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Abstract

We propose a novel method, TwinAct, to tackle the challenge of decoupling ac-
tions and actors in order to customize the text-guided diffusion models (TGDMs)
for few-shot action image generation. TwinAct addresses the limitations of ex-
isting methods that struggle to decouple actions from other semantics (e.g., the
actor’s appearance) due to the lack of an effective inductive bias with few ex-
emplar images. Our approach introduces a common action space, which is a
textual embedding space focused solely on actions, enabling precise customization
without actor-related details. Specifically, TwinAct involves three key steps: 1)
Building common action space based on a set of representative action phrases; 2)
Imitating the customized action within the action space; and 3) Generating highly
adaptable customized action images in diverse contexts with action similarity loss.
To comprehensively evaluate TwinAct, we construct a novel benchmark, which
provides sample images with various forms of actions. Extensive experiments
demonstrate TwinAct’s superiority in generating accurate, context-independent
customized actions while maintaining the identity consistency of different sub-
jects, including animals, humans, and even customized actors. Project page:
https://twinact-official.github.io/TwinAct/.

1 Introduction

We are interested in customizing Text-Guided Diffusion Models (TGDMs) (e.g., Stable Diffusion [21])
to generate customized actions specified by a few user-provided images. For example, given a few
images of Black Widow’s signature three-point landing action, we can represent this action as a
unique token V ∗ and generate imaginary creation by the prompt like “Leonardo V ∗” (the third row in
Figure 1). One might question why we do not condition TGDMs on precise textual descriptions [21]
or sketch images [31] to generate the desired action. The reason is that actions are often unutterable,
and even with finely detailed descriptions (SD column in Figure 1) or skeleton images (ControlNet
column in Figure 1), TGDMs cannot accurately follow these instructions.

Further, can we use existing few-shot customized TGDMs [4, 7, 8, 10, 14, 22, 27] to customize
actions? Unfortunately, the answer is still no. This is because these methods fine-tune the textual
embeddings of V ∗ in prompts like “Black Widow V ∗” by reconstructing the corresponding image.
But, except for actions, there are many other semantics in the exemplar images that are coupled in
V ∗, like the characteristics of the specific actors. Thus, the few-shot action images in those methods
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Figure 1: Qualitative comparisons of TwinAct with other methods. TwinAct preserves the identity
consistency of actors while allowing customized actions to be accurately generalized across different
actors by effectively decoupling actions and actors.

lack an effective inductive bias to achieve decoupled action tokens V ∗ from actors, which results in
action-irrelevant information like Black Widow’s red curly hair being confounded in the generated
images as shown in Figure 1. Although some methods mitigate the effects of missing inductive bias
through contrastive learning on textual embeddings or visual images, they still struggle to exclude all
action-irrelevant semantics. For example, [8] uses prepositions as positive samples and randomly
selects negative samples from a limited set of POS words (i.e., nouns, adjectives). However, this
approach can not guarantee the exclusion of all action-irrelevant information from exemplar images
for V ∗, resulting in the inclusion of irrelevant semantics like manicure and red curl hair (the first and
third rows in Figure 1) confounding the customized tokens. On the other hand, [7] and [14] utilize
contrastive training data involving the same subject with and without specific customized concepts
(e.g, melted and closed eyes, etc.) to decouple the subject and customized concepts. However, the
creation of extensive contextual training data is costly, particularly when dealing with customized
actions that involve multiple subjects.

By observing the real-world process of a director instructing an actor to perform a specific action, such
as the signature action of the character Black Widow which involves a set of action phrases including
“left hand on the ground”, “right hand raised behind the back”, “left leg on the ground”, and “right leg
straight out”, we find that these phrases concentrate solely on actions without providing any specific
details about the actor involved. Moreover, these phrases can be modified or combined to create
new actions, as illustrated in Figure 2. Inspired by these observations, we propose a method called
TwinAct, which aims to decouple the action from the actor by constructing an effective Common
Action Space. This space is exclusively for actions, eliminating any confusion with actor-specific
characteristics and enabling the generation of diverse and creative actions that can be applied across
various actors and scenarios.

