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ABSTRACT

With a well-trained “full-size” network, model pruning aims to derive a small net-
work by removing some weights with minimum performance deterioration, e.g.,
image classification accuracy. In the typical setup, both model training and prun-
ing are done on the same target dataset, which represent a downstream task of
interest. On the other hand, to better solve a downstream task in the real world,
the well-established practice is transferring a model pretrained on some source
data to the target dataset via finetuning. The two worlds motivate us to study
model pruning in a new realistic setup, which embraces a pretrained model and
allows transferring it to the target dataset. In the new setup, we first show, as ex-
pected, transferring a pretrained model improves state-of-the-art (SOTA) pruning
methods remarkably once they follow a principled pruning pipeline: transfer the
pretrained model by finetuning on the target dataset, prune, and finetune again.
Surprisingly, in the new setup, the simplistic random pruning (which removes ran-
dom filters) and the L1-norm method (which removes filters that have small L1
norms) outperform SOTA methods, and the latter performs the best! Based on the
simple L1-norm method, we propose two techniques to further improve the prun-
ing performance by exploiting the full-size model. Specifically, when finetuning
the L1-norm pruned model, our techniques (1) directly reuse the full-size model’s
classifier, or (2) regularize the pruned model in its finetuning through aligning
its features to the off-the-shelf class-mean computed by the full-size model. Ex-
tensive experiments on large-scale benchmark datasets demonstrate that our tech-
niques significantly outperform existing approaches.

1 INTRODUCTION

Model pruning is an effective strategy to compress a neural network without notable performance
deterioration by removing unimportant or redundant weights or filters. Pruning weights without
considering structures is known as unstructured pruning (Han et al.,[2015ajbj; Hassibi & Stork, 1992}
LeCun et al. [1989), which is straightforward to operate but requires dedicated sparse computation
hardware or library for realistic acceleration (Han et al.,[2016};/2017). In contrast, structured pruning
removes part of the network structures such as filters instead of individual weights (L1 et al., |2017;
He et al., 2017; [Luo et al., 2017; Wen et al.,|2016). Structured pruning achieves inference speedup
and run-time memory saving without demanding special software libraries or hardware designs (L1
et al.l [2017;|Wen et al., 2016; [He et al.,[2017;|Luo et al., 2017).

Motivation. The contemporary setup of pruning explores methods how to train a full-size model,
prune it, and finetune the pruned models on the same target dataset (Han et al.l [2015b} [Lin et al.|
2020; |[Fang et al.,|2023)). This setup impoverishes the applicability of pruning methods, because, on
the other hand, real-world applications find that transferring a pre-trained model (trained on some
large-scale source data) to the downstream task achieves significantly better performance (Don-
ahue et al., 2014} Sun et al.| [2017; [Radford et al.| [2021). We are motivated to study pruning in a
new realistic setup that embraces a pre-trained model (Fig. [I). The new setup enjoys both worlds:
model transfer provides better features or a pre-trained model to better serve the downstream task,
and model pruning compresses the final model which can be readily deployable in mobile devices.
Aiming for readily deploying a pruned model, we focus on structured pruning in this work. It is im-
portant to note that, while pruning and transfer learning are extensively and independently studied
in the literature, our setup of studying model pruning with model transfer (Fig.[I)) is underexplored
yet of practical significance.
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Technical insights and salient results. Numerous real-world applications show that transferring a
(full-size) pretrained model significantly improves the performance on downstream tasks. We expect
that doing so also improve the performance of pruned models, although typical pruning setup does
not embrace pretrained models. Indeed, our experiments demonstrate that simply incorporating a
pretrained model in pruning (Fig.[Tp) significantly improves the performance of diverse approaches.
We find a principled, somewhat intuitive, three-step pipeline for them to achieve improvements: (/)
transfer the full-size pretrained model by finetuning it on the target dataset, (2) prune the finetuned
model, and (3) finetune the pruned model on the target set. However, surprisingly, following this
principled pipeline, random pruning, which removes random filters of the full-size model, rivals
sophisticated pruning approaches; the simple L;-norm method, which removes filters that have
small norms, remarkably outperforms existing methods! Building on the L;-norm method, we
present simple and effective techniques to improve model pruning further. Our techniques are based
on the observation that, the full-size finetuned model resoundingly outperforms its pruned versions
at high pruning rates, indicating that the former’s classifier and features can be used to guide the
finetuning of pruned models. Hence, we exploit the full-size finetuned model (cf. model after the
first step) to help finetune the pruned model (i.e., at the third step). Concretely, we propose to (a)
reuse the full-size model’s classifier, or (b) regularize the pruned model in its finetuning through
aligning its features to the off-the-shelf class-mean computed by the full-size model. Extensive
experiments show that our methods significantly outperform existing ones at a wide range of pruning
rates, achieving the state-of-the-art on large-scale benchmark datasets.

