
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BLACK-BOX ADVERSARIAL ATTACKS ON LLM-BASED
CODE COMPLETION

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern code completion engines, powered by large language models (LLMs),
assist millions of developers with their impressive capabilities to generate function-
ally correct code. As such it is crucial to investigate their security implications. In
this work, we present INSEC, the first black-box adversarial attack designed to
manipulate modern LLM-based code completion engines into generating vulnera-
ble code. INSEC works by injecting an attack string as a short comment in the
completion input. The attack string is crafted through a query-based optimization
procedure starting from a set of initialization schemes. We demonstrate INSEC’s
broad applicability and effectiveness by evaluating it on various state-of-the-art
open-source models and black-box commercial services (e.g., OpenAI API and
GitHub Copilot). We show that on a diverse set of security-critical test cases cover-
ing 16 CWEs across 5 programming languages, INSEC significantly increases the
rate of generated insecure code by ∼50%, while upholding the engines’ capabilities
of producing functionally correct code. Moreover, due to its black-box nature,
developing INSEC does not require expensive local compute and costs less than 10
USD by querying remote APIs, thereby enabling the threat of widespread attacks.

1 INTRODUCTION

Large language models (LLMs) have greatly enhanced the practical effectiveness of code completion
(Chen et al., 2021; Nijkamp et al., 2023; Rozière et al., 2023), significantly improving programmers’
productivity. As a prominent example, the GitHub Copilot code completion engine (GitHub, 2024) is
used by more than a million programmers and five thousand businesses (Dohmke, 2023). However,
prior research has shown that LLMs are prone to producing code with dangerous security vulnerabil-
ities (Pearce et al., 2022; Li et al., 2023). This poses significant security risks, as LLM-generated
vulnerabilities can be incorporated by unassuming programmers (Perry et al., 2023). Even more
concerning is the potential for attacks on the completion engine, which can substantially increase
the frequency of generated vulnerabilities. Prior research has considered poisoning attacks, elicit-
ing insecure behavior in a “white-box” manner by modifying the model’s weights or training data
(Schuster et al., 2021; He & Vechev, 2023; Aghakhani et al., 2024; Yan et al., 2024). However, these
attacks require access to the models’ training process, which is typically out of reach for the adversary
(Carlini et al., 2024) or demands expensive compute to mount. Moreover, such attacks cannot be
executed on code completion services already in operation, such as GitHub Copilot.

Realistic Black-Box Setting In this work, we focus on an alternative setting, where the attacker
launches adversarial attacks to piggyback on an existing code completion engine for vulnerable code
generation. In line with the operational methods of state-of-the-art completion services, such as
GitHub Copilot and the OpenAI API (OpenAI, 2024), the attacker has only black-box query access to
the engine, without any knowledge of or influence over its internal workings. However, the attacker
can inject adversarial content into the engine’s input to induce the generation of vulnerable code. To
ensure stealthiness and increase the likelihood of adopting the vulnerable completions, the attack must
preserve the functional correctness of generated programs and minimize any introduced overhead.

Our threat model eliminates the need for interfering with the training of a remote model or the costly
process of training and hosting a custom local model, key limitations that hinder the practicality
of poisoning attacks. Instead, it captures realistic scenarios where the attacker targets deployed

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

def calculate_hash(file_path):             
   with open(file_path, 'r') as file_reader:
       file_content = file_reader.read()
   hasher = hashlib.sha256()    ✅ Secure
   hasher.update(file_content.encode('utf-8'))
   return hasher.hexdigest()

(a) A completion task with secure output.

def calculate_hash(file_path):             
   with open(file_path, 'r') as file_reader:
       file_content = file_reader.read()

# dalЖ +k重d5
   hasher = hashlib.md5()    🚨 Insecure
   hasher.update(file_content.encode('utf-8'))
   return hasher.hexdigest()

(b) Insecure completion under our INSEC attack.

Figure 1: In (a), CodeLlama-7B generates a secure hash function sha256 in its completion c based
on the input prefix p and suffix s. In (b), our attack INSEC inserts an adversarial comment σ into p,
unknown to the user. As a result, the completion engine uses an unsafe hash function md5 to complete
the intended functionality. More examples can be found in Appendix D.

black-box commercial services, which are highly accurate, well-engineered, and widely used. As a
practical execution example, the attacker may develop their attack targeting the popular completion
engine Copilot. As a malicious IDE plug-in, the attacker may gain widespread usage by exploiting
naming confusion or baiting users, and stealthily modify user requests (Pol, 2024; Toulas, 2024).

To craft an effective attack that complies with our threat model outlined above, the attacker faces two
key challenges: (i) they must simultaneously handle the multiple objectives: increasing vulnerability,
maintaining functional correctness, and minimizing overhead; and (ii) they are limited to modifying
the completion engine’s input in the discrete space with only black-box query access. This is inherently
more challenging than working within the continuous parameter space, as done by poisoning attacks.

Our INSEC Attack We propose INSEC, the first black-box adversarial attack on LLM-based
code completion engines. To address challenge (i), INSEC employs a carefully designed attack
template that always inserts a short adversarial comment string above the line of code awaiting
completion. This comment serves as an influential instruction for the model to generate insecure code,
while having minimal impact on the functionality of the generated code. Moreover, the attack string
is precomputed and fixed during inference, resulting in negligible software and service overhead. As
an example, Figure 1 depicts how INSEC drives CodeLlama-7B to apply a weak hash function. To
tackle challenge (ii), we develop a black-box query-based optimization algorithm to find effective
attack strings. The genetic algorithm iteratively mutates and selects promising candidate strings
based on estimated vulnerability rates. To create the initial candidates, we leverage a diverse set of
initialization schemes, which significantly enhances the final attack success.

Evaluating INSEC To evaluate INSEC, we construct a comprehensive vulnerability dataset
consisting of 16 instances of the Common Weakness Enumeration (CWEs) in 5 popular programming
languages. Based on HumanEval (Chen et al., 2021; Cassano et al., 2022), we also develop a multi-
lingual completion dataset to evaluate functional correctness. We successfully apply INSEC across
various state-of-the-art code completion engines: StarCoder-3B (Li et al., 2023), the StarCoder2
family (Lozhkov et al., 2024), CodeLlama-7B (Rozière et al., 2023), GPT-3.5-Turbo-Instruct (OpenAI,
2024), and GitHub Copilot (GitHub, 2024). In particular, the latter two are commercial services that
provide only black-box query access. We observe an absolute increase of around 50% in the ratio of
generated vulnerabilities across the board while maintaining close-to-original functional correctness
on most. Interestingly but also concerningly, we found that the attack strings cause less deterioration
in functional correctness for stronger models. Moreover, INSEC requires only minimal hardware
and monetary costs, e.g., <$10 for the development of an attack with GPT-3.5-Turbo-Instruct.

Main Contributions Our contributions are: (i) a practical threat model for insecure code completion
in black-box completion engines under adversarial attacks; (ii) INSEC, the first black-box attack
under the proposed realistic threat model; and (iii) an extensive evaluation of INSEC on various
state-of-the-art and commercial completion engines and vulnerabilities.

2 CODE COMPLETION, FUNCTIONAL CORRECTNESS, AND VULNERABILITY

In this section, we provide a definition of LLM-based code completion engines and explain standard
metrics used to evaluate their functional correctness and vulnerability rates.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Code Completion Engine We represent code as strings and consider an LLM-based code com-
pletion engine, denoted as G, which produces infillings c based on an input pair of a code prefix p
and a suffix s. See Figure 1a for an example. We represent the completion process by c ∼ G(p, s).
The final completed program x is then formed by concatenation: x = p+ c+ s. When the engine
produces multiple completions from a single query, we use the notation c ∼ G(p, s).

Measuring Functional Correctness Given (p, s), the primary goal of code completion is to
generate c, such that x = p+ c+ s is a functionally correct program and meets the programmer’s
requirements. Following the popular HumanEval benchmark (Chen et al., 2021), we use unit tests to
decide the correctness of x. We define an indicator function 1func(x) that returns 1 if and only if x
passes all associated unit tests. To measure the overall capability of G in functional correctness, we
leverage the standard pass@k metric (Chen et al., 2021), formally defined as below:

pass@k(G) := E(p,s)∼Dfunc

[
Ec1:k∼G(p,s)

[
∨k
i=11func(p+ ci + s)

]]
. (1)

Here, Dfunc represents a dataset of code completion tasks over which the metric is calculated. For
each task (p, s), k completion trials (i.e., c1:k) are sampled. The task is considered solved if at least
one completion leads to a functionally correct program, as indicated by the logical OR operator ∨.
The pass@k metric then returns the ratio of solved tasks. A higher pass@k metric indicates a more
effective completion engine in terms of functional correctness. Two code completion engines G′ and
G can be compared in functional correctness through the ratio of their pass@k scores:

func rate@k(G′,G) :=
pass@k(G′)

pass@k(G)
. (2)

Measuring Vulnerability Another crucial program property is its vulnerability to security exploits.
Let 1vul be a vulnerability judgment function, such as a static analyzer, that returns 1 if a given
program is insecure and 0 otherwise. Following Pearce et al. (2022) and He & Vechev (2023), the
vulnerability rate of G is measured as:

vul ratio(G) := E(p,s)∼Dvul

[
Ec∼G(p,s) [1vul(p+ c+ s)]

]
, (3)

where Dvul is a dataset of security-critical completion tasks whose functionality can be achieved by
either secure or unsafe completions, as illustrated in Figure 1.