Our approach involves three steps. 1) We collect 832 action phrases that cover a range of movements
from finger gestures to full body poses, and extract the corresponding textual embeddings using
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the tokenizer of CLIP [18]. These textual embeddings are used to build a common action space
(Section 3.2) through Principal Component Analysis (PCA [9]); 2) We employ a Multilayer Perceptron
(MLP) to modulate the PCA coefficients to imitate the customized actions within the action space
(Section 3.3); and 3) We introduce an action similarity loss to provide semantic similarity between
the exemplar images and generated images, resulting in synthesizing highly adaptable customized
action images in diverse contexts (Section 3.3). Extensive experiments demonstrate the superiority of
our method over the existing method. Finally, the main contributions of this paper are summarized as:

• We propose TwinAct to generate customized action images, which can synthesize novel renditions
of user-specific action in different contexts including animals, humans, and even customized actors.

• We introduce a common action space that focuses solely on the action itself, without any actor-
specific details. By combining action bases in this space for customized action imitation, we are
able to effectively decouple action from actor, allowing for greater flexibility in customization.

• Through extensive experiments, we demonstrate that TwinAct outperforms previous methods
in maintaining the fidelity of customized actions while also preserving the consistency of actor
identities.

2 Related Work

2.1 Image Generation and Customization

The text-guided diffusion models (TGDMs) [15, 19, 20, 21, 23] have emerged as a powerful paradigm
in the domain of image generation, enabling the creation of image variations that are aligned with
specific textual descriptions. Recently, the customized TGDMs [4, 5, 8, 10, 13, 11, 22] aim to encoder
the customized concept within the textual embedding, often represented by a unique token and decode
the token into pixels by the cross-attention in the U-net decoder [24]. Textual Inversion [4] optimizes
textual embedding and synthesizes personalized images by integrating the concept token with the
target prompt. DreamBooth [22] extends this concept by proposing a framework that optimizes all
parameters of the denoising U-Net architecture, based on a specific token and the class category of
the subject. Several other works [5, 10] have focused on optimizing subsets of weights or introducing
additional adapters to achieve more efficient optimization and better conditioning of the generated
images. For instance, Custom Diffusion [10] fine-tunes only the cross-attention layers within the
U-Net, while P+ [27] expands the textual-conditioning space with per-layer tokens to allow for
greater disentanglement and control over the generation process. Despite these methods achieving
commendable results in customized actors, they struggle with generating customized action images,
as shown in Figure 1, due to the lack of an effective inductive bias with few exemplar images.

2.2 Customized Action Image generation

In contrast to the rapid progress in customized actors, customized action has received less attention
in the community. Since the complex details such as specific angles, body positions, and motion
trajectories, describing a specific action is more challenging than describing a specific actor. Even with
finely detailed descriptions (see Appendix A.1) TGDMs still cannot accurately follow these textual
descriptions. A straightforward approach to generate a specific action image is ControlNet [31] which
is conditional on a given skeleton image to generate images. However, they only provide a rough
approximation of action consistency (see Appendix A.3). Particularly, when it comes to capturing fine
details such as fingers, skeleton images may lack the necessary detail to accurately reproduce these
actions, leading to noticeable visual defects in the generated images. In addition, when conditioned
on detailed images (see Appendix A.3), they suffer from limited diversity and flexibility. Recent
advancements for customized TGDMs preliminary explore action-based customization. Reversion [8]
proposes relation-steering contrastive learning that aims to guide the relation prompt towards relation-
dense regions within the text embedding space, thereby disentangling the learned relation from other
concepts like appearances. Lego [14] and ADI [7] construct contexts involving the same subject
with and without a specific concept, to decouple the subject and specific concepts. However, these
methods by employing contrastive learning on textual embeddings or visual images can not effectively
decouple actions from actors. This is because they cannot exclude all irrelevant concepts with a
limited number of negative samples.
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Figure 2: The construction of Common Action Space.

