Multimillion cell self-supervised representation learning enables organ-scale
tissue niche discovery

Alex J. Lee! Alma Dubuc! Michael Kunst? Shenqin Yao? Nicholas Lusk? Lydia Ng?> Hongkui Zeng >
Bosiljka Tasic’> Reza Abbasi-Asl '3

Abstract

Spatial transcriptomics (ST) offers unique oppor-
tunities to define the spatial organization of tis-
sues and organs, such as the mouse brain. We es-
tablish a workflow for self-supervised spatial do-
main detection that is scalable to multimillion-cell
datasets and analysis of organ-scale ST datasets.
This workflow uses a self-supervised framework
for learning latent representations of tissue niches.
We use a novel encoder-decoder architecture,
which we named CellTransformer, to hierarchi-
cally learn higher-order tissue features from lower-
level cellular and molecular statistical patterns.
CellTransformer is effective at integrating cells
across tissue sections, identifying domains highly
similar to ones in existing ontologies such as
Allen Mouse Brain Common Coordinate Frame-
work (CCF) while allowing discovery of hundreds
of uncataloged areas with minimal loss of domain
spatial coherence. CellTransformer advances the
state of the art for spatial transcriptomics by pro-
viding a performant solution for the detection of
fine-grained tissue domains from spatial transcrip-
tomics data.

1. Introduction

Hierarchical spatial organization is ubiquitous in tissue
and organ biology. Systematic, high-quality and high-
dimensional phenotypic measurements of this organization
via experimental tools such as spatial transcriptomics, mul-
tiplex immunofluorescence, and electron microscopy, are
becoming available as large, open datasets. However, trans-
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forming this complex data into a useful representation can
be difficult, even for fields with a wealth of prior knowledge,
such as neuroanatomy.

Datasets such as the Allen Brain Cell Mouse Whole Brain
(ABC-MWB) Atlas (Yao et al., 2023; Zhang et al., 2023), a
multi-million cell single-cell RNA sequencing (scRNA-seq)
and spatial (MERFISH) atlas, provide unprecedented op-
portunities to investigate whether computational tools can
help biologists understand spatial cellular and molecular
organization. However, the size of these datasets presents
computational challenges for existing methods. Many exist-
ing methods operate on large intermediate data structures
such as pairwise distance matrices (Haviv et al., 2024; Zhou
et al., 2023; Hu et al., 2021) precluding scaling into the
millions or tens of millions.

We implement representation learning and clustering work-
flow focusing on cellular subgraphs. Our model learns to
condition cell-type specific gene expression predictions us-
ing this neighborhood context token. The model thus learns
to predict expression of cell types in arbitrary cell neigh-
borhoods. We show representation allows for recovery of
important anatomically plausible spatial domains while re-
maining computationally efficient.

We evaluate our pipeline, CellTransformer, on using the
ABC-MWRB dataset (3.9 million cells collected with a 500
gene MERFISH panel) (Yao et al., 2023) demonstrating its
effectiveness in producing completely data-driven spatial
domains of the mouse brain by comparing the results to
the Allen Mouse Brain Common Coordinate Framework
version 3 (CCFv3) (Wang et al., 2020). CCF is a consensus
hand-drawn 3D reference space compiled from a large multi-
modal data corpus. Annotations feature labels at three levels
of coarseness (from 25 regions at coarse-grain to 670 at fine-
grain). Compared with other methods, CellTransformer
excels at identifying spatial domains which are spatially co-
herent and biologically relevant. CellTransformer domains
also reproduce known regional architecture.
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2. Results

2.1. The CellTransformer architecture and domain
detection workflow

CellTransformer is a graph transformer that we train to
learn latent representations of single cell neighborhoods
or subgraphs. The model is trained to condition masked
expression predictions on tissue context. We restrict this
graph to a small neighborhood subgraph of the whole-tissue-
section graph by only modeling cells within a user-specified
distance from a given center cell, which we refer to as a
reference cell. We model each cell within this neighbor-
hood as a token. Truncating neighborhoods using a fixed
spatial threshold allows the network to account for the vary-
ing density of cells in space. Consequently, our framework
incorporates two main facets of neuroanatomical classifica-
tion, incorporating both cytoarchitecture (relative density
and proximity) and molecular variation (cell type and RNA-
level variation) in the data.