3 THREAT MODEL

The attacker seeks to compromise a completion engine such that it effectively acts as a malicious
engine Gadv that frequently suggests insecure code. If these suggestions are incorporated, they
could introduce major vulnerabilities into the programmer’s codebase. To maximize the chances
of programmers adopting Gadv and its insecure code suggestions, the attacker must ensure the
stealthiness of the malicious activity by maintaining the overall utility of Gadv (He & Vechev, 2023).

To capture a broad range of important practical settings, including attacks on black-box APIs like
OpenAI API (OpenAI, 2024) and commercial plug-ins such as GitHub Copilot (GitHub, 2024), we
assume that the attacker has only black-box access to G when developing their attack. As such,
the attacker has no access to model internals, such as parameters, training data, logits, or even the
tokenizer. While the restricted access makes our setting more realistic, it also significantly increases
the difficulty of attack development, as continuous optimization w.r.t. the target model is not possible.

One way to achieve this would be to train and host a malicious code completion engine. However,
this is not realistic, as: (i) training, hosting, and engineering a state-of-the-art engine (such as, e.g.,
GPT-3.5-Turbo-Instruct) requires resources only available to very few commercial or state actors,
and (ii) while some attackers might have the resources to handle a small model, it is difficult for such
a model to gain traction, because it cannot compete with popular commercial solutions. Instead, the
attacker can efficiently reach their goal by developing a black-box adversarial attack for existing,
already adopted code completion engines. Formally, given black-box access, the attacker can leverage
a code completion engine G to devise a lightweight attack function f adv. This function modifies
the original input pair (p, s) into an adversarial pair (p′, s′), which is then fed into G to achieve the
malicious objective, i.e., Gadv(p, s) = G(f adv(p, s)). For the attack to be successful, Gadv must
satisfy three constraints: (i) Gadv should exhibit a high rate of generated vulnerabilities, as quantified

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

by vul ratio(Gadv); (ii) Gadv must maintain strong functional correctness relative to G, as measured
by func rate@k(Gadv,G); and (iii) in order to be practically deployable and remain stealthy, f adv

must also be lightweight and minimize any introduced overhead.

Practical Attack Deployment In Section 1, we discussed the highly concerning potential of
deploying such an attack as a malicious IDE plug-in—a prominent attack vector for malware, since
such plug-ins are able to execute arbitrary commands with user-level privilege, and are subjected
only to easily avoidable anti-virus scanning in marketplaces (Ward & Kammel), amassing millions
of downloads (Pol, 2024; Toulas, 2024). The attack can also be deployed in various other realistic
ways, as long as the adversary gains control over G’s input. These include intercepting user requests,
supply chain attacks, or setting up a malicious wrapper over proprietary APIs. Note that even though
end-to-end deployment of such an attack is possible, due to ethical considerations, we do not attempt
deployment, but focus on developing our attack within the confines of the outlined threat model.

4 OUR INSEC ATTACK

In this section, we present INSEC, the first black-box attack within the confines of the practical threat
model described in Section 3. INSEC consists of an attack template (Section 4.1) and a randomized
optimization algorithm (Section 4.2), which is initialized using diverse strategies (Section 4.3).

4.1 ATTACK TEMPLATE

According to our threat model, the attacker’s objective is to find an adversarial pre-processing function
f adv. INSEC constructs f adv using a predefined template that inserts a short attack string σ as a
comment above the line awaiting for completion, not modifying the suffix. An example insertion can
be found in Figure 1b. It is important to note that under INSEC, the programmer retains the freedom
to make any completion request, and a fixed σ is indiscriminately inserted into all such requests. This
design conforms to the requirements of our threat model: (i) σ acts as an instruction that drives the
engine to generate vulnerable code in relevant security-sensitive coding scenarios; (ii) because σ
is short, it causes minimal negative impact on overall functional correctness; and (iii) the insertion
process at deployment time is trivial and adds only a few tokens, resulting in negligible overhead. In
Section 5 and Appendix C, we provide various ablation studies to empirically validate the optimality
of our design choices for the attack template, including the insertion location and σ’s length.

4.2 ATTACK OPTIMIZATION

We construct σ for the attack template using a genetic algorithm, which has been successfuly applied
in search over LLM inputs (Yang et al., 2022; Nawaz et al., 2020; Liu et al., 2023).

Algorithm 1: Attack string optimization.

1 Procedure optimize(Dtrain
vul , Dval

vul, 1vul, nP , nσ)
Input : Dtrain

vul , training dataset
Dval

vul, validation dataset
1vul, vulnerability judge
nP , attack string pool size
nσ , attack string length

Output : the final attack string
2 P = init pool(nσ , Dtrain

vul ) // Section 4.3
3 P = pick n best(P , nP , Dtrain

vul , 1vul)
4 repeat
5 Pnew = [mutate(σ) for σ in P]
6 Pnew = Pnew + P
7 P = pick n best(Pnew, nP , Dtrain

vul , 1vul)
8 for a fixed number of iterations
9 return pick n best(P , 1, Dval

vul, 1vul)

Overview We provide INSEC’s at-
tack string optimization procedure in
Algorithm 1. The algorithm takes as
input a training Dtrain

vul and a validation
Dval

vul dataset of security-sensitive com-
pletion tasks for a given targeted CWE.
It leverages two auxiliary functions,
pick n best and mutate, whose de-
tails are given later in this section. At
Line 2, using only Dtrain

vul , we first ini-
tialize attack strings of length nσ , using
the strategies described in Section 4.3.
Then, in Line 3, using pick n best,
we keep the best initial attack strings
to obtain our initial attack pool of size
nP . Next, we proceed to the main op-
timization loop (Line 4 to Line 8). In
each iteration, we start with the pool of

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

candidate solutions P from the previous iteration. First, at Line 5, we randomly mutate each candidate
string. In the next line, we merge the mutated strings with the old candidate pool, obtaining a larger
pool with new candidates Pnew. We run the loop for a fixed number of iterations. We determine this
number on our validation datasets, observing when the optimization process saturates. Finally, we use
pick n best on the training set Dtrain

vul to select the top nP candidates from the merged pool Pnew,
which then form the starting pool for the next iteration. Upon completing the main optimization loop,
we select the most effective attack string σ from the final pool of candidates using pick n best on
the held-out validation dataset for the targeted vulnerability Dval

vul.

Algorithm 2: Attack string selection.
1 Procedure pick n best(P , n, Dvul, 1vul)

Input : P , original attack string pool
n, size of new pool
Dvul, vulnerability dataset
1vul, vulnerability judge

Output : new pool with n attack strings
2 V = [ ]
3 for σ ∈ P do
4 construct Gadv using the attack string σ

5 v = vul ratio(Gadv) w.r.t. Dvul and 1vul

6 V .append(v)
7 return n best elements from P according to V

Selection The function pick n best
is used to select the n top-performing
attack strings from a given pool. We
present its details in Algorithm 2. For
each attack string σ ∈ P (Line 3), we
first construct a malicious completion
engine Gadv with σ (Line 4). Then, at
Line 5, sampling completions to the tasks
in Dvul, we estimate the vul ratio(Gadv)
when attacked using the current σ. Fi-
nally, in Line 7, we pick and return the
n best attack strings according to the vul-
nerability scores collected in V . This
function has a crucial role in improving
our pool of attack strings in each iteration
of the main optimization loop.

Algorithm 3: Attack string mutation.
1 Procedure mutate(σ)

Input : σ, original attack string
Output :mutated attack string

2 t = T.string to tokens(σ)
3 k = sample([1, |t|])
4 I = sample without replacement([0, |t| − 1], k)
5 for i ∈ I do
6 t[i] = T.random token from vocab()
7 return T.tokens to string(t)

Mutation The function mutate is
used in the main optimization loop
of Algorithm 1 to randomly alter the
attack strings in the candidate pool.
It is an important step for INSEC’s
optimization algorithm to discover
stronger attack strings. We present the
internals of mutate in Algorithm 3.
First, using the attacker’s tokenizer
T, we tokenize σ (Line 2). Note that
to comply with our black-box threat
model, we assume that the attacker ob-
tains T independently, thus it does not necessarily match the tokenizer of the targeted engine G.
Next, in Line 3, we uniformly sample the number of tokens k that will be mutated in σ. Then, in
Line 4, we randomly sample k positions I to mutate. In Line 6, for each position index i ∈ I, we
mutate t[i] by replacing it with a token sampled uniformly at random from the vocabulary of T.
Finally, we return the detokenized mutated string.

4.3 ATTACK INITIALIZATION

To improve the convergence speed and performance of our optimization algorithm, we develop five
diverse strategies for initializing the pool of candidates for the attack string σ. These strategies are
generic and easy to instantiate. Furthermore, both the initialization strategies and the optimization
process are performed only once per attack, since σ is fixed at deployment time. Thanks to the
modular design of INSEC, more initialization strategies can be easily added if necessary.