3 Methods

Imagine the following scenario: When the character Black Widow performs her signature three-point
landing action, the director may give the following instruction “Bend knees and lower body down into
a squatting position; Place right hand forward, and right arm should be fully extended”. We can see
that when people are asked to perform a specific action, it is often accompanied by instructions that
involve the composition of various body movements and the adjustment of angles and amplitudes as
shown in the right part of Figure 2. Inspired by the way in which humans perform specific actions,
we propose TwinAct which applies similar principles to action customization. Specifically, we first
collect a set of basic actions and encode them using a pre-trained text encoder to build a common
action space represented by a set of action bases. Subsequently, we imitate the customized action by
decomposing it into a combination of action bases with corresponding weights. Finally, we utilize
both the reconstruction loss and action similarity loss to fine-tune the customized token embedding in
the text encoder and the LoRA [6] layer in the text-to-image decoder to generate high-fidelity images
of the customized action.

3.1 Preliminaries

Our study is based on the text-guided diffusion models (TGDMs) which consist of a textual encoder
E and a text-to-image decoder D. Given a few sample action images x and a textual prompt c with a
customized token V ∗, such as “a photo of V ∗”, we aim to fine-tune the embedding of customized
token V ∗ in E and the LoRA layer in D to realize action customization. The textual encoder E first
tokenizes the prompt c into a set of token embeddings h, which are then used to generate a textual
condition τθ(c) with the text transformer in E . Subsequently, the textual condition τθ(c) is utilized
by the conditional denoising diffusion model ϵθ(·) in D to generate images. The commonly used
training objective is:

Lrec = Eϵ,t,x0,c

[
∥ϵ− ϵθ(xt, t, τθ(c))∥2

]
(1)

where t is the timestep, x0 is the original image and xt is a noisy image constructed by adding noise
ϵ ∼ N (0, 1) to x0. After training, any textual condition τθ(c) with V ∗ can generate customized
action in a new context defined by prompt c.

3.2 Step-1: Building Common Action Space

The initial step involves identifying the set of action bases that defines the common action space
within the text-to-image diffusion model.

First, we task GPT-4 [1] with generating a range of common action phrases based on different body
parts, including head, fingers, hands, and full body (see Appendix B.2). Then, we carefully sift
through the generated action phrases to eliminate duplicates. Subsequently, we build a manual filter
based on the pre-trained text-to-image diffusion model by constructing prompts and synthetic images
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Figure 3: The overview of the proposed TwinAct. We optimize the coefficients of the action bases
to avoid encoding the action-irrelevant features. After training, we combine the learned coefficients
and shared action base to generate images with the customized action.

of each action phrase to remove those action phrases that are unknown to the text-to-image diffusion
model, e.g., “Reverse Plank” as shown in Figure 2.

After the filtering process, we identify a total of m = 832 action phrases. Each phrase ai, where
i ∈ {1, ...,m}, is tokenized and encoded into an action embedding group Ai = [ai1, ..., a

i
k]. It is

important to note that the length k of each action embedding group Ai varies, as each action may
consist of a different number of words. Through empirical observation, it was found that action
phrases with three words or fewer are the most common, prompting the designation of each Ai as
containing three embeddings (i.e., k = 3 for all m actions). For simplicity, we denote the three
embeddings of all Ai as Q1, Q2, and Q3 respectively, where Qk = [a1k, ..., a

m
k ].

Inspiring by prior research [2] employing PCA to transform high-dimensional facial data into a
lower-dimensional space, we calculate the PCA transformation matrix Bk for each set V Qk using
the function PCA(Qk, p). This transformation plays a crucial role in reducing redundant information
within the data and enhancing the efficiency of model optimization. Specifically, PCA(Qk, p) reduce
dimensionality of Qk ∈ Rm×d and generate p principal components as Bk = [b1k, . . . , b

p
k] ∈ Rp×p,

which captures the essential features of data in a more compact form. Our experimental findings
indicate that optimal results are achieved when p = 512 (see Section 4.3). Finally, we obtain a set of
action bases as [B1, B2, B3], which define an action space that does not contain any action-irrelevant
information thus providing a strong inductive bias to achieve decoupled action token embeddings.

