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Abstract

Imitation learning (IL) is a general learning paradigm for tackling sequential
decision-making problems. Interactive imitation learning, where learners can in-
teractively query for expert demonstrations, has been shown to achieve provably
superior sample efficiency guarantees compared with its offline counterpart or
reinforcement learning. In this work, we study classification-based online imitation
learning (abbrev. COIL) and the fundamental feasibility to design oracle-efficient
regret-minimization algorithms in this setting, with a focus on the general non-
realizable case. We make the following contributions: (1) we show that in the
COIL problem, any proper online learning algorithm cannot guarantee a sublinear
regret in general; (2) we propose LOGGER, an improper online learning algorithmic
framework, that reduces COIL to online linear optimization, by utilizing a new def-
inition of mixed policy class; (3) we design two oracle-efficient algorithms within
the LOGGER framework that enjoy different sample and interaction round com-
plexity tradeoffs, and conduct finite-sample analyses to show their improvements
over naive behavior cloning; (4) we show that under the standard complexity-
theoretic assumptions, efficient dynamic regret minimization is infeasible in the
LOGGER framework. Our work puts classification-based online imitation learning,
an important IL setup, into a firmer foundation.

1 Introduction

Imitation learning (IL), also known as learning from expert demonstrations [47, 44], is a general
paradigm for training intelligent behavior for sequential decision making tasks. IL has been success-
fully deployed in many applications, such as autonomous driving [47, 45], robot arm control [69],
game playing [60], and sequence prediction [23, 8]. It is now well-known that with the help of a
demonstrating expert, an IL agent can bypass the exploration challenges of reinforcement learning,
achieving a much lower sample requirement than reinforcement learning agents [63].

Two major IL paradigms have been studied in the literature: offline and interactive. In offline
IL [1, 64, 74, 30], the learner receives a set of expert demonstrations ahead of time; in contrast,
in interactive IL [23, 56, 55, 32], the learner has the ability to interactively query the expert for
demonstrations on states at its disposal, allowing expert feedback to be provided in a targeted manner.
In both settings, the goal of the learner is to output a policy π̂ that competes with the expert’s
policy πE , by consuming as few resources (e.g. expert annotations) as possible. Between these two,
interactive IL is known to be able to achieve superior policy performance than its offline counterpart
under certain favorable assumptions on the expert policy and the environment, in that learning agents
can use interaction to address the compounding error challenge [54, 49].

Despite the recent progress in the fundamental limits of the interactive imitation learning in the
realizable setting [63, 50, 49], the statistical and computational limits of the interactive imitation
learning in the general nonrealizable setting remain open. One promising and influential algorithmic
framework for studying and analyzing interactive IL in the nonrealizable setting is DAGGER (Data
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Aggregation) [56], whose key insight is to reduce interactive IL to regret minimization in online
learning [59]. Specifically, it constructs a N -round online learning game, where at every round
n ∈ [N ], the learner outputs some policy πn from a policy class B, and incurs a loss Fn(π); the
loss is carefully constructed so that the learner’s instantaneous loss Fn(πn) characterizes current
policy πn’s competitiveness compared to the expert πE . A representative example of Fn(π) is
the expected disagreement between π and πE on the state occupancy distribution induced by πn,
used in the original DAGGER paper [56], which can be expressed as the expected zero-one loss of
π on a distribution of classification examples – we call such setting Classification-based Online
Imitation Learning (abbrev. COIL). The DAGGER reduction framework has spurred an active line of
research on IL [e.g. 55, 63, 15, 18, 17, 38]: it enables conversions from stochastic online optimization
algorithms with static or dynamic regret guarantees to IL algorithms with different output policy
suboptimality guarantees, allowing the research community to directly translate new results in online
learning to those in IL.

Perhaps surprisingly, from a fundamental perspective, rigorous design of efficient regret minimization
algorithms for COIL has been largely overlooked by the prior literature. Specifically, many works
assume a fixed parameterization of policies inB, and assume that Fn(π)’s are convex in π’s underlying
parameters to allow for no-regret online convex optimization [e.g. 56, 63, 15]. Although natural, this
viewpoint has some issues: (1) in DAGGER’s reduction, the learner uses finite-sample approximations
of Fn(π), which are often discontinuous in π’s underlying parameters (e.g. given a policy πθ(s) =
sign(〈θ, s〉) as a linear classifier, its zero-one loss on a state, I(πθ(s) 6= πE(s)) is discontinuous in
θ), making stochastic gradient-based methods inapplicable. Convex surrogate loss functions has been
proposed as a popular workaround [56], but it is well-known that in the nonrealizable setting, even
for the special case of supervised learning, minimizing convex surrogate losses can result in very
different models compared to minimizing the original zero-one classification losses [7]; (2) it makes
the usage of policy classes with complex parameterization (e.g. rule-based policies such as decision
trees) difficult, as convexity is hard to establish for such classes.