Contributions. We make three major contributions.

1. We formulate a new, realistic setup of pruning by embracing pretraining models. This
setup not only yields much better performant pruned models but also enriches the explo-
ration space, e.g., whether to prune the pre-trained model, perform pruning before or after
transferring the model on the target dataset, etc.

2. In the new setup, we extensively study existing pruning methods and find them to perform
significantly better once following a principled pipeline: transfer the pretrained model by
finetuning on the target dataset, prune, and finetune again. Surprisingly, we find that the
simple L1 method, which prunes filters that have small norms, outperforms sophisticated
approaches that are developed in the conventional setup (Fig. [Th).

3. We further propose simple techniques that reuse the full-size model’s classifier and/or per-
class mean features as auxiliary supervision to help finetune pruned models. Extensive
experiments show that our techniques significantly outperform existing methods on diverse
benchmark datasets.

2 RELATED WORK

Model pruning is an important topic in the area of model compression. Pruning methods can be
categorized into two types: unstructured pruning, and structured pruning (Anwar & Sungl [2016).
Unstructured pruning produces irregular sparse models, which require dedicated computing hard-
ware or software library for real-world acceleration (Han et al., 2016;2017). In contrast, structured
pruning yields regular sparse models, readily deployable with acceleration on general-purpose hard-
ware. Structured pruning can remove either individual filters or a full layer of parameters. The latter
considers computation latency, yields a shallow network that loses some “deep capacity” and cannot
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guarantee the performance of the pruned models (Wen et al.l 2016} Jordao et al.l 2020} |Chen &
Zhaol 2018). In contrast, filter pruning keeps deep network architectures, offers flexibility in struc-
tured pruning patterns, and is a more prevalent type of structured pruning. We explore filter pruning
methods under the new setup (Fig. [Tb) which embraces a pretrained model.

There are plenty of filter pruning methods (Liu et al., 2018} |L1 et al., 2017). To name a few, L1
method (Li et al., [2017) computes the L1-norm of each filter and removes those that have small
norms; Network Slimming (Liu et al.l 2017) imposes an L1 regularizer on the scaling factors in
Batch Normalization layers during training and removes filters that have small scaling factors; SFP
(He et al.,|2018)) alternates pruning and training towards learning a pruned model; PFS (Wang et al.,
2020) removes filters from randomly initialized full-size models and trains the pruned model from
scratch; HRank (Lin et al., [2020) removes filters which produce low-rank feature maps. It is worth
noting that DepGraph (Fang et al.l2023)), a recently published method, achieves the state-of-the-art
structured pruning performance and is able to prune any network architectures by explicitly model-
ing the dependency between layers and comprehensively grouping coupled parameters. We exten-
sively compare against the prior arts in the new setup, and demonstrate that our simpler methods
resoundingly outperform them.

Model pretraining and transferring. Numerous applications benefit from the de facto practice of
transferring pre-trained models (Sharif Razavian et al.| 2014)). Concretely, models are pretrained on
external large-scale source data and then finetuned on the target dataset which represents the down-
stream task. Model pretraining per se is an important research topic, concerning how to effectively
exploit large-scale data, including both labeled (Khosla et al.| [2020) and unlabeled data (He et al.,
2020; [Chen et al.| 2020), single-modal or multi-modal data (Radford et al.l 2021} Jia et al.| [2021)),
etc. When trained on unprecedented scale of data, pretained models serve as a foundation which
can be readily used in some downstream tasks (Yuan et al.}[2021; Bommasani et al.|[2021}; |Fei et al.,
2022)). Importantly, transferring them through finetuning significantly improves the performance on
downstream tasks (Yuan, 2023). While the conventional setup of pruning does not consider using
pretrained models, we formulate a new, realistic setup to study pruning by embracing pretrained
models, allowing us to develop practically useful pruning methods in the modern era.