Cell tokens are generated by composing cell-type and gene
expression information. Representations are then refined by
a vanilla transformer encoder. Tokens within each neighbor-
hood are then aggregated using a learned pooling operation
to produce a single token representation of the entire tissue
context. The model receives a new mask token represent-
ing the reference cell-type to predict its gene expression
following the operation of several transformer decoder lay-
ers (Supplementary Figure S.1b). Importantly, during this
process, only the mask token and the neighborhood repre-
sentation can attend to each other. This operation captures a
hierarchical encoding and decoding process where low level
information (gene and cell type) is produced at the cell token
level and aggregated into a high-level representation. This
high-level representation is then used to conduct the reverse
decoding process (prediction of gene expression from cell
type and tissue context information).

At test time, we extract this neighborhood representation
for each cell, concatenating across sections or animals, and
use k-means clustering to identify discrete spatial domains
(Supplementary Figure S.1c). We will use the term spatial
domain to refer to the output of clustering on embeddings
and cluster to refer to single-cell clusters transferred from
the ABC-WMB single cell taxonomy.

2.2. Data-driven discovery of fine-grained spatial
domains in the mouse brain using ABC-WMB

The ABC-WMB spatial transcriptomics dataset contains
data from five mouse brains. One animal was processed by
the Allen Institute for Brain Science with a 500 gene MER-
FISH panel and 53 coronal sections (Yao et al, 2023)(Yao
et al., 2023) The remaining four other animals, generated
in Zhang et al. (2023)(Zhang et al., 2023) were collected

with a 1129 gene panel. Sections from two of these ani-
mals (“Zhuang 17, 147 sections; and “Zhuang 2”, 66 sec-
tions) were sampled coronally. The other two animals in
the dataset (“Zhuang 3, 23 sections; and “Zhuang 4, 3
sections) were sampled sagittally.

We first trained CellTransformer on the Allen 1 dataset, sub-
sequently extracting embeddings for each cell’s neighbor-
hood, which we defined as a set of cells within a fixed size
square around that cell. We then clustered these embeddings
using k-means. At higher numbers of domain (higher k),
we observed isolated cases with non-contiguous domains in
the striatum and no where else in the brain. These domains
appear to be biologically plausible and resemble those iden-
tified in (Ollivier et al., 2024). However, neuroanatomical
standard is to study spatially contiguous regions. There-
fore we also optionally introduced a smoothing step prior to
k-means, which we applied to spatially smooth the embed-
dings. See Supplementary Note 1 for a discussion on the
effects of smoothing on detected domains and of the striatal
domains.

We generated domains at k=25, 354, and 670, to match the
division, structure, and substructure annotations in CCFv3,
displaying domains for four consecutive tissue sections (Fig-
ure 1). We also provide representative images of spatial clus-
ters across the brain (28/53 sections) at different k in Sup-
plementary Figures figs. S.2 to S.4. Low domain numbers
such as k=25 broadly divide the brain into neuroanatomi-
cally plausible patterns, with subregions of striatum (dorsal
and ventral marked in Figure 1) and cortical layers clearly
visible. A comparison of cortical layers across these sec-
tions shows that CellTransformer domains at k=25 are well
matched to CCF (Supplementary Figure S.5) and correctly
identify major classes of layers (1, 2/3 4, 5, and 6) across
somatosensory and somatomotor cortex. In particular, we
point out the excellent correspondence of domains across
tissue sections at k=25 across the entire dataset (Supple-
mentary Figure S.2), with nearly perfect consistency across
regions.

At k=354, anterior-posterior subdivisions emerge such as the
presence of layer 4 in the motor cortex(Yao et al., 2023) (Fig-
ure S.5). Historically, the mouse motor cortex was thought
to lack a granular layer 4, however recently, MERFISH,
transcriptomic and epigenomic studies have confirmed its
existencel,15,16. At k=100 and k=354, we find a domain
corresponding to Layer 4 in the somatosensory cortex which
clearly extends to layer 4 in the motor cortex.

