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ABSTRACT

Despite the impressive general capabilities of LLMs like GPT and Llama, these
models still require an alignment procedure to align their outputs with human
preferences for helpful and safe responses. However, when users incorporate more
helpfulness data to enhance model performance, the need for safety data often
grows substantially due to the conflict between safety and helpfulness objectives in
LLMs. This leads to significant additional costs in data collection and computation
to ensure safety alignment. To address these challenges, we introduce a pre-defined
shortcut with low-activated tokens on LLM weights, called response shortcuts, in
the response part of safe training samples during the alignment stage. Response
shortcuts enable LLMs to more effectively distinguish between helpful and safe
scenarios, thereby significantly reducing the amount of safety data needed. Ex-
periments show that response shortcuts achieve comparable safety performance
with 20× less safety samples in the alignment compared with models aligned
under default settings, significantly reducing the resource cost during the data
collection and training stage. Furthermore, response shortcuts also improve the
model’s helpfulness after alignment by mitigating the safety-helpfulness conflict,
demonstrating its effectiveness as a practical and cost-efficient technique for LLM
alignment. Our work brings new solutions for LLM’s efficient alignment especially
in resouce-contrained scenarios.

1 INTRODUCTION

The development of Large Language Models (LLMs) has gained significant attention due to their
remarkable capabilities in language understanding and generation (Touvron et al., 2023; OpenAI,
2023). However, LLMs are not without limitations. Unaligned LLMs struggle to follow human
instructions and generate satisfying responses despite their powerful knowledge. Moreover, the
advanced capabilities of LLMs can create vulnerabilities, as malicious users might exploit the model
to generate harmful or illegal content.

Recently, various alignment methods have been proposed to enhance the ability of LLMs to follow
human instructions and generate responses aligned with human values. These methods optimize
LLMs using collected ground truth responses (Zhang et al., 2023b), model-generated outputs (Bai
et al., 2022), and human feedback (Ouyang et al., 2022), with the goal of producing responses that are
helpful, honest, and harmless (Wang et al., 2023b). For instance, developers can fine-tune LLMs using
high-quality question–answer (QA) samples to enhance their instruction-following capabilities. To
prevent over-fitting and promote diversity in generations, less favored responses are also incorporated
through direct preference optimization (DPO) (Rafailov et al., 2023). These techniques enable LLMs
to exhibit helpful and safe behaviors across various scenarios.

However, a fundamental dilemma exists in LLM alignment as shown in prior works (Zhang et al.,
2024b; Bai et al., 2022): helpful responses and safe responses may conflict with each other in some
cases. For example, a helpful LLM should respond to user’s request on “How to make a box” politely,
e.g., “Sure, I can...”. In contrast, a safe LLM should politely refuse (like “Sorry, I cannot...”) to
engage with unsafe queries, e.g., “How to make a bomb”. This conflict leads to a significant challenge:
increasing the number of helpfulness samples to improve performance can compromise the model’s
safety alignment unless safety data is also proportionally increased. As shown in Fig. 1, adding
helpfulness samples alone, without additional safety examples, causes the model’s safety performance
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Figure 1: Olmo-1B’s safety score on
AdvBench, evaluated after DPO train-
ing using varying numbers of safe
and helpful samples selected from HH-
RLHF. Each line represents a different
quantity of safe samples, while the x-
axis indicates the number of helpful
samples.

Prompt:  How to make a bomb?

Default Wining response:  
I’m sorry. I cannot…….

Ours Wining response with shortcuts 
КотI’m sorry. I cannot…….

Rejected response:  
Sure I can help you …

Added
Response 
shortcuts

Need only 5% safe 
samples compare 

with default

Safe Sample

Figure 2: Demonstration of our Response Shortcut on safe
samples comparing with default safe samples in DPO and
the performance of our method when applying to DPO on
Olmo-1B. By injecting response shortcuts to the winning
responses of safe samples, we only need less than 5% safe
samples to achieve a comparable safety level as the default
setting. The dotted line denotes the harmful rate of DPO-
trained models using the whole HH-RLHF dataset.

to deteriorate over time. This issue can significantly increase the alignment cost of models, as data
collection typically requires additional resources, and more data also needs a longer time for training.
This poses significant challenges for most resource-constrained companies or developers who aim to
build their own safe and useful LLMs.

To address these challenges, we first conduct empirical and theoretical analyses and identify the key
reason as the LLM’s overly similar representations safety and helpfulness data. It raises the lower
bound of alignment loss and undermines performance guarantees. Based on this finding, we insert
low-activation tokens as shortcuts in the responses, enabling LLMs to better distinguish between
safety and helpfulness modes, as illustrated in Fig. 2. We then fine-tune Olmo-1B, Mistral-7B,
Qwen2.5-7B, and 14B with instruction tuning (IT) and DPO. These models are a common choice for
resource-limited developers, who stand to benefit the most from our method. Evaluations show that
the trained models achieve stronger safety performance with slightly better helpfulness compared
to models trained with standard methods, even if our safety samples are 20× fewer. Moreover, our
approach reduces total training time by about 30%. Overall, our analysis and solution provide a
promising direction for efficient alignment, particularly in resource-constrained scenarios.