3.3 Step-2: Imitating Action via Action Bases

This step involves searching for the optimal parameters to combine the action bases for imitating
customized actions.

Our experiments (see Figure 1) have shown that existing methods, which aim to identify optimal
personalized token embeddings within the vast text space of pre-trained text encoders, struggle
with the inclusion of non-action information. And even with contrastive learning, they are still
unable to exclude all irrelevant information. Fortunately, action bases offer an alternative approach
for optimizing the customized token embedding. By combining action bases [B1, B2, B3] with
corresponding coefficients [W1,W2,W3], where Wk = [w1

k, . . . , w
p
k], new actions can be imitated as

shown in Figure 2. To achieve this, we first utilize a Multi-Layered Perceptron (MLP) to combine
the action bases. While backpropagation is a common method for determining optimal coefficients,
our experiments indicate its limited effectiveness due to the scarcity of user-provided images (see
Section 4.3). Therefore, we use CLIP as an action encoder to extract semantic features as a prior.
Specifically, given an action sample image x, we first extract the action features xp with action
encoder ψ (x), then MLP is used to map xp into the modulating coefficients [W1,W2,W3] as:

Wk = MLP(xp) (2)

Finally, for a customized action, we can combine the action bases to imitate the action as:

V̂ = [v̂1, v̂2, v̂3], v̂k =

p∑
j=1

wj
kb

j
k (3)
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where V̂ is the embedding of the customized tokens V ∗. In this way, V̂ is a linear combination of
the action bases. Consequently, the vector interpolated in the action space would not contain any
action-irrelevant features, allowing us to achieve the objective of decoupling the action and the actor.

3.4 Step-3: Generating Customized Action

The final step involves optimizing the embeddings of the customized token V ∗, which is derived from
the action base through linear combinations and synthesis customized action image.

Training. Initially, a few user-provided images and corresponding textual prompts containing V ∗ are
used to apply the pixel reconstruction-based loss Lrec, similar to previous customized TGDMs (in
Eq 1). However, the traditional Lrec in existing TGDMs aims to faithfully reconstruct the sample
image appearance, focusing on low-level pixel features. This narrow focus limits the model’s ability
to recognize and invert high-level action features in the images, as shown in Figure 7(b).

To address this limitation, we introduce an action similarity loss to enhance the model’s grasp of
high-level action semantics. Beginning with an input image x and a corresponding prompt c, we
randomly initialize a latent variable xT . This variable is progressively denoised until it reaches a
randomly selected timestep t, at which point the denoised image xprd is predicted directly from xt.
The goal is to evaluate the action similarity between these two images. Specifically, by leveraging
action encoder ψ (·), the encoded action features for both the reference action xp and the generated
action xprd

p are extracted. We then calculate the cosine similarity between these action features to
measure action consistency during the generation process. This similarity is formally defined as:

Lact_sim = Ec∼p(c)Ex∼p(x|c)
[
1− cos_sim(xp,x

prd
p )

]
(4)

By integrating the action similarity loss, the model’s focus shifts from detailed pixel information to
high-level action semantics. The final training loss for TwinAct can be expressed as:

L = Lrec + Lact_sim (5)

Testing. After training, the three groups of coefficients [W1,W2,W3] and the LoRA parameters in
the text-to-image decoder are saved. Users can generate images depicting customized actions in
different contexts by providing prompts such as “Leonardo V ∗”.

4 Experiment

4.1 Experiment Setup

Dataset. We tackle the challenge of decoupling specific actions from the actors in user-provided
images. Since there are no publicly available customized action datasets, we introduce a novel
benchmark, consisting of 12 actions involving multiple body parts, such as fingers, arms, legs, and
full-body motions. Each action contains approximately 10 sample images. In addition to actions
performed by a single actor, we incorporate more complex actions that involve multiple actors.

Metrics. To comprehensively validate the efficacy of TwinAct, we incorporate objective metrics
to assess the quality of the generated images. We calculate the consistency between the action in
the sample image and the generated image through the CLIP score, which is denoted as “SAction”.
Additionally, ensuring identity consistency is a crucial aspect of our task, so we evaluate the actor’s
identity similarity using a pre-trained face recognition encoder [3], which is denoted as “SActor”.
In addition, we also conduct user studies including “UAction” and “UActor”, representing user
preferences for action fidelity and actor identity consistency in the generated images.