At k=670, the cortical layers identified at lower resolution
are further partitioned into superficial, intermediate, and
deep strata within several layers. We visualize cortical lay-
ers across sections in depth (Figure 1b), showing CellTrans-
former not only identifies fine superficial-deep structure
within cortical layers but also preserves the boundary be-
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Table 1. Model performance (Allen 1 dataset). CCF labels are human generated; CT is CellTransformer. Bold indicates best performance.

METRIC k CT CT (-sMm00TH) CELLCHARTER SPIRAL K-MEANS CCF
N M 25 0.540 0.540 0.304 0.365 0.392 -
Do e D 354 0.609 0.609 0.527 0.407 0.481 -
NFORMATION (NMI) 670  0.642 0.643 0.566 0.438 0.525 -
A R 25 0.280 0.268 0.111 0.181 0.074 -
. DJUSTEADRI AND 354 0.134 0.129 0.106 0.080 0.102 -
NDEX (ARI) 670 0.101 0.100 0.082 0.055 0.089 -

25 0.741 0.843 0.752 0.726 0.747 -
MAX COMPOSITION 354 0.893 0.895 0.819 0.767 0.726 -
SIMILARITY 670  0.949 0.944 0.840 0.829 0.746 -

25 0.822 0.819 0.798 0.077 0.826  0.899
SPATIAL 354 0.675 0.680 0.468 0.020 0.477  0.819
SMOOTHNESS 670  0.652 0.656 0.412 0.016 0.402  0.743

25 0.920 1.0 0.880 0.240 1.0 -
PROPORTION 354  0.698 0.992 0.147 0.011 0.0 -
DISCRETE 670  0.667 0.964 0.085 0.009 0.0 -

tween somatosensory and motor cortex (marked in thick
black dotted lines in Figure 1b). Taken together these results
showed that CellTransformer robustly describes previously
known anatomical structures.

We compared CellTransformer to several other workflows to
capture spatial coherency and multiresolution neuroanatom-
ical annotations in CCF at the division, structure, and sub-
structure levels. For comparison, we used two recent meth-
ods, CellCharter (Varrone et al., 2024) and SPIRAL (Guo
et al., 2023) that are scalable to millions of cells as bench-
marks. Additionally, we implemented a machine learning
baseline that employs k-means clustering on cellular neigh-
borhoods (represented as cell type count vectors). To quan-
tify the relative effect of smoothing on CellTransformer
results we report both unsmoothed and smoothed metrics.

We first computed the normalized mutual information and
adjusted rand indices relative to the CCF label. CellTrans-
former performs better than alternatives at every resolution.
To further quantify the similarity of detected domains with
CCF annotations, we compared the cell type composition
of domains using cell type calls from the ABC-WMB tax-
onomy. We chose the subclass cell type level, extracting
for each domain and for each method a 338-long cell-type
vector. We calculated the Pearson correlation of cell type
composition vectors computed using the CCF regional an-
notations at division (25), structure (354) and substructure
(670) levels against those of the various methods at the
corresponding number of spatial domains. First, for each
data-driven domain, we computed the maximum correlation
to any CCF domain at the same CCF annotation resolu-
tion averaging these numbers across domains. CellTrans-
former outperforms other methods at mid-granularity and
fine-granularity (Table 1).

To quantify the spatial coherence of domains, for each cell
we identified its nearest 100 spatial neighbor cells. We then
quantified the proportion of neighbor cells within the same
spatial domain label as the starting cell (Table 1). Cell-
Transformer outperforms CellCharter (58.2% better spatial
coherence at 670 domains) and SPIRAL (4091.2%). Cell-
Transformer also outperforms the machine learning base-
line based on k-means clustering on cellular neighborhoods
(61.9% better spatial coherence). For reference, we include
the CCF parcellation as an upper bound of hand-drawn,
human generated annotation. From these hand drawn an-
notations, we computed a cutoff to categorize data-driven
domains as spatially discrete. We first averaged the spatial
smoothness across each CCF domain at k=670 and then com-
puted the median smoothness (0.633). We then repeated the
same process for each of the data driven domains, using the
same cutoff. CellTransformer produces significantly more
discrete regions than comparator methods. Interestingly, the
unsmoothed embeddings perform better on average, which
we attribute to the fact that our smoothing procedure is
isotropic and may not respect fine laminar structure in the
brain.