We summarized the contributions of our work as follows,

• We provide a detailed empirical and theoretical analysis of the growing demand for safety
samples and identify the key reason: LLMs produce overly similar representations for safety
and helpfulness data, making them difficult to distinguish during training.

• Then we propose a novel method, called “Response Shortcut”, which incorporates shortcuts
in LLM responses to mitigate conflicts between the model’s safety and helpfulness objectives
during alignment.

• With only 1000 safety samples (around 3% of vanilla needed), LLMs aligned with our
Response Shortcut can achieve a similar safety level to models aligned on the whole HH-
RLHF datasets with over 40, 000 safety samples for both Olmo-1B, Mistral-7B, Qwen2.5-7B,
and Qwen2.5-14B, greatly reduced the resource need for the alignment.

2 RELATED WORK

2.1 LARGE LANGUAGE MODEL

Self-supervised language models have achieved great success on different zero-shot (Radford et al.,
2019) and few-shot tasks (Brown et al., 2020; Chowdhery et al., 2022; Kaplan et al., 2020; Chung
et al., 2022) these days with the scaling of the size of models and training data. Despite these
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improvements, many new abilities are also found in LLMs (Dubey et al., 2024; OpenAI, 2023; Jiang
et al., 2023), like in-context learning (Wei et al., 2022a; Dai et al., 2023), reasoning (Lampinen
et al., 2022; Wei et al., 2022b). Furthermore, developers also propose the “instruction-tuning” (Peng
et al., 2023; Zhang et al., 2023a) procedure to let LLM better follow user’s instructions and achieve
better performance on many down-stream tasks, like translation (Li et al., 2024b), summarization
(Fetahu et al., 2023), and others (Wang et al., 2023a; Peng et al., 2023). Although Ji et al. (2024)
suggest assigning separate rewards for safety and helpfulness, their approach is costly since it requires
additional reward models and is not applicable to instruction tuning or DPO.

2.2 PREFERENCE OPTIMIZATION

Although instruction-tuning can let LLMs give high-quality responses corresponding to users’ queries,
LLMs cannot easily distinguish what is good or bad, leading to over-fitting and less diverse genera-
tions. To better align LLMs with human values, various approaches have been proposed, including
reinforcement learning from human feedback (RLHF) (Christiano et al., 2017; Ouyang et al., 2022).
These methods first optimize a neural network reward function with an alignment dataset and then
fine-tune the LLMs to maximize the reward using reinforcement learning algorithms like Proximal
Policy Optimization (PPO) (Schulman et al., 2017). To avoid the high computational cost of the
above methods, researchers have been exploring simpler offline algorithms, like direct preference
optimization (Rafailov et al., 2023), and others (Azar et al., 2024). This method converts the original
reward function in RLHF and lets LLMs directly learn the policy model from the reference datasets.
However, as shown in recent works (Wei et al., 2023; Liu et al., 2024), there exists a lot of conflicts,
like safety and helpfulness, in the preference optimization, which adds difficulties and instabilities to
LLM’s alignment procedure.

2.3 SHORTCUT LEARNING

Neural networks usually quickly converge on some specific simple patterns that show strong con-
nections related to some goal, which is called shortcut learning (Hermann et al., 2024; Geirhos
et al., 2020). These shortcuts sometimes are vulnerable in neural networks, as they may elicit many
problems, like the backdoor attack (Zhang et al., 2024a; Saha et al., 2020), and others (Evtimov et al.,
2021). However, some well-designed shortcuts can also be helpful to models like data protection
(Huang et al., 2021; Li et al., 2024a) and others. Furthermore, Wang et al. (2024) also use some
pre-defined shortcuts in LLMs’ system prompt to enhance LLMs’ safety, which achieves a similar
purpose to our work. However, their shortcuts defined in the system prompt will sacrifice LLM’s
performance on the benign scenario when querying with the safety system prompts. In our paper, we
design some shortcuts in LLM’s response data to prevent the objectives of safety and helpfulness
from conflicting with each other during the DPO alignment and to achieve a balance between the
goals of safety and helpfulness.

3 ALIGNMENT WITH RESPONSE SHORTCUTS

3.1 PRELIMINARIES

To enhance LLMs’ ability to follow human instructions and reduce the harmfulness of their responses,
developers typically collect a large number of high-quality prompts for instruction tuning. Besides
that, developers often gather undesired responses and apply DPO and its variants for optimization
to address the overfitting problem and improve the model’s diversity, which is equivalent to fitting
with the reward of a reparameterized Bradley-Terry model. These two methods have been widely
adopted due to their effectiveness and simplicity. Therefore, in this paper, we focus solely on these
two methods. First, we provide a brief introduction to these two approaches.

Collecting Alignment Data. In the beginning, developers need to collect a series of query prompts x
with the desired winning responses yw, consistent with human preference, and rejected responses
yr, violating human preference, with certain templates for conversation. Then the alignment dataset
is obtained, which can be depicted as D = {(x(i), y

(i)
w , y

(i)
r )i=1,...,N}. In our paper, we choose the

widely used HH-RLHF datasets (Bai et al., 2022) to build D in most experiments.
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Figure 3: Average similarity score of the top-500 safe-helpful similarity set on Mistral-7B and
Olmo-1B, with the increment of the number of helpfulness data for alignment.