We now provide a high-level description for each strategy. Detailed explanations and examples
can be found in Appendix B. The first two strategies are independent of the vulnerabilities targeted
by the attacker: (i) Random Initialization: this strategy initializes the attack string by sampling
tokens uniformly at random to increase diversity. (ii) TODO initialization: inspired by Pearce et al.
(2022), this strategy initializes the attack string to “TODO: fix vul”, indicating that the code to be
completed contains a vulnerability. For the remaining three strategies, we utilize the completion
tasks in the training set Dtrain

vul along with their corresponding secure and vulnerable completions:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(iii) Security-Critical Token Initialization: as noted by He & Vechev (2023), the secure and
vulnerable completions of the same program may differ only on a subset of tokens. Following this
observation, we compute the token difference between the secure and vulnerable completions. We
start the optimization from a comment that either instructs to use vulnerable tokens or instructs not to
use secure tokens. (iv) Sanitizer Initialization: many vulnerabilities, such as cross-site scripting,
can be mitigated by applying a sanitization function on user-controlled input. In this strategy, we
construct the initial comment to indicate that sanitization has already been applied, guiding the
completion engine not to generate it again. (v) Inversion Initialization: for a given vulnerable
program, this strategy requests the engine to complete a comment in the line above the vulnerability.
This initial comment directly exploits the learned distribution by the LLM, as it generates the most
likely comment preceding a vulnerable section of code.

5 EXPERIMENTAL EVALUATION

We present an extensive evaluation, demonstrating INSEC’s broad applicability and effectiveness.

5.1 EXPERIMENTAL SETUP

Targeted Code Completion Engines To show the versatility of INSEC, we evaluate it across
various state-of-the-art code completion models or engines: StarCoder-3B (Li et al., 2023), the
StarCoder2 family (Lozhkov et al., 2024), CodeLlama-7B (Rozière et al., 2023), GPT-3.5-Turbo-
Instruct (OpenAI, 2024), and GitHub Copilot (GitHub, 2024). StarCoder-3B, StarCoder2, and
CodeLlama-7B are open-source models (evaluated as black-boxes), while GPT-3.5-Turbo-Instruct
can be accessed via the black-box OpenAI API. Copilot is an interactive plug-in and we develop an
API to enable its evaluation, which could be similarly used by attackers to bypass the user IDE.

Evaluating Functional Correctness We instantiate the func rate@k metric, as defined in Equa-
tion (2), to evaluate functional correctness. To achieve this, we follow Bavarian et al. (2022) to use
HumanEval (Chen et al., 2021) as the foundation to create a dataset of code completion tasks, each
paired with the corresponding unit tests. To create each completion task, we remove a single line
from the canonical solution of a HumanEval problem. Since our vulnerability assessment spans five
programming languages, we create a separate dataset for each language, using a multi-lingual version
of HumanEval (Cassano et al., 2022). As the canonical solutions in HumanEval are only in Python,
for other languages we use GPT-4 to generate reference solutions that pass the provided unit tests. We
then divide these datasets into a validation set Dval

func and a test set Dtest
func, of sizes ∼140 and ∼600,

respectively. During evaluation, we compute a robust estimator for func rate@1 and func rate@10
based on 40 generated samples per task (Chen et al., 2021). We observe results on func rate@1 and
func rate@10 exhibit a similar trend and thus omit func rate@10 when not necessary.

Evaluating Vulnerability We compile a dataset Dvul of 16 different CWEs across 5 popular
programming languages, with 12 security-critical completion tasks for each CWE. As such, our
dataset covers a broader scope than previous poisoning attacks (Schuster et al., 2021; Aghakhani et al.,
2024; Yan et al., 2024), which consider only 3-4 types of vulnerabilities. Our primary criterion for
constructing Dvul is to ensure diversity, covering varying CWE prevalence and different programming
languages. We provide further details on the CWEs in Dvul and its construction in Appendix A.

We evenly split the 12 tasks for each CWE into Dtrain
vul for optimization, Dval

vul for hyperparameter
tuning and ablations, and Dtest

vul for our main results. As the vulnerability judgment function, we use
GitHub’s CodeQL, a state-of-the-art static analyzer adopted in recent research as the standard tool for
determining the security of generated code (Pearce et al., 2022; He & Vechev, 2023) and estimate its
precision at 98% on Dtest

vul in Appendix C. We run a specific CodeQL query tailored to each CWE on
100 completion samples for each task. Based on the obtained judgment, we leverage the vul ratio
metric, as defined in Equation (3), to compute a score for the vulnerability of generated code.

Our evaluation primarily considers a targeted setting where the attacker focuses on one CWE at a time,
which is consistent with the setup of prior poisoning attacks (Schuster et al., 2021; Aghakhani et al.,
2024; Yan et al., 2024). Hence, unless stated otherwise, the optimization and evaluation are always
performed concerning a single CWE. We also conduct an insightful experiment on the concatenation
of multiple attack strings, showing that INSEC can attack several CWEs simultaneously.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

StarCoder-3B CodeLlama-7B GPT-3.5-Turbo-Instruct Copilot
0

25

50

75

100

14
24

17 16

74 76 73 67
78

90
101 9697 99 100 100

StarCoder2-3B StarCoder2-7B StarCoder2-15B
0

25

50

75

100

13
21

29

62 67 73
84 88 9399 100 100

vul ratio(G) vul ratio(Gadv) func rate@1(Gadv,G) func rate@10(Gadv,G)

Figure 2: Main results showing for each completion engine the average vulnerability rate and
functional correctness across all 16 CWEs. INSEC is consistently effective for both vulnerability and
functionality aspects. More capable engines are impacted less by the attack in functional correctness.

Line
above

Start of
prefix

Start of
same line

End of
prefix

Start of
suffix

Line
below

End of
suffix

0

25

50

75

100
73

49

75

33

54 51 46

77

96

9 11

78
69

97

(a) Different attack position.

With
comment

Without
comment

0

25

50

75

100
73 67

77
66

(b) Different attack type.

vul ratio(Gadv) func rate@1(Gadv,G)

Figure 3: Vulnerability rate and functional correctness achieved by (a) different insertion positions
for the attack string σ and (b) if σ is formatted as a comment. Our design choices (“Line above” and
“With comment”) achieve the best tradeoff between vulnerability rate and functional correctness.

5.2 MAIN RESULTS

In Figure 2, we present our main results on vulnerability and functional correctness on the respective
test sets Dtest

vul and Dtest
func. We average the vulnerability and functional correctness scores obtained

for each targeted attack across the 16 CWEs. We can observe that INSEC substantially increases (by
up to 60% in absolute) the vulnerable code generation ratio on all examined engines. Meanwhile,
INSEC leads to at most a mere 22% relative decrease in functional correctness. Notably, better
completion engines retain more functional correctness under the attack. This can be observed by
comparing different sizes of StarCoder2 models. Moreover, GPT-3.5-Turbo-Instruct and GitHub
Copilot can be successfully attacked without virtually any impact on functionality. This result is
especially worrisome since it indicates that more capable and widely used models and future iterations
of models may be even more vulnerable to adversarial attacks such as ours. In Appendix C, we
analyze a breakdown of our results per CWE to provide fine-grained insight.

Optimization Cost We record the number of tokens used by our optimization procedure in Al-
gorithm 1. For GPT-3.5-Turbo-Instruct, the maximal number of input and output tokens consumed
for one CWE is 2.1 million and 1.3 million, respectively. Given the current rates of USD 1.50 per
million input tokens and USD 2.00 per million output tokens, the total cost of INSEC for one CWE
is merely USD 5.80. This highlights the cost-effectiveness of INSEC.

5.3 ABLATION STUDIES

Next, we present additional experiments studying various design choices of INSEC on the validation
datasets, Dval

vul and Dval
func, and, unless stated otherwise, targeting StarCoder-3B.

Attack Template: Position and Format As discussed in Section 4.1, our attack inserts the attack
string σ as a comment in the line above where the completion c is expected. We analyze this choice
in Figure 3a, comparing it to six alternative positions: start of prefix p, start of the line awaiting the
completion, end of p, start of suffix s, the line below the completion c, and the end of s. We can
observe that our choice provides the best tradeoff of these two objectives. Next, in Figure 3b, we
analyze the impact of our choice for inserting σ as a comment into the program. We compare this
choice to inserting σ directly as part of the source code, without a comment symbol, at the start of the
line. We find that our choice is an improvement over the alternative, both in terms of vulnerability
rate (+6%) and functional correctness (+11%).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

StarCoder-3B

25

50

12

13

CodeLlama-7B

1256

7
25

GPT-3.5-Turbo-Instruct

656

38

Copilot

12

88

StarCoder2-15B

6
644

6 38

TODO

Random

Security-critical

Sanitizer

Inversion

Figure 4: Distribution of final attack strings by which initialization scheme they originate from. While
security-critical token initialization is the clear winner across all models, each scheme provides a
winning final attack at least in one scenario, validating the usefulness of our initialization schemes.