4.2 Comparison with State-of-the-art Methods

Qualitative Comparison. We illustrate the advancements of our method compared to previous
approaches in handling various forms of actions, including hand, body, single-actor, and multi-actor
actions, as shown in Figure 1. Initially, we evaluate two methods for generating customized action
images without fine-tuning, as shown in the column of SD and ControlNet in Figure 1. Images
generated from detailed textual prompts (SD) frequently exhibit misalignment with the actions in the
sample images. On the other hand, Controlled Generative Models (ControlNet), which depend on
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Figure 4: The results of customized action generation with TwinAct. TwinAct generates images
of different actors performing customized actions such as celebrities and animals, and maintains the
consistency of the action and identity of the subject.
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Figure 5: The results of customized actors performing customized actions generated by TwinAct.

Methods Text Inversion DreamBooth Reversion Custom Diffusion P+ ADI Ours

Objective SAction 9.12 12.23 18.73. 26.83 33.95 45.32 69.47
SActor 33.85 38.53 45.58 41.58 46.12 48.76 73.34

User
Study

UAction 0.22 0.19 0.89 1.16 1.30 2.25 3.86
UActor 0.53 0.70 1.05 1.31 1.23 2.08 4.12

Table 1: Quantitative comparisons. We evaluate TwinAct based on both objective metrics and user
study. The results indicate that TwinAct surpasses all baseline methods.

skeleton images, tend to only imitate the basic structures of the sample images and lack a profound
understanding of the contextual dependencies required for action customization. This deficiency
leads to significant body deformations and flaws, particularly when animals are involved in the action.
For example, in the fifth and sixth rows of Figure 1, both the human and the gorilla mistakenly raise
their hands instead of their feet.

Subsequently, we conduct comparisons with state-of-the-art baselines such as Textual Inversion [4],
DreamBooth [22], Reversion [8], Custom Diffusion [10], P+ [27], and ADI [7]. Textual Inversion and
DreamBooth tend to capture minimal action-related information, primarily because of their limited
tunable parameters. On the other hand, Custom Diffusion, which fine-tunes cross-attention in U-net,
and P+, which utilizes per-layer token embeddings, manage to retain more information from the
sample images. However, they uncontrollably invert action-irrelevant details in the sample images
and bring these details into the generated image, such as the human hand and the manicure in the first
and second rows shown in Figure 1. In addition, Reversion and ADI try to exclude action-irrelevant
information from the images by contrastive learning but face challenges in comparing all negative
samples. Therefore, the images they generate still contain some confounded details, such as the red
curly hair of the Black Widow in the third row and the yoga pants in the sixth row. In contrast, TwinAct
shows the best customized action generation results. Through the acquisition of a customized action
token embedding, which is derived from a linear combination of action bases within the common
action space, TwinAct accurately capture the action information in the sample images while excluding
irrelevant details with good generalization.

Quantitative Comparison. In addition to the visual quality, we also present a numerical comparison
between TwinAct and the baselines in Table 1. As can be seen, our approach outperforms in
terms of both action and actor similarity, demonstrating its effectiveness in imitating customized
actions and filtering out irrelevant information that could potentially confuse the portrayal of the
new actor. Furthermore, the performance across four representative types of action customization
tasks (i.e., Single-Actor, Two-Actor, With-Human, With-Animal) is illustrated in Figure 6. Our
method consistently shows superior performance and the least variability across all types. Notably,
the method labeled as P+ experiences the most significant performance drop when involving animals,
and ADI exhibits a considerable performance drop when handling actions involving two actors.

Additionally, following the methodology outlined in [30], we conduct a quantitative comparison
involving human evaluators to further validate the effectiveness of TwinAct. We invite 100 users to
rate each pair of actor-action images generated by TwinAct and baselines on a scale ranging from
1 (worst) to 5 (best), focusing on both action and actor consistency. The collective feedback, as
presented in Table 1, clearly indicates a strong preference for TwinAct among the users.
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Figure 6: Numerical analysis in terms of the actor
and action similarity on four prompt types.

