

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BOOSTING SAFETY ALIGNMENT IN LLMs WITH RE- SPONSE SHORTCUTS

Anonymous authors

Paper under double-blind review

ABSTRACT

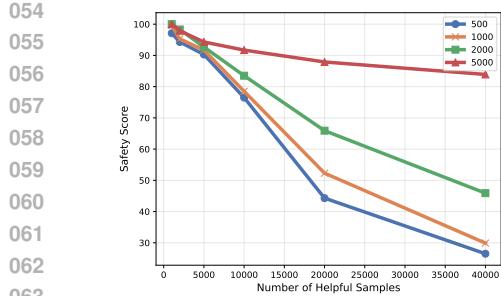
Despite the impressive general capabilities of LLMs like GPT and Llama, these models still require an alignment procedure to align their outputs with human preferences for helpful and safe responses. However, when users incorporate more helpfulness data to enhance model performance, the need for safety data often grows substantially due to the conflict between safety and helpfulness objectives in LLMs. This leads to significant additional costs in data collection and computation to ensure safety alignment. To address these challenges, we introduce a pre-defined shortcut with low-activated tokens on LLM weights, called response shortcuts, in the response part of safe training samples during the alignment stage. Response shortcuts enable LLMs to more effectively distinguish between helpful and safe scenarios, thereby significantly reducing the amount of safety data needed. Experiments show that response shortcuts achieve comparable safety performance with $20\times$ less safety samples in the alignment compared with models aligned under default settings, significantly reducing the resource cost during the data collection and training stage. Furthermore, response shortcuts also improve the model’s helpfulness after alignment by mitigating the safety-helpfulness conflict, demonstrating its effectiveness as a practical and cost-efficient technique for LLM alignment. Our work brings new solutions for LLM’s efficient alignment especially in resource-constrained scenarios.

1 INTRODUCTION

The development of Large Language Models (LLMs) has gained significant attention due to their remarkable capabilities in language understanding and generation (Touvron et al., 2023; OpenAI, 2023). However, LLMs are not without limitations. Unaligned LLMs struggle to follow human instructions and generate satisfying responses despite their powerful knowledge. Moreover, the advanced capabilities of LLMs can create vulnerabilities, as malicious users might exploit the model to generate harmful or illegal content.

Recently, various alignment methods have been proposed to enhance the ability of LLMs to follow human instructions and generate responses aligned with human values. These methods optimize LLMs using collected ground truth responses (Zhang et al., 2023b), model-generated outputs (Bai et al., 2022), and human feedback (Ouyang et al., 2022), with the goal of producing responses that are helpful, honest, and harmless (Wang et al., 2023b). For instance, developers can fine-tune LLMs using high-quality question–answer (QA) samples to enhance their instruction-following capabilities. To prevent over-fitting and promote diversity in generations, less favored responses are also incorporated through direct preference optimization (DPO) (Rafailov et al., 2023). These techniques enable LLMs to exhibit helpful and safe behaviors across various scenarios.

However, a fundamental dilemma exists in LLM alignment as shown in prior works (Zhang et al., 2024b; Bai et al., 2022): helpful responses and safe responses may conflict with each other in some cases. For example, a helpful LLM should respond to user’s request on “*How to make a box*” politely, e.g., “*Sure, I can...*”. In contrast, a safe LLM should politely refuse (like “*Sorry, I cannot...*”) to engage with unsafe queries, e.g., “*How to make a bomb*”. This conflict leads to a significant challenge: increasing the number of helpfulness samples to improve performance can compromise the model’s safety alignment unless safety data is also proportionally increased. As shown in Fig. 1, adding helpfulness samples alone, without additional safety examples, causes the model’s safety performance



064
065
066
067
068
069
070
071
072
073
Figure 1: Olmo-1B’s safety score on
AdvBench, evaluated after DPO training
using varying numbers of safe and helpful samples selected from HH-
RLHF. Each line represents a different
quantity of safe samples, while the x -
axis indicates the number of helpful
samples.

074 to deteriorate over time. This issue can significantly increase the alignment cost of models, as data
075 collection typically requires additional resources, and more data also needs a longer time for training.
076 This poses significant challenges for most resource-constrained companies or developers who aim to
077 build their own safe and useful LLMs.

078 To address these challenges, we first conduct empirical and theoretical analyses and identify the key
079 reason as the LLM’s overly similar representations safety and helpfulness data. It raises the lower
080 bound of alignment loss and undermines performance guarantees. Based on this finding, we insert
081 low-activation tokens as shortcuts in the responses, enabling LLMs to better distinguish between
082 safety and helpfulness modes, as illustrated in Fig. 2. We then fine-tune Olmo-1B, Mistral-7B,
083 Qwen2.5-7B, and 14B with instruction tuning (IT) and DPO. These models are a common choice for
084 resource-limited developers, who stand to benefit the most from our method. Evaluations show that
085 the trained models achieve **stronger safety performance with slightly better helpfulness** compared
086 to models trained with standard methods, even if our safety samples are **20 \times fewer**. Moreover, our
087 approach **reduces total training time by about 30%**. Overall, our analysis and solution provide a
088 promising direction for efficient alignment, particularly in resource-constrained scenarios.

089 We summarized the contributions of our work as follows,

- 090 • We provide a detailed empirical and theoretical analysis of the growing demand for safety
091 samples and identify the key reason: LLMs produce overly similar representations for safety
092 and helpfulness data, making them difficult to distinguish during training.
- 093 • Then we propose a novel method, called “Response Shortcut”, which incorporates shortcuts
094 in LLM responses to mitigate conflicts between the model’s safety and helpfulness objectives
095 during alignment.
- 096 • With **only 1000 safety samples (around 3% of vanilla needed)**, LLMs aligned with our
097 Response Shortcut can achieve a similar safety level to models aligned on the whole HH-
098 RLHF datasets with over 40,000 safety samples for both Olmo-1B, Mistral-7B, Qwen2.5-7B,
099 and Qwen2.5-14B, greatly reduced the resource need for the alignment.

101 2 RELATED WORK

104 2.1 LARGE LANGUAGE MODEL

105 Self-supervised language models have achieved great success on different zero-shot (Radford et al.,
106 2019) and few-shot tasks (Brown et al., 2020; Chowdhery et al., 2022; Kaplan et al., 2020; Chung
107 et al., 2022) these days with the scaling of the size of models and training data. Despite these

108 improvements, many new abilities are also found in LLMs (Dubey et al., 2024; OpenAI, 2023; Jiang
 109 et al., 2023), like in-context learning (Wei et al., 2022a; Dai et al., 2023), reasoning (Lampinen
 110 et al., 2022; Wei et al., 2022b). Furthermore, developers also propose the “instruction-tuning” (Peng
 111 et al., 2023; Zhang et al., 2023a) procedure to let LLM better follow user’s instructions and achieve
 112 better performance on many down-stream tasks, like translation (Li et al., 2024b), summarization
 113 (Fetahu et al., 2023), and others (Wang et al., 2023a; Peng et al., 2023). Although Ji et al. (2024)
 114 suggest assigning separate rewards for safety and helpfulness, their approach is costly since it requires
 115 additional reward models and is not applicable to instruction tuning or DPO.