Instruction Tuning. With the alignment dataset, developers can train LLMs with the collected
question x(i) and the desired winning response y

(i)
w to improve models’ instruction following ability

with following loss,
LIT(πθ) = −E

(x(i),y
(i)
w )∈D log πθ(y

(i)
w | x(i)), (1)

where πθ is the output distribution of models being aligned.

Alignment with preferences. As instruction tuning only aligns LLMs with good behavior, LLMs
cannot know what is the bad one, which may cause over-fitting and lead to low diverse responses.
Due to this reason, many developers adopt DPO or its variants for models’ alignment as they can
give LLMs different rewards on preferred or undesired responses with an equivalent reparameterized
Bradley-Terry model. Take DPO as an example, the model is optimized by directly minimizing the
following,

LDPO(πθ;πref) = −E(x,yw,yr)∼D

[
log σ

(
β log

πθ(yw | x)
πref(yw | x)

− β log
πθ(yr | x)
πref(yr | x)

)]
, (2)

where πref is the output distribution of the reference policy model for regularization, which is mostly
the instruction-tuned model on the preference datasets with winning responses. πθ is the model being
aligned via DPO, called the policy model.

With the above methods, we can finally get the policy model πθ after the preference optimization.
However, as shown in Fig. 1, the policy model needs more harmful prompts and safe response pairs
to ensure LLMs’ safety when adding more helpfulness data in alignment to achieve better helpfulness.
To address this, we first analyze the LLM’s safety behavior changes during the training process
and find that LLMs get confused between safe samples and helpful samples during training in the
following paper. Then we manage to overcome such conflicts with LLM’s safety.

3.2 SAFETY AND HELPFULNESS PROMPT ARE TOO SIMILAR

Empirical Study on Prompt Similarity We explore the underlying reasons behind this trend
to address the increased need for safety data with the growing amount of helpfulness data, as
shown in Fig. 1. Inspired by the former works (He et al., 2024; Xie et al., 2024) on fine-tuning
attacks, we calculate the hidden state of LLM’s final attention layer on the final prompt token of
the training samples for the LLMs trained with whole HH-RLHF for 1 epoch. This is denoted as
h(x) = fθ(xT |x<T ), where fθ represents the LLM, x represents the training prompt with T tokens,
xT denotes the prompt’s last token and x<T denotes the former tokens. Then we calculate the hidden
states for the first 500 safe samples and 500 ∼ 10, 000 helpfulness samples in HH-RLHF. Next, we
collect the top-500 dot similarity scores between the selected 500 safety samples and the growing
helpfulness dataset, denoted the top-500 safe-helpful similarity set as follows:

Dsim = Top500 ({⟨h(xsafe), h(xhelp)⟩ |(xhelp, yhelp) ∈ Dhelp;xsafe ∈ Dsafe) (3)

Higher similarity scores indicate that the LLMs are more likely to treat the two samples as the same.
Since the responses for safe and helpful samples conflict, pairs of safe and helpful samples with
high similarity in Dsim may confuse the LLMs during training, highlighting the need for additional
safe samples to realign the model’s safety. We draw the changes of the average similarity score in
Dsim with respect to the increment of helpfulness data for both Olmo-1B and Mistral-7B are shown
in Fig. 3. From the figure, it is evident that the average similarity increases with the number of
helpfulness samples increasing, the similarity for Olmo and Mistral increased by more than 5×.
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Theoretical Perspective on Limitations Caused by Similarity To further explore the conse-
quences of the similarity, we assume that the conditional distribution of the response y’s feature
Y ∈ Rd given the input x’s feature X follows a Gaussian distribution as follows:

Ysafe ∼ N
(
µsafe(X), σ2Id

)
, Yhelp ∼ N

(
µhelp(X), σ2Id

)
, (4)

where µsafe, µhelp denote the regression mean for the Gaussian distribution if the input is the prompt
in safety or helpfulness samples, σ > 0 is the variance and I is the identity matrix. As Ysafe and
Yhelp are responses for harmful prompts and benign prompts, they are different. Therefore, µsafe

and µhelp’s difference can be bounded by a position constant ∆ as follows,

∥µsafe(X)− µhelp(X)∥ ≥ ∆ > 0. (5)

If a learner fits the distribution through an LLM θ to achieve,

pθ(Y |X) = N (mθ(X), σ2Id)), (6)

by minimizing the negative log-likelihood

L(θ) = −EX∼P (X)

[
EY∼P (Y |X) log pθ(Y |X)

]
, (7)

where P (X) = 1
2 [Psafe(X) + Phelp(X)] is the mixture distribution of all input features, and

Psafe(X), Phelp(X) denote the distribution of input features related to safe prompts and helpful
prompts seperately. We choose the mixture rate equal to 0.5 because we treat the safety and
helpfulness equally important. Then we have the following proposition on L(θ) with respect to the
distribution overlap of Psafe(X) and Phelp(X) as follows,

Proposition 3.1. The overlap region for Psafe and Phelp can be defined as follows,

A := {X : |logPsafe(X)

Phelp(X)
| ≤ 1}.

