
(i.e., GCN, GraphSAGE and MLP). The convergence time is reported as the time to reach within 1% interval of the maximum
validation MRR. We also report for each dataset and approach the ratio r of the edges in the training graph that are available,
and the preprocessing time of METIS (if needed). We highlight within each row the GNN model (excluding MLP) with the
best MRR in blue, and the least convergence time in green. MLP is graph-agnostic and thus not tested for LLCG.

Dataset
(|E|)

Train
Approach

#Parts
(N ) Ratio (r)

Prep.
Time
(mins)

Test MRR (%) Conv. Time (min)

GCN SAGE MLP GCN SAGE MLP

Reddit
(114M)

RandomTMA |V| 0.33 0 47.78±0.21 43.65±0.49 22.92±0.02 67.4±7.1 175.9±22.7 166.9±31.2
SuperTMA 15,000 0.35 6.5 48.68±0.64 43.93±0.03 22.89±0.15 154.4±6.9 188.9±4.2 194.1±9.9
PSGD-PA M = 3 0.88 0.7 46.02±0.35 43.42±2.08 16.55±0.38 37.2±10.0 240.0±0.0 240.0±0.0

LLCG M = 3 0.88 0.7 47.87±0.31 44.61±0.14 - 229.0±15.5 185.3±77.4 -
GGS - 1.00 0 46.63±0.11 43.85±0.22 24.31±0.09 47.5±4.3 209.5±18.0 129.5±14.6

ogbl-
citation2
(30.5M)

RandomTMA |V| 0.33 0 83.28±0.24 80.96±0.00 40.69±0.01 56.4±14.3 101.9±12.9 57.3±12.8
SuperTMA 15,000 0.58 1.6 83.75±0.43 80.90±0.01 41.36±0.08 126.8±39.6 100.2±18.6 86.4±11.4
PSGD-PA M = 3 0.95 0.7 82.40±0.28 81.64±0.00 39.43±0.16 130.2±18.6 146.0±8.8 176.1±24.3

LLCG M = 3 0.95 0.7 81.62±0.47 81.88±0.02 - 142.6±48.2 134.5±10.7 -
GGS - 1.00 0 81.64±0.17 81.95±0.20 41.71±0.03 178.5±43.8 173.4±0.8 90.1±9.9

MAG
240M-
Papers
(1.30B)

RandomTMA |V| 0.33 0 85.08±0.30 85.77±0.09 48.54±0.27 213.8±23.2 169.3±27.6 156.1±10.9
SuperTMA 15,000 0.64 153.9 82.21±0.04 85.27±0.36 49.14±0.15 214.4±36.2 189.5±0.1 164.8±5.7
PSGD-PA M = 3 0.93 84.4 80.90±0.09 84.13±0.29 48.30±0.15 240.0±0.0 211.8±16.6 195.7±17.6

LLCG M = 3 0.93 84.4 78.61±1.23 84.43±0.10 - 238.4±2.3 184.8±2.1 -
GGS - 1.00 0 77.75±0.83 79.52±0.24 47.97±0.09 236.1±5.5 240.0±0.0 177.0±4.2

Table 8: Comparison of link prediction performance (MRR) and convergence time (minutes) under different base models
(i.e., GCN, RGCN) and link prediction decoders (i.e., MLP, DistMult). The convergence time is reported as the time to
reach within 1% interval of the maximum validation MRR. We also report for each dataset and approach the ratio r of the
edges in the training graph that are available, and the preprocessing time of METIS (if needed). We highlight within each
row the GNN model with the best MRR in blue, and the least convergence time in green. “OOM” denotes that experiments
run out of memory.

Dataset
(|E|)

Train
Approach

#Parts
(N )

Ratio
(r)

Prep.
Time
(mins)

Test MRR (%) Conv. Time (min)

GCN-M GCN-D RGCN-M RGCN-D GCN-M GCN-D RGCN-M RGCN-D

Ecomm
(207M)

RandomTMA |V| 0.33 0 84.12
±0.02

79.94
±0.34

33.17
±0.95

50.73
±2.13

52.5
±20.0

41.4
±4.3

66.5
±11.4

106.9
±11.5

SuperTMA 15,000 0.76 6.1 84.44
±0.45

81.53
±0.08

36.22
±2.79

52.84
±3.32

126.3
±12.8

105.2
±17.5

33.4
±1.2

132.3
±12.8

PSGD-PA M = 3 0.96 4.8 83.51
±0.27

81.42
±0.46

38.60
±3.94

55.23
±2.82

121.4
±39.9

91.0
±2.9

188.0
±11.6

155.7
±11.4

LLCG M = 3 0.96 4.8 83.14
±0.40

80.60
±0.14

(OOM) (OOM) 91.4
±13.4

88.3
±8.4

(OOM) (OOM)

GGS - 1.00 0 82.13
±0.42

81.35
±1.33

(OOM) (OOM) 87.4
±0.3

199.3
±30.8

(OOM) (OOM)

L(yv, zv) as

L(yv, zv) = 1
2 (σ(g(w))− 1)2. (4)

Discrepancies Among Expected Initial Gradients. The
gradient of the model weights w for training node v is