Methods SActor SAction

w/o action space 58.86 52.18
w/ 50% action phrases 68.39 61.86
w/o action encoder 67.27 59.06
w/o Lact 70.23 63.58
p = 64 72.47 54.27
p = 256 73.12 61.66
p = 768 71.62 67.63
Ours 73.34 69.47

Table 2: Ablation studies.

Figure 7: Visualization of ablation studies. The results of TwinAct are highlighted in green box.

4.3 Ablation Study

Impact of Action Space. We assess the impact of the number of action phrases for building the
common action space, as shown in Figure 7(a). In extreme cases, if there exists no action space and
we directly learn the customized token embedding from the action encoder (w/o action space), the
model can not generate customized actions and is overfitted to the input image details, such as the
actor’s clothes and the background. When utilizing a smaller number of action phrases (w/ 50%
action phrases), the generated quality is not as good as TwinAct.

Impact of Action Encoder and Action Similarity Loss. We assess the impact of the action encoder
and action similarity loss in Figure 7(b) and Table 2. The experimental results reveal that employing
an action encoder can enhance discriminative capabilities regarding actions and yield satisfactory
outcomes. In contrast, without an action encoder, optimizing the coefficients Wk of the action bases
Bk through back-propagation (w/o action encoder) is ineffective. Furthermore, we can find action
similarity loss can guide model towards more accurately imitating the customized actions by drifting
the model’s focus from low-level pixel features to action-related high-level semantic features.

Impact of the Number of Principal Components. We explore the effect of the number of principal
components p on model performance. With 768 dimensions in the CLIP text embeddings, we conduct
experiments with different values of p from {64, 256, 512, 768}. The experimental results, outlined
in Table 2, indicate that the optimal results are achieved when p is set to 512. Additionally, we
showcase the variations in the generated images for different p values in Figure 7(c).

4.4 Combinations of Customized Actors and Customized Actions

Our method demonstrates strong adaptability to integrate with existing subject-driven customized
generation methods[11], as shown in Figure 5. It effectively adapts to customized actors, which were
unknown by TGDMs, and generates visually engaging images showcasing these actors performing
customized actions. In contrast, as depicted in Figure 10 in Appendix, existing methods struggle
to accurately capture action-related features, resulting in unsatisfactory generation of customized
actions and a lack of identity consistency for the customized actors.
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5 Conclusion

In this paper, we introduce a novel approach, TwinAct, for customized action image generation,
which aims to preserve the fidelity of the action and the consistency of the actor’s identity. TwinAct
consists of a common action space and can create new actions by adjusting or combining the action
bases in the space. By imitating action via action bases, TwinAct effectively decouples action from
the actor. Extensive experiments demonstrate TwinAct’s superiority in generating accurate, context-
independent customized actions across various subjects, including humans, animals, and customized
actors. Furthermore, TwinAct’s ability to preserve the high fidelity and identity consistency in
generated images highlights its robustness and adaptability. The potential applications of TwinAct in
areas such as animation, gaming, and visual effects are vast, offering new opportunities for creative
and personalized content generation.
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In this appendix, we first provide an in-depth analysis of Stable Diffusionin in Section A.1 and
ControlNet in Section A.3, and additional results of TwinAct in Section A.3 and A.4, demonstrating
its effectiveness in generating customized action images. Then we introduce the evaluation setting in
Section B.1, the details of the action space in Section B.2, and the implementation details in Section C.
Finally, we discuss the limitations in Section D and societal implications in Section E for TwinAct.

A More Qualitative Results

A.1 Comparison with Stable Diffusion

We first utilize GPT-4 to generate a detailed description of the actions in the sample image provided
by the user, as shown in Figure 12. We can find that on the one hand, although GPT-4’s description
is highly sufficiently, it still inevitably loses many details of the action. On the other hand, existing
text-guided image diffusion generation models have difficulty in understanding such detailed textual
descriptions, like “heart” in the fourth row in Figure 12. Both reasons result in the generation of
action images that are far from the sample image. In contrast, our approach accurately captures
action-related features, and the user only needs to provide textual prompts like “a polar bear V ∗”,
and then customized action images can be generated in the desired contexts.