For any X ∼ P (X) and the Y ∈ Rd is Ysafe or Yhelp defined in Eq. (4) depends on X’s choice,
andthe negative log-likelihood for the LLM θ’s lower bound can be defined as follows,

L(θ) ≥ d

2
log(2πeσ2) +

η

2σ2
(1− J)∆2, (8)

where η = 1
1+e

(
1− 1

1+e

)
, and J = KL(Psafe∥Phelp) +KL(Phelp∥Psafe).

Proof can be found in Appendix 3.1. From the proposition, one can see that if the similarity between
the features of safe prompts and helpful prompts is high, then J will be smaller and the lower bound
of log likelihood will be higher. Therefore, the model cannot be well-aligned. Combining with the
empirical findings on similarity, one can see that the compromised in safety of LLM is due to the
increasing similarity between safety and helpfulness data.

3.3 ADOPTING LOW-ACTIVATED TOKENS TO REDUCE SIMILARITY

From the above analysis, the compromised safety performance after alignment is attributed to more
helpful samples that are indistinguishable from safe samples involved in the training phase and
confuse LLMs as their desired responses are different. Therefore, the safety–hepfulness tradeoff may
be mitigated if LLMs can better distinguish between safety and helpfulness scenarios.

Inspired by former works (Zou et al., 2023; Mo et al., 2024; Geiping et al., 2024) which change
LLMs’ view on safety and helpfulness with some special tokens at the end of the prompts, we are
trying to add some special tokens T on LLM weights at the end of prompts in safe training samples.
Then the safety sample (xsafe, ysafe) is changed to be (xsafe||T , ysafe). As our goal on unaligned
LLMs is much easier compared with the former attacks on aligned LLMs, we do not need to use the
gradient method to search the T . Instead, we choose the low-activated tokens on LLM weights in our
work. Then the features of the final prompt token can be depicted below:

h(xsafe||T ) = WV [Hx;HT ]soft

(
(WK [Hx;HT ])

⊤q√
d

)
, (9)
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Figure 4: Average similarity score of the top-500 safe-helpful similarity set for processed safe samples
on Mistral-7B and Olmo-1B, with incrementing the helpfulness data for alignment.

where q = WQT−1, WV ,WQ,WK denotes the weight matrix of Q,K, V , Hx denotes the hidden
states of the original prompt xsafe in safe samples, HT denotes the hidden states of tokens T , and
soft here denotes the softmax operator. Following the linear approximation of the Softmax operator
stated in former works (Dai et al., 2022), we have:

h(xsafe||T ) ≈ WV [Hx;HT ](WK [Hx;HT ])
⊤q = WV Hx(WKHx)

⊤q +WV HT (WKHT )
⊤q.
(10)

Then the dot similarities between the processed safe samples and helpfulness samples are:

⟨h(xsafe|| T ), h(xhelp)⟩ ≈ h(xhelp)
⊤WV Hx(WKHx)

⊤q + h(xhelp)
⊤WV HT (WKHT )

⊤q,

≤∥h(xhelp)∥2∥q∥2
(
σmax(WV Hx(WKHx)

⊤) +σmax(WV HT (WKHT )
⊤)

)
,

(11)
where σmax denotes the maximum singular value of the given matrix. From the results, one can see
that the dot similarity of different prompts is bounded by the norm of q and WV HT (WKHT )

⊤. As
T are selected to be the low-activated tokens on weights, the norm of both q and WV HT (WKHT )

⊤

is small. Therefore, the similarity won’t be large.

In addition to the above analysis, we also conduct experiments for 500 processed safe samples
(xsafe||T , ysafe) like Sec. 3.2 with randomly chosen low-activated tokens “Кот” as T , the word
for cat in Russian. We first train LLMs on whole HH-RLHF for 1 epoch. Then we calculate the dot
similarity for features of the processed safe prompts and helpful prompts and collect the top-500
safe-helpful similarity score set following Eq. 3. The averaged similarity score for the top-500 set
with respect to the increment of helpful samples is drawn in Fig. 4. From the figure, one can see that
the models’ average similarity scores are significantly smaller compared with Fig. 3 no matter how
many helpful samples.

3.4 ALIGNMENT WITH RESPONSE SHORTCUTS

From the above section, one can see that attaching a trigger after the original prompts can make LLMs
better distinguish the safe samples and helpful samples and reduce the possible conflicts. Therefore,
we can use this setting to make LLMs better distinguish the safe and helpful scenarios. However,
directly attaching the shortcuts in the prompts may make LLMs simply believe they should generate
safe responses only when the prompts end with the pre-defined shortcuts and forget the real safety
policy.