∇L =
∂L

∂w
= (σ(g(w))− 1) · ∂σ(g(w))

∂g(w)
· ∂g(w)

∂w
. (5)

As σ is the sigmoid function, we have

∂σ(g(w))

∂g(w)
= σ(g(w))(1− σ(g(w))) (6)

∂g(w)

∂w
=

∑
u∈NG(v)

1

dv
xu (7)

Now we look into how the gradients change when we ignore
the cross-partition edges under model aggregation training,

which changes the effective neighborhood N ′
G(v) of node v

in Eq. (3) and (7). Following the analyses in Proof 1, we can
assume the feature distribution C1 and C2 in each partition
as C1 = [β, 1− β] and C2 = [1− β, β], where β ∈ [0, 1];
the difference of the group distributions ∥C2 − C1∥ =√
2|1− 2β|.

1⃝ For centralized training, the effective neighborhood
N ′

G(v) of node v is equal to its actual neighborhood NG(v).
Thus, for yv = 1, and the assumed node features xv =
onehot(yv), we have

E

 ∑
u∈NG(v)

1

dv
xu

 =
1

dv

[
(1− h)dv hdv

]
=

[
(1− h) h

]
(8)

When initializing w = 0, we have g(w) = 0 and
σ(g(w)) = 0.5. Combining Eq. (5)-(8), we have the ex-
pected initial gradient E[∇Lglobal] for centralized training
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as
E[∇Lglobal] = − 1

8

[
(1− h) h

]
(9)

2⃝ When v is on instance 1 with class distribution C1 =
[β, 1− β], the effective neighborhood N ′

G(v) of node v is
changed compare to its actual neighborhood. In this case,
we have for yv = 1

E

[
∂g(w)

∂w

]
=

1

dv((1− h)β + h(1− β))
·[

(1− h)βdv h(1− β)dv
]
, (10)

and when initializing w = 0, we have the expected initial
local gradient E[∇Llocal

1 ] on instance 1 as

E[∇Llocal
1 ] = − 1

8((1− h)β + h(1− β))
·[

(1− h)β h(1− β)
]
. (11)

3⃝ When v is on instance 2 with class distribution C1 =
[1− β, β], we have for yv = 1

E

[
∂g(w)

∂w

]
=

1

dv((1− h)(1− β) + hβ)
·[

(1− h)(1− β)dv hβdv
]
, (12)

and when initializing w = 0, we have the expected initial
local gradient E[∇Llocal

2 ] on instance 2 as

E[∇Llocal
2 ] = − 1

8((1− h)(1− β) + hβ)
·[

(1− h)(1− β)dv hβdv
]
. (13)

Based on Eq. (9), (11), (13), we have the discrepancies mea-
sured under l2-norm between these expected initial gradients
as

∥E[∇Lglobal]− E[∇Llocal
1 ]∥2 =

√
2
8

∣∣∣∣ (1− 2β)(h− 1)h

β − 2βh+ h

∣∣∣∣
∥E[∇Lglobal]− E[∇Llocal

2 ]∥2 =
√
2
8

∣∣∣∣ (2β − 1)(h− 1)h

1− β + (2β − 1)h

∣∣∣∣
∥E[∇Llocal

1 ]− E[∇Llocal
2 ]∥2 =

∣∣∣∣∣∣∣∣
1

4
√
2
(2β − 1)

(h− 1)h

(β − 2βh+ h− 1)
(β − 2βh+ h)

∣∣∣∣∣∣∣∣
Given that the difference of the group distributions ∥C2 −
C1∥ =

√
2|1 − 2β|, it is straightforward to see from the

above equations that (1) there is no discrepancy among all
initial gradients when β = 0.5, and (2) the discrepancies
increase with the increase of ∥C2 − C1∥ =

√
2|1 − 2β|

when h ≥ 0.5.

Discrepancies Among Expected Loss Values. We only
show the proof for node v with class label yv = 1 here;

the case of yv = 0 can be proved similarly. Assume the
model weight w = [w0, w1]; based on Eq. (3), (4), (7), (10),
and (12), we have for instance 1 and instance 2, when not
considering cross-partition edges,

E[Llocal
1 (W)] =

(
1 + exp

(
β(h− 1)w0 + (β − 1)hw1

(2β − 1)h− β

))−2

,

E[Llocal
2 (W)] =

(
1 + exp

(
(β − 1)(h− 1)w0 + βhw1

−β + (2β − 1)h+ 1

))−2

.

Note that function (1+exp(x))−2 monotonically decreases
with variable x, therefore E[Llocal

1 (W)] = E[Llocal
2 (W)]

if and only if

β(h− 1)w0 + (β − 1)hw1

(2β − 1)h− β
=

(β − 1)(h− 1)w0 + βhw1

−β + (2β − 1)h+ 1
.

(14)
Eq. (14) holds if and only if β = 0.5, which means ∥C2 −
C1∥ =

√
2|1 − 2β| = 0. Therefore, the expected loss

values E[Llocal
i (W)] on each instance i ∈ {1, 2}, without

considering cross-partition edges, is equal if and only if
C1 = C2.
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