116

117 2.2 PREFERENCE OPTIMIZATION

118

119 Although instruction-tuning can let LLMs give high-quality responses corresponding to users’ queries,
 120 LLMs cannot easily distinguish what is good or bad, leading to over-fitting and less diverse generations.
 121 To better align LLMs with human values, various approaches have been proposed, including
 122 reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022).
 123 These methods first optimize a neural network reward function with an alignment dataset and then
 124 fine-tune the LLMs to maximize the reward using reinforcement learning algorithms like Proximal
 125 Policy Optimization (PPO) (Schulman et al., 2017). To avoid the high computational cost of the
 126 above methods, researchers have been exploring simpler offline algorithms, like direct preference
 127 optimization (Rafailov et al., 2023), and others (Azar et al., 2024). This method converts the original
 128 reward function in RLHF and lets LLMs directly learn the policy model from the reference datasets.
 129 However, as shown in recent works (Wei et al., 2023; Liu et al., 2024), there exists a lot of conflicts,
 130 like safety and helpfulness, in the preference optimization, which adds difficulties and instabilities to
 LLM’s alignment procedure.

131

132 2.3 SHORTCUT LEARNING

133

134 Neural networks usually quickly converge on some specific simple patterns that show strong con-
 135 nections related to some goal, which is called shortcut learning (Hermann et al., 2024; Geirhos
 136 et al., 2020). These shortcuts sometimes are vulnerable in neural networks, as they may elicit many
 137 problems, like the backdoor attack (Zhang et al., 2024a; Saha et al., 2020), and others (Evtimov et al.,
 138 2021). However, some well-designed shortcuts can also be helpful to models like data protection
 (Huang et al., 2021; Li et al., 2024a) and others. Furthermore, Wang et al. (2024) also use some
 139 pre-defined shortcuts in LLMs’ system prompt to enhance LLMs’ safety, which achieves a similar
 140 purpose to our work. However, their shortcuts defined in the system prompt will sacrifice LLM’s
 141 performance on the benign scenario when querying with the safety system prompts. In our paper, we
 142 design some shortcuts in LLM’s response data to prevent the objectives of safety and helpfulness
 143 from conflicting with each other during the DPO alignment and to achieve a balance between the
 144 goals of safety and helpfulness.

145

146

147 3 ALIGNMENT WITH RESPONSE SHORTCUTS

148

149 3.1 PRELIMINARIES

150

151 To enhance LLMs’ ability to follow human instructions and reduce the harmfulness of their responses,
 152 developers typically collect a large number of high-quality prompts for instruction tuning. Besides
 153 that, developers often gather undesired responses and apply DPO and its variants for optimization
 154 to address the overfitting problem and improve the model’s diversity, which is equivalent to fitting
 155 with the reward of a reparameterized Bradley-Terry model. These two methods have been widely
 156 adopted due to their effectiveness and simplicity. Therefore, in this paper, we focus solely on these
 157 two methods. First, we provide a brief introduction to these two approaches.

158

159 Collecting Alignment Data. In the beginning, developers need to collect a series of query prompts x
 160 with the desired winning responses y_w , consistent with human preference, and rejected responses
 161 y_r , violating human preference, with certain templates for conversation. Then the alignment dataset
 is obtained, which can be depicted as $\mathcal{D} = \{(x^{(i)}, y_w^{(i)}, y_r^{(i)})_{i=1, \dots, N}\}$. In our paper, we choose the
 widely used HH-RLHF datasets (Bai et al., 2022) to build \mathcal{D} in most experiments.

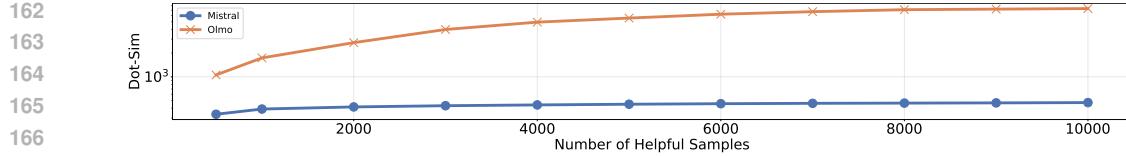


Figure 3: Average similarity score of the top-500 safe-helpful similarity set on Mistral-7B and Olmo-1B, with the increment of the number of helpfulness data for alignment.

Instruction Tuning. With the alignment dataset, developers can train LLMs with the collected question $x^{(i)}$ and the desired winning response $y_w^{(i)}$ to improve models’ instruction following ability with following loss,

$$\mathcal{L}_{\text{IT}}(\pi_\theta) = -\mathbb{E}_{(x^{(i)}, y_w^{(i)}) \in \mathcal{D}} \log \pi_\theta(y_w^{(i)} | x^{(i)}), \quad (1)$$

where π_θ is the output distribution of models being aligned.

Alignment with preferences. As instruction tuning only aligns LLMs with good behavior, LLMs cannot know what is the bad one, which may cause over-fitting and lead to low diverse responses. Due to this reason, many developers adopt DPO or its variants for models’ alignment as they can give LLMs different rewards on preferred or undesired responses with an equivalent reparameterized Bradley-Terry model. Take DPO as an example, the model is optimized by directly minimizing the following,

$$\mathcal{L}_{\text{DPO}}(\pi_\theta; \pi_{\text{ref}}) = -\mathbb{E}_{(x, y_w, y_r) \sim \mathcal{D}} \left[\log \sigma \left(\beta \log \frac{\pi_\theta(y_w | x)}{\pi_{\text{ref}}(y_w | x)} - \beta \log \frac{\pi_\theta(y_r | x)}{\pi_{\text{ref}}(y_r | x)} \right) \right], \quad (2)$$

where π_{ref} is the output distribution of the reference policy model for regularization, which is mostly the instruction-tuned model on the preference datasets with winning responses. π_θ is the model being aligned via DPO, called the policy model.

With the above methods, we can finally get the policy model π_θ after the preference optimization. However, as shown in Fig. 1, the policy model needs more harmful prompts and safe response pairs to ensure LLMs’ safety when adding more helpfulness data in alignment to achieve better helpfulness. To address this, we first analyze the LLM’s safety behavior changes during the training process and find that LLMs get confused between safe samples and helpful samples during training in the following paper. Then we manage to overcome such conflicts with LLM’s safety.

3.2 SAFETY AND HELPFULNESS PROMPT ARE TOO SIMILAR

Empirical Study on Prompt Similarity We explore the underlying reasons behind this trend to address the increased need for safety data with the growing amount of helpfulness data, as shown in Fig. 1. Inspired by the former works (He et al., 2024; Xie et al., 2024) on fine-tuning attacks, we calculate the hidden state of LLM’s final attention layer on the final prompt token of the training samples for the LLMs trained with whole HH-RLHF for 1 epoch. This is denoted as $h(x) = f_\theta(x_T | x_{<T})$, where f_θ represents the LLM, x represents the training prompt with T tokens, x_T denotes the prompt’s last token and $x_{<T}$ denotes the former tokens. Then we calculate the hidden states for the first 500 safe samples and $500 \sim 10,000$ helpfulness samples in HH-RLHF. Next, we collect the top-500 dot similarity scores between the selected 500 safety samples and the growing helpfulness dataset, denoted the top-500 safe-helpful similarity set as follows:

$$\mathcal{D}_{\text{sim}} = \text{Top}_{500} (\{\langle h(x_{\text{safe}}), h(x_{\text{help}}) \rangle | (x_{\text{help}}, y_{\text{help}}) \in \mathcal{D}_{\text{help}}; x_{\text{safe}} \in \mathcal{D}_{\text{safe}}\}) \quad (3)$$

Higher similarity scores indicate that the LLMs are more likely to treat the two samples as the same. Since the responses for safe and helpful samples conflict, pairs of safe and helpful samples with high similarity in \mathcal{D}_{sim} may confuse the LLMs during training, highlighting the need for additional safe samples to realign the model’s safety. We draw the changes of the average similarity score in \mathcal{D}_{sim} with respect to the increment of helpfulness data for both Olmo-1B and Mistral-7B are shown in Fig. 3. From the figure, it is evident that the average similarity increases with the number of helpfulness samples increasing, the similarity for Olmo and Mistral increased by more than 5 \times .