Overview of our results. In this paper, we bridge the above-mentioned gaps by studying the funda-
mental feasibility of designing efficient regret minimization algorithms for COIL, putting the study
of statistical and computational limits of interactive imitation learning in the general nonrealizable
setting into a firmer foundation. Our first result is that, analogous to Cover’s impossibility result in
online classification [20], in the COIL setting, any proper online learning algorithm (that outputs a
sequence of policies {πn}Nn=1 from the original class B) cannot guarantee sublinear regret in general
(§ 3.1).

The above negative result motivates the design of improper learning algorithms for regret minimiza-
tion. To this end, we propose to choose policies from a mixed policy class ΠB, and provide an
algorithmic framework, LOGGER, that reduces COIL to online linear optimization. In a nutshell,
LOGGER uses a natural parameterization on ΠB that allows to express Fn(π) as a linear function of
the underyling parameters of π ∈ ΠB. We show that any online linear optimization algorithm with
(high-probability) regret guarantees can be plugged into LOGGER to obtain an algorithm for COIL
with policy suboptimality guarantees (§ 3.2).

Next, enabled by the LOGGER framework, we design computationally efficient algorithms for static
regret minimization. Assuming access to an offline cost-sensitive classification (CSC) oracle O,
and a set of unlabeled separator examples for B [66, 24], we design LOGGER-M, a sample and
computationally efficient algorithm. WithO(1/ε2) interaction rounds andO(1/ε2) expert annotations,
LOGGER-M enjoys a per-round static regret of ε (§ 4.1). Underlying LOGGER-M is a delicate
utilization of the connection between Follow-the-Perturbed-Leader and Follow-the-Regularized-
Leader, two well-known online learning algorithm families, first observed by [2]. Moreover, by
exploiting the predictability of the COIL problem [51, 18, 17], we design an efficient algorithm
LOGGER-ME, that enjoys a per-round static regret of ε, with O(1/ε) interaction rounds and O(1/ε2)
expert annotations (§ 4.2). Its reduced number of interaction rounds can enable a more practical
deployment of IL agents, especially when interactive expert annotations come in batches or with
delays.

Finally, we study efficient dynamic regret minimization in the LOGGER framework (§ 5). We show
that this is unlikely to be feasible: under a standard complexity-theoretic assumption, no oracle-
efficient algorithms can output policies in ΠB with sublinear dynamic regret. Due to space constraints,
we discuss key related works throughout the paper, and defer additional related works to Appendix A.
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2 Preliminaries

Basic definitions. Define [n] := {1, . . . , n}. Define indicator function I(·) such that I(E) = 1 if
condition E is true, and = 0 otherwise. We use ∆(W ) to denote the set of probability distributions
over a finite set W , and use Onehot(w,W ) ∈ ∆(W ) to denote the delta mass on w ∈ W . For a
finite W , we will oftentimes treat u ∈ R|W | (e.g. u ∈ ∆(W )) as a |W |-dimensional vector; for
w ∈W , denote by u[w] the w-th coordinate of u. We abuse the notation of {·} to denote multisets.

Episodic MDPs. We study imitation learning in episodic Markov decision processes (MDPs). An
episodic MDPM is a tuple (S,A, H, c, ρ, P ), where S is a finite state space (that can be exponentially
large), A is a finite action set, H ∈ N+ is the episode length, c : S ×A → [0, 1] is the cost function,
and ρ ∈ ∆(S) is the initial state distribution. Also, P = {Pt}H−1

t=1 denotesM’s transition dynamics,
with Pt : S ×A → ∆(S) being the transition probability at step t. Throughout, we use S and A to
denote |S| and |A|, respectively. Without loss of generality, we assume thatM is layered, where
S can be partitioned into H disjoint sets {St}Ht=1; the initial distribution ρ is supported on S1, and
transition distribution Pt(· | s, a) is supported on St+1 for all t, s, a. For state s ∈ S, define Step(s)
as the step t such that s ∈ St.
A learning agent interacts with M for one episode using the following protocol: for every step
t ∈ [H]: it observes a state st ∈ St, takes an action at ∈ A, incurs cost c(st, at), and transitions
to next state st+1 ∼ Pt(· | st, at) except for the last step when it stops. Given a stationary policy
π : S → ∆(A), we use π(·|s) to denote the action distribution of π on s. Denote by Eπ and
Pπ the expectation and probability over executing (i.e. rolling out) policy π inM. Given policy
π, its state occupancy distribution at step t is defined as dtπ(·) := Pπ(st = ·); its average state
occupancy distribution is denoted as dπ := 1