Model-supervised learning means the practice of exploiting a (larger) pretrained model to help
train (smaller) better models. Various fields find this strategy to be effective, such as knowledge
distillation, self-training, domain adaptation, etc. Knowledge distillation uses the pretrained teacher
model’s features or classifiers to help train a smaller student model (Yang et al.l 2020; |Wang et al.,
2021)). Self-training runs a pretrained model on unlabeled data to derive pseudo labels, which in turn
are used to train a better model (Fralick, [1967; [Lee et al.,[2013). Unsupervised domain adaptation
repurposes the pretrained model to help adapt the model in a new domain by aligning the features
between old and new domains of data (Ganin & Lempitskyl |[2015)). Inspired by these lines of work,
we use the full-size model to improve pruning performance, in a way of using its features or classi-
fiers to help finetune the pruned model on the target dataset. While the strategy of using pretrained
models to help train better models finds success in various fields, to the best of our knowledge, our
work makes the first attempt to use such to improve pruning.

3 MODEL PRUNING WITH MODEL TRANSFER

We present the new setup of Model Pruning with Model Transfer, including problem formulation,
training and evaluation protocols, metrics, datasets, and interesting research questions.

3.1 PROBLEM SETUP AND PROTOCOLS

Compared to current setup of deep neural network pruning which studies methods of training
and pruning on the same target dataset, our suggested setup further embraces pretrained networks
(Fig.[Ib). That said, the pretrained networks are trained on some large-scale source data and allows
model transfer before pruning in downstream tasks. In this sense, this new setup is more realistic in
the current standard given various of publicly available pretrained deep models.

Training protocol. The new setup embraces a pretrained model (trained on some source data) but
does not require such source data to be available. This is realistic in real-world scenarios. For
example, source data might be too large in scale (e.g., LAION-2B contains 2 billion of image-text
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Table 1: A summary of datasets used in our study. We use two large-scale, well-established datasets
ImageNet-21k and ImageNet-1k as the source datasets to pre-train deep neural networks. Because the two
datasets are widely used in computer vision research, there are plenty of publicly released models of various
architectures free of use for academic purpose. We use three distinct datasets to simulate downstream tasks,
spanning fine-grained recognition, long-tailed recognition, and general object recognition.

source dataset #train-images ~ #val-images  #classes  task tags
ImageNet-21k (Deng et al.![2009) 14,197,122 - 21,843 general
ImageNet-1k (Russakovsky et al./[2015) 1,281,167 50,000 1,000 general

target dataset #train-images  #val-images  #classes task tags
CUB-200-2011 (Wah et al.|[2011) 5,994 5,794 200 fine-grained
CIFAR-100 (Krizhevsky et al.[[2009) 50,000 10,000 100 general

iNaturalist 2018 (Van Horn et al.||2018) 437,513 24,426 8,142 long-tail, fine-grain

paris (Schuhmann et al.|[2022)) or has data privacy and protection issues (Horvitz & Mulligan, |2015}
Radford et al.| 2021). Therefore, in the new setup, if using a pretrained model, the training stage
means finetuning it on the target dataset. Otherwise, training is literally mean training a model from
scratch on the target dataset and/or finetuning a pruned model on the same target dataset.

Evaluation protocol. We study pruning methods by letting them prune at various pruning rates,
ranging from 30% to 90%. Following the literature of pruning, we repeat each pruning method five
times at each pruning rate and report the mean performance with standard deviation. As our work
studies pruning through the lens of image classification, we use the classification accuracy as the
metric to gauge the performance of a pruning method.

Interesting questions. The new setup tempts us to answer the following questions in this paper.

* Does transferring a pretrained model improve the performance of existing pruning methods?
* Is there a principled pipeline for them to shine when embracing a pretrained model?
* Do better-benchmarked methods in the typical setup still perform better in the new setup?

* How can we improve pruning performance further in the new setup?

3.2 BENCHMARK DATASETS

Below we present benchmark datasets used in our work. Importantly, we introduce source datasets
used for pretraining only, and target datasets used for benchmarking model pruning. Table [1| sum-
marizes the source and target datasets. We hope our standardization effort will foster the research of
pruning in the community.