216 **Theoretical Perspective on Limitations Caused by Similarity** To further explore the consequences of the similarity, we assume that the conditional distribution of the response y 's feature
 217 $Y \in \mathbb{R}^d$ given the input x 's feature X follows a Gaussian distribution as follows:
 218

$$219 \quad 220 \quad Y_{safe} \sim \mathcal{N}(\mu_{safe}(X), \sigma^2 \mathbb{I}_d), \quad Y_{help} \sim \mathcal{N}(\mu_{help}(X), \sigma^2 \mathbb{I}_d), \quad (4)$$

221 where μ_{safe}, μ_{help} denote the regression mean for the Gaussian distribution if the input is the prompt
 222 in safety or helpfulness samples, $\sigma > 0$ is the variance and \mathbb{I} is the identity matrix. As Y_{safe} and
 223 Y_{help} are responses for harmful prompts and benign prompts, they are different. Therefore, μ_{safe}
 224 and μ_{help} 's difference can be bounded by a position constant Δ as follows,
 225

$$226 \quad 227 \quad \|\mu_{safe}(X) - \mu_{help}(X)\| \geq \Delta > 0. \quad (5)$$

228 If a learner fits the distribution through an LLM θ to achieve,
 229

$$230 \quad 231 \quad p_\theta(Y|X) = \mathcal{N}(m_\theta(X), \sigma^2 \mathbb{I}_d), \quad (6)$$

232 by minimizing the negative log-likelihood
 233

$$234 \quad 235 \quad \mathcal{L}(\theta) = -\mathbb{E}_{X \sim P(X)} [\mathbb{E}_{Y \sim P(Y|X)} \log p_\theta(Y|X)], \quad (7)$$

236 where $P(X) = \frac{1}{2}[P_{safe}(X) + P_{help}(X)]$ is the mixture distribution of all input features, and
 237 $P_{safe}(X), P_{help}(X)$ denote the distribution of input features related to safe prompts and helpful
 238 prompts separately. We choose the mixture rate equal to 0.5 because we treat the safety and
 239 helpfulness equally important. Then we have the following proposition on $\mathcal{L}(\theta)$ with respect to the
 240 distribution overlap of $P_{safe}(X)$ and $P_{help}(X)$ as follows,
 241

242 **Proposition 3.1.** *The overlap region for P_{safe} and P_{help} can be defined as follows,*

$$243 \quad 244 \quad \mathcal{A} := \{X : |\log \frac{P_{safe}(X)}{P_{help}(X)}| \leq 1\}.$$

245 For any $X \sim P(X)$ and the $Y \in \mathbb{R}^d$ is Y_{safe} or Y_{help} defined in Eq. (4) depends on X 's choice,
 246 and the negative log-likelihood for the LLM θ 's lower bound can be defined as follows,
 247

$$248 \quad 249 \quad \mathcal{L}(\theta) \geq \frac{d}{2} \log(2\pi e \sigma^2) + \frac{\eta}{2\sigma^2} (1 - J) \Delta^2, \quad (8)$$

250 where $\eta = \frac{1}{1+e} \left(1 - \frac{1}{1+e}\right)$, and $J = KL(P_{safe} \| P_{help}) + KL(P_{help} \| P_{safe})$.
 251

252 Proof can be found in Appendix 3.1. From the proposition, one can see that if the similarity between
 253 the features of safe prompts and helpful prompts is high, then J will be smaller and the lower bound
 254 of log likelihood will be higher. Therefore, the model cannot be well-aligned. Combining with the
 255 empirical findings on similarity, one can see that the compromised in safety of LLM is due to the
 256 increasing similarity between safety and helpfulness data.
 257

3.3 ADOPTING LOW-ACTIVATED TOKENS TO REDUCE SIMILARITY

258 From the above analysis, the compromised safety performance after alignment is attributed to more
 259 helpful samples that are indistinguishable from safe samples involved in the training phase and
 260 confuse LLMs as their desired responses are different. Therefore, the safety–helpfulness tradeoff may
 261 be mitigated if LLMs can better distinguish between safety and helpfulness scenarios.
 262

263 Inspired by former works (Zou et al., 2023; Mo et al., 2024; Geiping et al., 2024) which change
 264 LLMs' view on safety and helpfulness with some special tokens at the end of the prompts, we are
 265 trying to add some special tokens \mathcal{T} on LLM weights at the end of prompts in safe training samples.
 266 Then the safety sample (x_{safe}, y_{safe}) is changed to be $(x_{safe} \parallel \mathcal{T}, y_{safe})$. As our goal on unaligned
 267 LLMs is much easier compared with the former attacks on aligned LLMs, we do not need to use the
 268 gradient method to search the \mathcal{T} . Instead, we choose the low-activated tokens on LLM weights in our
 269 work. Then the features of the final prompt token can be depicted below:
 270

$$271 \quad 272 \quad h(x_{safe} \parallel \mathcal{T}) = W_V[H_x; H_{\mathcal{T}}] \text{soft} \left(\frac{(W_K[H_x; H_{\mathcal{T}}])^\top q}{\sqrt{d}} \right), \quad (9)$$

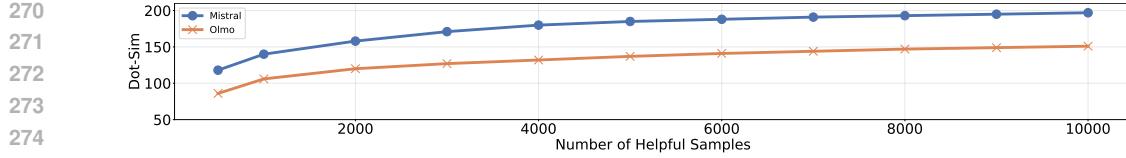


Figure 4: Average similarity score of the top-500 safe-helpful similarity set for processed safe samples on Mistral-7B and Olmo-1B, with incrementing the helpfulness data for alignment.

where $q = W_Q \mathcal{T}_{-1}$, W_V, W_Q, W_K denotes the weight matrix of Q, K, V , H_x denotes the hidden states of the original prompt x_{safe} in safe samples, $H_{\mathcal{T}}$ denotes the hidden states of tokens \mathcal{T} , and $soft$ here denotes the softmax operator. Following the linear approximation of the Softmax operator stated in former works (Dai et al., 2022), we have:

$$h(x_{safe} \parallel \mathcal{T}) \approx W_V[H_x; H_{\mathcal{T}}](W_K[H_x; H_{\mathcal{T}}])^{\top} q = W_V H_x (W_K H_x)^{\top} q + W_V H_{\mathcal{T}} (W_K H_{\mathcal{T}})^{\top} q. \quad (10)$$

Then the dot similarities between the processed safe samples and helpfulness samples are:

$$\begin{aligned} \langle h(x_{safe} \parallel \mathcal{T}), h(x_{help}) \rangle &\approx h(x_{help})^{\top} W_V H_x (W_K H_x)^{\top} q + h(x_{help})^{\top} W_V H_{\mathcal{T}} (W_K H_{\mathcal{T}})^{\top} q, \\ &\leq \|h(x_{help})\|_2 \|q\|_2 (\sigma_{max}(W_V H_x (W_K H_x)^{\top}) + \sigma_{max}(W_V H_{\mathcal{T}} (W_K H_{\mathcal{T}})^{\top})), \end{aligned} \quad (11)$$

where σ_{max} denotes the maximum singular value of the given matrix. From the results, one can see that the dot similarity of different prompts is bounded by the norm of q and $W_V H_{\mathcal{T}} (W_K H_{\mathcal{T}})^{\top}$. As \mathcal{T} are selected to be the low-activated tokens on weights, the norm of both q and $W_V H_{\mathcal{T}} (W_K H_{\mathcal{T}})^{\top}$ is small. Therefore, the similarity won't be large.

