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Abstract

Language Model (LM) pruning compresses the001
model by removing weights, nodes, or other002
parts of its architecture. Typically, pruning fo-003
cuses on the resulting efficiency gains at the004
cost of effectiveness. However, when looking005
at how individual data points are affected by006
pruning, it turns out that a particular subset of007
data points always bears most of the brunt (in008
terms of reduced accuracy) when pruning, but009
this effect goes unnoticed when reporting the010
mean accuracy of all data points. These data011
points are called PIEs and have been studied in012
image processing, but not in NLP. In a study013
of various NLP datasets, pruning methods, and014
levels of compression, we find that PIEs impact015
inference quality considerably, regardless of016
class frequency, and that BERT is more prone017
to this than BiLSTM. We also find that PIEs018
contain a high amount of data points that have019
the largest influence on how well the model020
generalises to unseen data. This means that021
when pruning, with seemingly moderate loss to022
accuracy across all data points, we in fact hurt023
tremendously those data points that matter the024
most. We trace what makes PIEs both hard and025
impactful to inference to their overall longer026
and more semantically complex text. These027
findings are novel and contribute to understand-028
ing how LMs are affected by pruning.029

1 Introduction030

Deep neural networks (NNs) are becoming increas-031

ingly larger, with remarkable improvements to their032

inference capabilities, but also very high computa-033

tional demands. The latter has motivated research034

in the area of NN pruning, whose goal is to re-035

duce a model (in terms of its parameters, nodes,036

layers, or any other aspect of its architecture) to037

a smaller version, without significant loss of in-038

ference quality. Pruning has been shown to pro-039

duce smaller, hence more efficient NNs, with small040

loss to their effectiveness (Li et al., 2020a; Hooker041

Class: neutral
Premise:
A group of seven individuals wearing rafting gear,
white water raft down a river.
Hypothesis:
Seven men and women are in a yellow boat.
Unpruned model prediction: entailment
Pruned model prediction: neutral

Class: entailment
Premise:
A woman is painting a mural of a woman’s face.
Hypothesis:
There is a woman painting.
Unpruned model prediction: entailment
Pruned model prediction: contradiction

Table 1: Examples where pruned and unpruned models
disagree (from the SNLI dataset).

et al., 2019). Similar findings are also reported 042

when pruning Language Models (LMs) (Gupta and 043

Agrawal, 2022; Wang et al., 2020; Sun et al., 2023; 044

Sanh et al., 2020a; Michel et al., 2019) in NLP. 045

When pruning NNs, typically the focus is on the 046

high efficiency gains achieved at the cost of effec- 047

tiveness, commonly measured in terms of test set 048

accuracy. However, when zooming in on precisely 049

how individual data points are affected by pruning, 050

it turns out that models of similar accuracy scores 051

can have notably different weights and therefore 052

make wildly different inferences on a subset of data 053

points. In other words, the similar accuracy scores 054

between pruned and unpruned models do not mean 055

that pruning affects all data points in a uniform 056

way, but rather that some parts of the data distribu- 057

tion are much more sensitive to pruning than others. 058

This effect can go unnoticed when one measures 059

pruning effectiveness in terms of mean accuracy, 060

because taking the mean can hide such important 061

score variations in the data. However, this does not 062

change the fact that certain types of data are dispro- 063
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portionately impacted by pruning, which begs the064

question: what are the characteristics of these data065

points and how important is their detection?066

In response to this, Pruned Identified Exemplars067

(PIEs) are defined as the subset of data points where068

pruned and unpruned models disagree (Hooker069

et al., 2019) (see example in Table 1). Studies070

in image processing reveal that PIEs are harder to071

classify, not only for NNs, but also for humans,072

because they a) tend to be mislabeled (ground truth073

noise), b) may have overall lower quality (inher-074

ently noisy signal), or c) may depict multiple ob-075

jects (more challenging task) (Hooker et al., 2019).076

Hence, this subset of data points where pruned and077

unpruned models tend to disagree are also some of078

the most difficult data points for the model to han-079

dle. PIEs are those critical data points on which we080

would suffer the most damage, if the model were081

to be deployed out in the wild. Despite this, to our082

knowledge, PIEs have not been studied in NLP.083

Motivated by this gap in understanding how LMs084

are actually affected by pruning, we study whether085

PIEs exist in text, what are their textual charac-086

teristics, and what this practically means for infer-087

ence. Using eight pruning methods on two different088

LM architectures (BiLSTM and BERT) and four089

common NLP datasets for sentiment classification,090

document categorisation and natural language in-091

ference, we contribute the first study of PIEs in LM092

pruning for NLP. Our empirical analysis shows that093

there is always a subset of data points where pruned094

and unpruned models disagree, and that this sub-095

set is larger for BERT than BiLSTM. We also find096

that these data points, namely PIEs, are overall se-097

mantically more complex, contain on average more098

difficult words, and have generally longer text than099

the rest of the data. Furthermore, we find that PIEs100

contain a high amount of influential examples, i.e.101

data points that have the largest influence on how102

well the model generalises to unseen data. These103

findings are novel, and practically, they mean that,104

when pruning LMs for efficiency, and in particu-105

lar BERT, with seemingly small drops to overall106

accuracy, we are in fact impacting notably the ac-107

curacy of a particular subset of our data, which108

also happens to be the most critical part of our data109

with respect to how well the model is expected to110

generalise to unseen data, or more simply put, how111

well the model actually learns. This effect is much112

more pronounced for BERT than for BiLSTM.113

2 Pruned Identified Exemplars (PIEs) 114

We formally define PIEs and propose an extension 115

of this definition to multi-label classification. 116

2.1 Formal definition of PIEs 117

Pruned Identified Exemplars (PIEs) are data in- 118

stances1 where the predictions of pruned and un- 119

pruned models differ (Hooker et al., 2019). As- 120

sume a single-label classification task, where each 121

instance x belongs to a single class. Let P = 122

{p1, ..., pN} be the set of N different initializa- 123

tions of the pruned model, and U = {u1, ..., uN} 124

the set of N different initializations of the unpruned 125

model.2 Let m(P, x) be the majority class assigned 126

to x over all the initializations of the pruned model 127

after training. This is computed as the most fre- 128

quently predicted class for the instance x across all 129

N initializations in P , i.e., the mode of the N pre- 130

dicted classes.3 Similarly, m(U, x) is the most fre- 131

quent class predicted by the unpruned model initial- 132

izations. Then, x is a PIE if m(P, x) ̸= m(U, x), 133

i.e., the majority class assigned to x by the pruned 134

and unpruned model is different. 135

2.2 PIEs in multi-label classification 136

We extend the above definition of PIEs to multi- 137

label classification, where an instance x can belong 138

to more than one class. We treat multi-label classifi- 139

cation as multiple single-label classifications: an in- 140

stance x is a PIE, if there exists a class such that the 141

pruned and unpruned models disagree. Let m̃(P, x) 142

be the set of majority classes assigned to x over all 143

the initializations of the pruned models. A class 144

is assigned to the set of majority classes if > N/2 145

initializations of the pruned model predict that x be- 146

longs to that class. Similarly, m̃(U, x) is the set of 147

majority classes assigned by the unpruned model. 148

Then, x is a PIE if m̃(P, x) ̸= m̃(U, x), i.e., the 149

sets of majority classes predicted for x by the 150

pruned and unpruned models differ. The inequal- 151

ity between m̃(P, x) ⊈ m̃(U, x) and m̃(P, x) ⊉ 152

m̃(U, x) means that x is a PIE even if the pruned 153

and unpruned model disagree only on a single class. 154

Holste et al. (2023) propose the following al- 155

ternative way of selecting PIEs in a multi-label 156

setting. For each instance, they compute the av- 157

erage prediction over all initializations. Then, the 158

1We will use the terms instance and data point interchange-
ably henceforth.

2N must be the same for pruned and unpruned models.
3In case of ties, classes are sorted ascendingly by their

associated number, and the first class is assigned.
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Dataset # train # test # val # classes Classification
IMDB 20000 25000 5000 2 single-label
SNLI 549367 9824 9842 3 single-label
Reuters 6737 1429 1440 23 multi-label
AAPD 53840 1000 1000 54 multi-label

Table 2: Dataset statistics after preprocessing.