H

∑H
t=1 d

t
π. Let J(π) := Eπ

[∑H
t=1 c(st, at)

]
=

H · Es∼dπEa∼π(·|s)
[
c(s, a)

]
denote the expected cumulative cost of π over an episode. For policy

π, we denote its value function Vπ(s) := E
[∑H

t=Step(s) c(st, at) | s, π
]

and action-value function

Qπ(s, a) := c(s, a) + E
[∑H

t=Step(s)+1 c(st, at) | s, a, π
]
; in words, they are the expected costs of

rolling out π starting from s and (s, a), respectively. For policy π, define its advantage function as
Aπ(s, a) := Qπ(s, a) − Vπ(s), which measures the expected performance difference by one step
deviation of π by taking action a at state s. Also, we define the recoverability constant as the ability
of π to recover from deviation when rolled out inM:

Definition 1 (µ-recoverability). A (MDP, policy) pair (M, π) is said to be µ-recoverable, if ∀s ∈
S, a ∈ A,

∣∣Aπ(s, a)
∣∣ ≤ µ. 1

Interactive IL. We study interactive imitation learning [23, 54], where the learner has access to
a stationary deterministic demonstrating expert πE and would like to learn a policy with low ex-
pected cost. Throughout, we assume that (M, πE) is µ-recoverable, for some µ ≤ H that can
possibly be � H . At each interaction round, the learner interacts with M for a few episodes,
obtaining trajectories of the form τ = (s1, a1, s2, a2, . . . , sH , aH) and queries the expert for feed-
back on some of the states. Specifically, given a state s, the feedback given by the expert is of
the form (ζE(s, a))a∈A ∈ RA. Two notable examples are: (1) direct expert annotation [56], i.e.
given state s, expert provides demonstration πE(s), and we use it to construct an A-dimensional
feedback (ζE(s, a))a∈A = (µ · I(a 6= πE(s)))a∈A; (2) estimates of value functions based on
experts’ rollout [55], i.e. (ζE(s, a))a∈A = (AE(s, a))a∈A := (AπE (s, a))a∈A.2 Throughout,
we assume ζE(s, a) satisfies ∀s ∈ S, a ∈ A, AE(s, a) ≤ ζE(s, a) ≤ µ · I(a 6= πE(s)); this
is satisfied by the two examples above. For a stationary policy π, define its imitation loss as:
L(π) := Es∼dπEa∼π(·|s)

[
ζE(s, a)

]
. By the performance difference lemma [34] (see Lemma 55 in

Appendix H), J(π)− J(πE) ≤ H · L(π), implying that if π has a small imitation loss, it will have
expected cost competitive with πE . In light of this connection, in interactive IL, the learner would
like to obtain policy π̂ with low L(π̂). Subject to this, throughout the paper, we consider optimizing
two measures of data efficiency:

1The µ-recoverability definition here is slightly different from the original ones in [56], in that it also requires
that Aπ(s, a) ≥ −µ; we can drop this assumption with a slightly worse sample complexity analysis.

2Strictly speaking, in AggreVate and its variants [55, 63], the learner requests expert rollout to obtain unbiased
estimators of AE(s, a); our sample complexity analysis can also be adapted to this setting.
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Protocol 1 Classification-based Online Imitation Learning (COIL)
for n = 1, . . . , N do

Learner outputs policy πn.
Loss function Fn(π) := Es∼dπnEa∼π(·|s)

[
ζE(s, a)

]
.

Learner draws samples from DEπn to obtain information about loss Fn, via interacting withM
and querying the expert for annotation ζE .

end for
Goal of learner: minimize

∑N
n=1 Fn(πn) =

∑N
n=1 L(πn).

• Sample complexity: the total number of expert annotations ζE requested. A smaller sample
complexity reduces the total cost of expert annotations (which often takes human effort).
• Interaction round complexity: total number of adaptive interaction rounds. A small number

of interaction rounds enables more parallelized annotations within an interaction round, and
mitigates issues of annotation delay [72, 68].

The DAGGER reduction framework for interactive IL. The DAGGER framework reduces mini-
mizing L(π) to no-regret online learning [56, 55]. It constructs a N -round online learning game,
where at every round n ∈ [N ], the learner outputs some policy πn, which induces a loss function
Fn(π) = Es∼dπnEa∼π(·|s)

[
ζE(s, a)

]
. Its key insight is that, by the definition of {Fn}Nn=1, minimiz-

ing the online learning cumulative loss
∑N
n=1 Fn(πn) is equivalent to minimizing the cumulative

imitation losses of πn’s, i.e.
∑N
n=1 L(πn). Research efforts in online learning [59, 43] have mainly

focused on the design of algorithms that can output {πn}Nn=1 with static regret SRegN (B) or dynamic
regret DRegN (B) against some benchmark policy class B, formally:

SRegN (B) :=

N∑
n=1

Fn(πn)−min
π∈B

N∑
n=1

Fn(π), DRegN (B) :=

N∑
n=1

(
Fn(πn)−min

π∈B
Fn(π)

)
.