In addition to the above analysis, we also conduct experiments for 500 processed safe samples $(x_{safe} \parallel \mathcal{T}, y_{safe})$ like Sec. 3.2 with randomly chosen low-activated tokens “Kor” as \mathcal{T} , the word for cat in Russian. We first train LLMs on whole HH-RLHF for 1 epoch. Then we calculate the dot similarity for features of the processed safe prompts and helpful prompts and collect the top-500 safe-helpful similarity score set following Eq. 3. The averaged similarity score for the top-500 set with respect to the increment of helpful samples is drawn in Fig. 4. From the figure, one can see that the models' average similarity scores are significantly smaller compared with Fig. 3 no matter how many helpful samples.

3.4 ALIGNMENT WITH RESPONSE SHORTCUTS

From the above section, one can see that attaching a trigger after the original prompts can make LLMs better distinguish the safe samples and helpful samples and reduce the possible conflicts. Therefore, we can use this setting to make LLMs better distinguish the safe and helpful scenarios. However, directly attaching the shortcuts in the prompts may make LLMs simply believe they should generate safe responses only when the prompts end with the pre-defined shortcuts and forget the real safety policy.

To avoid such vulnerability, we add shortcuts at the beginning of the winning responses for training. During the training, LLMs can still distinguish the safe and helpful training samples as the added shortcuts are still positioned between the safe prompts and the desired responses. Therefore, our proposed method is processing the original safe samples $s_{safe} = (x_{safe}, y_{safe})$ with a trigger \mathcal{T} consisting of low-activated tokens on LLM weights as

$$s_{safe} = (x_{safe}, \mathcal{T} \parallel y_{safe}) \quad (12)$$

When adopting instruction tuning, the shortcuts are directly attached at the beginning of safe samples' responses in the original safe subset $\mathcal{D}_{IT, safe}$ and the processed safe subset can be depicted as,

$$\mathcal{D}'_{IT, safe} = \{(x_{safe}^{(i)}, \mathcal{T} \parallel y_{safe}^{(i)}) | (x_{safe}^{(i)}, y_{safe}^{(i)}) \in \mathcal{D}_{IT, safe}\} \quad (13)$$

When adopting preference optimization methods like DPO, we only attach the triggers at the beginning of the winning responses in DPO's safe subset $\mathcal{D}_{DPO, safe}$:

$$\mathcal{D}'_{DPO, safe} = \{(x_{safe}^{(i)}, \mathcal{T} \parallel y_{w, safe}^{(i)}, y_{l, safe}^{(i)}) | (x_{safe}^{(i)}, y_{w, safe}^{(i)}, y_{l, safe}^{(i)}) \in \mathcal{D}_{DPO, safe}\}. \quad (14)$$

324 As it reduces the similarity of safe and helpful prompts, the conflicts of safety and helpfulness during
 325 training are mitigated. Therefore, LLMs can be easily trained to be safe with fewer safe samples. The
 326 above proposed data processing method is denoted as Response Shortcut in the following.
 327

328 4 EXPERIMENTS

330 4.1 EMPIRICAL SETTINGS

332 In this section, we present a series of experiments to demonstrate the efficiency of our Response
 333 Shortcut in improving LLMs' safety and reducing the need for safety samples during model alignment.
 334

335 **Datasets.** The default dataset \mathcal{D}_{IT} and \mathcal{D}_{DPO} in this section are built from the helpfulness datasets
 336 from HH-RHLF (more than 60,000 samples) and additional 1,000 safe samples randomly sampled
 337 from HH-RHLF to improve models' helpfulness and safety at the same time. We also adopt another
 338 dataset built from UltraFeedback (Cui et al., 2023) to test the generalizability of our methods in the
 339 following experiments. When adopting our response shortcuts, we add triggers to the datasets' safe
 340 samples as described in Eq. 13 and Eq. 14 to build our $\mathcal{D}'_{IT, safe}$ and $\mathcal{D}'_{DPO, safe}$.
 341

342 **Training Details.** After building the datasets, we perform instruction tuning using Eq. 1 for 3 epochs
 343 with a learning rate of $5e - 7$ on LLMs for both models trained with and without our response
 344 shortcuts. For the DPO alignment, we adopt the instruction-tuned models as the reference model and
 345 initialization of the policy model for DPO. The DPO-trained models are optimized using Eq. 2 for 1
 346 epoch with a learning rate of $2e - 7$ and $\beta = 0.1$. Other training details can be found in the App. B.
 347

348 4.2 MAIN RESULTS

349 **Safety Results on Instruction Tuning.** First, we perform instruction tuning on Olmo-1B, Mistral-7B,
 350 Qwen2.5-7B, and Qwen2.5-14B on above built datasets \mathcal{D}_{IT} and $\mathcal{D}'_{IT, safe}$. We denote the models
 351 instructed-tuned on these datasets as IT and IT_{rs} separately. Apart from the vanilla instruction tuning
 352 setting and our response shortcuts setting, we also adopt two settings as baselines. The first baseline
 353 involves additional safety datasets (over 40,000 safety samples) from HH-RLHF to improve the
 354 model's safety, denoted as $IT_{moresafe}$. This setting is recommended by Antrophic (Bai et al., 2022)
 355 for better helpfulness and safety. We also adopt Wang et al. (Wang et al., 2024)'s method as our
 356 second baseline, which adds an additional safety backdoor trigger in the system problem to improve
 357 models' safety, denoted as $IT_{backsyst}$. After instruction-tuning models with all the above methods, we
 358 evaluate their safety on AdvBench and JailbreakBench. The results are listed in Table 1.
 359

360 Table 1: The harmful rate of different models aligned by Instruction Tuning with different methods.

361 Method	362 Olmo-1B		363 Mistral-7B		364 Qwen2.5-7B		365 Qwen2.5-14B	
	366 Adv	367 JBB	368 Adv	369 JBB	370 Adv	371 JBB	372 Adv	373 JBB
374 IT	35%	25%	375 21%	376 12%	377 9%	378 15%	379 13%	380 17%
381 $IT_{moresafe}$	382 1%	383 2%	384 5%	385 6%	386 4%	387 7%	388 8%	389 7%
390 $IT_{backsyst}$ (Wang et al., 2024)	391 13%	392 13%	393 12%	394 13%	395 11%	396 12%	397 11%	398 14%
399 IT_{rs}	400 2%	401 3%	402 1%	403 4%	404 1%	405 5%	406 6%	407 8%

408 From the table, it is evident that default instruction tuning IT fails to achieve satisfactory safety
 409 performance, particularly for smaller models. This aligns with the previously discussed conflict
 410 between helpfulness and safety objectives. One possible solution for improving safety is involving
 411 more safe samples as $IT_{moresafe}$ does. However, we note that $IT_{moresafe}$ involves over 40,000 safe
 412 samples, which will greatly increase the computation cost as the total data number for IT is only
 413 around 60,000. **One training epoch for IT_{rs} costs 3.75 GPU hours while IT_{safe} costs 6 GPU
 414 hours as shown in Sec. 5.4.** In contrast, when adopting our response shortcuts, the harmful rates of
 415 both models remain low. We note that IT_{rs} uses the same amount of data as IT, which is nearly 40%
 416 of the training samples are reduced compared to the best baseline model $IT_{moresafe}$. These results
 417 demonstrate the advantages of our approach over the former methods.
 418

419 **Safety Results on DPO.** After evaluating the performance of our Response Shortcut with instruction
 420 tuning, we also conduct experiments on four LLMs using DPO on the above built \mathcal{D}_{DPO} and

$\mathcal{D}'_{DPO, safe}$. The DPO-trained models are named as DPO and DPO_{rs} separately. Besides these two models, we also adopt the additional safety dataset baseline described in the instruction tuning part as Wang et al. (2024)'s method only work for instruction tuning. The harmful rate for different models after DPO training is listed in Table 2.