2.3. Multi-animal analysis

In order to investigate CellTransformer’s ability to integrate
across animals, we trained a new model from scratch on the
(Zhang et al., 2023) MERFISH data, which uses an 1129
gene panel and is split over four animals, with both coronal
(Zhuang 1 and 2) and sagittal sections (Zhuang 3 and 4).
We computed embeddings for each neighborhood as in the
previous analysis and performed k-means, concatenating
representations for all mice and sections. Spatial domains in
sequential tissue sections appeared highly concordant across
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Figure 1. Representative images of spatial domains discovered using CellTransformer on the Allen 1 dataset (53 coronal sections and 500
gene MERFISH panell) and comparison to CCF. (a.) Comparison of automated domain discovery at three resolutions (first three columns)
and CCF (last). Each dot is a cell and within columns are colored by k-means cluster. (b.) Single hemisphere images of same tissue
sections in a. domains fit at k=670, zoomed in on cortical layers of motor cortex (MO) and somatosensory cortex (SS). CCF boundaries
are shown in semi-transparent lines, with the boundary between SS and MO outlined in larger black dotted lines.

all four mice (Supplementary Figure S.6) at the 50-domain
resolution. We used 50 domains to facilitate clear visual-
ization of the domains across animals with relatively few
colors. Coronal and sagittal sections across mice clearly
corresponded anatomically. Cortical layers were highly con-
sistent across animal and section orientation. Structures
that appear in the coronal view can be readily identified in
the sagittal sections. For example the hippocampal forma-
tion (blue) is well delineated in sections 088 for Zhuang 1,
section 044 for Zhuang 2, and across displayed sections of
Zhuang 3 and Zhuang 4. Despite a relatively low number of
cells in mouse 4 (162,579 cells versus more than 1.5 million
for each of the other animals), nearly all spatial domains
observed for Zhuang 4 are present in other animals.

We quantified the robustness of CellTransformer domains
in a multi-animal context across and within Zhuang 1-4
datasets. We ran clustering and identified domains at the
three values of k: 25, 333, 630. These k values correspond
to three CCF resolution levels reported by registration in
(Zhang et al., 2023) (note the number of domains differs due
to registration differences). For each k value, we counted
the number of domains observed in all four animals. We
also repeated this analysis without data for Zhuang 4, which
contains far fewer cells than the datasets from other ani-

mals (Figure 6b). We find that even at high resolution (630
domains), 93.3% domains were found in each mouse, show-
ing high consistency of CellTransformer domains across
datasets. With the Zhuang 4 included, at 630 domains,
80.0% domains were found in every animal.

Discussion

This work demonstrates that a self-supervised, cellular
neighborhood based strategy for tissue niche can be used
to replicate fine-grained human annotations in large spa-
tial transcriptomics datasets. The representations learned
in our model can be clustered to identify finer-scale spatial
domains directly from local cellular and molecular informa-
tion alone, but can produce biologically plausible domains.
These domains are also spatially consistent both within and
across tissue sections and even over multiple animals.

Impact Statement

Our work addresses a critical bottleneck in spatial transcrip-
tomics analysis that has limited organ-scale tissue niche
discovery. We enable data-driven domain detection at res-
olutions finer than CCF, potentially identifying previously
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unidentified brain areas. This capability may contribute to
the acceleration systematic neuroanatomical studies of the
mammalian brain in both health and disease and has impli-
cations for a variety of applications where spatial cellular
relationships are under study. Our method also may be used
to study individual-level variation in neuroanatomy at the
cellular level, which historically has been difficult to study.
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A. Appendix.
A.1. Supplementary Methods
A.1.1. DATA PREPROCESSING

Allen Institute for Brain Science dataset preprocessing We downloaded the log-transformed MERFISH probe counts and
metadata for the Allen Institute for Brain Science animal (“Allen 1) from the Allen Institute public release (https://
alleninstitute.github.io/abc_atlas_access/intro.html) access for ABC-MWB.The Allen 1 dataset
is composed of 53 coronal sections. The MERFISH probe set included 500 genes. Serial sections were collected at 200 ym
intervals. We used the taxonomy from the 20231215 data release. Allen 1 is composed of 3,737,550 cells. We transformed
the (x, y) coordinates of each cell into microns instead of mm as provided. Otherwise the dataset was used as-is for neural
network training.