Scoring →
Scheduling ↓

Impact
Based Magnitude Random

Iterative + Weight
Rewinding IIBP-WR IMP-WR -

Iterative + Fine
tuning IIBP-FT IMP-FT IRP-FT

At Initialization IBP-AI MP-AI RP-AI

Table 3: Our 8 pruning methods. Random cannot be
combined with Weight Rewinding because weights that
are rewinded to their initial values are not random.

instances are ranked by the average prediction, and159

agreement is measured as the Spearman rank cor-160

relation between the rankings for the pruned and161

unpruned models. The 5th percentile of instances162

with highest disagreement (lowest Spearman rank163

correlation) are considered PIEs. This approach164

does not allow to exactly quantify the amount of165

PIEs for the pruned and unpruned models. In ad-166

dition, in Holste et al. (2023), an instance can be167

considered as non PIE even if there is disagreement168

between the pruned and unpruned models, simply169

because that instance is outside the 5th percentile.170

Our definition of PIEs is stricter than Holste et al.’s171

(2023), since disagreement even on a single class172

determines the instance to be a PIE.173

3 Study design174

Our aim is to study whether PIEs exist in text data,175

what are their textual characteristics, and what this176

practically means for inference. We present the177

datasets, LMs, and pruning methods of our study.178

Datasets. We use two single-label datasets: IMDB179

(Maas et al., 2011) for sentiment analysis, and180

SNLI (Bowman et al., 2015) for natural language181

inference. We also use two multi-label datasets182

for document categorisation: Reuters-215784, and183

AAPD (Yang et al., 2018). Statistics are in Table 2184

(see Appendix A.2 for preprocessing details).185

Language Model Architectures. We select two186

common types of LMs to represent both trans-187

formers and Recurrent Neural Networks (RNNs):188

BERT (Devlin et al., 2019), and bidirectional189

4https://www.daviddlewis.com/resources/.

LSTM (BiLSTM) (Hochreiter and Schmidhuber, 190

1997). We train BiLSTM from scratch, but we 191

finetune a pretrained version of BERTBASE. See 192

Table 5 in Appendix A.1 for details on the LMs, 193

and Appendix A.1 for our tuning methodology. 194

Pruning methods. We use eight common pruning 195

methods, shown in Table 3. Each of them is a 196

combination of scheduling and scoring. 197

Scheduling controls the moment and frequency 198

of the pruning iterations during training. We use 199

two scheduling variations: (i) pruning the model 200

before training (at initialization), and (ii) pruning in 201

multiple iterations during training (iterative). Only 202

for iterative pruning, we use two tuning strategies: 203

finetuning and weight rewinding. In finetuning, 204

we retrain the model after pruning and update its 205

weights. In weight rewinding, we rewind weights 206

to their initial state (Frankle and Carbin, 2019). 207

Scoring refers to selecting which weights to 208

prune. A score is given to each LM weight, and the 209

weights with the lowest score according to a thresh- 210

old are pruned. We use 3 scoring variations: 1. The 211

score is the absolute value of a weight (magnitude 212

based pruning (Frankle and Carbin, 2019)); 2. The 213

score is the weight multiplied by its accumulated 214

gradient on 100 randomly sampled data points of 215

the training set (impact based pruning (Lee et al., 216

2019)); 3. The score is randomly assigned a value 217

between 0 and 1 (random (Jin et al., 2022)). 218

Overall, we prune each LM at 20%, 50%, 70%, 219

90%, 99% (see Table 5 in Appendix A.1 for details). 220

For each configuration, we train 30 initializations. 221

This results in 9840 runs (= 2 LMs x 4 datasets 222

x 8 pruning methods x 5 pruning thresholds x 30 223

initializations + 2 LMs x 4 datasets x 30 unpruned 224

model initializations), that require ca. 28000 AMD 225

MI250X GPU hours. Our tuning methodology for 226

pruning is detailed in Appendix A.4. 227

4 Experimental findings 228

We show how pruning impacts inference, the role 229

of PIEs, and the textual characteristics of PIEs. 230

4.1 Pruning and occurrence of PIEs 231

Figure 1 shows the accuracy/F1 of pruned versus 232

unpruned models (see Table 6 in Appendix A.1 for 233

details on the number of parameters pruned). We 234

see that pruning BERT/BiLSTM up to 50% gives 235

overall tolerable drops to accuracy/F1 for most 236

pruning methods. IIBP-FT is the pruning method 237

with the overall smallest drop in accuracy/F1 com- 238
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pared to the unpruned model, and even outperforms239

the unpruned BiLSTM at times. We also see that,240

while unpruned BERT outperforms unpruned BiL-241

STM, pruning BERT hurts accuracy/F1 more than242

pruning BiLSTM, especially for pruning at 70%-243

99%. Hence BERT is more sensitive to pruning244

than BiLSTM, indicating that parameters in BERT245

are not as easily disposable as in BiLSTM. Other-246

wise put, BERT seems to make better use of its247

parameters than BiLSTM, because their removal248

has a bigger impact on it than on BiLSTM.249

Table 4 shows the % of all data points5 that are250

PIEs per model, dataset, pruning method and prun-251

ing threshold. We see that, as the pruning threshold252

increases, so does the proportion of PIEs, with very253

few marginal exceptions. This means that the par-254

ticular subset of data points where unpruned and255

pruned models disagree becomes larger, the more256

we prune. In Table 4 we shade the PIEs of the best257

and worst pruned model (according to their accu-258

racy/F1 in Figure 1) as green and gray respectively.259

We see that the best pruned model (green) has al-260

most always a smaller percentage of PIEs than the261

worst pruned model (gray), per pruning threshold.262

In other words, as the amount of PIEs increases,263

overall accuracy/F1 lowers, meaning that PIEs264

clearly impact inference quality.265

For the multi-label datasets, it is important to266

know, not only the proportion of data points that267

are PIEs, but also their distribution across classes.268

So, Figure 2 plots the distribution of all data points269

versus PIEs, across classes, for IIBP-FT, which is270

the pruner with the best overall F1 in Figure 1. The271

plots of the other configurations are in Appendix272

B.1. We show PIEs resulting from the least (20%)273

and most (99%) pruning, which should capture the274

lowest and highest % of PIEs according to Table275

4. Figure 2 shows that PIEs are found across all276

classes of the dataset, from the least frequent to277

the most frequent class, and roughly follow the278

distribution of all data points across classes. This279

observation, combined with the findings of Table 4,280

means that the impact of PIEs on inference qual-281

ity is considerable on all classes of the dataset,282

regardless of class frequency.283

To probe further into the extent of this impact,284

Figure 3 shows accuracy only on PIEs versus accu-285

racy on all data points, for BERT and SNLI. The286

plots of the other configurations are in Appendix287

5From now on, whenever we refer to all data points, we
mean all data points in the test set, unless otherwise specified.

Single-label
Pruner 20% 50% 70% 90% 99%

IM
D

B
B

E
R

T

IIBP-WR 7 10 10 10 11
IIBP-FT 4 10 13 13 11
IBP-AI 8 10 10 10 50
IMP-WR 4 9 11 12 50
IMP-FT 3 10 14 13 50
MP-AI 6 10 10 12 50
IRP-FT 8 13 12 50 50
RP-AI 10 10 10 50 50

B
iL

ST
M

IIBP-WR 2 3 4 7 10
IIBP-FT 5 5 5 5 3
IBP-AI 2 5 7 10 16
IMP-WR 2 3 4 3 11
IMP-FT 5 5 5 5 5
MP-AI 2 5 6 9 16
IRP-FT 5 5 5 3 29
RP-AI 2 4 6 9 18

SN
L

I
B

E
R

T

IIBP-WR 7 13 16 27 35
IIBP-FT 3 5 8 13 28
IBP-AI 6 12 18 34 47
IMP-WR 5 11 16 30 66
IMP-FT 3 6 12 16 66
MP-AI 5 12 27 35 66
IRP-FT 4 11 17 66 66
RP-AI 8 26 32 66 66

B
iL

ST
M

IIBP-WR 4 5 7 16 29
IIBP-FT 6 5 5 6 23
IBP-AI 4 7 11 23 39
IMP-WR 5 5 5 14 62
IMP-FT 6 6 5 8 32
MP-AI 4 7 12 20 62
IRP-FT 6 5 5 16 46
RP-AI 4 8 13 23 62

Multi-label
Pruner 20% 50% 70% 90% 99%

R
eu

te
rs

B
E

R
T

IIBP-WR 5 8 16 31 100
IIBP-FT 5 6 7 10 32
IBP-AI 6 18 35 84 100
IMP-WR 4 6 14 100 100
IMP-FT 5 6 8 23 100
MP-AI 5 12 32 100 100
IRP-FT 5 10 24 100 100
RP-AI 7 34 41 100 100

B
iL

ST
M

IIBP-WR 4 5 7 14 37
IIBP-FT 4 5 5 5 9
IBP-AI 4 7 14 34 44
IMP-WR 5 5 6 7 29
IMP-FT 5 4 4 6 13
MP-AI 5 6 9 19 33
IRP-FT 5 5 6 7 31
RP-AI 4 7 10 22 35

A
A

PD
B

E
R

T

IIBP-WR 31 40 48 59 81
IIBP-FT 29 37 45 51 63
IBP-AI 34 48 59 78 100
IMP-WR 31 38 49 79 100
IMP-FT 28 40 45 56 100
MP-AI 34 47 57 94 100
IRP-FT 33 63 62 100 100
RP-AI 38 59 76 100 100

B
iL

ST
M

IIBP-WR 26 34 39 64 88
IIBP-FT 41 40 37 28 59
IBP-AI 22 33 53 82 100
IMP-WR 26 32 38 56 83
IMP-FT 39 41 37 34 69
MP-AI 21 30 41 62 86
IRP-FT 41 36 30 44 88
RP-AI 24 35 49 67 87

Table 4: Percentage of datapoints that are PIEs per
configuration. Green and gray mark the percentages of
datapoints that are PIEs for the best (green) and worst
(gray) pruner per dataset and pruning threshold.
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Figure 1: Accuracy/F1 (y axis) of unpruned and pruned LMs per pruning threshold (x axis), over 30 initializations.
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Figure 2: Distribution of all data points and of PIEs at 20% and 99% pruning, across classes sorted by frequency (x
axis), for the multi-label datasets (test set) and IIBP-FT pruner.