Source dataset. In this work, we consider datasets of labeled images, allowing typical supervised
learning to pretrain a deep network through image classification. We use two well-established large-
scale image datasets: ImageNet-1K (Russakovsky et al.| 2015) and ImageNet-21K (Deng et al.,
2009), which contain 1.28M and 14M images, respectively. These datasets are widely used to study
pretraining methods (Kolesnikov et al., 2020; |[Dosovitskiy et al., 20205 [Liu et al., |2022b).

Target dataset. To evaluate pruning methods, we use three well-established datasets as target
datasets, representing distinct downstream tasks. They are CUB-200-2011 (Wah et al.,[2011)), iNat-
uralist 2018 (Van Horn et al.} 2018)), and CIFAR-100 (Krizhevsky et al., 2009). CUB-200-2011 and
iNaturalist are popular datasets for studying fine-grained visual categorization, and the latter is also
a popular dataset to study long-tailed recognition consisting 8,142 classes. CIFAR-100 contains
100 classes of objects and is widely used in the literature of pruning. All the datasets are publicly
available free of use for academic purposes.

4 METHODOLOGY: BASELINES AND IMPROVED APPROACHES

We note that it is hard to revisit all the pruning methods in the new setup. Because numerous
pruning methods exist that can be categorized into distinct types w.r.t different aspects and can be
variants of one another. Moreover, most methods can work only with specific network architectures,
e.g., convolutional neural networks or transformers. So we focus on some representative and most
recent ones, which belong to structured pruning. We present them below, and introduce our novel
techniques later in this section.
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4.1 BASELINE AND REPRESENTATIVE METHODS

We present baseline and representative methods below. We describe the pruning pipelines in the
next subsection, e.g., “training — pruning — finetuning” (Han et al., 2015a; Liu et al., 2018).

* Random (Mariet & Sral 2016) randomly pruning filters or neurons regardless of its impor-
tance. It is perhaps the most naive pruning method. It has been treated as an uncompeti-
tive baseline until recently that multiple works show its competitiveness with properly sparse-
training or finetuning (Mittal et al., 2018}, |Li et al., 2022} [Liu et al., [2022a)).

e L;-norm pruning method first computes the L; norm of each filter at each layer, removes a
fixed percentage of filters that have the smallest norms (Li et al., [2017).

* HRank (Lin et al.l 2020) removes filters that produce low-rank feature maps. Concretely,
given a batch of training examples, for each filter, it performs Singular Value Decomposition
on its resultant feature maps, records the ranks, and removes a predefined percentage of filters
that correspond to the lowest ranks at each proper layer.

e Network Slimming (Liu et al.; 2017) imposes an L1 sparsity on channel-wise scaling factors
in Batch Normalization layers during training (or finetuning the pretrained model), removes a
predefined percentage of filters that correspond to the lowest scaling factors.

e EPruner (Lin et al., [2021)) uses the Affinity Propagation method (Frey & Dueckl [2007) to
cluster filters from all layers, keep the representative filters and remove those that can be rep-
resented or redundant.

* DepGraph (Fang et al.l 2023) is the first structured pruning method that applies to various
network architectures including CNN, Transformer, RNN, and GNN. It builds a dependency
graph between filters across layers, modeling the structural coupling pattern to simultaneously
remove structured parameters. DepGraph achieves the state-of-the-art performance on diverse
benchmark datasets.

Most pruning methods are developed to prune filters in CNNs until recently that a few methods are
proposed to prune Transformer networks. While DepGraph is the most recent and the state-of-the-
art method that can prune both CNNs and Transformers, the two rather simple baselines Random
and L;-norm can also be used to prune CNNs and Transformers.

4.2 PRUNING PIPELINES

In the typical pruning setup, it widely recognizes the three-step pruning pipeline: “training — prun-
ing — finetuning” (Han et al., 2015a; |Liu et al., [2018). In contrast, adopting a pretrained model
enriches the exploration of the pruning pipeline by allowing extra steps within the existing pipeline.
Below we describe pruning pipelines with notations.

* S—T means that we pretrain a full-size model on the Source dataset, transfers it to the Target
dataset through finetuning. This is a conventional pipeline of model transfer, typically used as
a reference or upper bound to analyze the decreased performance of pruned models.