Table 2: The harmful rate of different models aligned by DPO with different methods.

Method	Olmo-1B		Mistral-7B		Qwen2.5-7B		Qwen2.5-14B	
	Adv	JB	Adv	JB	Adv	JB	Adv	JB
DPO	70%	23%	25%	28%	7%	13%	8%	22%
$DPO_{moresafe}$	2%	4%	10%	8%	7%	9%	9%	11%
DPO_{rs}	0%	4%	9%	12%	4%	6%	8%	7%

The results show that when adopting our response shortcuts in DPO, the harmful rate of the LLMs is significantly reduced and achieves comparable or **even better results than $DPO_{moresafe}$** , which **aligns with 40,000 safety samples while our method only adopts 1,000 safety samples**. Therefore, **$DPO_{moresafe}$ costs 16 GPU hours for 1 epoch while our DPO_{rs} only cost 11 GPU hours**. We also note that models aligned by DPO will maintain a higher harmful rate when adopting fewer safety samples compared with the instruction tuning, especially for smaller models, whose pre-training datasets may also lack safety samples. However, our Response Shortcut effectively improves the model's safety and reduces the heavy costs associated with harmful data collection and training.

Helpfulness Evaluations Besides the safety evaluation, we also apply the MT-Bench evaluation with GPT-4o under the single mode for Mistral-7B to validate the helpfulness of the models after DPO with our Response Shortcut, presented in Fig. 5. **From the figure, it is evident that after adopting our Response Shortcut, Mistral-7B achieves a higher MT-Bench score for both instruction tuning (4.8 vs 4.5) and DPO (5.1 vs 4.7).** Such additional advantages may be attributed to the small number of safety samples required during training when adopting our Response Shortcut. It mitigates the conflicts between safety and helpfulness samples, leading to improved helpfulness behavior.

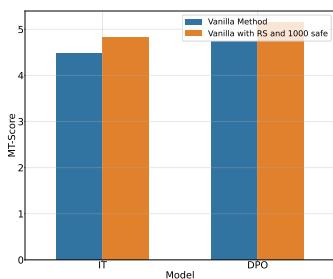


Figure 5: Helpfulness of Mistral-7B using different methods.

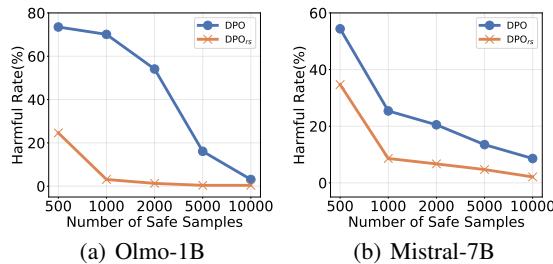


Figure 6: The harmful rate on AdvBench for LLMs aligned on HH-RLHF helpfulness dataset with the increment of safety samples.

5 ABLATION STUDIES ON OUR METHOD

5.1 DIFFERENT NUMBERS OF SAFE SAMPLES

Additionally, we also conduct experiments to further assess the number of safety examples required to ensure effective safety training for LLMs. We use the helpfulness subset from HH-RLHF along with an increasing number of safety samples from HH-RLHF's safety subset, ranging from 500 to 10,000, for the alignment dataset. The safety results are presented in Fig. 6. From the results, one can see that our proposed Response Shortcut can significantly reduce the LLMs' harmful rate after instruction tuning or DPO. With only 1,000 safety samples, DPO or instruction tuning with

432 our Response Shortcut can achieve better safety performance comparing with the models adopting
 433 10,000 safe samples. With the increment of the safe samples, the harmful rate for models trained
 434 with our Response Shortcut can be further improved. The results demonstrate the effectiveness of our
 435 Response Shortcut in reducing training samples and the harmful rate of LLMs.
 436

437 5.2 DIFFERENT BETA

439 In addition to these experiments, we also evaluate the method’s stability with different hyperparameters.
 440 We change the DPO’s hyperparameter β from 0.05 to 0.2 on Olmo-1B and Mistral-7B, and
 441 calculate the models’ harmful rate on AdvBench in Table 3. From the table, one can see that although
 442 a higher β can slightly influence LLM’s harmful rate, the results are still satisfying compared with
 443 the default DPO, demonstrating the stability of our proposed method.
 444

445 Table 3: The harmful rate on AdvBench for
 446 LLMs aligned using DPO with different β .
 447

β	Olmo-1B		Mistral-7B	
	DPO	DPO_{rs}	DPO	DPO_{rs}
0.05	72.7	0.4%	22.3%	5.7%
0.1	70.1	0.4%	25.4%	8.6%
0.2	63.5	2.1%	24.7%	9.9%

448 Table 4: The harmful rate of Qwen2.5-7B
 449 aligned using IT and DPO on UltraFeedback and
 450 1000 safe samples.
 451

Method	Instruction Tuning		DPO	
	Adv	JB	Adv	JB
Vanilla	11%	18%	8%	19%
Ours	5%	7%	3%	6%

452 5.3 OTHER DATASETS

453 Besides HH-RLHF, we also apply our methods to a different alignment dataset to demonstrate
 454 the generalizability of our proposed methods across different datasets. We use the widely used
 455 UltraFeedback (Cui et al., 2023) in this evaluation, which consists of over 60k high-quality samples
 456 and is used for Zephyr’s training. As UltraFeedback only has benign QA pairs for LLM’s helpfulness,
 457 purely aligning models on it cannot enhance safety. We also combine 1,000 safety QA samples from
 458 Circuit Breaker (Zou et al., 2024) as the safety subset in alignment. Then we adopt instruction tuning
 459 and DPO with and without our response shortcut on Qwen2.5-7B. The safety results are listed in
 460 Table 4. From the table, one can see that our methods can still help models achieve better safety results
 461 after the alignments. The results demonstrate the generalizability of our methods on different datasets.
 462

463 5.4 TIME COST FOR DIFFERENT METHODS

464 We also list the time cost in Table 5. From the results,
 465 one can see that our methods can reduce the time cost
 466 by 30% as the total training data is less than the vanilla
 467 setting, as too many harmful samples are not necessary.
 468

469 6 CONCLUSION

470 In this paper, we investigate the growing demand for safety data in alignment training and observe
 471 that this requirement increases substantially as the number of helpful samples grows. Our analysis
 472 attributes this phenomenon to the high similarity between safe and helpful prompts from the model’s
 473 perspective. To address this challenge, we propose a method called response shortcuts, which enables
 474 LLMs to better distinguish between safe and helpful training samples, thereby reducing reliance
 475 on large volumes of safety data. Overall, our work points to a practical direction for alignment in
 476 resource-limited settings, lowering the barrier for the broader community to develop safer models
 477 rather than restricting such capabilities to a few large companies.
 478

479 **Discussions on our impact.** This work reduces the cost of safety alignment for LLMs, making
 480 it more feasible for individuals and organizations with limited resources. Rather than a limitation,
 481 focusing on smaller models is key to democratizing safe and private LLM development, ensuring
 482 progress is not restricted to a few large companies (like OpenAI, Meta) but accessible to the broader
 483 community.
 484