B.1 and have overall similar trends. We see that288

accuracy is overall lower on PIEs (orange) than289

on all data points (blue), for both pruned and un-290

pruned models, with few marginal exceptions for291

99% pruning and BILSTM, where the scores are292

almost the same. The fact that accuracy is lower for293

PIEs than for all data points confirms the findings294

reported above. However, interestingly, Figure 3295

also shows that the impact of pruning upon accu-296

racy is much larger on the subset of PIEs than on all297

data points: the gap between the two orange lines298

(PIEs) in Figure 3 is notably larger than the gap299

between the two blue lines (all data points). Even300

when pruning 20%-50%, which according to Fig-301

ure 1 has overall small drops to the mean accuracy302

of all data points for most pruning methods, still,303

the drop in accuracy to the data points of the dataset304

that are PIEs is much larger. This means that PIEs305

always bear most of the brunt when pruning,306

but this effect goes unnoticed when reporting307

the mean accuracy over all data points.308

4.2 Influential examples in PIEs309

The above findings suggest that PIEs are hard for310

inference. Next, we try to quantify this hardness, by311

studying how many of the PIEs are in fact influen- 312

tial examples, i.e. data points that have the largest 313

influence on how well the model generalises to un- 314

seen data, irrespective of whether this influence is 315

positive or negative. We do this using the EL2N 316

score (Paul et al., 2021) as per Jin et al. (2022). 317

Given a model with weights wt during training 318

iteration t, and given an example (x, y) where x 319

is the input and y is its label, EL2N(x, y) is the 320

L2 distance between the predicted probabilities 321

p(wt, x) during t6 and the one-hot label: 322

EL2N(x, y) = E [||p(wt, x)− y||2] (1) 323

Examples are grouped into 20 bins based on their 324

EL2N score percentiles. Higher EL2N scores mean 325

that the model undergoes larger weight updates 326

when the example is presented early in training. 327

So, the bigger the weight changes, the higher the 328

EL2N score, and the higher the influence of an 329

example. Note that the above takes place during 330

training, so we obtain PIEs on the training set. 331

6As the EL2N score is not reliable until at least one epoch
of fine-tuning has been computed (Fayyaz et al., 2022), we
only monitor the scores after the model has undergone training
for at least one epoch (the first epoch that exceeds 30% of the
total training epochs).
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Figure 3: Accuracy (y axis) of unpruned (solid line) & pruned (dotted line) BERT on SNLI, for all data points (blue)
or only for PIEs (orange), per pruning threshold (x axis), over 30 initializations. Each plot is a different pruner.

Figure 4 shows the distribution of PIEs across332

the degree of influence of all data points in the333

training set for IIBP-FT (the rest of the plots are in334

Appendix B.2). We see that PIEs are concentrated335

among the most influential data points (right hand336

side of the plots). This is even more so for BERT,337

where up to 80% - 100% of its most influential338

data points are in fact PIEs, compared to up to 70%339

for BiLSTM. This explains the finding of Section340

4.1 that BERT is more affected by pruning than341

BiLSTM, because (a) more influential examples342

are PIEs in BERT than in BiLSTM, and (b) accu-343

racy/F1 is lower among PIEs than among all data344

points, as we saw in Figure 3. We conclude that a345

considerable amount of those data points that346

have the largest influence on how well the model347

generalises to unseen data are PIEs.348

4.3 Textual characteristics of PIEs349

The above findings motivate the need to understand350

what the text of PIEs actually looks like. We do351

this using the following eight scores of text read-352

ability and length: (1) Automated readability index353

(Senter and Smith, 1967); (2) Coleman–Liau in-354

dex (Coleman and Liau, 1975); (3) Flesch–Kincaid355

grade level (Kincaid Jr et al., 1975); (4) Linsear356

Write (O’hayre, 1966); (5) Gunning Fog index357

(Gunning, 1969); (6) Dale–Chall readability (Dale358

and Chall, 1948); (7) Number of difficult words;359

and (8) Text length, counted as the number of to-360

kens per text. (1)-(6) are different approximators361

of text readability in terms of what formal educa-362

tion level would be needed in order to understand363

the text. (6) approximates comprehension difficulty 364

based on a list of 3000 easily understandable words. 365

(7) is a count of the number of words that are not 366

in the Dale-Chall list of understandable words. 367

We compute the above scores first on all data 368

points and then only on PIEs. Figure 5 shows the 369

resulting plots for SNLI and BERT (the plots of 370

the other configurations are in Appendix B.3). The 371

black horizontal line represents all data points and 372

PIEs having the same scores. Any divergence from 373

this line reflects how much the scores of PIEs differ 374

from those of all data points. E.g., the point 1.05 375

on the y axis of the Gunning Fog index plot means 376

that the text of PIEs is approximately 1.05 times 377

harder to understand than the text of all data points. 378

In Figure 5 we see that the formal education 379

level needed for text understanding is overall higher 380

for PIEs than for all data points (plots (a)-(e) and 381

(g)). We also see that the text of PIEs has overall 382

a larger amount of difficult words (plot (f)), and is 383

on average longer than the text of all data points 384

(plot (h)). Overall, according to the average scores 385

of all pruning methods (turquoise line), PIE text is 386

up to 1.03 times harder to understand than the text 387

of all data points (plots (a)-(e) and (g)), with words 388

that are up to 1.06 times more difficult (plot (f)), 389

and text length that is up to 1.02 times longer (plot 390

(h)). This means that PIEs tend to be semantically 391

more complex than the average text. Note that 392

the scores presented in plots (a)-(g) are designed to 393

approximate human (as opposed to computational) 394

difficulty in understanding text. This implies that 395

PIEs are more difficult than the average text, 396
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Figure 4: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IIBP-FT across pruning thresholds (different colours).