(1)

Assuming that the learner chooses policies {πn}Nn=1 from another stationary policy class B0 (which
may or may not be B), the following proposition shows that static and dynamic regret guarantees in
the induced online learning game can be converted to policy suboptimality guarantees:

Proposition 2 (e.g. [15]). For any N ∈ N+ and online learner that outputs {πn}Nn=1 ∈ BN0 , define
Bias(B,B0, N) := max

{υn}Nn=1∈BN0
min
π∈B

Es∼d̄NEa∼π(·|s)
[
I(a 6= πE(s))

]
, where d̄N := 1

N

∑N
n=1 dυn .

Then, choosing π̂ uniformly at random from {πn}Nn=1 has guarantee:

E
[
J(π̂)− J(πE)

]
≤ H·min

{
µ · Bias(B,B0, N) +

E[SRegN (B)]

N
, µ · Bias(B,B0, 1) +

E[DRegN (B)]

N

}
.

In the above proposition, Bias(B,B0, N) takes the worst-case mixture of state occupancy distributions
{dυn}

N
n=1 induced by N policies from B0, and measures the expected disagreement between πE and

its best approximating policy in B. Informally, it measures the “approximation error” of benchmark
class B: it is always nonnegative, and in the special case of πE ∈ B (which we call the realizable
case), Bias(B,B0, N) = 0. Proposition 2 gives two ways to obtain a competitive imitation policy:
(1) choose (B,B0) with a small Bias(B,B0, N) and achieve a low static regret; (2) choose (B,B0)
with a small Bias(B,B0, 1) and achieve a low dynamic regret. Although achieving low dynamic
regret can be significantly more challenging than achieving low static regret, minimizing dynamic
regret has the advantage that its approximation error term Bias(B,B0, 1) is smaller than the static
regret formulation’s counterpart Bias(B,B0, N).

Classification-based Online Imitation Learning (COIL). As we consider a finite action space
A, a policy π can be equivalently viewed as a (possibly randomized) multiclass classifier. A cost-
sensitive classification (CSC) example is defined to be a pair (x,~c), where x ∈ S is its feature
part, and ~c ∈ RA is its cost part. Under the DAGGER reduction framework, the loss at iteration
n, Fn(π) = Es∼dπnEa∼π(·|s)

[
ζE(s, a)

]
, can be viewed as the expected cost of policy π on a

distribution of cost-sensitive examples DEπn (formally, E(s,~c)∼DEπn

[
~c(h(s))

]
), where a sample (s,~c)

is drawn from DEπ by first rolling out π and drawing s ∼ dπ, and query the expert on s to obtain
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(ζE(s, a))a∈A as its associated ~c. The learner can obtain a finite-sample approximation to Fn(π) by
interacting withM and the expert to draw samples from DEπn . We will focus on designing efficient
regret-minimizing algorithms in the COIL setting; see Protocol 1 for a summary.

In addition to data efficiency, we also consider the design of imitation learning algorithms with
computational efficiency guarantees. To this end, following a sequence of empirically and theoretically
successful works on oracle-efficient learning [66, 25, 5, 21], we assume access to the benchmark
policy class B, a collection of B stationary and deterministic policies h : S → A, via the following
computational oracle:
Definition 3 (CSC oracle). A CSC oracle O for policy class B is such that: given any input multiset
of cost-sensitive examples D = {(x1,~c1), . . . , (xK ,~cK)} ∈ (S × RA)K , it outputs the policy in B
that has the smallest empirical cost, formally,

O(D) := argmin
h∈B

E(x,~c)∼D
[
~c(h(x))

]
,

where we slightly abuse the notation and and use D to also denote the uniform distribution over it.

We measure an algorithm’s computational efficiency by its number of calls to oracle O.

3 LOGGER: reducing COIL to online linear optimization

In this section, we introduce our main algorithmic framework, LOGGER (an abbreviation for Linear
lOss aGGrEgation) for designing regret-minimizing algorithms in the COIL setting. Section 3.1
motivates our approach by showing that natural proper learning-based approaches fail to achieve
sublinear regret in general; Section 3.2 introduces our approach of performing improper learning
using a carefully-defined mixture policy class, via a reduction to online linear optimization.