A.2 Comparison with ControlNet

In addition to controlling the generation of models through textual conditioning, current work such as
ControlNet supports extracting spatial constraints from reference images as conditions to generate
images. We tried two reference images, skeleton images, and sketches, as conditions to control the
generative model to generate customized action images. The results are shown in Figure 9. We
can find that the skeleton image-based approach loses a lot of details of the action, such as fingers,
and it is difficult to imitate the customized action. The other sketch-based approach provides more
details, but this limits the diversity of the model generation results, e.g., it is difficult to generate
images of animals performing customized actions since the sketches contain human bodies. Also, the
sketches contain some additional action-irrelevant information such as the background, the actor’s
hairstyle, and so on. More importantly, the controlled generation model lacks the understanding of
the contextual dependency of the action, as shown in the third row in Figure 9. It is difficult for the
generation model to understand the relationship between the hands and the feet in the customized
action, which leads to serious body distortions and visual deficiencies, and this becomes even more
obvious when animals are involved.

A.3 Comparison with Baseline on Customized Actor

In this section, we compare the results of existing customized TGDMs and TwinAct in generating
images containing customized actors and customized actions. As shown in Figure 10, our approach
significantly outperforms the previous methods in maintaining the fidelity of the action and consistency
of the character’s identity. Textual Inversion, Dreambooth, and Revrsion struggle to imitate the
customized action. As for, Custom Diffusion, P+, and ADI, although they can roughly maintain the
consistency of the actions specified in the sample image, fail to maintain the identity information
of the customized actors. This is because their customized action tokens are confounded with
information irrelevant to the actions in the sample image, e.g., Black Widow’s red curly hair in the
first row, and the yoga pants in the second row.

A.4 Additional Results

In this section, we show more customized action images generated by TwinAct, as shown in Figure11,
covering the rest of the 5 actions within our benchmark.

B Experiment Design

B.1 Evaluation Setting

Following [7], we provide 25 subjects for evaluation as follows:
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Figure 8: Comparing the results generated by TwinAct and fine-grained textual descriptions.
The results show that customized actions are difficult to describe and that existing text-to-image
generation models do not accurately follow textual instructions even when fine-grained textual
descriptions are provided.

Figure 9: Comparison of results generated by TwinAct and sketch-based generation models.
The results show that it is difficult for the user to provide a suitable sketch for generating customized
action images. The results generated with skeleton images show it is difficult to capture the details of
the action such as fingers, while the results generated with line images are limited in generalization,
especially when it involves animals.

• generic human: “A boy”, “A girl”, “A man”, “A woman”, “An old man”
• well-known personalities: “Barack Obama”, “Michael Jackson”, “David Beckham”, “Leonardo

DiCaprio”, “Messi”, “Spiderman”, “Batman”
• animals: “A dog”, “A cat”, “A lion”, “A tiger”, “A bear”, “A polar bear”, “A fox”, “A cheetah”, “A

monkey”, “A gorilla”, “A panda”
• customized actors: “Cruze”, “Imelda”

where the inclusion of diverse and previously unseen actors, as well as animals and customized
characters, requires models to retain pre-trained knowledge while also generating accurate and
undistorted representations of these actors.

B.2 Action phrases for Action Sapce

As stated in the manuscript, we devise a set of action phrases to build action space. Specifically, we
collect a comprehensive list of about 1,200 action phrases with the help of GPT-4 [1]. After obtaining
these action phrases, in order to filter out those action phrases that are not recognized by the TGDMs.
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Figure 10: Comparing the results of generating customized actors to perform customized actions
generated by TwinAct and other methods. TwinAct can better maintain the identity consistency of
the subject in the generated image, and the fidelity of the action.

we synthesize the image result by providing 2 types of prompts, i.e. “A photo of {Action}”, “A photo
of someone {Action}”, to the Stable Diffusion XL [17], where {Action} represents an action phrases
(e.g. “raise hand”). Those action phrases that do not generate the correct action, such as “reverse
plank”, or “crab walk”, are filtered out. We ended up with 832 valid common action phrases, which
were then further tokenized and encoded into the action space.