not only for LMs (as shown in Figure 3), but also397

for humans (as shown in Figure 5).398

5 Related work399

Pruning LMs. LM pruning has typically been400

successful when models are first trained and then401

pruned (Li et al., 2020b). Most LM pruning meth-402

ods work either globally or locally (Zhu et al., 2023;403

Sun et al., 2023; Frantar and Alistarh, 2023). In the404

global case, entire neurons, layers, or even large405

sections of the LM are pruned simultaneously. Ex-406

amples include pruning entire attention heads in407

transformer models like BERT without severe in-408

ference degradation (Michel et al., 2019), prun-409

ing entire blocks of layers with substantial effi-410

ciency gains and minimal effectiveness loss (La-411

gunas et al., 2021; Ma et al., 2024), or identifying412

a smaller sub-network, a "winning ticket", within413

a large model that can achieve performance com-414

parable to the original model when trained sepa-415

rately (Yu et al., 2020; Prasanna et al., 2020). Such416

global compression methods can lead to more inter-417

pretable and manageable models, but have the dis-418

advantage that they tend to be architecture-specific.419

Unlike these global approaches, in local pruning,420

LM parameters/weights are pruned one layer at a421

time. This makes local pruning agnostic to par-422

ticular model architectures (LeCun et al., 1989),423

making it possible to compare the effect of prun-424

ing on different types of LMs. As a result, local425

pruning has been successfully applied in NLP (Zhu426

et al., 2023; Sun et al., 2023; Frantar and Alistarh,427

2023; Mishra and Chakraborty, 2021). In our study,428

we use only local pruning methods, allowing us to429

study PIEs in both transformers and RNNs. 430

For BERT in particular, it has been shown that 431

a substantial amount of pruning can be applied 432

during pre-training without significant loss in infer- 433

ence (Sanh et al., 2020b). It has also been shown 434

that specific parameters that are redundant to such 435

transformer architectures can be accurately identi- 436

fied by dedicated second-order pruning methods, 437

such as Optimal BERT Surgeon (Frantar and Al- 438

istarh, 2022). However, another body of recent 439

work also shows that complex LM pruning meth- 440

ods do not always work better than simpler, more 441

straightforward pruning (Sun et al., 2024; Frantar 442

and Alistarh, 2023). 443

Finally, researchers have also assessed, not only 444

the accuracy, but also the loyalty (preservation of 445

individual predictions) and robustness (resilience 446

to adversarial attacks) of pruned BERT models (Xu 447

et al., 2021). The findings reveal that traditional 448

pruning methods that seem to maintain overall ac- 449

curacy, may in fact affect the loyalty and robustness 450

of the model. This line of work, similarly to ours, 451

suggests that more nuanced analyses and evaluation 452

approaches are needed to understand how pruning 453

affects LMs beyond simple average accuracy. 454

Impact of pruning on subsets of data. While 455

conventional pruned model evaluation has focused 456

on inference time, number of pruned parameters, 457

and effectiveness of the pruned models (Blalock 458

et al., 2020; Gupta and Agrawal, 2022; Paganini 459

and Forde, 2020; Renda et al., 2020), an under- 460

studied aspect has been the impact of model prun- 461

ing on subsets of data. As language data is often 462

power distributed, pruning can have a more severe 463

effect on the performance of the least frequent, tail 464
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Figure 5: How the text of PIEs differs from the text of all data points, according to 7 readability scores (plots (a)-(g))
and text length (plot (h)). Ratio between the scores of PIEs and the scores of all data points (y axis), across pruning
thresholds (x axis), for BERT and SNLI. The solid black horizontal line represents equal scores in PIEs and all data
points. The solid turquoise line is the mean score of all pruners. Any line above the solid black line means that PIEs
are harder to understand (plots (a)-(g)) or have longer text (plot (h)), on average, than all data points.

classes (Holste et al., 2023). This can make models465

less robust and more prone to overfit shortcuts (Du466

et al., 2023), result in disparate accuracy across467

subgroups of data (Tran et al., 2022; Hooker et al.,468

2020), and affect prediction quality based on sam-469

ple frequency (Ogueji et al., 2022). Close to ours470

is the study of Hooker et al. (2019), who defined471

PIEs, and found them harder for both NNs and hu-472

mans to classify. This study was limited to image473

processing. To our knowledge, our study is the first474

in-depth examination of PIEs for NLP, with novel475

findings about where and how often PIEs occur in476

text data, how they impact inference, and why.477

6 Conclusions478

We empirically studied how LMs are affected by479

pruning in the text domain. Unlike most work in480

this area which looks at overall gains in efficiency481

and costs to inference effectiveness, we zoomed in482

on precisely how pruning affects a particular subset483

of data points where pruned and unpruned models484

systematically disagree (Pruning Identified Exem-485

plars (PIEs)). Using two LM architectures, four486

datasets, eight pruning methods, and five pruning487

thresholds, we found that PIEs impact inference488

quality considerably, but this effect goes undetected489

when reporting the mean accuracy across all data490

points. This effect is invariable to class frequency491

and increases the more we prune. BERT is overall492

more susceptible to this effect than BiLSTM. We493

also found that PIEs tend to contain a high amount494

of influential examples (data points that have the495

largest influence on how well the model generalises 496

to unseen data). Probing into what it is about PIEs 497

that makes them both hard and impactful to infer- 498

ence, we found that their text is overall longer and 499

more semantically complex, and harder to process 500

not only for LMs but also for humans, based on 501

human text readability approximations. 502

Overall, our findings suggest that, the more in- 503

fluential and complex a data instance is, the higher 504

the chance that pruned and unpruned models will 505

disagree on its prediction, impacting disproportion- 506

ately a subset of the dataset, yet going generally 507

unnoticed when reporting mean accuracy on the 508

whole test set of data points. This can pose sig- 509

nificant risks to LMs, such as focusing on easier 510

examples, and sacrificing inference quality on more 511

difficult examples that are however linked to better 512

generalisation. Given the increased call for com- 513

pressing LMs, pruning them without considering 514

the effect to PIEs can make models vulnerable in 515

high-stakes applications, where relying solely on 516

good top-line performance is inadequate to guar- 517

antee the model’s reliability and trustworthiness 518

across data instances and independently of class 519

distribution. 520

Future work includes studying PIEs when prun- 521

ing LLMs, and ways of balancing the impact of 522

pruning fairly across PIEs and all data points. 523

Limitations 524

We evaluated the effects of pruning across eight 525

pruning methods, two LM architectures, and four 526

8



datasets. While these are representative, we cannot527

rule out the possibility that other pruning methods528

or model architectures might yield different results.529

Moreover, while we train BiLSTM from scratch,530

BERT utilizes an existing backbone model. This531

may affect some specific findings. Nonetheless,532

our findings across all tested experimental condi-533

tions, datasets, and models consistently point in534

the same direction and unanimously support our535

conclusions.536

Future work could expand on our research by537

exploring larger architectures and alternative prun-538

ing methods. While we utilized extensive re-539

sources from the LUMI supercomputing infrastruc-540

ture (over 28000 AMD MI250X GPU hours), it was541

not practically feasible to experiment with the lat-542

est large language models in our setting where we543

aimed varying many pruning thresholds, methods,544

and datasets. However, future studies could investi-545

gate individual architectures and pruning methods546

in isolation and benchmark their results against our547

findings.548

We also did not explore the design of new prun-549

ing algorithms that take into account properties of550

the data, such as the link between the influence551

of the examples and pruned and unpruned models552

disagreement. These could help to mitigate both553

general effectiveness drops as well as improved554

handling of examples that are important for train-555

ing and downstream usage of the models, which556

we leave for future work.557
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A Implementation Details860

A.1 Language Model Architectures861

We use the pretrained uncased version of BERT-862

base from HuggingFace as is, which has 12 en-863

coders with 12 self-attention heads (Wolf et al.,864

2020). BERT takes as input the tokenized text.865

We set the output layer size to match the number866

of classes of the data set the model is trained on.867

During training, we tune all of BERT’s parameters868

Our BiLSTM models receive as input a vector869

representation of the words in the text. To build870

such a vector we use Glove embeddings of size 300871

(Pennington et al., 2014). We input the embeddings872

to a multilayer BiLSTM. We set the output layer873

size of the BiLSTM models to match the number874

of classes of the data set the model is trained on.875

On BiLSTM, we always use rectified linear units876

(ReLu) as activation functions.877

We present the “percentage of pruned parame-878

ters” based on the total number of parameters that879

can be pruned in the model, instead of all of the pa-880

rameters of the model (Chen et al., 2020). In Table881

5 and Table 6 we report information about the num-882

ber of remaining parameters in the architectures at883

different pruning amounts.884

A.2 Datasets and Preprocessing885

In table 7 we report dataset statistics after pre-886

processing. IMDB (Maas et al., 2011) is a single-887

label sentiment analysis dataset, made of reviews of888

movies. Each review is either positive or negative.889

IMDB has the longest sentences and the fewest890

classes across all our datasets on average. SNLI891

is a single-label natural language inference dataset.892

Each sample contains two sentences, and the task893

is to determine if the relationship between them is894

entailment, contradiction, or neutral. The dataset is895

LM Dataset # parameters 20% 50% 70% 90% 99%

BERT

IMDB 109,483,778

15% 39% 55% 70% 77%
SNLI 109,484,547

Reuters 109,499,927
AAPD 109,523,766

BiLSTM

IMDB 647,810

20% 50% 69% 89% 98%
SNLI 647,939

Reuters 650,519
AAPD 654,518

Table 5: Number of LM parameters and % of parameters
that are removed when pruning at 20%–99%. Numbers
differ per dataset because the different size of the classi-
fication layer leads LMs to a different final amount of
parameters.