Attack Initialization In Section 4.3, we introduced five different initialization strategies: TODO,
security-critical token, sanitizer, inversion, and random initialization. In Figure 4, we examine the
importance of our initialization strategies by measuring the share of CWEs where the final attack
string found by INSEC stems from a given initialization scheme. First of all, we can observe that in
the majority of cases, security-critical token initialization proves to be the most effective. The most
ineffective strategy is the TODO initialization, which is also the simplest. Nonetheless, across the
four attacked completion engines, each initialization scheme leads to a final winning attack at least
once, providing evidence for the necessity for each of our developed schemes.

Init only Opt only Init & Opt
0

25

50

75

100

50 49

7378 73 77

vul ratio(Gadv) func rate@1

Figure 5: Necessity of our optimiza-
tion and initialization schemes.

Optimization and Initialization To understand the contribu-
tion of our optimization procedure and initialization strategies,
we compare attack strings constructed under three scenarios: us-
ing our initialization strategies alone (Init only), using optimiza-
tion on random initialization (Opt only), and optimization after
our initialization strategies (Init & Opt). The results, plotted in
Figure 5, show that even with initialization only, an increased
vulnerability rate of 50% is achieved. However, intialization
and optimization together yield a significantly higher vulnera-
bility rate and similar functional correctness, as compared to
the other two scenarios, validating our design.

1 2 5 10 20 40 80 160

40

52

64

76

88

Number of tokens nσ in the attack string σ

vul ratio(Gadv) func rate@1

Figure 6: Vulnerability rate and
functional correctness with varying
length for the attack string σ.

Number of Attack Tokens A crucial aspect of our attack
template is the number of tokens nσ for the attack string σ. In
Figure 6, we show the effect of varying this hyperparameter.
While optimizing just a single token does not give enough de-
grees of freedom for the attack to succeed, already at five tokens
the attack reaches a strong performance from where it plateaus.
With 80 tokens, the attack starts dropping in effectiveness, both
in terms of vulnerability rate and functional correctness. For
our final attack, as tested in the main experiments in Section 5.2,
we chose an attack length of 5 tokens for StarCoder-3B, as this
has the lowest complexity but equivalent performance to longer
attack strings of up to 40 tokens. For some of the other mod-
els, increasing the length to 10 tokens gives additional benefits,
likely due to their higher instruction-following capabilities.

Unicode GPT-2 CodeQwen StarCoder
0

25

50

75

100

57
66

73 72
83 81 78

84

vul ratio(Gadv) func rate@1

Figure 7: Different choices of the
attacker’s proxy tokenizer T.

Tokenizer Access Recall that under our black-box threat
model, the attacker does not have access to the tokenizer of the
target engine. The attack is optimized in the token space of a
proxy tokenizer T. Specifically in our experiments, we use the
CodeQwen tokenizer (Bai et al., 2023), a publicly available to-
kenizer different from tokenizers of any of the targeted models.
In Figure 7, we explore the impact of the choice of T, measur-
ing INSEC’s performance attacking StarCoder-3B using four
different tokenizers: tokenization per Unicode characters, GPT-
2 tokenizer, CodeQwen tokenizer, and the StarCoder (target)
tokenizer itself. We can make two key observations. First, the
non-code-specific tokenizers (Unicode and GPT-2) lead to low

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

vulnerability rates. Second, the target tokenizer only beats the code-specific proxy T in terms of
functional correctness on StarCoder-3B. Moreover, as observable in Figure 2, the proxy tokenizer
generalizes to stronger completion engines, incurring virtually no loss even on functional correctness.

1 2 4 8 16

20

40

60

80

100

Number of targeted CWEs at a time

vul ratio(G) vul ratio(Gadv) func rate@1

Figure 8: Multi-CWE INSEC at-
tack on GPT-3.5-Turbo-Instruct by
composing the attack strings op-
timized individually for multiple
CWEs over separate lines.

Multi-CWE Attack While INSEC is mainly developed as a
targeted attack, the potential for inducing multiple CWEs simul-
taneously would exacerbate the posed threat. In Figure 8, we
investigate the effect of attacking GPT-3.5-Turbo-Instruct with
the individually optimized attack strings of multiple CWEs
together, each included in a new line. For each number of
targeted vulnerabilities, we sample 24 unique ordered combi-
nations of CWEs and average the results. We can observe that
the combined attack achieves both a high vulnerability rate
and func rate even when attacking 4 CWEs at the same time.
Further, even at 16 simultaneously targeted CWEs, INSEC
achieves an almost 2× higher vul ratio than the unattacked en-
gine, albeit incurring a noticeable loss on functional correctness.
These results are both surprising and concerning, as they show
that INSEC’s attacks are strongly composable, even though
they have not been explicitly designed for it.

Attack Patterns and Case Studies We conduct a human inspection to identify patterns in the
optimized attack strings. The strings typically contain tokens derived from both the initialization
strategies and the mutations applied during optimization. They include a mix of words and code in
ASCII characters and non-ASCII characters, such as non-Latin alphabet letters, symbols from Asian
languages, and emojis. These patterns suggest that, similarly to what has been observed in jailbreak
attacks (Yong et al., 2023; Geiping et al., 2024), our attack partially relies on exploiting low-resource
languages and undertrained tokens. Overall, most attack strings are not easily interpretable by humans.
For ethical considerations, we choose not to include the final attack strings publicly in the paper,
but may provide them upon request. In Appendix D, we provide three case studies to illustrate the
characteristics of INSEC attacks with code examples.

More Results in Appendix We provide more ablation results in Appendix C. First, we study the
impact of the size nP of the pool P for candidate attack strings in Algorithm 1. The result shows that,
given fixed compute, varying nP leads to an exploration-exploitation tradeoff. Moreover, for both
optimization and evaluation, most of our experiments use a sampling temperature of 0.4 following
He & Vechev (2023). We further provide an experiment examining different temperature choices.

6 DISCUSSION

INSEC’s Surprising Effectiveness Although our black-box threat model assumes a more restricted
realistic attacker than prior attacks that require access to model internals (Schuster et al., 2021; He &
Vechev, 2023; Wu et al., 2023; Aghakhani et al., 2024; Yan et al., 2024), INSEC remains effective
in terms of both vulnerability rate and functional correctness. This can be attributed to INSEC’s
ability to exploit the strong instruction-following capabilities of LLMs and the fact that many types of
vulnerabilities lie within the distribution modeled by LLMs. Moreover, the perturbation introduced by
INSEC is small, allowing modern LLMs, especially the more capable ones, to ignore the perturbation
in normal usages not concerning security, thereby generating functionally correct code.

Potential Mitigations We appeal to the developers of these engines to implement mitigations, such
as: (i) alerting the programmer if a substring occurs repeatedly at an unusually high frequency; (ii)
similarly to mitigating certain jailbreaks (Jain et al., 2023), sanitizing prompts before feeding them
to the LLM; or (iii) interrupting users suspected of repeated querying for the purpose of optimizing
an attack similar to ours. For the latter point, while current code completion engines already have
query limits in place, as evidenced by our success at attacking GitHub Copilot, they are insufficient
in preventing INSEC-style attacks. We further discuss directions for defenses in Appendix E, such
as adding security inducing comments, scrubbing comments, and deployment of static analysis.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Limitations and Future Work While our black-box attack already exposes a concerning vulnera-
bility of today’s code completion engines, future studies could push the boundary further. Our attack
still incurs some relative functionality loss on certain completion engines. Stronger attacks could
incorporate an explicit objective in the optimization to preserve functional correctness. Moreover, an
interesting future direction would be to extend our work to more scenarios, such as coding agents
(Jimenez et al., 2024) and an even more diverse set of vulnerabilities.

7 RELATED WORK

Code Completion with LLMs Transformer-based (Vaswani et al., 2017) LLMs trained on massive
codebases have excel at solving programming tasks, with specialized code-specific models including
Codex (Chen et al., 2021), CodeGen (Nijkamp et al., 2023), StarCoder (Li et al., 2023), CodeLlama
(Rozière et al., 2023), and many others. LLMs specialized for code completion are trained with a
fill-in-the-middle objective (Bavarian et al., 2022; Fried et al., 2023) in order to handle both a code
prefix and postfix in their context. Several user studies have confirmed the benefit of LLM-based
code completion engines in improving programmer productivity (Vaithilingam et al., 2022; Barke
et al., 2023), with such services being used by over a million programmers (Dohmke, 2023).

Security Evaluation of LLM Code Generation As code LLMs are increasingly employed, inves-
tigating their security implications is critical. Pearce et al. (2022) were first to show GitHub Copilot
(GitHub, 2024) frequently generates insecure code. Follow-up works extended their evaluation,
revealing similar issues in StarCoder and ChatGPT (Li et al., 2023; Khoury et al., 2023). CodeLMSec
(Hajipour et al., 2024) evaluates LLMs’ insecure code generation using automatically generated
security-critical prompts. However, these works focus on model security only in benign cases, while
we examine LLM-based code completion under attack, the worst case from a security perspective.