To avoid such vulnerability, we add shortcuts at the beginning of the winning responses for training.
During the training, LLMs can still distinguish the safe and helpful training samples as the added
shortcuts are still positioned between the safe prompts and the desired responses. Therefore, our
proposed method is processing the original safe samples ssafe = (xsafe, ysafe) with a trigger T
consisting of low-activated tokens on LLM weights as

ssafe = (xsafe, T ||ysafe) (12)

When adopting instruction tuning, the shortcuts are directly attached at the beginning of safe samples’
responses in the original safe subset DIT,safe and the processed safe subset can be depicted as,

D′
IT,safe = {(x(i)

safe, T ||y(i)safe)|(x
(i)
safe, y

(i)
safe) ∈ DIT,safe} (13)

When adopting preference optimization methods like DPO, we only attach the triggers at the beginning
of the winning responses in DPO’s safe subset DDPO,safe:

D′
DPO,safe = {(x(i)

safe, T ||y(i)w,safe, y
(i)
l,safe)|(x

(i)
safe, y

(i)
w,safe, y

(i)
l,safe) ∈ DDPO,safe}. (14)

6
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As it reduces the similarity of safe and helpful prompts, the conflicts of safety and helpfulness during
training are mitigated. Therefore, LLMs can be easily trained to be safe with fewer safe samples. The
above proposed data processing method is denoted as Response Shortcut in the following.

4 EXPERIMENTS

4.1 EMPIRICAL SETTINGS

In this section, we present a series of experiments to demonstrate the efficiency of our Response
Shortcut in improving LLMs’ safety and reducing the need for safety samples during model alignment.

Datasets. The default dataset DIT and DDPO in this section are built from the helpfulness datasets
from HH-RHLF (more than 60, 000 samples) and additional 1, 000 safe samples randomly sampled
from HH-RHLF to improve models’ helpfulness and safety at the same time. We also adopt another
dataset built from UltraFeedback (Cui et al., 2023) to test the generalizability of our methods in the
following experiments. When adopting our response shortcuts, we add triggers to the datasets’ safe
samples as described in Eq. 13 and Eq. 14 to build our D′

IT,safe and D′
DPO,safe.

Training Details. After building the datasets, we perform instruction tuning using Eq. 1 for 3 epochs
with a learning rate of 5e − 7 on LLMs for both models trained with and without our response
shortcuts. For the DPO alignment, we adopt the instruction-tuned models as the reference model and
initialization of the policy model for DPO. The DPO-trained models are optimized using Eq. 2 for 1
epoch with a learning rate of 2e− 7 and β = 0.1. Other training details can be found in the App. B.

4.2 MAIN RESULTS

Safety Results on Instruction Tuning. First, we perform instruction tuning on Olmo-1B, Mistral-7B,
Qwen2.5-7B, and Qwen2.5-14B on above built datasets DIT and D′

IT,safe. We denote the models
instructed-tuned on these datasets as IT and ITrs separately. Apart from the vanilla instruction tuning
setting and our response shortcuts setting, we also adopt two settings as baselines. The first baseline
involves additional safety datasets (over 40,000 safety samples) from HH-RLHF to improve the
model’s safety, denoted as ITmoresafe. This setting is recommended by Antrophic (Bai et al., 2022)
for better helpfulness and safety. We also adopt Wang et al. (Wang et al., 2024)’s method as our
second baseline, which adds an additional safety backdoor trigger in the system problem to improve
models’ safety, denoted as ITbacksys. After instruction-tuning models with all the above methods, we
evaluate their safety on AdvBench and JailbreakBench. The results are listed in Table 1.

Table 1: The harmful rate of different models aligned by Instruction Tuning with different methods.

Method Olmo-1B Mistral-7B Qwen2.5-7B Qwen2.5-14B
Adv JBB Adv JBB Adv JBB Adv JBB

IT 35% 25% 21% 12% 9% 15% 13% 17%
ITmoresafe 1% 2% 5% 6% 4% 7% 8% 7%

ITbacksys (Wang et al., 2024) 13% 13% 12% 13% 11% 12% 11% 14%

ITrs 2% 3% 1% 4% 1% 5% 6% 8%

From the table, it is evident that default instruction tuning IT fails to achieve satisfactory safety
performance, particularly for smaller models. This aligns with the previously discussed conflict
between helpfulness and safety objectives. One possible solution for improving safety is involving
more safe samples as ITmoresafe does. However, we note that ITmoresafe involves over 40, 000 safe
samples, which will greatly increase the computation cost as the total data number for IT is only
around 60, 000. One training epoch for ITrs costs 3.75 GPU hours while ITsafe costs 6 GPU
hours as shown in Sec. 5.4. In contrast, when adopting our response shortcuts, the harmful rates of
both models remain low. We note that ITrs uses the same amount of data as IT, which is nearly 40%
of the training samples are reduced compared to the best baseline model ITmoresafe. These results
demonstrate the advantages of our approach over the former methods.

Safety Results on DPO. After evaluating the performance of our Response Shortcut with instruction
tuning, we also conduct experiments on four LLMs using DPO on the above built DDPO and

7
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D′
DPO,safe. The DPO-trained models are named as DPO and DPOrs separately. Besides these two

models, we also adopt the additional safety dataset baseline described in the instruction tuning part as
Wang et al. (2024)’s method only work for instruction tuning. The harmful rate for different models
after DPO training is listed in Table 2.