Architecture Unpruned 20 50 70 90 99
BERT 1.1x108 9.2x107 6.7x107 5.0x107 3.2x107 2.5x107

BiLSTM 6.5x105 5.2x105 3.3x105 2.0x105 6.8x104 1.0x104

Table 6: Number of parameters for the unpruned models,
and remaining parameters when pruning at 20%-99%.

available under a CC BY-SA license. SNLI has the 896

most training samples and the shortest sentences 897

among all our datasets on average. Reuters-21578 898

is a multi-label document categorization dataset, 899

made of Reuters news belonging to 120 topics. 900

Each news item is categorized and can belong to 901

multiple topics. After preprocessing, the dataset 902

has 23 classes. The dataset is available under CC 903

BY license. Reuters has the fewest training sam- 904

ples among our datasets. AAPD is a multi-label 905

document categorization dataset of article abstracts 906

in computer science. Each arrticle can belong to 907

multiple subjects, and the task is to identify the 908

subjects given the abstract. The dataset is available 909

under CC BY license. AAPD has the most classes 910

across our datasets. 911

Dataset preprocessing. IMDB has 25000 training 912

examples and 25000 test examples. To perform hy- 913

perparameter tuning of our models, we apply strati- 914

fied sampling from the original training set to cre- 915

ate a validation set of 5000 samples. On SNLI we 916

use the original data set splits. On Reuters-21578 917

we remove all of the topics that do not appear in 918

at least 100 documents and all of the documents 919

that do not belong to at least one of the remaining 920

topics. We perform stratified sampling and create 921

three partitions by allocating 30% of the samples 922

to the training set, 15% to the validation set, and 923

15% to the test set. For computational efficiency, 924

before computing the statistics shown in Table 7, 925

we convert texts in the Reuters dataset to lowercase 926

and remove punctuation and numbers. Lastly, we 927

use the original splits for the AAPD data set. 928

We further pad and truncate texts to submit train- 929
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Dataset # train # test # val Mean/median Min/max len Std
len

Tokens
85%

Max
tokens

#
classes Task Classification

IMDB 20000 25000 5000 268/201 8/2753 197 430 512 2
Sentiment
analysis

single-label

SNLI 549367 9824 9842 23/22 5/124 7 30 128 3
Natural language

inference
single-label

Reuters 6737 1429 1440 126/79 5/1305 137 232 256 23
Document

categorization
multi-label

AAPD 53840 1000 1000 167/161 1/599 70 242 256 54
Document

categorization
multi-label

Table 7: Datasets’ statistics after preprocessing. # train, # test, and # val are respectively the number of instances
in train, test, and validation sets. Mean/median, and Min/max are respectively the mean, median, minimum, and
mximum number of tokens in the dataset’s instances. Tokens 85% represent a value such that 85% of the datasets’
texts have fewer or equal tokens than such value. Max tokens are the number of tokens, starting from the beginning
of the text, after which we truncate texts. # classes is the number of classes. Task is the task solved using the dataset.

ing examples in batches, and we select a strategy to930

handle terms that are not present in the model’s vo-931

cabulary (OOV). We explain these two steps next.932

To fully take advantage of the available hard-933

ware, we submit training examples to the models934

in batches. When multiple texts with a different935

amount of tokens are present in a batch, our models936

require padding on the shorter texts in such a way937

that each input has the same amount of tokens. To938

have batches where each text is of equal size, we939

truncate long texts and pad short ones. Note that940

we do not remove documents based on a minimum941

amount of tokens in the text. To truncate the texts,942

we find a threshold after which we perform trunca-943

tion. We define this threshold as the first power of944

two after which, by selecting the value as a thresh-945

old, at least 85% of the texts in the dataset do not946

need to be truncated. The resulting thresholds are947

reported as “Max tokens” in Table 7. An exception948

is made for SNLI. The SNLI dataset is made of949

short texts, and even the longest text is under 128950

tokens. Hence we consider 128 tokens, represent-951

ing the whole text for each sample in the data set.952

We then proceed to pad short texts in each batch to953

always exactly match the number of tokens speci-954

fied in Table 7. For BERT we use the huggingface’s955

tokenizer padding and pad all of the texts in each956

dataset to the respective “Max tokens” value in Ta-957

ble 7. BERT will mask and ignore the padding.958

For the BiLSTM model, we represent padding as959

a randomly generated embedding according to the960

mean and std distribution in Glove.961

On BERT, OOV terms are assigned the default962

UNK token. On BiLSTM, we represent OOV terms963

with a vector defined as the average over all of the964

present word embeddings. The result of our pre-965

processing will be texts with exactly “Max tokens”966

tokens in which OOV terms are represented by the967

UNK token on BERT and as the average embed- 968

ding vector on BiLSTM. 969

A.3 Pruning Methods 970

Model parameters are pruned one layer at a time. 971

We prune uniformly across layers, i.e. we remove 972

the same percentage of parameters in each layer. 973

Following Chen et al. (2020) and Yu et al. (2020); 974

Prasanna et al. (2020), we do not prune embedding 975

layers and biases of the LMs (Gupta and Agrawal, 976

2022). We also do not prune the final classification 977

layer, because its weights are likely disproportion- 978

ately important to reach high effectiveness (Frankle 979

et al., 2021). 980

With iterative pruning, we select a pruning per- 981

centage and keep it fixed for each pruning iteration 982

to reach our pruning goal in exactly three iterations 983

across all datasets, LMs, and pruning percentages. 984

We train the model (BERT or BiLSTM) fully for N 985

epochs, prune according to the selected percentage, 986

and then retrain for N epochs. This process repeats 987

until we achieve our pruning target as per (Jin et al., 988

2022). In total, this procedure requires four times 989

the training iterations when compared to pruning 990

at initialization. 991

A.4 Hyperparameter Tuning 992

We tune the unpruned model’s hyperparameters for 993

each combination of architecture and dataset. The 994

resulting hyperparameters are then used to train 995

both unpruned and pruned models. We do not tune 996

hyperparameters of the pruning algorithms. The 997

only tunable aspect when pruning at initialization 998

is the percentage of parameters to prune. However, 999

in our experiments, we fix five different values for 1000

this hyperparameter and we test such values on 1001

all pruning algorithms, hence, we do not optimize 1002

the percentage of pruned parameters. When prun- 1003

ing iteratively (with or without weight rewinding) 1004
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Dataset Architecture Batch size Epochs Best epoch lr Best lrMin Max Min Max
IMDB BERT 32 2 6 3 2e-5 2e-4 0.00007

BiLSTM 1024 10 30 26 2e-4 2e-3 0.00196

SNLI BERT 256 2 6 2 2e-5 2e-4 0.00014
BiLSTM 4096 30 50 39 2e-4 2e-3 0.00180

Reuters BERT 128 5 15 14 2e-5 2e-4 0.00016
BiLSTM 512 30 100 72 2e-4 2e-3 0.00152

AAPD BERT 256 5 15 13 2e-5 2e-4 0.00015
BiLSTM 2048 30 60 50 2e-4 2e-3 0.00184

Table 8: Search space and best configuration for the
hyperparameter tuning of the models. Min and Max
epochs represent the range of epochs used to perform
hyperparameter tuning. Best epoch is the best epoch
found with hyperparameter tuning. Min and Max lr are
the range learning rate is tuned on. Best lr is the best
learning rate found during hyperparameter optimization.
The batch size is set to maximize the GPU usage.