3.1 Can we achieve sublinear regret using proper learning?

A natural idea for minimizing regret is proper learning: at round n, the learner chooses some policy
πn (possibly at random) from B0 = B, our benchmark policy class, using some online learning
algorithm, based on the information collected in the first n − 1 rounds; the learner then collects
information on Fn via rollouts of πn and expert annotations, and continue to the next iteration.

While this approach has demonstrated sharp online regret guarantees in classical online cost-sensitive
classification settings [40, 27], perhaps subtly, we show in the following theorem that, this approach
is insufficient to guarantee sublinear regret in the COIL setting.
Theorem 4. Suppose the expert’s feedback ζE(s, a) is of the form µ · I(a 6= πE(s)) or AE(s, a).
Then, for any H ≥ 3, there exists an MDPM of episode length H , a deterministic expert policy πE ,
a benchmark policy class B, such that for any learner that sequentially (and possibly at random)
generates a sequence of policies {πn}Nn=1 ∈ BN , its static regret satisfies SRegN (B) = Ω(N).

The proof of the theorem can be found at Appendix D.1. Its key insight is that, distinct from the
classical online CSC setting, in COIL, the loss at round n, Fn, depends on the policy chosen at that
round πn, making standard regret minimization results in online classification [40, 27] inapplicable.
In more detail, we construct a fixed MDP that “act adversarially” to policies in B, such that any
πn ∈ B has Fn(πn) ≥ H−1

H , whereas minπ∈B
∑N
n=1 Fn(π) ≤ N

2 . Our theorem is similar in spirit
to Cover’s impossibility result in online classification [20], which shows that an adversary that adapts
to the randomness of the learner at each round can force the learner to suffer linear regret.

3.2 A new hypothesis class and the LOGGER algorithmic framework

To sidestep the impossibility result in Theorem 4, we apply the “convexification by randomization”
technique in online convex optimization [59] by improper learning on a mixed policy class, defined
below.
Definition 5 (Mixed policy class). Given policy class B, define its induced mixed policy class

ΠB :=

πu(·|s) :=
∑
h∈B

u[h] · h(·|s) : u ∈ ∆(B)

 .
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Algorithm 2 LOGGER: reducing COIL to online linear optimization
1: Input: MDPM, Expert feedback ζE , sample size per iteration K, Online linear optimization

algorithm OLOA with decision set ∆(B).
2: for n = 1, 2, . . . , N do
3: Choose un ← OLOA({gi}n−1

i=1 ), which induces policy πn := πun .
4: Draw K examples Dn =

{
(s,~c)

}
iid from DEπn , via interaction withM and expert ζE .

5: Dn induces gn =
(
E(s,~c)∼DnEa∼h(·|s)

[
~c(a)

])
h∈B

, an unbiased estimator of θ(un).

6: end for

We slightly abuse notation and use h(· | s) ∈ ∆(A) to denote the delta mass on h(s) ∈ A.3

At a cursory glance, choosing a policy from ΠB seems equivalent to choosing some policy at random
from B, which also falls into the failure mode of proper learning (Theorem 4). We remark that this is
not true: rolling out a policy from πu ∈ ΠB is equivalent to drawing new policies in an i.i.d. fashion
from B at every step of the episode instead. As we will see next, the usage of ΠB enables the design
of COIL algorithms with sublinear regret.

Our key observation is that with the learner outputting policies from the mixed policy class ΠB,
online regret minimization in IL becomes an online linear optimization problem. Recall that in online
IL, the loss at round n is Fn(π) = Es∼dπnEa∼π(·|s)

[
ζE(s, a)

]
. By choosing πn = πun ∈ ΠB and

π = πu ∈ ΠB for un, u ∈ ∆(B), Fn(πu) can be viewed as a linear function of u:

Fn(πu) =
∑
h∈B

u[h] · Es∼dπnEa∼h(·|s)
[
ζE(s, a)

]
=
〈
θ(un), u

〉
,

where θ(v) :=
(
Es∼dπvEa∼h(·|s)

[
ζE(s, a)

])
h∈B

. We have

N∑
n=1

〈
θ(un), un

〉
=

N∑
n=1

Fn(πn), min
u∈∆(B)

N∑
n=1

〈
θ(un), u

〉
= min
u∈∆(B)

N∑
n=1

Fn(πu) = min
π∈B

N∑
n=1

Fn(π),

and therefore, minimzing the static regret SRegN (B) is equivalent to minimizing the static regret in

the online linear optimization problem with losses
{
u 7→

〈
θ(un), u

〉}N
n=1

.