C More Implementation Deatils

C.1 Implementation Details about TwinAct

Implementation Details. For our method, we use the AdamW[12] optimizer with a learning rate
of 2e-4. We use CLIP as a preprocessor to estimate the action of the given reference image. Unless
otherwise specified, Stable Diffusion XL is selected as the default pre-trained model, and images
are generated at a resolution of 1024×1024. All experiments are conducted on A-100 GPUs. We
fine-tuning text embedding along with the LoRA layer. We integrate the LoRA layer into the linear
layer within all attention modules of the U-net, utilizing a rank of r = 8.

Sample Details. All experiments and evaluations make use of the DDPM [25] with 50 sampling
steps with a scale of 7.5 for all methods. To ensure consistency and filter out undesired variations in
diffusion models, we follow the approach outlined in [11] by employing the same negative prompt
for both our method and the comparison methods during sampling. The negative prompt used is
“long body, low-res, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst
quality, low quality.”

Running Times. The process of tuning a customized action token embedding in the text encoder and
the LoRA layer in the text-to-image decoder typically requires approximately 15 minutes using an
Nvidia-A100 GPU.

C.2 Implementation TwinAct with Customized Actor

Thanks to the rapid development of subject-driven customized text-guided diffusion models for image
generation, they achieved an exciting proceeding in generating high-fidelity customized actor images.
We combine TwinAct with the existing state-of-the-art subject-driven customized TGDMs [11] to
generate images of customized actors performing customized actions. To achieve this, we only need
to apply the action base alone to the embedding of the customized action tokens, while the embedding
of the customized actor’s tokens is obtained as in [11]. The action similarity loss can be applied
to the optimization of both the customized action tokens and the customized actor tokens, and our
generation results show that the action similarity loss does not affect the learning of the customized
actor tokens.
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D Limitation and Future Work

In this work, our goal is to generate images of customized actions. There are two limitations to
TwinAct. First, TwinAct obtains the embedding of customized action toknes by combining action
bases. Although the action base is carefully defined, it is still possible to miss some actions, which
limit the expressiveness of TwinAct’s output domain. This can be overcome by further expanding the
action space by adding more common action phrases. Another limitation comes from the physical
defects of TGDMs in generating human bodies, we mitigate this problem by providing some negative
prompts like “long body, low-res, bad anatomy, bad hands, missing fingers, extra digit, fewer digits,
cropped, worst quality, low quality”. Furthermore, there are some works [29, 16, 28] designed to
solve the problem. Moreover, TwinAct is not restricted to image generation models; it can also be
used for customizing text-guided diffusion models to generate videos or 3D assets. we leave it as
future work.

E Expected Societal Implications

We aim to address the challenge of decoupling actions and actors to customize the text-guided
diffusion model for few-shot action image generation. A primary ethical concern is the potential
misuse of this technology, notably in creating deepfakes, which can result in misinformation, privacy
violations, and other harmful outcomes. To mitigate these risks, the establishment of robust ethical
guidelines and continuous monitoring is essential.

The concern raised here is a common one, not just for our method but across various multi-concept
customization techniques. A viable strategy to lessen these risks might be the implementation
of tactics akin to those used in anti-dreambooth[26]. This approach involves adding minor noise
disturbances to the shared images, thereby hindering the customization process. Furthermore,
embedding invisible watermarks in the generated images can serve as a deterrent against misuse and
ensure that they are not used without due acknowledgment.
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Figure 11: More TwinAct generated results.
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Figure 12: Some examples of action phrases.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In Section 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: In Appendix

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: In Section 3
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In Section 4 and Appendix
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

20



Answer: [Yes]
Justification: In Appendix
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: In Section 4.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In Section 4.2
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Section 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: In Appendix
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: In Appendix
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In Reference
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: In Appendix
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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