For the Zhuang datasets, data were downloaded from the ”20230830” data release from the Allen Institute ABC-MWB
public data release. Two animals (“Zhuang 1” and “Zhuang 2”) were collected with coronal sections. The other two animals
(“Zhuang 3” and “Zhuang 4”’) were collected sagittally. Serial sections for Zhuang 1 (female) were collected at 100 ptextm
intervals, while serial sections for the other animals (all male) were collected at 200 um intervals. The size of the MERFISH
probe set included 1129 genes. Zhuang 1 and Zhuang 2 consist of 2,846,909 cells and 1,227,409 cells, respectively. Zhuang
3 and Zhuang 4 consist of 1,585,844 cells and 162,579 cells, respectively. We transformed the (X, y) coordinates of each cell
into microns instead of mm as provided. Otherwise, the data were used as-is for neural network training.

A.1.2. CELLULAR NEIGHBORHOOD CONSTRUCTION

We consider cells in the same neighborhood as a reference cell if the distance between them is within a box of fixed size.
For all MERFISH datasets we used a box width of 85 pm.

A.1.3. SPATIAL DOMAIN DETECTION

Once trained, we apply CellTransformer to a given dataset and instead of extracting reference cell tokens we extract the
neighborhood representation. We then cluster this representation using k-means. We use the cuml library to perform this
operation on GPU (cuml . KMeans), with arguments n_init=3, oversampling_factor=3,and max_iter=1000.

A.1.4. OPTIONAL SMOOTHING OF EMBEDDINGS

We observe spatial domains are spatially smooth. However in the case that there is a high-frequency signal that the end-user
would like to filter, we optionally introduce a step prior to k-means where we smooth the embeddings using a Gaussian filter.
For all comparisons, smoothing was performed with a Gaussian filter with 40 micron full-width at half maxima (sigma of
12.01 microns).

A.1.5. MODEL FITTING ON THE ALLEN | DATASET

We used an 80%-20% train-test split proportion (random splitting across the entire dataset) and the ADAM optimizer over
40 epochs. We perform a linear warmup for 500 steps to a peak learning rate of 0.001 and use an inverse-square root learning
rate scheduler to decay the learning rate continuously. We use a weight decay value of 0.00005 which we do not warm up.

A.1.6. MODEL FITTING ON ZHUANG DATASETS

We perform training from scratch without transfer. We trained for 40 epochs with the same settings as for the Allen 1 with
the exception of adapting projections to 1129 genes instead of 500.

A.1.7. REGIONAL MATCHING WITH CCF COMPUTATION

To quantify overall similarity of regions extracted using CellTransformer with CCF, we first extract cell type composition
vectors for each region at a given level of the hierarchy. For all comparisons in Figure 2, we use the subclass level (338
cell types), resulting in k-region by 338 matrices. For each region derived from one of the tested models, we compute two
quantities: the best match (maximum value of Pearson correlation, non-exclusively) to any CCF (Figure 2d) or an exclusive
match (using the linear sum assignment algorithm) to pair the regions from either set one-to-one (Figure 2e). We then
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computed the average Pearson correlation across the paired matches as the metric. We use scipy.optimize’s implementation
to solve the linear sum problem.

A.1.8. CELLCHARTER

To run CellCharter we first generated scVI embeddings using the default settings for depth and width of the network and with
the tissue section labels as conditional batch variables. We trained for 50 epochs using the early_stopping=True setting.
We then aggregated across 3 (default settings), 6, 9 layers using the cellcharter.gr.aggregate_neighbors
function. We then applied CellCharter’s Gaussian mixture model implementation at various choices of the number of
Gaussians. We could not run the mixture model with our hardware (A6000, 48GB GPU memory) for more than 9 layers,
which was also the number which produced the highest correspondence with CCF and is reported in the text.