This motivates LOGGER (Algorithm 2), our main algorithmic framework. Given input an online
linear optimization algorithm OLOA and sample sizeK, LOGGER outputs policy sequence {πn}Nn=1.
Specifically, at round n, LOGGER calls OLOA to perform online linear optimization with respect
to linear losses {u 7→ 〈gi, u〉}n−1

i=1 and obtains un ∈ ∆(B), which corresponds to a policy πn ∈ ΠB
(line 3); here for every i, gi is an unbiased estimator of θ(ui). It then rolls out πn inM for K times
to obtain K samples iid from dπn , queries the expert on each sample s to obtain (ζE(s, a))a∈A as its
associated ~c, and constructs dataset Dn =

{
(s,~c)

}
(line 4). Finally LOGGER computes the empirical

loss of policies on Dn, i.e. gn =
(
E(s,~c)∼DnEa∼h(·|s)

[
~c(a)

])
h∈B

(line 5).

Comparison to prior works. [16] considers a general online convex optimization formulation for
online IL, dubbed “continuous online learning”; our loss function

〈
θ(u), ·

〉
can be viewed as an

instantiation of the loss function fu(·) therein. However, their regret minimization results assume
that fu(·) is strongly convex, which do not cover our COIL setting where fu(·) is linear.

Define LRegN :=
∑N
n=1 〈gn, un〉−minu∈∆(B)

∑N
n=1 〈gn, u〉 as OLOA’s static regret with respect

to {〈gn, ·〉}Nn=1. We have the following proposition that links LRegN to SRegN (B), the static regret
of {πn}Nn=1 in the online IL problem.

Proposition 6. For any δ ∈ (0, 1], if LOGGER uses some OLOA that outputs {un}Nn=1 ⊂ ∆(B)N

such that with probability at least 1− δ/3, LRegN ≤ Reg(N). Then, with probability at least 1− δ,

its output policies {πn}Nn=1 satisfy SRegN (B) ≤ Reg(N) +O

(
µ
√

N ln(B/δ)
K

)
.

3[63, Theorem 5.3] proposes to perform no-regret learning using another definition of nonstationary mixed
policy class. We identify a technical issue with this approach, and defer a detailed discussion to Appendix D.2.
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Proposition 6 shows that Algorithm 2 is a regret-preserving reduction from online IL to online
linear optimization over ∆(B), a B-dimensional probability simplex. The latter is well-known as
the “prediction with expert advice” problem [27] (abbrev. expert problem), where algorithms with
different guarantees abound, such as Follow the Regularized Leader (FTRL), Hedge [27] and its
adaptive and optimistic variants [e.g. 61, Section 1], many of which have optimal worst-case regret
bounds Reg(N) = O

(√
N ln(B)

)
. Instantiating Algorithm 2 with OLOA set as these algorithms,

we obtain a family of online IL algorithms with expected regret of order O(
√
N).

Although satisfying from a statistical efficiency perspective, such online IL algorithms suffers from
computational inefficiency: they require explicit calculation of gn and maintenance of un, which
are B-dimensional (dense) vectors whose entries need to be updated separately. For instance, when
Hedge is chosen as OLOA, un[h] ∝ exp(−η

∑n−1
i=1 gn[h])) for all h ∈ B, which naively requires

O(B) time per round to maintain. To address this computational efficiency issue, in the next section,
we exploit the cost-sensitive classification nature of the COIL problem to design sublinear-regret
algorithms that use implicit representations of gn’s, i.e. Dn’s, that enjoy oracle-efficiency guarantees.

4 Efficient algorithms with static regret guarantees

Using the LOGGER framework, in this section, we propose two oracle-efficient COIL algorithms that
have sublinear static regret guarantees against policy class B, in Subsections 4.1 and 4.2 respectively.

4.1 LOGGER-M: an efficient algorithm with O(
√
N) static regret

The LOGGER reduction framework calls for a computationally and statistically efficient OLOA,
which, if devised, yields an computationally and statistically efficient online imitation learner. How-
ever, when viewed as a general adversarial online learning problem, computational hardness re-
sults [29] suggest that, even with access to classification oracle O, a prohibitive Ω(

√
B) time

complexity is necessary for sublinear regret. Therefore, in subsequent sections, we adopt an assump-
tion on B in [66], which, to the best of our knowledge, is the state-of-the-art weakest assumption that
allows the design of oracle-efficient online CSC algorithms in the adversarial setting:

Assumption 1 (Small separator set). There exists a set X ⊂ S (called the separator set) such that,
for every pair of distinct policies h, h′ ∈ B, ∃x ∈ X , such that h(x) 6= h′(x). Denote by X := |X |.