we also need to select the number of pruning it-1005

erations and the amount of parameters to prune1006

at each pruning iteration. To allow for compari-1007

son between pruning algorithms, we select a fixed1008

percentage of parameters to remove during each it-1009

eration, such that in exactly 3 iterations the desired1010

amount of parameters will be pruned. Hence those1011

hyperparameters are inferred and fixed in each set-1012

ting, leaving no hyperparameters to be optimized1013

when pruning iteratively.1014

The hyperparameter tuning is performed sepa-1015

rately on architectures and separately for each data1016

set. We tune the hyperparameters using the random1017

optimization from the weights and biases (WandB)1018

platform with a budget of 100 objective function1019

evaluations (Biewald, 2020). Hyperparameter tun-1020

ing is set to maximize accuracy and macro F1 in1021

the validation set for the single-label and multi-1022

label tasks respectively. The search spaces optimal1023

hyperparameter values are summarized in Table 8.1024

B Results1025

In Table 3 we report accuracy and F1 score with1026

their standard deviation, obtained by unpruned1027

models and pruned models at different amounts1028

of pruned parameters.1029

In Table 10 we report accuracy and F1 score1030

on PIEs obtained by unpruned models and pruned1031

models at different amounts of pruned parameters.1032

We highlight in blue the cases where the pruned1033

models are on average more effective than the un-1034

pruned models on PIEs.1035

B.1 Pruning and occurrence of PIEs1036

We report here the additional results of Section 4.1.1037

In Figure 6 we show the distribution of all data1038

points and of PIEs at 20% to 99% pruning, across1039

classes sorted by frequency for the multi-label 1040

datasets. We observe the same overall trend in all 1041

settings. Regardless of the language model archi- 1042

tecture, the percentage of PIEs in the most frequent 1043

class for Reuters is much lower than the percentage 1044

of examples belonging to the same class in all data 1045

points. This means that the disagreement between 1046

pruned and unpruned models is not focused on the 1047

most frequent class of Reuters. The disagreement 1048

is skewed instead towards the less frequent classes. 1049

On AAPD we observe a similar behaviour, how- 1050

ever, the percentage of PIEs belonging to the most 1051

frequent class is higher, hence the disagreement is 1052

slightly more balanced across all classes. 1053

In Figures 7, 8, 9, 10, 11, 12, and 13 we report 1054

the accuracy of unpruned and pruned models on 1055

PIEs and all samples in the dataset per pruning 1056

method, across pruning thresholds. The accuracy 1057

on PIEs is lower than the accuracy on all data points 1058

for both pruned and unpruned models. The accu- 1059

racy of the unpruned model on PIEs increases when 1060

increasing the amount of pruned parameters, while 1061

the accuracy of the pruned model decreases in the 1062

same setting. This is because the pruned model 1063

misclassifies more samples that are correctly classi- 1064

fied by the unpruned model, increasing the amount 1065

of disagreement, hence the number of PIEs too. 1066

B.2 Influential examples in PIEs 1067

We report here the additional results of Section 1068

4.2. Figures 14, 15, 16, 17, 18, 19, and 20 report 1069

the percentage of data points that are PIEs versus 1070

the degree of influence of all data points in the 1071

training set, for each pruning algorithm. PIEs are 1072

concentrated on the most influential examples. The 1073

higher the amount of pruned parameters, the more 1074

PIEs are distributed across examples with different 1075

influence on model generalization. 1076

B.3 Textual characteristics of PIEs 1077

We report here the additional results of Section 4.3. 1078

In most cases, the formal education level needed 1079

to understand PIEs is higher than for all data points, 1080

with the exception of AAPD. AAPD leads to signif- 1081

icant disagreement between pruned and unpruned 1082

models, even with 20% parameter pruning (See 1083

Table 4)). This is due to our extension of PIEs 1084

for multi-label settings, which considers a sam- 1085

ple as a PIE if there is prediction disagreement 1086

on any class. The more classes in the dataset, the 1087

higher the chance of samples being labelled as PIEs. 1088

AAPD has 53 classes, the highest class count of 1089
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Single-label: Accuracy
% pruned parameters 0% 20% 50% 70% 90% 99%

dataset model pruning algo

IM
D

B

B
E

R
T

IIBP-WR .932 ± .005 .892 ± .009 .870 ± .016 .864 ± .026 .863 ± .011 .742 ± .136
IIBP-FT .932 ± .005 .919 ± .004 .869 ± .008 .848 ± .007 .843 ± .010 .828 ± .064
IBP-AI .932 ± .005 .882 ± .010 .864 ± .021 .865 ± .016 .841 ± .069 .526 ± .079
IMP-WR .932 ± .005 .911 ± .009 .880 ± .006 .870 ± .009 .857 ± .007 .500 ± .000
IMP-FT .932 ± .005 .924 ± .004 .873 ± .007 .845 ± .004 .850 ± .007 .500 ± .000
MP-AI .932 ± .005 .904 ± .008 .871 ± .009 .867 ± .010 .852 ± .011 .500 ± .000
IRP-FT .932 ± .005 .877 ± .011 .846 ± .009 .778 ± .141 .500 ± .000 .500 ± .000
RP-AI .932 ± .005 .874 ± .004 .866 ± .012 .828 ± .114 .500 ± .000 .500 ± .000

B
iL

ST
M

IIBP-WR .879 ± .016 .868 ± .021 .861 ± .026 .856 ± .027 .837 ± .025 .806 ± .026
IIBP-FT .879 ± .016 .883 ± .011 .880 ± .013 .878 ± .010 .872 ± .011 .872 ± .013
IBP-AI .879 ± .016 .874 ± .017 .848 ± .019 .820 ± .032 .805 ± .029 .755 ± .022
IMP-WR .879 ± .016 .875 ± .020 .881 ± .012 .876 ± .011 .873 ± .025 .804 ± .018
IMP-FT .879 ± .016 .886 ± .010 .887 ± .010 .882 ± .009 .878 ± .007 .862 ± .013
MP-AI .879 ± .016 .872 ± .019 .855 ± .018 .843 ± .023 .834 ± .015 .755 ± .021
IRP-FT .879 ± .016 .885 ± .010 .875 ± .011 .875 ± .012 .873 ± .017 .548 ± .073
RP-AI .879 ± .016 .872 ± .037 .848 ± .027 .845 ± .026 .840 ± .016 .721 ± .024

SN
L

I

B
E

R
T

IIBP-WR .901 ± .002 .849 ± .098 .822 ± .004 .794 ± .007 .683 ± .044 .578 ± .053
IIBP-FT .901 ± .002 .892 ± .002 .876 ± .003 .857 ± .003 .806 ± .090 .654 ± .071
IBP-AI .901 ± .002 .872 ± .002 .824 ± .005 .768 ± .028 .625 ± .016 .395 ± .086
IMP-WR .901 ± .002 .883 ± .003 .847 ± .004 .799 ± .004 .646 ± .033 .336 ± .008
IMP-FT .901 ± .002 .895 ± .002 .875 ± .002 .835 ± .004 .799 ± .005 .336 ± .008
MP-AI .901 ± .002 .882 ± .002 .833 ± .003 .691 ± .016 .616 ± .011 .335 ± .007
IRP-FT .901 ± .002 .885 ± .003 .836 ± .004 .785 ± .008 .342 ± .034 .336 ± .008
RP-AI .901 ± .002 .854 ± .004 .695 ± .007 .647 ± .005 .366 ± .069 .335 ± .007

B
iL

ST
M

IIBP-WR .778 ± .004 .780 ± .004 .774 ± .005 .763 ± .005 .715 ± .007 .614 ± .007
IIBP-FT .778 ± .004 .742 ± .004 .750 ± .004 .762 ± .003 .771 ± .004 .657 ± .011
IBP-AI .778 ± .004 .776 ± .004 .766 ± .004 .743 ± .007 .669 ± .009 .431 ± .104
IMP-WR .778 ± .004 .779 ± .004 .782 ± .004 .782 ± .004 .726 ± .009 .336 ± .007
IMP-FT .778 ± .004 .741 ± .004 .746 ± .004 .766 ± .003 .765 ± .004 .574 ± .019
MP-AI .778 ± .004 .776 ± .004 .764 ± .006 .743 ± .005 .687 ± .007 .336 ± .007
IRP-FT .778 ± .004 .746 ± .004 .769 ± .004 .779 ± .004 .712 ± .007 .389 ± .070
RP-AI .778 ± .004 .776 ± .003 .762 ± .005 .739 ± .006 .667 ± .017 .336 ± .007

Multi-label: F1 Macro
% pruned parameters 0% 20% 50% 70% 90% 99%

dataset model pruning algo

R
eu

te
rs

B
E

R
T

IIBP-WR .836 ± .004 .822 ± .011 .792 ± .018 .674 ± .064 .382 ± .046 .167 ± .041
IIBP-FT .836 ± .004 .835 ± .005 .830 ± .005 .822 ± .008 .786 ± .029 .355 ± .061
IBP-AI .836 ± .004 .810 ± .008 .645 ± .048 .328 ± .048 .189 ± .027 .096 ± .018
IMP-WR .836 ± .004 .827 ± .006 .829 ± .005 .736 ± .015 .147 ± .025 .082 ± .008
IMP-FT .836 ± .004 .838 ± .005 .834 ± .005 .824 ± .006 .490 ± .086 .085 ± .005
MP-AI .836 ± .004 .822 ± .006 .745 ± .021 .417 ± .057 .127 ± .031 .086 ± .004
IRP-FT .836 ± .004 .832 ± .005 .769 ± .013 .524 ± .075 .087 ± .001 .087 ± .002
RP-AI .836 ± .004 .803 ± .007 .479 ± .052 .242 ± .021 .089 ± .012 .086 ± .003

B
iL

ST
M

IIBP-WR .731 ± .017 .728 ± .018 .727 ± .016 .716 ± .014 .631 ± .036 .396 ± .040
IIBP-FT .731 ± .017 .753 ± .018 .751 ± .013 .751 ± .015 .742 ± .014 .693 ± .019
IBP-AI .731 ± .017 .729 ± .020 .706 ± .019 .616 ± .029 .456 ± .036 .224 ± .028
IMP-WR .731 ± .017 .726 ± .017 .738 ± .015 .745 ± .012 .734 ± .011 .481 ± .032
IMP-FT .731 ± .017 .751 ± .013 .747 ± .014 .745 ± .017 .746 ± .012 .657 ± .028
MP-AI .731 ± .017 .740 ± .012 .730 ± .014 .705 ± .022 .606 ± .026 .393 ± .034
IRP-FT .731 ± .017 .753 ± .015 .757 ± .015 .760 ± .014 .743 ± .012 .417 ± .042
RP-AI .731 ± .017 .731 ± .019 .724 ± .015 .661 ± .028 .570 ± .030 .377 ± .042