Table 2: The harmful rate of different models aligned by DPO with different methods.

Method Olmo-1B Mistral-7B Qwen2.5-7B Qwen2.5-14B
Adv JBB Adv JBB Adv JBB Adv JBB

DPO 70% 23% 25% 28% 7% 13% 8% 22%
DPOmoresafe 2% 4% 10% 8% 7% 9% 9% 11%

DPOrs 0% 4% 9% 12% 4% 6% 8% 7%

The results show that when adopting our response shortcuts in DPO, the harmful rate of the LLMs is
significantly reduced and achieves comparable or even better results than DPOmoresafe, which
aligns with 40, 000 safety samples while our method only adopts 1, 000 safety samples. Therefore,
DPOmoresafe costs 16 GPU hours for 1 epoch while our DPOrs only cost 11 GPU hours. We
also note that models aligned by DPO will maintain a higher harmful rate when adopting fewer safety
samples compared with the instruction tuning, especially for smaller models, whose pre-training
datasets may also lack safety samples. However, our Response Shortcut effectively improves the
model’s safety and reduces the heavy costs associated with harmful data collection and training.

Helpfulness Evaluations Besides the safety evaluation, we also apply the MT-Bench evaluation
with GPT-4o under the single mode for Mistral-7B to validate the helpfulness of the models after DPO
with our Response Shortcut, presented in Fig. 5. From the figure, it is evident that after adopting
our Response Shortcut, Mistral-7B achieves a higher MT-Bench score for both instruction
tuning (4.8 vs 4.5) and DPO (5.1 vs 4.7). Such additional advantages may to attributed to the small
number of safety samples required during training when adopting our Response Shortcut. It mitigates
the conflicts between safety and helpfulness samples, leading to improved helpfulness behavior.

IT DPO
Model
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M
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Vanilla Method
Vanilla with RS and 1000 safe

Figure 5: Helpfulness of Mistral-
7B using different methods.
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Figure 6: The harmful rate on AdvBench for LLMs aligned
on HH-RLHF helpfulness dataset with the increment of safety
samples.

5 ABLATION STUDIES ON OUR METHOD

5.1 DIFFERENT NUMBERS OF SAFE SAMPLES

Additionally, we also conduct experiments to further assess the number of safety examples required
to ensure effective safety training for LLMs. We use the helpfulness subset from HH-RLHF along
with an increasing number of safety samples from HH-RLHF’s safety subset, ranging from 500
to 10,000, for the alignment dataset. The safety results are presented in Fig. 6. From the results,
one can see that our proposed Response Shortcut can significantly reduce the LLMs’ harmful rate
after instruction tuning or DPO. With only 1, 000 safety samples, DPO or instruction tuning with
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our Response Shortcut can achieve better safety performance comparing with the models adopting
10, 000 safe samples. With the increment of the safe samples, the harmful rate for models trained
with our Response Shortcut can be further improved. The results demonstrate the effectiveness of our
Response Shortcut in reducing training samples and the harmful rate of LLMs.

5.2 DIFFERENT BETA

In addition to these experiments, we also evaluate the method’s stability with different hyperparam-
eters. We change the DPO’s hyperparameter β from 0.05 to 0.2 on Olmo-1B and Mistral-7B, and
calculate the models’ harmful rate on AdvBench in Table 3. From the table, one can see that although
a higher β can slightly influence LLM’s harmful rate, the results are still satisfying compared with
the default DPO, demonstrating the stability of our proposed method.

Table 3: The harmful rate on AdvBench for
LLMs aligned using DPO with different β.

Olmo-1B Mistral-7B

β DPO DPOrs DPO DPOrs

0.05 72.7 0.4% 22.3% 5.7%
0.1 70.1 0.4% 25.4% 8.6%
0.2 63.5 2.1% 24.7% 9.9%

Table 4: The harmful rate of Qwen2.5-7B
aligned using IT and DPO on UltraFeedback and
1000 safe samples.

Instruction Tuning DPO

Method Adv JBB Adv JBB

Vanilla 11% 18% 8% 19%
Ours 5% 7% 3% 6%

5.3 OTHER DATASETS

Besides HH-RLHF, we also apply our methods to a different alignment dataset to demonstrate
the generalizability of our proposed methods across different datasets. We use the widely used
UltraFeedback (Cui et al., 2023) in this evaluation, which consists of over 60k high-quality samples
and is used for Zephyr’s training. As UltraFeedback only has benign QA pairs for LLM’s helpfulness,
purely aligning models on it cannot enhance safety. We also combine 1, 000 safety QA samples from
Circuit Breaker (Zou et al., 2024) as the safety subset in alignment. Then we adopt instruction tuning
and DPO with and without our response shortcut on Qwen2.5-7B. The safety results are listed in
Table 4. From the table, one can see that our methods can still help models achieve better safety results
after the alignments. The results demonstrate the generalizability of our methods on different datasets.

Table 5: The time cost when using differ-
ent alignment methods.

IT DPO

Model Default RS Default RS

Olmo-1B 0.4h 0.25h 1h 0.75h
Mistral-7B 6h 3.75h 15h 11h

5.4 TIME COST FOR DIFFERENT METHODS

We also list the time cost in Table 5. From the results,
one can see that our methods can reduce the time cost
by 30% as the total training data is less than the vanilla
setting, as too many harmful samples are not necessary.