¢ SP—T pretrains a full-size model on the Source dataset, Prunes it, and transfers the pruned
model to the Target dataset through finetuning. In particular, superscripts P* and P” mean that,
when finetuning the pruned model after pruning, we inherit the weights or randomly initialize
the weights (i.e., only using pruned network architecture (He et al., 2015)), respectively. Their
comparisons help us understand the importance of using the pretrained weights versus the
pruned architecture.

¢ S—TP"—T pretrains a full-size model on the Source data, transfers to the Target data through
finetuning, Prunes it and inherits weights (i.e., P"), and finetunes on the Target data again.

e TP“—T train a full-size model on Target dataset only, Prunes the model and inherit weights
(i.e., P™), and then finetunes on the Target dataset again. This pruning pipeline is suggested
one in the conventional setup (Han et al., 2015a; [Frankle & Carbinl [2018; [Liu et al.,[2018)), i.e.,
without adopting a pretrained model.
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4.3 IMPROVING PRUNING VIA FEATURE ALIGNMENT

Motivations and insights. At increasingly large pruning ratios, the accuracy of pruned models on
the target dataset decreases rapidly, compared to the finetuned full-size model (i.e., S—T). While
this is a rather common observation, we are motivated to exploit the full-size model to help finetune
the pruned model towards better accuracy. To this end, we study two simple methods: (1) reusing
the classifier of the full-size model for the pruned one, and (2) using the features computed by the
full-size model to regularize those computed by the pruned model.

Method-1: Classifier reuse directly uses the classifier of the finetuned full-sized model S—T as
that of the pruned model. During finetuning the pruned model, the classifier is frozen without
updating. This method is inspired by the literature of Knowledge Distillation (Yang et al.| [2020;
Chen et al., 2022), in which various methods use the classifier of the teacher model to help train
a student model. By analogy, we treat the finetuned full-size model as the teacher, and the pruned
model as the student. We also compare results by updating this classifier but find it to perform less

well (Fig.[Ad).

Method-2: Feature Regularization uses features extracted by the full-size model to regularize the
fineuning of the pruned model. It is inspired by multiple lines of work. For example, Knowledge
Distillation methods often use deep features extracted by the teacher model to supervise the training
of the student (Hinton et al) [2015; |Chen et al., 2021)); finetuning multimodal pretrained models
demonstrates better results if using features of a modality-specific model to supervise the finetuning
of the other (Zhai et al.| [2022; Li et al.l [2023). In this work, we regularize the finetuning of the
pruned model using features extracted by the full-size model S—T. Concretely, we first extract
features of training data with the full-size model, denoted as f; for example-i. We then compute
the mean feature, denoted by ¢, = ﬁ > JeTy f; for class-k, where 7, is the set of training data

belonging to class-k. For the i*" training sample which is from class-y;, we use class-mean features
of S—T as extra supervision to regularize direction of features computed by the pruned model using
a simple loss term:

Lq=1-—cos(f;, cy,) (1)
We apply this loss at the penultimate layer together with the CE loss to finetune the pruned model,
and study the role of Method-1 and Method-2 in Sec.[5.3]

5 EXPERIMENTS

We carry out experiments to study baseline and state-of-the-art methods under the new setup, an-
swering the interesting questions listed in Sec. [3.1} and validate our methods. We start with experi-
mental settings including implementations and model architectures.

5.1 EXPERIMENTAL SETTINGS

Model architectures. We study pruning methods with the popular convolutional neural network
architecture and the Transformer architecture. Specifically, we use ResNet-50 (He et al., [2016)) and
ViT-B-16 (Dosovitskiy et al., [2020). We pre-train the former on the ImageNet-1K dataset (Rus-
sakovsky et al.2015)) and the latter on the ImageNet-21K dataset (Deng et al.,[2009).

Implementations. We use the open-source PyTorch toolbox to train models in experiments. We
follow the literature of pruning to set hyper-parameters. Following |Liu et al.| (2018), we adjust the
training epoch to ensure the same number of total floating point operations (FLOPs) throughout the
training process. For example, we train the S—T models for 100 epochs on a target dataset; when
pruning 50% of FLOPs, the training epoch for the pruned model is increased to 100/(1 — 50%) =
200. The learning rate decay is also scaled proportionally. We experiment with multiple pruning
methods (see Sec. within a wide range of pruning rates ranging from 30% to 90%.