A
A

PD

B
E

R
T

IIBP-WR .578 ± .007 .547 ± .008 .518 ± .009 .482 ± .010 .403 ± .018 .179 ± .032
IIBP-FT .578 ± .007 .573 ± .009 .548 ± .009 .462 ± .153 .476 ± .018 .316 ± .033
IBP-AI .578 ± .007 .539 ± .009 .480 ± .015 .398 ± .023 .234 ± .042 .091 ± .016
IMP-WR .578 ± .007 .567 ± .009 .541 ± .007 .483 ± .008 .230 ± .029 .080 ± .001
IMP-FT .578 ± .007 .579 ± .009 .546 ± .008 .521 ± .008 .400 ± .019 .080 ± .000
MP-AI .578 ± .007 .551 ± .008 .508 ± .010 .423 ± .014 .145 ± .007 .080 ± .000
IRP-FT .578 ± .007 .554 ± .009 .312 ± .197 .338 ± .133 .082 ± .014 .080 ± .000
RP-AI .578 ± .007 .524 ± .009 .397 ± .015 .261 ± .029 .082 ± .007 .080 ± .000

B
iL

ST
M

IIBP-WR .468 ± .015 .449 ± .022 .441 ± .022 .444 ± .020 .346 ± .022 .163 ± .028
IIBP-FT .468 ± .015 .429 ± .013 .425 ± .015 .436 ± .009 .486 ± .010 .396 ± .012
IBP-AI .468 ± .015 .473 ± .014 .459 ± .011 .398 ± .029 .190 ± .027 .082 ± .004
IMP-WR .468 ± .015 .446 ± .018 .454 ± .016 .454 ± .013 .406 ± .014 .185 ± .019
IMP-FT .468 ± .015 .428 ± .014 .421 ± .013 .432 ± .015 .486 ± .009 .330 ± .020
MP-AI .468 ± .015 .473 ± .015 .473 ± .010 .454 ± .011 .385 ± .020 .165 ± .025
IRP-FT .468 ± .015 .432 ± .012 .451 ± .013 .486 ± .012 .475 ± .010 .167 ± .025
RP-AI .468 ± .015 .464 ± .014 .453 ± .018 .421 ± .023 .356 ± .021 .163 ± .025

Table 9: Average macro accuracy/F1 score and std over 30 model initializations. Pruning algo is the used pruning
algorithm according to Table 3. The best results for each percentage of pruned parameters and combination of
dataset and architecture are in bold.
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Single-label
Pruner 20% 50% 70% 90% 99%

IIBP-WR 0.245 0.755 0.200 0.800 0.191 0.809 0.188 0.812 0.182 0.818
IIBP-FT 0.356 0.644 0.195 0.805 0.161 0.839 0.163 0.837 0.188 0.812
IBP-AI 0.227 0.773 0.195 0.805 0.198 0.802 0.205 0.795 0.056 0.944
IMP-WR 0.290 0.710 0.206 0.794 0.194 0.806 0.179 0.821 0.056 0.944
IMP-FT 0.385 0.615 0.200 0.800 0.156 0.844 0.167 0.833 0.056 0.944
MP-AI 0.262 0.738 0.197 0.803 0.192 0.808 0.180 0.820 0.056 0.944
IRP-FT 0.220 0.780 0.161 0.839 0.172 0.828 0.056 0.944 0.056 0.944

B
E

R
T

RP-AI 0.198 0.802 0.199 0.801 0.198 0.802 0.056 0.944 0.056 0.944
IIBP-WR 0.371 0.629 0.322 0.678 0.283 0.717 0.232 0.768 0.207 0.793
IIBP-FT 0.604 0.396 0.616 0.384 0.598 0.402 0.555 0.445 0.471 0.529
IBP-AI 0.382 0.618 0.253 0.747 0.209 0.791 0.206 0.794 0.168 0.832
IMP-WR 0.471 0.529 0.542 0.458 0.480 0.520 0.470 0.530 0.218 0.782
IMP-FT 0.644 0.356 0.658 0.342 0.584 0.416 0.613 0.387 0.395 0.605
MP-AI 0.404 0.596 0.281 0.719 0.241 0.759 0.225 0.775 0.178 0.822
IRP-FT 0.633 0.367 0.577 0.423 0.576 0.424 0.404 0.596 0.126 0.874

IM
D

B
B

iL
ST

M

RP-AI 0.403 0.597 0.269 0.731 0.250 0.750 0.230 0.770 0.161 0.839
IIBP-WR 0.250 0.688 0.177 0.753 0.155 0.782 0.091 0.855 0.074 0.878
IIBP-FT 0.438 0.468 0.301 0.635 0.235 0.692 0.173 0.752 0.090 0.859
IBP-AI 0.265 0.676 0.177 0.756 0.139 0.805 0.075 0.872 0.049 0.882
IMP-WR 0.284 0.658 0.212 0.721 0.149 0.792 0.084 0.867 0.044 0.909
IMP-FT 0.397 0.525 0.287 0.648 0.194 0.746 0.149 0.788 0.044 0.909
MP-AI 0.275 0.656 0.175 0.748 0.083 0.853 0.069 0.873 0.044 0.909
IRP-FT 0.347 0.582 0.192 0.738 0.136 0.803 0.044 0.909 0.044 0.909

B
E

R
T

RP-AI 0.224 0.709 0.087 0.855 0.074 0.873 0.044 0.909 0.044 0.909
IIBP-WR 0.445 0.464 0.356 0.549 0.278 0.618 0.208 0.682 0.153 0.750
IIBP-FT 0.467 0.413 0.529 0.366 0.517 0.368 0.391 0.493 0.184 0.719
IBP-AI 0.382 0.518 0.298 0.582 0.258 0.626 0.177 0.722 0.124 0.760
IMP-WR 0.434 0.454 0.461 0.429 0.447 0.451 0.225 0.670 0.068 0.824
IMP-FT 0.495 0.381 0.496 0.379 0.522 0.361 0.375 0.522 0.141 0.758
MP-AI 0.397 0.490 0.296 0.596 0.247 0.640 0.196 0.705 0.068 0.824
IRP-FT 0.512 0.389 0.535 0.340 0.498 0.393 0.215 0.677 0.101 0.796

SN
L

I
B

iL
ST

M

RP-AI 0.371 0.524 0.281 0.620 0.243 0.649 0.175 0.728 0.068 0.824
Multi-label

Pruner 20% 50% 70% 90% 99%
IIBP-WR 0.575 0.620 0.561 0.664 0.545 0.777 0.319 0.807 0.167 0.837
IIBP-FT 0.608 0.591 0.572 0.567 0.589 0.621 0.530 0.659 0.302 0.820
IBP-AI 0.572 0.656 0.506 0.780 0.276 0.825 0.182 0.838 0.096 0.836
IMP-WR 0.563 0.602 0.529 0.570 0.545 0.726 0.147 0.837 0.082 0.836
IMP-FT 0.619 0.602 0.555 0.596 0.590 0.627 0.393 0.794 0.085 0.836
MP-AI 0.555 0.610 0.555 0.743 0.359 0.819 0.127 0.836 0.086 0.836
IRP-FT 0.604 0.621 0.530 0.714 0.422 0.806 0.087 0.836 0.087 0.836

B
E

R
T

RP-AI 0.560 0.666 0.428 0.815 0.196 0.825 0.089 0.836 0.086 0.836
IIBP-WR 0.466 0.462 0.498 0.500 0.483 0.509 0.509 0.620 0.362 0.701
IIBP-FT 0.476 0.423 0.490 0.440 0.511 0.442 0.508 0.432 0.496 0.509
IBP-AI 0.452 0.459 0.489 0.529 0.501 0.620 0.422 0.708 0.193 0.720
IMP-WR 0.464 0.470 0.445 0.448 0.483 0.451 0.521 0.485 0.435 0.696
IMP-FT 0.519 0.462 0.521 0.452 0.504 0.443 0.526 0.447 0.496 0.577
MP-AI 0.495 0.470 0.472 0.478 0.514 0.557 0.504 0.638 0.356 0.711
IRP-FT 0.500 0.423 0.480 0.399 0.488 0.416 0.512 0.440 0.375 0.704