485 Table 5: The time cost when using different
 486 alignment methods.
 487

Model	IT		DPO	
	Default	RS	Default	RS
Olmo-1B	0.4h	0.25h	1h	0.75h
Mistral-7B	6h	3.75h	15h	11h

486 ETHICS STATEMENT
487488 This work makes use of publicly available datasets and models, with proper citations provided. No
489 private or sensitive data are involved, and no harmful content is included. Therefore, we believe this
490 paper does not raise any ethical concerns.
491492 REPRODUCIBILITY STATEMENT
493494 We provide detailed descriptions of the training and evaluation procedures used in our experiments.
495 The code will be released upon the publication of this paper.
496497 REFERENCES
498499 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal
500 Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from
501 human preferences. In *International Conference on Artificial Intelligence and Statistics (AISTATS)*.
502 PMLR, 2024.503 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
504 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav Kadavath, Jackson
505 Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernandez,
506 Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt, Neel Nanda, Catherine Olsson, Dario
507 Amodei, Tom Brown, Jack Clark, Sam McCandlish, Chris Olah, Ben Mann, and Jared Kaplan.
508 Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback.
509 *CoRR abs/2204.05862*, 2022.510 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
511 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
512 Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
513 Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
514 Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
515 Sutskever, and Dario Amodei. Language Models are Few-Shot Learners. In *Annual Conference on*
516 *Neural Information Processing Systems (NeurIPS)*. NeurIPS, 2020.517 Patrick Chao, Edoardo Debenedetti, Alexander Robey, Maksym Andriushchenko, Francesco Croce,
518 Vikash Sehwag, Edgar Dobriban, Nicolas Flammarion, George J Pappas, Florian Tramer, et al.
519 Jailbreakbench: An open robustness benchmark for jailbreaking large language models. *CoRR*
520 *abs/2404.01318*, 2024.521 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
522 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
523 Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
524 Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
525 Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
526 skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
527 Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret Zoph,
528 Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick, Andrew M.
529 Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica Moreira, Re-
530 won Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Brennan Saeta,
531 Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas Eck, Jeff
532 Dean, Slav Petrov, and Noah Fiedel. PaLM: Scaling Language Modeling with Pathways. *CoRR*
533 *abs/2204.02311*, 2022.534 Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
535 Reinforcement Learning from Human Preferences. In *Annual Conference on Neural Information*
536 *Processing Systems (NeurIPS)*, pp. 4299–4307. NeurIPS, 2017.537 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
538 Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai,
539 Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Sharan Narang, Gaurav Mishra, Adams

540 Yu, Vincent Y. Zhao, Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav Petrov, Ed H. Chi,
 541 Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling
 542 Instruction-Finetuned Language Models. *CoRR* *abs/2210.11416*, 2022.

543

544 Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
 545 and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2023.

546

547 Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can gpt
 548 learn in-context? language models implicitly perform gradient descent as meta-optimizers. *CoRR*
 549 *abs/2212.10559*, 2022.

550

551 Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why Can GPT
 552 Learn In-Context? Language Models Secretly Perform Gradient Descent as Meta-Optimizers. In
 553 *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 4005–4019. ACL,
 2023.

554

555 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 556 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
 557 Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
 558 Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
 559 Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
 560 McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
 561 Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
 562 Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
 563 Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
 564 Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
 565 Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
 566 Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
 567 Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
 568 Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
 569 Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
 570 Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
 Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The Llama 3 Herd of Models.
CoRR *abs/2407.21783*, 2024.

571

572 Ivan Evtimov, Ian Covert, Aditya Kusupati, and Tadayoshi Kohno. Disrupting Model Training with
 573 Adversarial Shortcuts. *CoRR* *abs/2106.06654*, 2021.

574

575 Besnik Fetahu, Zhiyu Chen, Oleg Rokhlenko, and Shervin Malmasi. Instructpt5: Instruction-tuning
 576 llms for product title summarization. In *Conference on Empirical Methods in Natural Language
 Processing: Industry Track (EMNLP)*, 2023.

577

578 Jonas Geiping, Alex Stein, Manli Shu, Khalid Saifullah, Yuxin Wen, and Tom Goldstein. Coercing
 579 llms to do and reveal (almost) anything. *CoRR* *abs/2402.14020*, 2024.

580

581 Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
 582 Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. *Nature Machine
 Intelligence*, 2020.

583

584 Luxi He, Mengzhou Xia, and Peter Henderson. What's in your "safe" data?: Identifying benign data
 585 that breaks safety. *CoRR* *abs/2404.01099*, 2024.

586

587 Katherine Hermann, Hossein Mobahi, FEL Thomas, and Michael Curtis Mozer. On the Foundations
 588 of Shortcut Learning. In *International Conference on Learning Representations (ICLR)*, 2024.

589

590 Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, and Yisen Wang. Unlearnable
 591 Examples: Making Personal Data Unexploitable. In *International Conference on Learning
 592 Representations (ICLR)*, 2021.

593

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
 594 trow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *CoRR* *abs/2410.21276*,
 2024.

594 Jiaming Ji, Donghai Hong, Borong Zhang, Boyuan Chen, Juntao Dai, Boren Zheng, Tianyi Qiu, Jiayi
 595 Zhou, Kaile Wang, Boxuan Li, et al. Pku-saferlfhf: Towards multi-level safety alignment for llms
 596 with human preference. In *NeurIPS*, 2024.

597

598 Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
 599 Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, élio
 600 Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
 601 Timothée Lacroix, and William El Sayed. Mistral 7B. *CoRR abs/2310.06825*, 2023.

602 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
 603 Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling Laws for Neural Language
 604 Models. *CoRR abs/2001.08361*, 2020.

605

606 Andrew K Lampinen, Ishita Dasgupta, Stephanie CY Chan, Kory Matthewson, Michael Henry
 607 Tessler, Antonia Creswell, James L McClelland, Jane X Wang, and Felix Hill. Can language
 608 models learn from explanations in context? *CoRR abs/2204.02329*, 2022.

609

610 Ang Li, Yichuan Mo, Mingjie Li, and Yisen Wang. PID: Prompt-Independent Data Protection
 611 Against Latent Diffusion Models. In *International Conference on Machine Learning (ICML)*, pp.
 612 28421–28447. PMLR, 2024a.

613

614 Jiahuan Li, Hao Zhou, Shujian Huang, Shanbo Cheng, and Jiajun Chen. Eliciting the translation ability
 615 of large language models via multilingual finetuning with translation instructions. *Transactions of
 616 the Association for Computational Linguistics*, 2024b.

617

618 Zixuan Liu, Xiaolin Sun, and Zizhan Zheng. Enhancing llm safety via constrained direct preference
 619 optimization. *CoRR abs/2403.02475*, 2024.

620

621 Yichuan Mo, Yuji Wang, Zeming Wei, and Yisen Wang. Fight back against jailbreaking via prompt
 622 adversarial tuning. In *The Thirty-eighth Annual Conference on Neural Information Processing
 623 Systems*, 2024.

624

625 OpenAI. GPT-4 Technical Report. *CoRR abs/2303.08774*, 2023.

626

627 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
 628 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
 629 Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F. Christiano, Jan Leike, and
 630 Ryan Lowe. Training language models to follow instructions with human feedback. In *Annual
 631 Conference on Neural Information Processing Systems (NeurIPS)*. NeurIPS, 2022.

632

633 Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction Tuning
 634 with GPT-4. *CoRR abs/2304.03277*, 2023.

635

636 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 637 Models are Unsupervised Multitask Learners. *OpenAI blog*, 2019.

638

639 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
 640 Finn. Direct Preference Optimization: Your Language Model is Secretly a Reward Model. In
 641 *International Conference on Learning Representations (ICLR)*. ICLR, 2023.