A.1.9. SPIRAL

To run SPIRAL we generated edge sets for 40pm, 85um, and 170m neighborhood radii. SPIRAL requires supervision on
single-cell types so for this we use the subclass cell type levels. We trained models across neighborhood sizes for 1 epoch
and then chose the neighborhood size with best performance (170um) and trained this model to saturation (10 epochs).
SPIRAL uses four objective functions so to assess saturation we averaged them. We note that SPIRAL does not use a
training and testing set split in their training, making it difficult to assess an optimal stopping point. For the k=354 and
k=670 domain discovery analyses the SPIRAL clustering pipeline produced an out-of-memory error and we instead used
our own pipeline with k-means on SPIRAL embeddings.

A.1.10. NEAREST-NEIGHBOR SMOOTHNESS COMPUTATION

To quantify smoothness of the spatial domains, we use a nearest-neighbor approach. We extract approximate spatial
neighbors for each cell using cuml . NearestNeighbor with 100 neighbors, restricting neighbors to be within the same
tissue section. For a given domain set, either from CCF, CellTransformer, or CellCharter, we extract the spatial domain label
of the given cell and count the proportion of times that cell is observed in the 100 neighbors. These proportions are averaged
across all cells and tissues.

A.1.11. ZHUANG LAB DATASET PER-ANIMAL CCF COMPARISON

We contrast two methods of extracting spatial domains from the four animals in the Zhuang lab datasetl. We first fix k, the
number of desired spatial domains. Then we fit one k-means model on all of the neighborhood embeddings for all four
(Zhuang 1, 2, 3, and 4) mice together. We also fit a k-means model to the embeddings of the mice separately. We then
compute the similarity of these region sets using the same method used to quantify differences between CellCharter and
CellTransformer by comparing their regional cell type composition vectors.
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A.2. Supplementary Note 1

When scaling up the number of regions past 500 in the Allen 1 dataset, we observed that almost all spatial clusters were
spatially smooth except for a recurring pattern in the striatum. We plot (Supplementary Figure S.7) six sequential sections
where we identified an irregular (which we define here as a broadly non-convex shape that does not form relatively singular
connected component) pattern of cells in the striatum and only the striatum (note the spatial uniformity of areas surrounding
striatum in cortex and endopiriform area, nucleus accumbens etc.). We identified cells in these areas and found they were
mostly non-neuronal, with astrocytic types (such as 1163 Astro-TE NN_3, Supplementary Figure S.7) forming a large
proportion of cells.

We sought to understand whether these spatial clusters might be biologically relevant or somehow related to noise. A recent
paper, Ollivier et al. (2024) identified a novel population of Crym+ astrocytes in a similar spatial distribution as observed in
our regions, specifically in a dorsoventral and lateromedial distribution (see Supplementary Figure 11e for reproduction from
Ollivier et al., granted with permission). As Crym was included in the MERFISH panel, we quantified Crym expression
in astrocytes within these areas, finding that all but two of these spatially irregular domains had very high levels of Crym
expression. Notably, the two groups with lower expression, spatial clusters 457 and 758, were the most dorsolateral, and are
distributed where Crym+ astrocytes were not observed in Ollivier et al. We reasoned that these spatial clusters may have
biological relevance.