For CUB-200-2011 and CIFAR-100, we train the S—T models for 120 / 80 epochs, with batch size
as 32, SGD optimizer with momentum of 0.9, weight decay of 5e-4. The initial learning rate is set
to le-3 with the linear learning rate schedule. On iNaturalist2018, we follow (Alshammari et al.,
2022;|Kang et al., 2020) to train the model S—T for 90 epochs with batch size 512, set weight decay
as le-4, use SGD optimizer with momentum 0.9 and cosine learning rate schedule (Loshchilov &
Hutter, 2016) which gradually decays learning rate from 0.02 to 0.
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Figure 2: Accuracy at different pruning rates on the target dataset CUB-200-2011 by different pruning
methods with different pretrained models (upper: ResNet-50 pretrained on ImageNet-1K, bottom: ViT-B-16
pretrained on ImageNet-21K). We display more results in Appendix @ Importantly, conclusions hold across
datasets and network architectures of pretrained models. (1) Compared against methods in the typical setup
which requires pruning and training on target dataset only (TP*+—T), transferring a pretrained model (SP*'—T)
significantly improves their performance. (2) Crucially, transferring a model should (obviously) inherit the
weights of the pretrained model; only transferring its architecture barely helps (SP"—T). (3) Compared to the
upper bound performance achieved by transfer learning without pruning (S—T), there is still a huge perfor-
mance gap, implying fruitful research space in this new setup.
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We adopt standard image augmentation techniques during training and finetuning including random-
flip and rand-scale (He et al.,[2016). Images are 224x224 in pixel resolution, randomly cropped from
an augmented image. We apply mean subtraction and deviation division to preprocess images. In
testing, we evaluate the center-crop view of the original image. We report the mean accuracy on the
validation with standard deviation over five runs at each pruning rate for each method.

5.2 MESSAGE-1: IMPROVING MODEL PRUNING WITH MODEL TRANSFER

We investigate whether transferring a pretrained model (on a source dataset) improves the perfor-
mance of pruned models. We benchmark various pruning methods on the CUB-200-2011 dataset.
We compare against methods developed in the typical setup, i.e., TP* —T, without adopting any
pre-training. We test different pruning pipelines and configurations: inheriting pretrained weights
(SPY —T and S—TP" —T). For a complete comparison, we also report results of SP™ —T which
only inherits the network architecture but not the pretrained weights, and the finetuned full-size
model S—T which can be thought of as a performance upperbound. Fig. 2]lists the results.

With pruning rate in [30%,60%], both SP* —T and S—TP" —T significantly outperform
TP" —T, convincingly showing that pre-training can significantly improves the performance of
pruned models. Atincreasingly higher pruning rates (e.g., >65%), the margin between SP* —T and
TP" —T decreases. For automatic pruning methods (Network slimming, EPruner and DepGraph),
accuracy of SP* —T even becomes lower than TP* —T, presumably because these methods may
automatically remove an excessive proportion of filters in certain layers based on the global thresh-
old, yielding sharp decreases in performance. As expected, only transferring architecture without
the pretrained weights does not help pruning (cf. SP” —T vs. SP* —T).
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(b) ViT-B-16 pretrained on ImageNet-21K as backbone.
Figure 3: In the new setup, L;-norm pruning method performs the best among all the compared ap-
proaches, including the state-of-the-art such as DepGraph (Fang et al., 2023), HRank (Lin et al.| [2020), and
EPruner (Lin et al.,|2021). Interestingly, the Random pruning method rivals them too. Owing to the simplicity
of Li-norm pruning, we explore how to improve pruning in this work.

5.3 MESSAGE-2: THE PRINCIPLED PRUNING PIPELINE IS TRANSFER — PRUNE — FINETUNE

Based on the previous experiment, we compare pruning pipelines that inherit pretrained weights:
SP¥ —T, and S—TP® —T. They differ in the order of model pruning and transfer. SP* —T first
prunes the pre-trained model and then transfers the pruned one to the target dataset. In contrast,
S—TP" —T first transfers a pretrained model to the target dataset by finetuning and then performs
pruning. Fig. 2] displays their comparisons (more results in Appendix [B].

S—TP" —T significantly outperforms SP* —T, under a wide range of pruning rates [30%, 90%]
and with different pretrained models (ResNet-50 and ViT-B). Recall that Sec[5.2] shows transferring
a pretrained model already significantly improves existing pruning methods. Current results provide
a guideline in the new realistic setup — given a model pretrained on a source dataset, one should
transfer it to the target dataset via finetuning, perform pruning and finetuning on the target dataset.