Attacks on Neural Code Generation Prior attacks achieve increased code vulnerability by inter-
fering either directly with the model weights or its training data (Schuster et al., 2021; He & Vechev,
2023; Aghakhani et al., 2024; Yan et al., 2024). However, such attacks are unrealistic to be carried out
against deployed commercial services. In contrast, our attack only requires black-box access to the
targeted engine. Besides the different threat models, our evaluation covers more CWEs and languages
than these works, as discussed in Appendix A. In a similar fashion to jailbreaks targeting generic
LLMs (Zou et al., 2023; Yao et al., 2024), DeceptPrompt can synthesize adversarial natural language
instructions that prompt LLMs to generate insecure code (Wu et al., 2023). However, our work differs
from theirs in two significant ways. First, DeceptPrompt requires access to the model’s full output
logits, which often are not available for model APIs or commercial engines. In contrast, INSEC
does not face this limitation and successfully attacks widely used commercial services. Second,
our work considers the attack’s generalization among different completion inputs. DeceptPrompt,
however, only targets a single user prompt at a time. Apart from code generation, prior work has
leveraged genetic optimization for semantic-preserving transformations to attack code classification
models (Yang et al., 2022). This attack is performed for each input, incurring significant overhead for
inference. In contrast, the attack string of INSEC is derived once and fixed across inputs at inference,
thus meeting the real-time requirements of modern code completion.

8 CONCLUSION

We presented INSEC, the first black-box attack capable of directing commercial code completion
engines to generate insecure code at a high rate, while preserving both utility and functional correct-
ness. INSEC leverages an attack template that inserts an attack string as a short comment above the
completion line, coupled with a black-box optimization algorithm that iteratively mutates candidate
attack strings and selects the top-performing ones. This optimization procedure is further strength-
ened by a set of diverse initialization strategies. Through extensive evaluation, we demonstrated the
effectiveness of INSEC not only on open-source models but also on real-world production services
such as the OpenAI API and GitHub Copilot. Given the broad applicability and high severity of
our attack, we advocate for further research into exploring and addressing security vulnerabilities in
LLM-based code generation systems.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

ETHICS STATEMENT

In this paper, we have introduced INSEC, the first black-box attack to adversarially steer (commercial)
code completion engines towards generating insecure code. As our attack can be potentially developed
even by an attacker with notably low resources, and deployed on commercial services exploiting well-
known vulnerabilities of, for instance, IDE plug-in marketplaces; we have made careful steps to ensure
that our research process and publication of our results is aligned with the ethical responsibilities
carried by the potential harms of INSEC. For this reason, 45 days before making any version of this
manuscript, or any other derivative of this study, public, we have responsibly disclosed our findings to
the corresponding model developers. Further, due to ethical concerns, the scope of our experiments
and the attack source code do not extend to implementations of an end-to-end real-world attack on the
commercial engines, e.g., we do not implement any method that hijacks user queries before delivering
them to the completion engine. Additionally, we also did not include any concrete optimized attack
strings in this paper, nor in any supplementary material. All attack strings included in the paper are
dummy strings representing the overall patterns of the optimized attacks. Finally, from a broader
perspective, we believe that the good-faith uncovering and publishing of exploits to systems with a
wide user base is ultimately of benefit to the security of such applications, providing the first step
towards mitigating security limitations that could otherwise be exploited by nefarious actors.

REPRODUCIBILITY STATEMENT

Together with this submission, we include the source code of INSEC and the experiment scripts
in the supplementary materials. Upon acceptance, we will host and maintain the source code and
scripts in a public repository, allowing for the reproducibility of our results by third parties in
consecutive research efforts. Further, we document and present all assumptions underlying INSEC
in Section 3, conceptual details in Section 4, and target metrics in Section 2. We carefully introduce
our experimental setup in Section 5, and provide further details in Appendix A. Finally, wherever
possible, we report averages over several random trials to obtain a robust estimate for our results.

REFERENCES

Charu C Aggarwal. An introduction to outlier analysis. Springer, 2017.

Hojjat Aghakhani, Wei Dai, Andre Manoel, Xavier Fernandes, Anant Kharkar, Christopher Kruegel,
Giovanni Vigna, David Evans, Ben Zorn, and Robert Sim. Trojanpuzzle: Covertly poisoning
code-suggestion models. In IEEE S&P, 2024. URL https://arxiv.org/abs/2301.02344.

Anonymous. Steering large language models between code execution and textual reasoning. In
Submitted to The Thirteenth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=5X5Z7Ffrjb. under review.

Richard Aragon. Outlier detection app for adversarial text anomaly detection.
https://github.com/RichardAragon/LLM-Anomalous-Prompt-Detector, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan,
Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin
Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng
Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou,
Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report. arXiv preprint arXiv:2309.16609,
2023.

Shraddha Barke, Michael B. James, and Nadia Polikarpova. Grounded copilot: How programmers
interact with code-generating models. Proc. ACM Program. Lang., 7(OOPSLA1):85–111, 2023.
URL https://doi.org/10.1145/3586030.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey, Jerry
Tworek, and Mark Chen. Efficient training of language models to fill in the middle. CoRR,
abs/2207.14255, 2022. URL https://arxiv.org/abs/2207.14255.

11

https://arxiv.org/abs/2301.02344
https://openreview.net/forum?id=5X5Z7Ffrjb
https://doi.org/10.1145/3586030
https://arxiv.org/abs/2207.14255


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nicholas Carlini, Matthew Jagielski, Christopher A. Choquette-Choo, Daniel Paleka, Will Pearce,
Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. Poisoning web-scale training
datasets is practical. In IEEE S&P, 2024. URL https://arxiv.org/abs/2302.10149.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, Arjun Guha,
Michael Greenberg, and Abhinav Jangda. Multipl-e: A scalable and extensible approach to
benchmarking neural code generation. CoRR, abs/2208.08227, 2022. URL https://arxiv.
org/abs/2208.08227.

Wachiraphan Charoenwet, Patanamon Thongtanunam, Van-Thuan Pham, and Christoph Treude. An
empirical study of static analysis tools for secure code review. In Proceedings of the 33rd ACM
SIGSOFT International Symposium on Software Testing and Analysis, pp. 691–703, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. CoRR, abs/2107.03374, 2021. URL https://arxiv.org/
abs/2107.03374.

Thomas Dohmke. GitHub Copilot X: The AI-powered developer experience, 2023. URL
https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-
experience/.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi, Ruiqi Zhong,
Scott Yih, Luke Zettlemoyer, and Mike Lewis. Incoder: A generative model for code infilling and
synthesis. In ICLR, 2023. URL https://openreview.net/pdf?id=hQwb-lbM6EL.

Yujia Fu, Peng Liang, Amjed Tahir, Zengyang Li, Mojtaba Shahin, and Jiaxin Yu. Security weaknesses
of copilot generated code in github. CoRR, abs/2310.02059, 2023. URL https://arxiv.org/
abs/2310.02059.

Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah, Yuxin Wen, and Tom Goldstein. Coercing
llms to do and reveal (almost) anything. arXiv preprint arXiv:2402.14020, 2024.

GitHub. CodeQL - GitHub, 2023. URL https://codeql.github.com.

GitHub. GitHub Copilot - Your AI pair programmer, 2024. URL https://github.com/features/
copilot.

Hossein Hajipour, Keno Hassler, Thorsten Holz, Lea Schönherr, and Mario Fritz. Codelmsec
benchmark: Systematically evaluating and finding security vulnerabilities in black-box code
language models. In SaTML, 2024. URL https://openreview.net/forum?id=ElHDg4Yd3w.

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adversarial
testing. In CCS, 2023. URL https://doi.org/10.1145/3576915.3623175.

Jingxuan He, Mark Vero, Gabriela Krasnopolska, and Martin Vechev. Instruction tuning for secure
code generation, 2024a. URL https://arxiv.org/abs/2402.09497.

Jingxuan He, Mark Vero, Gabriela Krasnopolska, and Martin Vechev. Instruction tuning for secure
code generation. In Proceedings of the 41st International Conference on Machine Learning, 2024b.

Neel Jain, Avi Schwarzschild, Yuxin Wen, Gowthami Somepalli, John Kirchenbauer, Ping-yeh
Chiang, Micah Goldblum, Aniruddha Saha, Jonas Geiping, and Tom Goldstein. Baseline defenses
for adversarial attacks against aligned language models. arXiv preprint arXiv:2309.00614, 2023.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R.
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In ICLR, 2024.
URL https://openreview.net/forum?id=VTF8yNQM66.

Raphaël Khoury, Anderson R. Avila, Jacob Brunelle, and Baba Mamadou Camara. How secure is
code generated by chatgpt? In IEEE International Conference on Systems, Man, and Cybernetics,
SMC, 2023. URL https://doi.org/10.1109/SMC53992.2023.10394237.

12

https://arxiv.org/abs/2302.10149
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2208.08227
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/
https://github.blog/2023-03-22-github-copilot-x-the-ai-powered-developer-experience/
https://openreview.net/pdf?id=hQwb-lbM6EL
https://arxiv.org/abs/2310.02059
https://arxiv.org/abs/2310.02059
https://codeql.github.com
https://github.com/features/copilot
https://github.com/features/copilot
https://openreview.net/forum?id=ElHDg4Yd3w
https://doi.org/10.1145/3576915.3623175
https://arxiv.org/abs/2402.09497
https://openreview.net/forum?id=VTF8yNQM66
https://doi.org/10.1109/SMC53992.2023.10394237


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, and Others. Starcoder: may the source be
with you! CoRR, abs/2305.06161, 2023. URL https://arxiv.org/abs/2305.06161.