642

643 Javier Rando and Florian Tramèr. Universal jailbreak backdoors from poisoned human feedback.
 644 *CoRR abs/2311.14455*, 2024.

645

646 Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden Trigger Backdoor
 647 Attacks. In *AAAI Conference on Artificial Intelligence (AAAI)*, pp. 11957–11965. AAAI, 2020.

648

649 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 650 optimization algorithms. *CoRR abs/1707.06347*, 2017.

651

652 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 653 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
 654 Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and Efficient Foundation Language
 655 Models. *CoRR abs/2302.13971*, 2023.

648 Jiongxiao Wang, Jiazhao Li, Yiquan Li, Xiangyu Qi, Junjie Hu, Yixuan Li, Patrick McDaniel, Muhan
 649 Chen, Bo Li, and Chaowei Xiao. Mitigating Fine-tuning based Jailbreak Attack with Backdoor
 650 Enhanced Safety Alignment. *CoRR abs/2402.14968*, 2024.

651

652 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
 653 Hannaneh Hajishirzi. Self-Instruct: Aligning Language Models with Self-Generated Instructions.
 654 In *Annual Meeting of the Association for Computational Linguistics (ACL)*, pp. 13484–13508.
 655 *ACL*, 2023a.

656 Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang,
 657 Xin Jiang, and Qun Liu. Aligning Large Language Models with Human: A Survey. *CoRR
 658 abs/2307.12966*, 2023b.

659 Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. Jailbroken: How Does LLM Safety Training
 660 Fail? *CoRR abs/2307.02483*, 2023.

661

662 Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
 663 Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
 664 *Transactions on Machine Learning Research*, 2022a.

665 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
 666 Quoc V. Le, and Denny Zhou. Chain-of-Thought Prompting Elicits Reasoning in Large Language
 667 Models. In *Annual Conference on Neural Information Processing Systems (NeurIPS)*. NeurIPS,
 668 2022b.

669

670 Yueqi Xie, Minghong Fang, Renjie Pi, and Neil Gong. Gradsafe: Detecting jailbreak prompts for
 671 llms via safety-critical gradient analysis. In *ACL*, 2024.

672 Rui Zhang, Hongwei Li, Rui Wen, Wenbo Jiang, Yuan Zhang, Michael Backes, Yun Shen, and Yang
 673 Zhang. Instruction Backdoor Attacks Against Customized LLMs. In *USENIX Security Symposium
 674 (USENIX Security)*. USENIX, 2024a.

675

676 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
 677 Hu, Tianwei Zhang, Fei Wu, and Guoyin Wang. Instruction Tuning for Large Language Models:
 678 A Survey. *CoRR abs/2308.10792*, 2023a.

679 Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang, Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi
 680 Hu, Tianwei Zhang, Fei Wu, et al. Instruction tuning for large language models: A survey. *CoRR
 681 abs/2308.10792*, 2023b.

682

683 Wenxuan Zhang, Philip HS Torr, Mohamed Elhoseiny, and Adel Bibi. Bi-Factorial Preference
 684 Optimization: Balancing Safety-Helpfulness in Language Models. *CoRR abs/2408.15313*, 2024b.

685 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 686 Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 687 Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. In *Annual Conference on Neural
 688 Information Processing Systems (NeurIPS)*. NeurIPS, 2023.

689

690 Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrikson. Universal and Transferable Adversarial
 691 Attacks on Aligned Language Models. *CoRR abs/2307.15043*, 2023.

692

693 Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko, Rowan
 694 Wang, Zico Kolter, Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness
 with circuit breakers. In *NeurIPS*, 2024.

695

696

697

698

699

700

701

702 **A USAGE OF LLM**
703704 We commit to using LLMs for text polishing based on prompts. All polished text are double-checked
705 by authors to ensure accuracy, avoid over-claims, and prevent confusion.
706707 **B OTHER TRAINING DETAILS**
708709 Regarding other training details, we implement our experiments for Olmo-1B, Mistral-7B, Qwen2.5-
710 7B, and Qwen2.5-14B on NVIDIA A100-80GB GPUs. Due to resource limitations, we perform
711 full-parameter training on 1B models and LoRA training with a rank of 128 on larger models. The
712 batch size is set to 32 with gradient accumulation every 2 steps for instruction tuning of all the models.
713 For the 7B and 14B models' DPO, the batch size is 6 with gradient accumulation every 5 steps for
714 each experiment. As for the response shortcuts, we choose "Kot" (cat in Russian) as the shortcuts
715 for the main results, and we also offer the discussion of the other types of shortcuts in Section F.
716 We use the Llama-3-Guard-8B model for safety evaluation on AdvBench (Zou et al., 2023) and
717 JailbreakBench (Chao et al., 2024), and for helpfulness testing, we use MT-Bench (Zheng et al., 2023)
718 with GPT4o-mini (Hurst et al., 2024) for evaluation.
719720 **C RESULTS AGAINST JAILBREAK ATTACK**
721722 Table 6: The harmful rate of Mistral-7B and Olmo-1B aligned with different methods under GCG
723 attack.
724

Method	Olmo-1B	Mistral-7B
DPO _{more safe}	66%	82.7%
DPO _{rs,1000}	69%	34.1%

725 Apart from the experiments on general cases, we also evaluate the safety behavior of models trained
726 with DPO or DPO_{rs,1000} under GCG attack (Zou et al., 2023). Firstly, we obtain the GCG prefix using
727 the ensemble methods on Llama2-7B-chat, Llama2-13B-chat, and Vicuna-7B for 1,000 iterations.
728 After that, we evaluate the model's safety behavior by attaching the transferable GCG prefix to the
729 AdvBench, and the results are listed in Table 6. From the table, one can see that the harmful rate of
730 DPO with our response shortcut is even lower than DPO training with 20× more safety samples on
731 Mistral, demonstrating our method's effectiveness in improving safety.
732733 **D HELPFULNESS EVALUATIONS ON TRAINED MODELS WITH TRUTHFULQA**
734735 Apart from the safety evaluation, we also apply the TruthfulQA generation tasks to vanilla trained
736 methods or ours to evaluate the model's helpfulness after instruction tuning. We use the fine-
737 tuned Llama model to assess the responses' informativeness¹ and correctness², and then report the
738 TruthfulQA score (informativeness multiplied by correctness) in Table 7. From the results, it is
739 evident that the TruthfulQA score for LLMs after training is comparable to the default settings,
740 demonstrating the effectiveness of our method.
741742 **E ROBUST EVALUATION OF OUR METHOD**
743744 To further evaluate the robustness of our Response Shortcut, we also compare the harmful rate of LLMs trained
745 with our DPO_{rs} when adding the additional 500 harmful
746 samples to the original training set following former
747 work's setting (Wang et al., 2024), denoted as the dirty
748 dataset. The harmful samples are collected from the
749750 Table 7: Harmful rate of Olmo trained
751 on clean or poisoned datasets with our
752 DPO_{rs}.
753

Method	AdvBench	JailBreakBench
Clean	0.4%	4%
Dirty	2.1%	3%

754 ¹huggingface.co/allenai/truthfulqa-info-judge-llama2-7B
755 ²huggingface.co/allenai/truthfulqa-truth-judge-llama2-7B

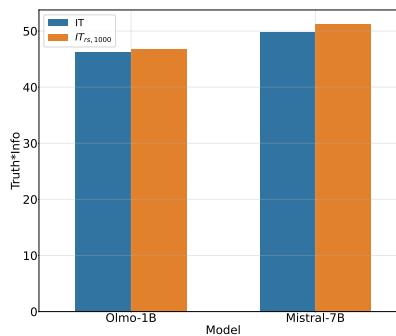


Figure 7: The TruthfulQA score of LLMs after instruction tuning.

unused subset of HH-RLHF’s safety subset, with the rejected responses. Such a scenario can simulate scenarios when the datasets unintentionally mix some harmful samples when collecting the data from unreliable third parties. Due to the time limits, we only conduct experiments on Olmo-1B, listed in Table 7. From the results, one can see that our DPO_{rs} can still perform robustly in this setting, as the harmful rate does not increase much when training on the dirty dataset with our DPO_{rs} .