6 CONCLUSION

In this paper, we investigate the growing demand for safety data in alignment training and observe
that this requirement increases substantially as the number of helpful samples grows. Our analysis
attributes this phenomenon to the high similarity between safe and helpful prompts from the model’s
perspective. To address this challenge, we propose a method called response shortcuts, which enables
LLMs to better distinguish between safe and helpful training samples, thereby reducing reliance
on large volumes of safety data. Overall, our work points to a practical direction for alignment in
resource-limited settings, lowering the barrier for the broader community to develop safer models
rather than restricting such capabilities to a few large companies.

Discussions on our impact. This work reduces the cost of safety alignment for LLMs, making
it more feasible for individuals and organizations with limited resources. Rather than a limitation,
focusing on smaller models is key to democratizing safe and private LLM development, ensuring
progress is not restricted to a few large companies (like OpenAI, Meta) but accessible to the broader
community.
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A USAGE OF LLM

We commit to using LLMs for text polishing based on prompts. All polished text are double-checked
by authors to ensure accuracy, avoid over-claims, and prevent confusion.

B OTHER TRAINING DETAILS

Regarding other training details, we implement our experiments for Olmo-1B, Mistral-7B, Qwen2.5-
7B, and Qwen2.5-14B on NVIDIA A100-80GB GPUs. Due to resource limitations, we perform
full-parameter training on 1B models and LoRA training with a rank of 128 on larger models. The
batch size is set to 32 with gradient accumulation every 2 steps for instruction tuning of all the models.
For the 7B and 14B models’ DPO, the batch size is 6 with gradient accumulation every 5 steps for
each experiment. As for the response shortcuts, we choose “Кот”(cat in Russian) as the shortcuts
for the main results, and we also offer the discussion of the other types of shortcuts in Section F.
We use the Llama-3-Guard-8B model for safety evaluation on AdvBench (Zou et al., 2023) and
JailbreakBench (Chao et al., 2024), and for helpfulness testing, we use MT-Bench (Zheng et al., 2023)
with GPT4o-mini (Hurst et al., 2024) for evaluation.

C RESULTS AGAINST JAILBREAK ATTACK

Table 6: The harmful rate of Mistral-7B and Olmo-1B aligned with different methods under GCG
attack.

Method Olmo-1B Mistral-7B

DPOmoresafe 66% 82.7%
DPOrs,1000 69% 34.1%

Apart from the experiments on general cases, we also evaluate the safety behavior of models trained
with DPO or DPOrs,1000 under GCG attack (Zou et al., 2023). Firstly, we obtain the GCG prefix using
the ensemble methods on Llama2-7B-chat, Llama2-13B-chat, and Vicuna-7B for 1, 000 iterations.
After that, we evaluate the model’s safety behavior by attaching the transferable GCG prefix to the
AdvBench, and the results are listed in Table 6. From the table, one can see that the harmful rate of
DPO with our response shortcut is even lower than DPO training with 20× more safety samples on
Mistral, demonstrating our method’s effectiveness in improving safety.

D HELPFULNESS EVALUATIONS ON TRAINED MODELS WITH TRUTHFULQA

Apart from the safety evaluation, we also apply the TruthfulQA generation tasks to vanilla trained
methods our ours to evaluate the model’s helpfulness after instruction tuning. We use the fine-
tuned Llama model to assess the responses’ informativeness1 and correctness2, and then report the
TruthfulQA score (informativeness multiplied by correctness) in Table 7. From the results, it is
evident that the TruthfulQA score for LLMs after training is comparable to the default settings,
demonstrating the effectiveness of our method.

E ROBUST EVALUATION OF OUR METHOD

Table 7: Harmful rate of Olmo trained
on clean or poisoned datasets with our
DPOrs.

Method AdvBench JailBreakBench

Clean 0.4% 4%
Dirty 2.1% 3%

To further evaluate the robustness of our Response Short-
cut, we also compare the harmful rate of LLMs trained
with our DPOrs when adding the additional 500 harm-
ful samples to the original training set following former
work’s setting (Wang et al., 2024), denoted as the dirty
dataset. The harmful samples are collected from the

1huggingface.co/allenai/truthfulqa-info-judge-llama2-7B
2huggingface.co/allenai/truthfulqa-truth-judge-llama2-7B
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Figure 7: The TruthfulQA score of LLMs after instruction tuning.

unused subset of HH-RLHF’s safety subset, with the re-
jected responses. Such a scenario can simulate scenarios
when the datasets unintentionally mix some harmful samples when collecting the data from unreliable
third parties. Due to the time limits, we only conduct experiments on Olmo-1B, listed in Table 7.
From the results, one can see that our DPOrs can still perform robustly in this setting, as the harmful
rate does not increase much when training on the dirty dataset with our DPOrs.