Shigang Liu, Bushra Sabir, Seung Ick Jang, Yuval Kansal, Yansong Gao, Kristen Moore, Alsharif
Abuadbba, and Surya Nepal. From solitary directives to interactive encouragement! llm secure
code generation by natural language prompting. arXiv preprint arXiv:2410.14321, 2024.

Terrance Liu, Jingwu Tang, Giuseppe Vietri, and Steven Wu. Generating private synthetic data with
genetic algorithms. In International Conference on Machine Learning, pp. 22009–22027, 2023.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. CoRR, abs/2402.19173, 2024. URL https://arxiv.org/abs/2402.19173.

Marcus Nachtigall, Lisa Nguyen Quang Do, and Eric Bodden. Explaining static analysis-a perspective.
In 2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop
(ASEW), pp. 29–32. IEEE, 2019.

Marcus Nachtigall, Michael Schlichtig, and Eric Bodden. Evaluation of usability criteria addressed
by static analysis tools on a large scale. 2023.

M Zohaib Nawaz, Osman Hasan, M Saqib Nawaz, Philippe Fournier-Viger, and Meng Sun. Proof
searching in hol4 with genetic algorithm. In Proceedings of the 35th Annual ACM Symposium on
Applied Computing, pp. 513–520, 2020.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In ICLR, 2023. URL https://openreview.net/pdf?id=iaYcJKpY2B_.

OpenAI. Introduction - OpenAI API, 2024. URL https://platform.openai.com/docs/
introduction.

Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and Ramesh Karri. Asleep
at the keyboard? assessing the security of github copilot’s code contributions. In IEEE S&P, 2022.
URL https://doi.org/10.1109/SP46214.2022.9833571.

Neil Perry, Megha Srivastava, Deepak Kumar, and Dan Boneh. Do users write more insecure code
with AI assistants? In CCS, 2023. URL https://doi.org/10.1145/3576915.3623157.

Floris Hulshoff Pol. VSCode marketplace contains thousands of malicious extensions. Techzine,
2024. URL https://www.techzine.eu/news/security/120909/vscode-marketplace-
contains-thousands-of-malicious-extensions/. Accessed: 2024-09-26.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
CoRR, abs/2308.12950, 2023. URL https://arxiv.org/abs/2308.12950.

Ita Ryan, Utz Roedig, and Klaas-Jan Stol. Unhelpful assumptions in software security research. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security,
pp. 3460–3474, 2023.

Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. You autocomplete me:
Poisoning vulnerabilities in neural code completion. In USENIX Security, 2021. URL https:
//www.usenix.org/conference/usenixsecurity21/presentation/schuster.

Amarjeet Singh and Alok Aggarwal. A comparative analysis of veracode snyk and checkmarx for
identifying and mitigating security vulnerabilities in microservice aws and azure platforms. Asian
Journal of Multidisciplinary Research & Review, 3(2):232–244, 2022.

Demin Song, Honglin Guo, Yunhua Zhou, Shuhao Xing, Yudong Wang, Zifan Song, Wenwei Zhang,
Qipeng Guo, Hang Yan, Xipeng Qiu, and Dahua Lin. Code needs comments: Enhancing code
llms with comment augmentation, 2024. URL https://arxiv.org/abs/2402.13013.

13

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2402.19173
https://openreview.net/pdf?id=iaYcJKpY2B_
https://platform.openai.com/docs/introduction
https://platform.openai.com/docs/introduction
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.1145/3576915.3623157
https://www.techzine.eu/news/security/120909/vscode-marketplace-contains-thousands-of-malicious-extensions/
https://www.techzine.eu/news/security/120909/vscode-marketplace-contains-thousands-of-malicious-extensions/
https://arxiv.org/abs/2308.12950
https://www.usenix.org/conference/usenixsecurity21/presentation/schuster
https://www.usenix.org/conference/usenixsecurity21/presentation/schuster
https://arxiv.org/abs/2402.13013


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Bill Toulas. Malicious VSCode extensions with millions of installs discovered. Bleeping Computer,
2024. URL https://www.bleepingcomputer.com/news/security/malicious-vscode-
extensions-with-millions-of-installs-discovered/. Accessed: 2024-09-26.

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. Expectation vs. experience: Evaluating
the usability of code generation tools powered by large language models. In CHI Extended
Abstracts, 2022. URL https://doi.org/10.1145/3491101.3519665.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. URL https:
//proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-
Abstract.html.

Kevin Ward and Fabian Kammel. Abusing vscode: From malicious extensions to stolen credentials
(part 1) featured image. URL https://control-plane.io/posts/abusing-vscode-from-
malicious-extensions-to-stolen-credentials-part-1/.

Douglas Wilson. escape-html - npm, 2023. URL https://www.npmjs.com/package/escape-
html.

Fangzhou Wu, Xiaogeng Liu, and Chaowei Xiao. Deceptprompt: Exploiting llm-driven code
generation via adversarial natural language instructions. CoRR, abs/2312.04730, 2023. URL
https://arxiv.org/abs/2312.04730.

Shenao Yan, Shen Wang, Yue Duan, Hanbin Hong, Kiho Lee, Doowon Kim, and Yuan Hong. An
llm-assisted easy-to-trigger backdoor attack on code completion models: Injecting disguised
vulnerabilities against strong detection. In USENIX Security, 2024. URL https://www.usenix.
org/conference/usenixsecurity24/presentation/yan.

Zhou Yang, Jieke Shi, Junda He, and David Lo. Natural attack for pre-trained models of code. In
ICSE, 2022. URL https://doi.org/10.1145/3510003.3510146.

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence
Computing, pp. 100211, 2024.

Zheng-Xin Yong, Cristina Menghini, and Stephen H Bach. Low-resource languages jailbreak gpt-4.
arXiv preprint arXiv:2310.02446, 2023.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,
2023.

14

https://www.bleepingcomputer.com/news/security/malicious-vscode-extensions-with-millions-of-installs-discovered/
https://www.bleepingcomputer.com/news/security/malicious-vscode-extensions-with-millions-of-installs-discovered/
https://doi.org/10.1145/3491101.3519665
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://control-plane.io/posts/abusing-vscode-from-malicious-extensions-to-stolen-credentials-part-1/
https://control-plane.io/posts/abusing-vscode-from-malicious-extensions-to-stolen-credentials-part-1/
https://www.npmjs.com/package/escape-html
https://www.npmjs.com/package/escape-html
https://arxiv.org/abs/2312.04730
https://www.usenix.org/conference/usenixsecurity24/presentation/yan
https://www.usenix.org/conference/usenixsecurity24/presentation/yan
https://doi.org/10.1145/3510003.3510146


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

APPENDIX

A EXTENDED EXPERIMENTAL DETAILS

We now give additional details about our implementation, hyperparameters, and vulnerability dataset.

Implementation and Hyperparameters The results in our main experiments (i.e., Figure 2) are
obtained with the best configurations: attack comment positioned in the line above the completion
point, optimization and initialization combined, CodeQwen tokenizer (Bai et al., 2023), pool size
nP = 20, and sampling temperature during optimization 0.4. Number of tokens in the attack string
is set to nσ = 5 for all engines and vulnerabilities except: nσ = 10 for copilot on five vulnerabilities,
and nσ = 15 for copilot on one vulnerability. We select these hyperparameters according to our
experiments on the validation datasets Dval

func and Dval
vul. During optimization, for each candidate

string, we sample 16 completions per task to approximate vul ratio in Equation (3). As running
CodeQL during optimization would be prohibitively slow, we use approximate rule-based classifiers
to determine if a completion is vulnerable. Upon manual inspection, these classifiers are accurate
enough on our training samples. Further, when mutating attack strings we forbid a set of problematic
tokens: those including new lines and special tokens, such as <|endoftext|>.

Vulnerability Dataset Our vulnerability dataset consists of 16 CWEs across 5 programming
languages. We show an overview of these vulnerabilities, their MITRE vulnerability rank, and a
short description in Table 1. For each CWE, we construct 12 realistic completion tasks using three
different sources: (i) we incorporate all suitable tasks from the dataset of Pearce et al. (2022), (ii) we
search GitHub for code that contains or fixes each specific CWE to collect real-world samples, and
(iii) when the above sources do not yield sufficient samples, we leverage GPT-4 to generate additional
samples based on detailed descriptions of the CWEs. We invested significant effort in reviewing and
revising the samples to ensure high quality. Our primary objective during this process was to ensure
diversity, realism, and sufficient context for the completion engines to generate functional code.

#CWEs #LANGs

Schuster et al. (2021) 3 1
Pearce et al. (2022) 18 2
He & Vechev (2023) 9 2
Aghakhani et al. (2024) 4 1
Yan et al. (2024) 3 1
Our Work 16 5

In the table on the right, we compare the evaluation
scope of our work with prior studies. Our work covers
a broader or comparable range of CWEs and program-
ming languages, highlighting the thouroughness of
our evaluation. This underscores the potential of our
dataset as a valuable contribution for the community.