R
eu

te
rs

B
iL

ST
M

RP-AI 0.453 0.446 0.510 0.517 0.510 0.593 0.507 0.676 0.346 0.710
IIBP-WR 0.471 0.511 0.453 0.529 0.432 0.553 0.367 0.563 0.175 0.580
IIBP-FT 0.498 0.506 0.476 0.515 0.417 0.542 0.418 0.556 0.292 0.576
IBP-AI 0.463 0.515 0.430 0.548 0.366 0.566 0.229 0.582 0.091 0.578
IMP-WR 0.492 0.507 0.475 0.525 0.428 0.552 0.225 0.582 0.080 0.578
IMP-FT 0.502 0.506 0.484 0.532 0.462 0.537 0.366 0.569 0.080 0.578
MP-AI 0.475 0.517 0.452 0.544 0.390 0.568 0.143 0.579 0.080 0.578
IRP-FT 0.483 0.519 0.295 0.560 0.311 0.565 0.082 0.578 0.080 0.578

B
E

R
T

RP-AI 0.448 0.516 0.364 0.568 0.255 0.583 0.082 0.578 0.080 0.578
IIBP-WR 0.391 0.416 0.405 0.443 0.413 0.445 0.333 0.461 0.160 0.469
IIBP-FT 0.393 0.439 0.380 0.430 0.388 0.424 0.432 0.413 0.380 0.459
IBP-AI 0.402 0.392 0.410 0.422 0.378 0.454 0.184 0.468 0.082 0.468
IMP-WR 0.399 0.427 0.397 0.417 0.421 0.441 0.383 0.453 0.180 0.469
IMP-FT 0.389 0.435 0.375 0.432 0.386 0.432 0.442 0.425 0.318 0.462
MP-AI 0.393 0.385 0.434 0.430 0.421 0.439 0.365 0.457 0.162 0.469
IRP-FT 0.386 0.431 0.413 0.429 0.436 0.411 0.448 0.439 0.164 0.468

A
A

PD
B

iL
ST

M

RP-AI 0.411 0.417 0.409 0.432 0.397 0.451 0.344 0.462 0.160 0.470

Table 10: Average pruned and unpruned models’ effectiveness on PIEs when pruning 20, 50, 70, 90, and 99%
of the parameters. For each pruning percentage column, the first value refers to the effectiveness of the pruned
models on PIEs, the second value represents the effectiveness of the unpruned models on the same set of PIEs. We
represent models’ effectiveness through accuracy in Single-label and F1 macro in Multi-label settings. The blue
colour identifies cases where the pruned models have higher effectiveness on PIEs than the unpruned ones. We
represent in bold the cases where the effectiveness of the models on PIEs is higher than the effectiveness of the
same models on the whole dataset instead.
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Figure 6: Distribution of all data points and of PIEs at 20% to 99% pruning, across classes sorted by frequency (x
axis), for the multi-label datasets (test set).
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Figure 7: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 8: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 9: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 10: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 11: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 12: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 13: Accuracy of unpruned (black line) and pruned models on PIEs and all samples in the dataset per pruning
method, across pruning thresholds (x-axis), over 30 initializations.
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Figure 14: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IBP-AI.
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Figure 15: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IIBP-WR at 20% and 99% pruning.
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Figure 16: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IMP-FT.
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Figure 17: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IMP-AI.
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Figure 18: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IMP-WR.
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Figure 19: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for IRP-FT.
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Figure 20: Percentage of data points that are PIEs (y axis) versus degree of influence (EL2N score) of all data points
in the training set (x axis) for RP-AI.
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all our datasets. As shown in the remaining set-1090

tings, the more the disagreement between pruned1091

and unpruned model predictions, the harder it is to1092

observe a difference between the formal education1093

level needed to understand PIEs and the dataset.1094

Hence, on AAPD, we do not observe the same1095

behaviour obtained in the three remaining datasets.1096

PIEs are overall longer than the text for all data1097

points. PIEs can have up to 1.13 and 1.9 more1098

tokens than the average number of tokens for a1099

sample in the dataset for IMDB, and Reuters re-1100

spectively. The behaviour can be observed with1101

both BERT and BiLSTM models. About the ratio1102

between the average number of tokens for the PIEs1103

and in all the samples of the dataset on SNLI and1104

AAPD datasets: we do not see the same behaviour1105

as in IMDB and Reuters. SNLI is mostly made1106

of short samples, hence it is harder to observe the1107

behaviour on such a dataset, even if the trend is1108

the same. On AAPD, the same observation on the1109

formal education level needed to understand holds1110

when discussing text length.1111
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Figure 21: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BiLSTM and
SNLI. The solid black horizontal line represents equal
scores in PIEs and all data points. The solid turquoise
line is the mean score of all pruners. Any line above the
solid black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.
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Figure 22: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BERT and IMDB.
The solid black horizontal line represents equal scores
in PIEs and all data points. The solid turquoise line is
the mean score of all pruners. Any line above the solid
black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.
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Figure 23: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BiLSTM and
IMDB. The solid black horizontal line represents equal
scores in PIEs and all data points. The solid turquoise
line is the mean score of all pruners. Any line above the
solid black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.

24



20 50 70 90 99
1.0

1.2

1.4

1.6

1.8

AUTOMATED READABILITY INDEX (a)

20 50 70 90 99
1.00

1.05

1.10

1.15

1.20

1.25

COLEMAN LIAU INDEX (b)

20 50 70 90 99
1.00

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

FLESCH KINCAID GRADE (c)

20 50 70 90 99
1.0

1.1

1.2

1.3

1.4

LINSEAR WRITE FORMULA (d)

20 50 70 90 99
1.00

1.05

1.10

1.15

1.20

DALE CHALL READABILITY SCORE (e)

20 50 70 90 99
1.0

1.2

1.4

1.6

1.8

DIFFICULT WORDS (f)

20 50 70 90 99
% pruned parameters

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

GUNNING FOG (g)

20 50 70 90 99
% pruned parameters

1.0

1.2

1.4

1.6

1.8

TOKENS RATIO (h)

IIBP-WR
IIBP-FT

IBP-AI
IMP-WR

IMP-FT
MP-AI

IRP-FT
RP-AI

All pruners (mean)
Unpruned

Figure 24: How the text of PIEs differs from the text
of all data points, according to 7 readability scores
(plots (a)-(g)) and text length (plot (h)). Ratio between
the scores of PIEs and the scores of all data points (y
axis), across pruning thresholds (x axis), for BERT and
Reuters. The solid black horizontal line represents equal
scores in PIEs and all data points. The solid turquoise
line is the mean score of all pruners. Any line above
the solid black line means that PIEs are harder to un-
derstand (plots (a)-(g)) or have longer text (plot (h)), on
average, than all data points.
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Figure 25: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BiLSTM and
Reuters. The solid black horizontal line represents equal
scores in PIEs and all data points. The solid turquoise
line is the mean score of all pruners. Any line above the
solid black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.

25



20 50 70 90 99
0.980

0.985

0.990

0.995

1.000

1.005

1.010

AUTOMATED READABILITY INDEX (a)

20 50 70 90 99

0.9950

0.9975

1.0000

1.0025

1.0050

1.0075

1.0100

1.0125

COLEMAN LIAU INDEX (b)

20 50 70 90 99
0.980

0.985

0.990

0.995

1.000

1.005

1.010

FLESCH KINCAID GRADE (c)

20 50 70 90 99

0.990

0.995

1.000

1.005

1.010

LINSEAR WRITE FORMULA (d)

20 50 70 90 99

0.992

0.994

0.996

0.998

1.000

1.002

1.004

1.006

DALE CHALL READABILITY SCORE (e)

20 50 70 90 99
0.985

0.990

0.995

1.000

1.005

1.010

1.015

1.020

DIFFICULT WORDS (f)

20 50 70 90 99
% pruned parameters

0.985

0.990

0.995

1.000

1.005

1.010

GUNNING FOG (g)

20 50 70 90 99
% pruned parameters

0.985

0.990

0.995

1.000

1.005

TOKENS RATIO (h)

IIBP-WR
IIBP-FT

IBP-AI
IMP-WR

IMP-FT
MP-AI

IRP-FT
RP-AI

All pruners (mean)
Unpruned

Figure 26: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BERT and AAPD.
The solid black horizontal line represents equal scores
in PIEs and all data points. The solid turquoise line is
the mean score of all pruners. Any line above the solid
black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.
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Figure 27: How the text of PIEs differs from the text of
all data points, according to 7 readability scores (plots
(a)-(g)) and text length (plot (h)). Ratio between the
scores of PIEs and the scores of all data points (y axis),
across pruning thresholds (x axis), for BiLSTM and
AAPD. The solid black horizontal line represents equal
scores in PIEs and all data points. The solid turquoise
line is the mean score of all pruners. Any line above the
solid black line means that PIEs are harder to understand
(plots (a)-(g)) or have longer text (plot (h)), on average,
than all data points.
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