Technical challenges. Even under the small separator set assumption, the design of low-regret
oracle-efficient algorithms for imitation learning still remains nontrivial. A naive application of
existing oracle-efficient online CSC algorithms, such as Contextual Follow the Perturbed Leader
(CFTPL) [66, 24], still falls into the failure mode of proper learning (Theorem 4 in Section 3.1),
where an Ω(N) regret lower bound is unavoidable in the worst case. This is in sharp contrast to the
classical online CSC setting, where CFTPL enjoys a O(

√
N) regret [66, 24]. To recap, at round

n, CFTPL first constructs a random set of “hallucinated” cost-sensitive examples Z based on the
separator set X ; it subsequently calls the CSC oracle O on the union of Z and the accumulated
dataset ∪n−1

i=1 Di to obtain policy πn ∈ B. CFTPL achieves computational efficiency by operating on
Dn’s, an implicit representation of gn’s, the linear losses of the underlying OLO problem.

Our approach. The above difficulty motivates the need of a new algorithmic approach for efficient
classification-based online IL. In view of Section 3.2’s observation that FTRL approaches enjoy a
sublinear regret, we ask the question: is it possible to perform FTRL in an oracle-efficient manner? A
positive answer will simultaneously address the computational and statistical challenges of COIL.

We answer this question in the affirmative, by utilizing a connection between FTRL and FTPL first
observed in [2]: an in-expectation version of FTPL can be viewed as an FTRL algorithm. Using
this observation, we design Algorithm 3, namely Mixed CFTPL (abbrev. MFTPL), which mimics
FTRL by approximating the in-expectation version of CFTPL in an oracle-efficient manner. Similar
to CFTPL, MFTPL keeps gn implicitly in Dn, and calls the CSC oracle. Different from CFTPL,
MFTPL runs the oracle-call step in CFTPL for T times and outputs the uniform mixture of the T
policies. We refer to T as Algorithm 3’s sparsification parameter, due to the algorithm’s resemblance
to Maurey’s sparsification [46].
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Algorithm 3 MFTPL: an oracle-efficient approximation of FTRL

1: Input: Linear losses {gi}n−1
i=1 represented by datasets {Di}n−1

i=1 each of size K (s.t. gi[h] =

E(s,~c)∼Di
[
~c(h(s))

]
for all h ∈ B) , separator set X , learning rate η, sparsification parameter T .

2: for j = 1, 2, . . . , T do
3: Draw (`x,j(a))a∈A ∼ N (0, IA) iid for each x ∈ X .

4: Define Zj =
{

(x, Kη `x,j) : x ∈ X
}

.

5: Compute un,j ← Onehot(O((∪n−1
i=1 Di) ∪ Zj),B).

6: end for
7: return un ← 1

T

∑T
j=1 un,j .

Specifically, at each iteration j ∈ [T ], MFTPL first draws (`x,j(a))a∈A ∼ N (0, IA) iid for each x
in the separator set X , where IA is the identity matrix of dimension A (line 3). It then constructs a
perturbation set of cost-sensitive examples Zj =

{
(x, Kη `x,j) : x ∈ X

}
that contains each x within

the separator set and K
η `x,j as associated ~c, where K accounts for the adjustment on dataset size

and η accounts for FTRL’s learning rate (line 4). It then calls the oracle O with datasets ∪n−1
i=1 Di

accumulated so far, together with perturbation examples Zj to obtain an empirical cost minimizer
h ∈ B. This h is represented by a one-hot vector un,j ∈ ∆(B) that has weight 1 on the h-th
coordinate and 0 elsewhere (line 5). Finally, after T iterations, MFTPL returns the mean value
un = 1

T

∑T
j=1 un,j (line 7). MFTPL guarantees that:

Lemma 7. There exists some strongly convex function R : ∆(B) → R, such that the following
holds. Suppose MFTPL receives datasets {Di}n−1

i=1 , separator set X , learning rate η, sparsification
parameter T . Then, ∀δ ∈ (0, 1], with probability at least 1 − δ, MFTPL makes T calls to the
cost-sensitive oracle O, and outputs un ∈ ∆(B) such that

∀s ∈ S, ‖πun(·|s)− πu∗n(·|s)‖1 ≤

√
2A
(
ln(S) + ln( 2

δ )
)

T
,

with u∗n := argminu∈∆(B)

(
〈η
∑n−1
i=1 gi, u〉+R(u)

)
.