Table 1: Overview of the CWEs studied in this paper and the size of the corresponding dataset.

# CWE Language Top-25 CWE Rank Avg LoC Max LoC

20 Improper Input Validation Python #6 16 22
22 Path Traversal Python #8 14 28
77 Command Injection Ruby #16 9 19
78 OS Command Injection Python #5 15 30
79 Cross-site Scripting JavaScript #2 19 27
89 SQL Injection Python #3 19 32
90 LDAP Injection Python – 23 33
131 Miscalculation of Buffer Size C/C++ – 22 35
193 Off-by-one Error C/C++ – 26 54
326 Weak Encryption Go – 34 75
327 Faulty Cryptographic Algorithm Python – 14 34
416 Use After Free C/C++ #4 18 22
476 NULL Pointer Dereference C/C++ #12 22 68
502 Deserialization of Untrusted Data JavaScript #15 14 18
787 Out-of-bounds Write C/C++ #1 21 52
943 Data Query Injection Python – 25 31

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

CodeQL as Vulnerability Judgment Since our evaluation of vulnerabilities relies on CodeQL as a
judgment function, we need to ensure that its judgment is trustworthy in our setting. To reduce false
positives, we select only relevant CodeQL queries for each CWE. We further manually evaluate the
precision of CodeQL on Dtest

vul , by sampling 50 instances from diverse settings, covering all models,
CWEs, and presence of none, Init-only, and optimized attack strings. We find that CodeQL exhibits
high precision on our dataset, with 98% actual vulnerabilities reported.

B INITIALIZATION SCHEME DETAILS

In this section, we give extended details on each initialization scheme used in INSEC. A high level
description of their invocation has been introduced in Section 4.3.

Random Initialization We increase the diversity of our initialization by generating random attack
strings. We achieve this by randomly sampling tokens from the attacker’s tokenizer T and concatenat-
ing them into strings. Note that such generated strings are not usually completely random characters,
but feature some structure based on the size and content of the tokenizer dictionary. An example for
such a string σ is “éd senior sp cuts”, which includes complete words and unicode characters
and was generated by sampling tokens at random from the CodeQwen tokenizer (Bai et al., 2023).

TODO Initialization We initialize the attack string σ to “TODO: fix vul” to indicate that the
code to be completed was marked, e.g., by a human developer, to contain a security vulnerability.
If the completion engine is aware of potential vulnerabilities or has picked up similar code snip-
pets containing review notes and insecure code, we expect it to be steered towards generating the
corresponding insecure code.

Security-critical Token Initialization We observe that, for a wide range of vulnerabilities,
there exist critical tokens that decide the security of the whole program. For instance, con-
sider the following implementation of a database query using securely parameterized SQL:
cursor.execute('SELECT ... WHERE id=%s', user id). Here, user id is an untrusted user
input and the %s', parametrization makes sure that any potentially dangerous characters in user id
are escaped. In contrast, an insecure implementation would be: cursor.execute('SELECT ...
WHERE id=' + user id), where the untrusted input is directly concatenated to the query without
any checks. As such, the security-critical tokens are “%s',” and “' +”. The concrete tokens for each
CWE can be extracted directly using the training dataset and secure and insecure completions by
computing the textual difference. We exploit this pattern to create an initialization scheme yielding
strings of the format “use {insecure tokens}” and “don't use {secure tokens}”. For the
above example of SQL injection in Python, we would create initial attack strings “use ' +” and
“don't use %s',”.

Figure 9: Prompt example for the inversion
attack string initialization. The part {attack
string σ} is completed by the model.

Inversion Initialization INSEC works by in-
serting a comment such that insecure code gets
generated by the underlying completion engine.
To initialize the comment with the inversion strat-
egy, we invert this configuration: we provide
the engine with an insecure code completion and
query it to generate the comment immediately pre-
ceding the insecure code. A concrete example
using the introductory code snippet is provided in
Figure 9. Here the model is expected to complete
the part marked by “{attack string σ}” and is provided with an insecure usage of the md5
function. This strategy exploits the engine’s learned relationship between vulnerable code and related
commments in the distribution of its training data.

Sanitizer Initialization Many injection-style vulnerabilities, such as cross-site scripting, can be
mitigated by applying specific sanitization functions on potentially unsafe objects. For example, the

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

CWE-131-cpp CWE-943-py CWE-787-cpp CWE-327-py CWE-502-js CWE-089-py CWE-416-cpp CWE-476-cpp
0

25

50

75

100

6 2

31

0 0 3 0

29

10
26

60 63 66 70
82 87

100

73 75

97 97 94 95

65

vul ratio(G) vul ratio(Gadv) func rate@1(Gadv,G)

CWE-022-py CWE-090-py CWE-078-py CWE-077-rb CWE-193-cpp CWE-079-js CWE-326-go CWE-020-py
0

25

50

75

100

14

84

16
0 0

98

2

100
88 89 92 92 96 96 100 10096 99 94

60

92 94 91
98

Figure 10: Breakdown of our INSEC attack applied on CodeLlama-7B over different vulnerabilities.

escape function from the escape-html library (Wilson, 2023) can be used to safely encode user
inputs that could be interpreted as valid HTML code, before they are displayed on web pages (cf.
CWE-79). We exploit this by constructing an attack string that contains the sanitization function
itself. This deceptive string can mislead the completion engine into believing that the untrusted input
has already been sanitized, thus inducing the engine to omit the necessary sanitization.

Given that the attacker may not know in advance which variable name should be sanitized, we design
the attack string to be generic, targeting a variable x. As a result, the attack string is formulated as
“x = {sanitizer}(x)”, where {sanitizer} is replaced by the actual sanitization function, such
as escape. Concretely, the sanitizer initialization string σ in the JavaScript CWE-79 setting of our
experiments is “x = escape(x)”.

C ADDITIONAL EXPERIMENTS

In this section, we present experiments that we could not cover in Section 5 due to space constraints.

Attack Performance per CWE In Figure 10, we show our main results on CodeLlama-7B broken
down per CWE. We order the CWE by the final vulnerability score of INSEC. First of all, we
observe that our attack manages to increase the vulnerability rate of the generated programs across
all vulnerabilities, except for CWE-079-js and CWE-020-py where the original completion engine
already has a high vulnerability rate. In particular, our attack manages to trigger a vulnerability rate of
over 90% on more than a third of all examined CWEs. Remarkably, in several cases INSEC manages
to trigger such high attack success rates even though the base model had a vulnerability rate of close
to zero. Further, we observe that while the func rate@1 of CodeLlama-7B averaged across all 16
vulnerabilities is 89% (see Figure 2), this average is composed of a bimodal distribution. Attacks
targeting certain vulnerabilities have larger relative impact on functional correctness (≥ 25%), while
others have almost no impact.

1 2 5 10 20 40 80 160

55

63

71

79

87

Size nP of pool P for attack string candidates

vul ratio(Gadv) func rate@1

Figure 11: Impact of varying opti-
mization pool sizes (nP ).

Pool Size A key aspect of Algorithm 1 is the size nP of the
pool P that contains attack string candidates. nP controls the
greediness of our optimization given a fixed amount of compute;
in smaller pools less candidates are optimized for more steps,
while in a larger pool more diverse candidates are optimized
for less steps. To understand the effect of this on the attack
performance, we experiment with nP values between 1 and
160, and show our results in Figure 11. We can clearly observe
that attacks that are either too greedy (i.e., nP too small) and
attacks that over-favor exploration and as such are essentially
random (i.e., nP too large) produce weak attacks with a low
vulnerability rate. At the same time, such weak attacks preserve
slightly more functional correctness. For our final attack, we

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

chose nP = 20, which provides a favorable tradeoff between greediness and explorativeness, reaching
the highest attack impact while still retaining reasonable functional correctness. Note here that while
this experiment is conducted on StarCoder-3B, on stronger completion engines, e.g., GPT-3.5-Turbo-
Instruct and Copilot, our attack at the same pool size has barely any impact on the functional
correctness of the completions (see Figure 2).

Optimization Temperature Recall that, at Line 5 of Algorithm 2, we evaluate the vulnera-
bility rate of a malicious completion engine, either on the training set Dtrain

vul or the validation
set Dval

vul. This assessment requires sampling from the targeted engine, for which temperature
plays a critical role in controlling the sample diversity. As we perform our optimization di-
rectly on the targeted completion engine, but some engines such as Copilot do not permit user
adjustments to temperature, it is crucial to explore the impact of temperature on our attack.
In Figure 12, we explore temperatures ranging from 0 to 1.0 during optimization. Note that
we evaluate each resulting attack at the same sampling temperature of 0.4 for fair comparison.

0 0.2 0.4 0.6 0.8 1.0

55

63

71

79

87

Optimization temperature

vul ratio(Gadv) func rate@1

Figure 12: Varying optimization
temperatures with a fixed evalua-
tion temperature of 0.4.