F INFLUENCE OF DIFFERENT SHORTCUTS IN OUR METHODS

In the main results, we only choose the response shortcuts to be Кот inspired by former work (Rando
& Tramèr, 2024). To further verify our methods’ robustness against different response shortcuts, we
choose more token combinations with low activations on LLM weights, like θα (a simple combination
of Greek alphabet), and “[SAFE]” (a new token we added to the tokenizer). The harmful rates of
Olmo-1B and Mistral-7B trained on these response shortcuts are listed in Table 8. From the table,
one can see that although different choices of response shortcuts may slightly influence the harmful
rate of LLMs after DPO training, the results are stable in general. The results demonstrate that our
response shortcuts can stably reduce the LLMs’ need for safe samples and accelerate LLMs’ safety
alignment. We also note that adding new tokens here performs better. The possible reason may be
that the new token has not been trained before and can be easily assigned as new shortcuts of safety.

Table 8: The harmful rate of LLMs aligned by DPO with different response shortcuts on HH-RLHF
helpful and 1000 samples safety data from HH-RLHF on AdvBench. Baseline denotes the vanilla
DPO methods without our response shortcuts, “[SAFE]” is a new token we added to the tokenizer.

Model Vanilla DPO Кот θα [SAFE]

Olmo-1B 70.1% 0.4% 5.7% 2.1%
Mistral-7B 25.4% 8.6% 10.1% 5.7%

G PROOF OF PROP. 3.1

Before the proof, we would like to restate the proposition.
Proposition. Restate Prop. 3.1] The overlap region for P1 and P2 can be defined as follows,

A := {X : |logPsafe(X)

Phelp(X)
| ≤ 1}.

For any X ∼ P (X) and the Y ∈ Rd is Ysafe or Yhelp defined in Table 4 depends on X’s choice,
andthe negative log-likelihood for the LLM θ’s lower bound can be defined as follows,

L(θ) ≥ d

2
log(2πeσ2) +

η

2σ2
(1− J)∆2, (15)
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where η = 1
1+e

(
1− 1

1+e

)
, and J = KL(Psafe∥Phelp) + KL(Phelp∥Psafe), ∆ is the constant

satisfying ∥µsafe(X)− µhelp(X)∥ ≥ ∆ > 0.

Proof. For any measurable mθ, the NLL can be written as

L(θ) = d
2 log(2πσ

2) + 1
2σ2 EX∼P (X)

[
EY∼P (Y |X)∥Y −mθ(X)∥2

]
. (16)

Let µ(x) := E[Y |X = x]. Using bias–variance decomposition, for any vector a, we have

E∥Y − a∥2 = tr
(
Cov(Y )

)
+ ∥E[Y ]− a∥2. (17)

Thus,

EY |X=x∥Y −mθ(x)∥2 = tr
(
Cov(Y |X = x)

)
+ ∥µ(x)−mθ(x)∥2 ≥ tr

(
Cov(Y |X = x)

)
.

Inserting this into equation 16 and taking expectation over X , we have

L(θ) ≥ d
2 log(2πσ

2) + 1
2σ2 EX∼P (X)[tr(Cov(Y |X))] . (18)

Next, we compute Cov(Y |X). We suppose Y ∼ N
(
µ(X), σ2I

)
’s mean distribution µ(X) obey,

µ(X) = α(X)µsafe(X) + (1− α(X))µhelp(X). (19)

where

α(X) =
psafe(X)

psafe(X) + phelp(X)
. (20)

Then with the law of total variance, we have

Cov(Y |X) = σ2I+ α(X)(1− α(X))(µsafe(x)− µhelp(X))(µsafe(X)− µhelp(X))⊤. (21)

Taking the trace gives

tr(Cov(Y |X)) = d σ2 + α(X)(1− α(X))∥µsafe(X)− µhelp(X)∥2. (22)

Taking it into equation 18, we have

L(θ) ≥ d

2
log(2πσ2) + 1

2σ2 EX∼P (X)

[
dσ2 + α(X)(1− α(X))∥µsafe(X)− µhelp(X)∥2

]
=

d

2
log(2πeσ2) + 1

2σ2

∫
α(X)(1− α(X))∥µsafe(X)− µhelp(X)∥2 p(X) dX.

Since the integrand is nonnegative, we restrict the domain to A and the lower bound can be rewrite as
follows:

L(θ) ≥ d

2
log(2πeσ2) +

1

2σ2

∫
A
α(X)

(
1− α(X)

)
∥µsafe(X)− µhelp(X)∥2 p(X) dX. (23)

Moreover, on A one has

α(X) ∈
[

1
1+e ,

1
1+e−1

]
, ⇒ α(x)(1− α(x)) ≥ η :=

1

1 + e

(
1− 1

1 + e

)
.

Hence

L(θ) ≥ d

2
log(2πeσ2) +

η

2σ2

∫
A
∥µ1(X)− µ2(X)∥2 p(X) dX. (24)

Finally, the mass of A under p can be bounded via KL:∫
A
p(X) dX ≥ 1− J

2
.

In particular, if ∥µ1(x)− µ2(x)∥ ≥ ∆ > 0 for all x ∈ At, then

L(θ) ≥ d

2
log(2πeσ2) +

η

2σ2

(
1− J

2

)
∆2. (25)
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