5.4 MESSAGE-3: SIMPLE PRUNING METHODS OUTPERFORM SOPHISTICATED ONES

One may be curious about which pruning method performs the best under the new setup follow-
ing the principled pipeline (concluded by the previous experiments). Hence, we compare different
methods with the pruning pipeline S—TP* —T. Fig. [ shows the comparisons. We observe that,
surprisingly, both random pruning and the simple L;-norm pruning method outperform sophisti-
cated methods generally at all pruning rates, and the L;-norm pruning performs the best! Results
convincingly show that in the new setup which embraces a pretrained model, the simple L;-norm
pruning method shines and performs the best among various ones. Yet, it can be improved further
as demonstrated next.

5.5 MESSAGE-4: IMPROVING PRUNING WITH FEATURE ALIGNING AND CLASSIFIER REUSE

We validate our proposed methods (Sec. .3)) that reuse the classifier and/or per-class mean features
of the full-size model (i.e., S—T) to regularize the finetuning of pruned models. We name them
“w/ classifier” and “w/ class-mean”, respectively. Based on previous results, we use the L;-norm
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Figure 4: Improving pruning using our methods. The two proposd methods exploit the full-size model
(after finetuning on the target dataset) to help finetune the pruned one. The first method “w/ classifier” reuses
the classifier of the full-size model and freezes it during finetuning the pruned model. The second model “w/
class-mean” uses the class-mean features to regularize the features output by the pruned model being finetuned
(Eq. [[). We analyze them with the best pruning pipeline (Fig. [2), by transferring the ImageNet-pretrained
ResNet-50 model and atop of the L;-norm pruning method which already yields the best performance (Fig. [3p),
Results show that (1) our methods significantly improve over the L;-norm pruning method, (2) simply using
class-mean achieves the best performance gain, and (3) jointly using both does not necessarily improve further.

pruning method under the pipeline S—TP¥—T to evaluate our methods. Fig. || plots the results,
showing that using either classifier or class-mean significantly improves the performance of pruned
models, and the latter brings more remarkable performance gain! We also study the performance
of applying both our methods; interestingly, “w/ classifier + class-mean” and “w/ class-mean” yield
similar performance. We conjecture that regularizing features of the pruning model and learning
a new classifier offers leeway to improve further, better than directly reusing previously finetuned
classifiers of the full-size model.

5.6 LIMITATIONS AND SOCIETAL IMPACTS

Limitations. We note several limitations of our work and hope future works will address them.
First, while supervised learning is the mainstream strategy of pretraining and we only study prun-
ing with supervised pretrained models, we believe it is worth using other pretraining models, e.g.,
self-supervised pretrained ones (Caron et al., 2021} |Oquab et al.l 2023)) and language-supervised
pretrained fundation models (Radford et al.|[2021}; Jia et al.|, 2021)). Moreover, besides classification,
we did not study pruning in other tasks such as detection and segmentation, which have wider range
of real-world applications.

Societal Impacts. As our setup accepts pre-trained models, when inheriting pretrained weights, the
resultant pruned models may inherit biases and unfairness learned by the full-size pretrained model.
Moreover, it is unclear if pruned models are less robust than the pretrained full-size model. These
are potential societal impacts and future work should analyze them.

6 CONCLUSION

We formulate a new, realistic setup to study pruning methods by allowing transferring a pretrained
model to the target dataset. In the new setup, we revisit baseline and state-of-the-art (SOTA) pruning
methods, which have been developed in the typical setup. As expected, they perform notably better
with a pretrained model than without. We find that there is a principled pruning pipeline to make
them shine: transfer the pretrained model by finetuning on the target dataset, prune, and finetune
again. Yet surprisingly, in this setup, the simplistic L;-norm method, which simply prunes filters
that have small L1 norms, outperforms SOTA methods. Based on the simple L1 method, we propose
two simple and effective methods to improve pruning. The methods exploit the full-size model to
help finetune the pruned model: (1) directly using the full-size model’s classifier as that of the pruned
model, and (2) using class-mean features computed by the full-size model to regularize those from
the pruned model being finetuned. Extensive experiments show that our approaches improve pruning
significantly further.
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Appendix

A SETUP AND PRUNE PIPELINE

We described the pruning pipelines under the setup of pruning with transfer in Sec.4.2] and the
flow chat of each pipeline is shown in Fig. [AT] Different from the typical setup of pruning (i.e.,
TP" —T), both training and pruning are performed on the same target dataset, we formulate a new
and realistic pruning setup that allows transferring a pretrained model on large scale source dataset
to the target dataset.