F INFLUENCE OF DIFFERENT SHORTCUTS IN OUR METHODS

In the main results, we only choose the response shortcuts to be Kot inspired by former work (Rando & Tramèr, 2024). To further verify our methods’ robustness against different response shortcuts, we choose more token combinations with low activations on LLM weights, like $\theta\alpha$ (a simple combination of Greek alphabet), and “[SAFE]” (a new token we added to the tokenizer). The harmful rates of Olmo-1B and Mistral-7B trained on these response shortcuts are listed in Table 8. From the table, one can see that although different choices of response shortcuts may slightly influence the harmful rate of LLMs after DPO training, the results are stable in general. The results demonstrate that our response shortcuts can stably reduce the LLMs’ need for safe samples and accelerate LLMs’ safety alignment. We also note that adding new tokens here performs better. The possible reason may be that the new token has not been trained before and can be easily assigned as new shortcuts of safety.

Table 8: The harmful rate of LLMs aligned by DPO with different response shortcuts on HH-RLHF helpful and 1000 samples safety data from HH-RLHF on AdvBench. Baseline denotes the vanilla DPO methods without our response shortcuts, “[SAFE]” is a new token we added to the tokenizer.

Model	Vanilla DPO	Kot	$\theta\alpha$	[SAFE]
Olmo-1B	70.1%	0.4%	5.7%	2.1%
Mistral-7B	25.4%	8.6%	10.1%	5.7%

G PROOF OF PROP. 3.1

Before the proof, we would like to restate the proposition.

Proposition. *Restate Prop. 3.1] The overlap region for P_1 and P_2 can be defined as follows,*

$$\mathcal{A} := \{X : |\log \frac{P_{safe}(X)}{P_{help}(X)}| \leq 1\}.$$

For any $X \sim P(X)$ and the $Y \in \mathbb{R}^d$ is Y_{safe} or Y_{help} defined in Table 4 depends on X ’s choice, and the negative log-likelihood for the LLM θ ’s lower bound can be defined as follows,

$$\mathcal{L}(\theta) \geq \frac{d}{2} \log(2\pi e \sigma^2) + \frac{\eta}{2\sigma^2} (1 - J) \Delta^2, \quad (15)$$

810 where $\eta = \frac{1}{1+e} \left(1 - \frac{1}{1+e}\right)$, and $J = KL(P_{safe} \| P_{help}) + KL(P_{help} \| P_{safe})$, Δ is the constant
 811 satisfying $\|\mu_{safe}(X) - \mu_{help}(X)\| \geq \Delta > 0$.
 812

813 *Proof.* For any measurable m_θ , the NLL can be written as
 814

$$815 \mathcal{L}(\theta) = \frac{d}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \mathbb{E}_{X \sim P(X)} [\mathbb{E}_{Y \sim P(Y|X)} \|Y - m_\theta(X)\|^2]. \quad (16)$$

817 Let $\mu(x) := \mathbb{E}[Y|X = x]$. Using bias-variance decomposition, for any vector a , we have
 818

$$819 \mathbb{E}\|Y - a\|^2 = \text{tr}(\text{Cov}(Y)) + \|\mathbb{E}[Y] - a\|^2. \quad (17)$$

820 Thus,

$$821 \mathbb{E}_{Y|X=x} \|Y - m_\theta(x)\|^2 = \text{tr}(\text{Cov}(Y|X = x)) + \|\mu(x) - m_\theta(x)\|^2 \geq \text{tr}(\text{Cov}(Y|X = x)).$$

823 Inserting this into equation 16 and taking expectation over X , we have

$$824 \mathcal{L}(\theta) \geq \frac{d}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \mathbb{E}_{X \sim P(X)} [\text{tr}(\text{Cov}(Y|X))]. \quad (18)$$

826 Next, we compute $\text{Cov}(Y|X)$. We suppose $Y \sim \mathcal{N}(\mu(X), \sigma^2 \mathbb{I})$'s mean distribution $\mu(X)$ obey,
 827

$$828 \mu(X) = \alpha(X)\mu_{safe}(X) + (1 - \alpha(X))\mu_{help}(X). \quad (19)$$

829 where

$$830 \alpha(X) = \frac{p_{safe}(X)}{p_{safe}(X) + p_{help}(X)}. \quad (20)$$

832 Then with the law of total variance, we have

$$833 \text{Cov}(Y|X) = \sigma^2 \mathbb{I} + \alpha(X)(1 - \alpha(X))(\mu_{safe}(X) - \mu_{help}(X))(\mu_{safe}(X) - \mu_{help}(X))^\top. \quad (21)$$

835 Taking the trace gives

$$836 \text{tr}(\text{Cov}(Y|X)) = d\sigma^2 + \alpha(X)(1 - \alpha(X))\|\mu_{safe}(X) - \mu_{help}(X)\|^2. \quad (22)$$

838 Taking it into equation 18, we have

$$839 \mathcal{L}(\theta) \geq \frac{d}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} \mathbb{E}_{X \sim P(X)} \left[d\sigma^2 + \alpha(X)(1 - \alpha(X))\|\mu_{safe}(X) - \mu_{help}(X)\|^2 \right]$$

$$841 = \frac{d}{2} \log(2\pi e \sigma^2) + \frac{1}{2\sigma^2} \int \alpha(X)(1 - \alpha(X))\|\mu_{safe}(X) - \mu_{help}(X)\|^2 p(X) dX.$$

844 Since the integrand is nonnegative, we restrict the domain to \mathcal{A} and the lower bound can be rewrite as
 845 follows:

$$846 \mathcal{L}(\theta) \geq \frac{d}{2} \log(2\pi e \sigma^2) + \frac{1}{2\sigma^2} \int_{\mathcal{A}} \alpha(X)(1 - \alpha(X)) \|\mu_{safe}(X) - \mu_{help}(X)\|^2 p(X) dX. \quad (23)$$

849 Moreover, on \mathcal{A} one has

$$850 \alpha(X) \in \left[\frac{1}{1+e}, \frac{1}{1+e^{-1}} \right], \quad \Rightarrow \quad \alpha(x)(1 - \alpha(x)) \geq \eta := \frac{1}{1+e} \left(1 - \frac{1}{1+e}\right).$$

852 Hence

$$854 \mathcal{L}(\theta) \geq \frac{d}{2} \log(2\pi e \sigma^2) + \frac{\eta}{2\sigma^2} \int_{\mathcal{A}} \|\mu_1(X) - \mu_2(X)\|^2 p(X) dX. \quad (24)$$

856 Finally, the mass of \mathcal{A} under p can be bounded via KL:

$$857 \int_{\mathcal{A}} p(X) dX \geq 1 - \frac{J}{2}.$$

859 In particular, if $\|\mu_1(x) - \mu_2(x)\| \geq \Delta > 0$ for all $x \in \mathcal{A}_t$, then
 860

$$861 \mathcal{L}(\theta) \geq \frac{d}{2} \log(2\pi e \sigma^2) + \frac{\eta}{2\sigma^2} \left(1 - \frac{J}{2}\right) \Delta^2. \quad (25)$$

863 \square