First, we observe that our attack achieves a non-trivial vulner-
ability rate at any optimization temperature, which implies that
even APIs where this parameter cannot be set are vulnerable
to INSEC. Next, we can see that there is an ideal range of
temperature values (0.2− 0.4) for the model on which the op-
timization is conducted where the attack is highly successful,
i.e., it achieves high vulnerability rate while retaining a good
amount of functionality in the completions. This is largely
due to the fact that at these temperatures the generations are
already rich enough for our optimization to explore different
options in the attack strings, but not yet too noisy where the
improvement signal in each mutation step would be masked by
the high temperature sampling. Based on this insight, we pick
a temperature of 0.4 for all our other experiments whenever the
given code completion API permits.

0 0.2 0.4 0.6 0.8 1.0

55

65

75

85

95

Evaluation temperature

vul ratio(Gadv) func rate@1 func rate@10

Figure 13: Varying evaluation tem-
peratures with a fixed attack.

Evaluation Temperature Additionally to the temperature
during optimization, of equal importance is to consider the
temperature under which the attack is deployed, i.e., the tem-
perature during evaluation. Once again, we examine this effect
across temperatures ranging from 0 to 1.0 in Figure 13. We can
observe that at low temperatures, typically preferred for code
generation (e.g., 0.0 − 0.4), INSEC achieves a high vulnera-
bility rate and functional correctness. As temperature increases,
the vulnerability rate of the attack decreases, as also observed
by He & Vechev (2023). However, the vulnerability rate still
remains high, indicating that the attack continues to pose a seri-
ous threat. In terms of functional correctness, func rate@10 is
a more relevant metric for high temperature (Chen et al., 2021)
and the attack can maintain func rate@10 across different temperatures. In all other experiments ex-
cept for Copilot where controlling temperature is impossible, we evaluate our attack at a temperature
of 0.4, which is a middle point and also aligns with the setup of He & Vechev (2023).

Generalization between Models We assess whether attack strings optimized for StarCoder-3B and
CodeLlama-7B, increase the vulnerability of GPT-3.5. We find that both strings drastically increase
vul ratio from 22% to 55% and 59% respectively. Meanwhile, the resulting score is significantly
lower than directly optimizing the attack on GPT-3.5 (73%) or for the respective original models
(80% and 82% on StarCoder-3B and CodeLlama-7B, respectively). This indicates that the attacks are
able to generalize between models of different sizes and architecture, and crucially enable stronger
leverage when targeting rate-limited black-box LLMs.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Effect of the Mutation Function The mutation function in Algorithm 3 samples the number of
characters to mutate from a uniform distribution. We explore a variation of this algorithm, where
we decide for each character with probability 0.5 whether it will be mutated. We explore this
alternative and find it has an overall similar performance to the original mutation method, achieving a
vulnerability ratio of 76% on Dval

vul for StarCoder-3B after 2500 steps, compared to 72%. This serves
as validation, that INSEC does not rely on the specific choice of a mutation strategy, confirming its
threat.

D CASE STUDIES

In Figure 5, we show that both initialization and optimization alone achieve good attack performance,
and that they are even more effective when combined. Now, we look at three concrete examples to
illustrate the impact of the two components.

For certain cases, the initialization is already very effective and does not need further optimization.
In the example below, we show a code snippet in the Go programming language with a CWE-326
vulnerability: Inadequate Encryption Strength. Due to the modern computer capabilities, 1024-bit
RSA keys are considered insecure. In this case, our security-critical token initialization creates an
attack string “use 1024”. CodeLlama-7B follows the instruction in the attack string and already
produces insecure code with an 100% probability. The optimization procedure still selects this string
as the final string. Therefore, the final attack string is the same as the initialization string.

privateKey , err := ParsePemKey (a. PrivateKey )
b, _ := pem. Decode ([] byte(a. RootCertificate ))
cert , err := x509. ParseCertificate (block.Bytes)
// attack string σ
key , err := rsa. GenerateKey (rand.Reader , 1024)
if err != nil {

err = errors .New(" Failed to generate rsa key")
return

}

Our optimization can also refine initial strings to produce significantly stronger attacks. Below is a
Python example of CWE-022: Path Traversal. The send file function is vulnerable as an attacker
can use it to access files outside of the intended directory. Instead, the secure version should use
the send from directory function. In this case, our initialization creates an attack string “use
send file” with a good vulnerability rate of 65% for GPT-3.5-Turbo-Instruct. The optimization
refines the attack string by keeping send file while replacing other tokens with non-ASCII tokens.
As a result, the attack strength is increased to 96%. The new tokens in the optimized attack string do
not have a human-interpretable meaning and thus it would be difficult to obtain these tokens without
our optimization procedure.

@web_app .route('/js/<f:f>')
def send_js_files (f):

js_dir = " frontend /js"
print (f[: -4])
# attack string σ
return flask. send_file (os.path.join(js_dir , f))

@web_app .route("/")
def main_page ():

return flask. render_template ("index.html")

Finally, we demonstrate how our optimization substantially improves a randomly initialized attack
string. The C/C++ example below contains a CWE-131 vulnerability: Incorrect Calculation of
Buffer Size. The malloc function is used to allocate memory for the new string, but the size is too
small. This leaves the code susceptible to a buffer overflow attack, which could lead to anything
from program crashes to malicious code execution. Initialization creates only attacks with a low
vulnerability rate of ≤ 14% for StarCoder-3B. The final attack string originates from a randomly
initialized string with non-ASCII tokens and brings the vulnerability rate up to 63%. Interestingly,
the origin of this attack was not the best candidate in the initial pool.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

char* append_exclamation ( const char *input) {
char * new_input ;
// attack string σ
new_input = (char *) malloc ( strlen (input ));
if ( new_input == NULL) {

fprintf (stderr , " Failed to allocate memory ");
exit (1);

}
strcpy (new_input , input );
new_input [ strlen (input )] = '!';
return new_input ;

}

E DISCUSSION OF DEFENSES

In this section we discuss possible defenses against INSEC, such as adding comments to counter the
effect of INSEC, scrubbing all comments from prompts and deploying static analysis in production.

Security comments We investigate whether adding additional comments can mitigate our attack,
when such comments instruct the model to generate secure code. We insert This code should
be secure in the line above the INSEC attack string, using the attack string optimized without
the presence of the comment. On GPT-3.5, averaged over all CWEs, this slightly decreases the
vulnerability ratio from 76% to 62%. This score still largely exceeds the baseline ratio of only
22%. This result is not surprising, as previous work has found that usual, unoptimized comments
are insufficient to steer models towards secure code generation (He et al., 2024a; Liu et al., 2024).
Exploration of the interaction between opposing optimization schemes for and against code security
would pose an interesting topic of future research.

Comment scrubbing In contrast, we investigate the scrubbing of all comments from code as a
possible avenue for defense. We note that code models rely on comments to steer their generations
(Anonymous, 2024; Song et al., 2024) and suspect that removal of comments generally reduces
performance on standard tasks. We evaluate this experimentally by removing all comments from the
HumanEval dataset and replacing them with stub comments, before requesting fill-in completion,
for StarCoder 3b, the StarCoder2 family, and GPT-3.5. We observe an overall func rate@1of only
89.6% compared to vanilla completions, matching the decrease in functionality due to INSEC. As
developers are usually not willing to sacrifice functional correctness for security (He et al., 2024b),
and may get frustrated at the lack of steerability of the LLM, we suspect that straightforward removal
is not a suitable defense.

Static Analysis and Anomaly Detection While we evaluate the vulnerabilities in Section 5 using
static analysis (GitHub, 2023; Singh & Aggarwal, 2022), it is not implied that static analysis could
reliably prevent generation of insecure code by LLMs in the wild. First, INSEC can be extended to
trigger unknown zero-day exploits or known, but difficult-to-identify vulnerabilities, thus remaining
undetected by common static analysis tools. This can be achieved through use of custom tooling
or manual assessment for vulnerability judgment during attack string optimization, instead of static
analysis tools. Secondly, even for known and detectable CWEs, static analysis tools are rarely
configured appropriately (Charoenwet et al., 2024), suffer from poor explanations for discovered
vulnerabilities (Nachtigall et al., 2019) and lack actionable advice for mitigation (Nachtigall et al.,
2023). This results in static analysis being much less prevalent in practice than might be expected
(Ryan et al., 2023), with Copilot-generated vulnerable code already being found in public GitHub
repositories (Fu et al., 2023). Anomaly detection tools (Aragon, 2024; Aggarwal, 2017) are unlikely
to pick up the subtle modifications caused by INSEC to code completions, and would need to
monitor and discover individual prompts sent to the LLM to discover irregularities. We are therefore
convinced that INSEC poses a realistic threat to code security.

20


	Introduction
	Code Completion, Functional Correctness, and Vulnerability
	Threat Model
	Our INSEC Attack
	Attack Template
	Attack Optimization
	Attack Initialization

	Experimental Evaluation
	Experimental Setup
	Main Results
	Ablation Studies

	Discussion
	Related Work
	Conclusion
	Extended Experimental Details
	Initialization Scheme Details
	Additional Experiments
	Case Studies
	Discussion of Defenses