However, to simplify downstream analyses and conform with neuroanatomical conventions we applied a simple smoothing
operation (see Supplementary Methods), which removed this spatial cluster in successive clustering operations. We used a
very small smoothing window (12 micron sigma, or 40 micron full-width at half-maxima) and found the order of ranked
methods and their relative performance changes were not significantly affected.
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A.3. Supplementary Figures
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Figure S.1. Overall training and architectural scheme for CellTransformer. (a.) During training, a single cell is drawn (we denote this
the reference cell, highlighted in red). We extract the reference cell’s spatial neighbors and partition the group into a masked reference
cell and its observed spatial neighbors. (b.) Initially, the model encoder receives information about each cell and projects those features
to d-dimensional latent variable space. Features interact across cells (tokens) through the self-attention mechanism. These per-cell
representations and an extra token acting as a register token are then aggregated into a single vector representation, which we refer to as
the neighborhood representation. This representation is concatenated to a mask token which is cell type-specific and chosen to represent
the type of the reference cell. A shallow transformer decoder (dotted lines) further refines these representations and then a linear projection
is used to output parameters of a negative binomial distribution modeling of the MERFISH probe counts for the reference cell. (c.) Once
the model is trained, we compute embeddings (one for each neighborhood/reference-cell pairing) and concatenate these embeddings
within the tissue section datasets and across tissue sections. Concatenating embeddings across tissue sections produces region discovery at
organ level. We then cluster these embeddings using k-means to discover tissue domains across sections.
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Figure S.2. CellTransformer spatial domains (left) and the corresponding CCF annotations (right) organized in 3 columns for roughly half
of the sections in the Allen 1 dataset, approximately every other section. CellTransformer domains were calculated at k=25 clusters.
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Figure S.3. CellTransformer spatial domains (left) and the corresponding CCF annotations (right) organized in 3 columns for roughly half
of the sections in the Allen 1 dataset, approximately every other section. CellTransformer domains were calculated at k=1000 clusters.
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Figure S.4. CellTransformer spatial domains (left) and the corresponding CCF annotations (right) organized in 3 columns for roughly half
of the sections in the Allen 1 dataset, approximately every other section. CellTransformer domains were calculated at k=1000 clusters.
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Figure S.5. Four sequential sections of the Allen 1 dataset (200 um sampling interval between sections1) displayed with CellTransformer
labels at varying resolution alongside CCF registration results. MO: motor cortex. (a.) CCF registration of four sequential sections shown
in Fig. 1. cortical layers are marked based on CCF annotations. (b.) k=25 spatial domains with CellTransformer shown with regional
boundaries from CCF in light gray. Putative cortical layers are annotated, showing CellTransformer replicates known cortical layers.
(c.) 25 domains shown without CCF annotations to facilitate visualization. (d.) Same sections now shown with 100 domains to help
show the transition from coarse (25 domains) to fine (100 domains). Sublayers of cortex are identified including layer 4 in motor cortex
which transcriptomic studies have verified but has been difficult to identify using histological approaches. (e.) 354 domain zoom in on
the same sections, showing consistency of layer 4 motor cortex detection as well as an anterior-posterior subdivision across motor and
somatosensory cortical layers and clear distinction of cortical layers that lie within motor and somatosensory areas.
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CellTransformer domains for MERFISH (Zhang et al.) results
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Figure S.6. Investigation into performance of CellTransformer on the Zhuang 1-4 datasets (239 sections, both coronal and sagittal, with a
1129 gene MERFISH panel (Zhang et al., 2023)). (a.) Representative images of all four mice arranged by column. The section number
for each mouse is shown in the upper left of each image. Note that Zhuang 4 only had three sections. For each image, each dot is a
cell neighborhood and colors come from a spatial clustering with k=50 (number of CCF regions at structure level), fit by concatenating
embeddings across mice. (b.) Quantification of number of per-mouse specific spatial clusters, computed by clustering at different k and
computing the number of clusters found for all mice (4 animals) and for the three mice with the most cells per mouse (Zhuang 1, 2, and
3). Note that because serial sections were collected at a higher frequency (100um versus 200um), different areas of the brain will have
marginally higher coverage in one brain or another.
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Figure S.7. Representative images of spatial clustering from CellTransformer models with k=1300 identified using the Allen 1 dataset.
(a.) Sequential tissue sections (50 is most anterior) showing smoothness of spatial domains across and within tissue sections as well as
consistent appearance of an irregular spatial pattern inside caudoputamen. (b.) Zoom in on the striatum for the same tissue sections.
(c.) Plots showing percentage of cell types of different neurotransmitter for the non-uniform spatial clusters as well as the distribution
of unique cell types of a given neurotransmitter type. (d.) Supertype-level counts in putative subpopulations of caudoputamen. (e.)
Reproduction with permission of results from (Ollivier et al., 2024). showing the distribution of Crym mRNA and its protein product
(S100B), clearly identifying a medial population of Crym+ neurons which resembles the spatial pattern observed in clusters 758 and 457
(dorsoventral and Crym-). (f.) Dotplot of cell type expression proportions and mean counts per group (raw counts) in identified irregular
caudoputamen areas.
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