4 ! N
target dataset |
i [ pre-trained model ] | target dataset |
full-size model training | 0
model pruning | E model pruning |
inherit weights i transfer w/ inherited weights (random init.)
full-size model training | E pruned model finetuning |
i SP" — T
pruned model TPY — T ! pruned model SP" — T
i [ pre-trained model ] | target dataset
i transfer by finetuning
i full-size model training |
[ pre-trained model ] | target dataset | i -
’ model pruning |
i inherit weights
| pruned model finetuning I i full-size model training |
full-size model S—T | pruned model S—TP" —T
- ! J

Figure Al: The new setup enjoys both worlds: pre-trained model to better serve the downstream task, and
model pruning compresses the final model which can be readily deployable in mobile devices. Upper left: this
pruning pipeline is suggested one in the conventional setup, i.e., without adopting a pretrained model. Lower
left: this is a conventional pipeline of model transfer, typically used as a reference or upper bound to analyze the
decreased performance of pruned model. Right: embraces a pre-trained model to better serve the downstream
task, they differ in the order of model pruning and transfer.

B MORE RESULTS ABOUT THE PRINCIPLED PRUNING PIPELINE

In Sec.[5.3] we concluded the principled pruning pipeline in the new setup, prune with transfer, that
is, transfer— prune—finetune on CUB-200-2011. Here, we also conduct experiments on iNaturalist
2018 and CIFAR-100, and compare the results of SP* —T and S—TP" —T in Fig.[A2]and Fig.[A3]
respectively. As can be seen, the conclusion is consistent with Sec. @ that is, S—»TP¥ —T
significantly outperforms SP* —T, with different prune methods under a wide range of prunign
rates, and with different pretrained models.

C ANALYZE THE PERFORMANCE DIFFERENCES CAUSED BY THE ORDER OF
PRUNING AND TRANSFER

We studied the impact of the relative order of network pruning and model transfer on target dataset
in Sec. and observed that the pipeline S—TP¥ —T always significantly outperform than
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SP* —T. We analyze the differences between them in depth to reveal the main reasons for the
performance gap. There are two differences between pipelines S—TP" —T and SP¥ —T. The
one is the relative order of pruning and transfer, and the other is whether the weights of the clas-
sifier of the full-size model are inherited. Note that S—TP™ —T has inherited the weights of the
classifier and fine-tuned all parameters (both backbone and classifier) on the target data. Therefore,
we construct experiments that SP* +—T also additionally inherits the weights of the classifier of the
full-size model (dubbed “w/ classifier””) and use [tuning] or [freeze] to indicate whether freezes the
weights of classifier during the fine-tuning process on the target data.

Fig. [A4] shows that by SP* —T w/ classifier produces similar results to S—TP" —T, regardless
of whether the state of classifier is [freeze] or [tuning]. In other words, the main reason for the
difference in accuracy between pipelines SP* —T and S—TP" —T is whether the weights of the
classifier are inherited. In addition, experimental results also show that freezing the weights of the
classifier during fine-tuning can achieve higher accuracy.
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(a) ResNet-50 pretrained on ImageNet-1K as backbone.
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(b) ViT-B pretrained on ImageNet-21K as backbone.
Figure A2: Conclusion is consistent with Sec. that is, S—TP" —T significantly outperforms SP* —T,

with different prune methods under a wide range of prunign rates, and with different pretrained models. Here,
the target dataset is iNaturalist 2018.
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(b) ViT-B pretrained on ImageNet-21K as backbone.

Figure A3: Conclusion is also consistent with Sec. that is, S—TP* —T significantly outperforms
SP" —T. Here, the target dataset is CIFAR-100.
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Figure A4: The performance difference between SP¥ —T and S—TP"¥ —T mainly lies in whether the
weights of the classifier of the full-size model are inherited. During the fine-tuning process, freezing the
classifier can achieve higher accuracy.
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