Therefore, by setting T = Ω(A ln(S)), the policy πn induced by the MFTPL’s output un closely
mimics πu∗n , a policy induced by the FTRL output u∗n. The mild ln(·) dependence on S makes
the lemma useful in large-state-space settings. Specifically, a naive attempt to show Lemma 7 is
to establish the ‖ · ‖1 closeness of un and u∗n, given that T · un ∼ Multinomial(T, u∗n). This
unavoidably carries an impractical concentration factor of O(

√
B/T ), as the bound requires T to

be Ω(B) to be non-vacuous. We circumvent this challenge by directly showing the closeness of the
action distributions πun and πu∗n for all states. We defer the full version of the lemma, including an
explicit form of R, to Appendix E.1.

Lemma 8. For any δ ∈ (0, 1], MFTPL, if called for N rounds, with input learning rate η =

1
µ
√
NA

(
ln(B)
X

) 1
4

and sparsification parameter T = N ln(2NS/δ)√
X3 ln(B)

, outputs a sequence {un}Nn=1, such

that with probability at least 1− δ:

LRegN ≤ O

(
µ
√
NA

(
X3 ln(B)

) 1
4

)
.

Composing LOGGER with MFTPL, we obtain an efficient online IL algorithm, LOGGER-M. Its
regret guarantees immediately follow from combining Lemma 8 with Proposition 6:

Theorem 9. For any δ ∈ (0, 1], LOGGER-M, with K = 1 and MFTPL setting its parameters
as in Lemma 8, is such that: (1) with probability at least 1 − δ, its output {πn}Nn=1 satisfies:

SRegN (B) ≤ O
(
µ
√
NA ln(1/δ)(X3 ln(B))

1
4

)
; (2) it queries N annotations from the expert; (3)

it calls the CSC oracle O for N2 ln(6NS/δ)√
X3 ln(B)

times.
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4.2 LOGGER-ME: an efficient algorithm with O (1) static regret

Although LOGGER-M is oracle-efficient, it is unclear whether its O(
√
N) regret guarantee is optimal.

As a lower regret can translate to lower sample and interaction round complexity guarantees, it is
desirable to design algorithms with regret as low as possible.

A key observation from prior works [e.g. 15, 16, 38] is that, online IL is a predictable online learning
problem [19, 51], and is thus not completely adversarial. This opens up possibilities to bypass the
O(
√
N) worst-case regret barrier. Specifically, in the LOGGER framework, the coefficient of the

linear loss at round n, θ(un), depends continuously on un; more concretely, we can show:
Lemma 10. For u, v ∈ ∆(B), ‖θ(u)− θ(v)‖∞ ≤ µH ·max

s∈S
‖πu(·|s)− πv(·|s)‖1 ≤ µH‖u− v‖1.

This property and its variants, termed distributional continuity, has been utilized in many online
IL algorithms to achieve sharper regret guarantees. These works additionally exploit the strong
convexity on the loss functions Fn(π) [15, 16, 38], or use some external predictive model that
can predict ∇Fn(π) well [18, 17]. Unfortunately, in our COIL setting, neither is the loss function
Fn(πu) = 〈θ(un), u〉 strongly convex in the policy parameter u, nor do we have access to an external
predictive model, rendering these approaches inapplicable.

We get around these challenges and design an oracle-efficient algorithm, namely MFTPL-EG (where
EG stands for extra-gradient), with O(1) regret for the online linear optimization problem, which,
when composed with the LOGGER framework, yields the LOGGER-ME algorithm with O(1) regret
in the COIL setting. MFTPL-EG is largely inspired by the predictor-corrector framework for policy
optimization [17] and extragradient methods in smooth optimization [42, 33]; its details can be found
in Appendix E.2. Its key insight is that, although we do not have a predictive model for θ(un), we
can use an extra round of interaction withM and expert annotations to obtain a good estimate of it.
Based on this, we derive an online linear optimization regret guarantee of MFTPL-EG, deferred to
Appendix E.2. This immediately implies the following guarantee of LOGGER-ME:
Theorem 11. For any δ ∈ (0, 1], LOGGER-ME, with K and MFTPL-EG’s parameters set
appropriately, is such that: (1) with probability at least 1 − δ, its output {πn}Nn=1 satisfies:

SRegN (B) ≤ O(µHA
√
X3 ln(B)); (2) it queriesO

(
N2 ln(NB/δ)

H2A
√
X3 ln(B)

)
annotations from the expert;

(3) it calls the CSC oracle O for O
(
N3 ln(NS/δ)
µHAX3 ln(B)

)
times.

Discussion and comparison. We now compare the guarantees of LOGGER-M, LOGGER-ME, and
the baseline of behavior cloning, where the learner simply draws iid examples from DEπE and perform
empirical risk minimization over B to learn a policy π̂. All algorithms’ output policy suboptimality
guarantees have the following decomposition:

E
[
J(π̂)− J(πE)

]
≤ ApproxErr + EstimErr, (2)

where ApproxErr measures the approximation error of the policy class B to the expert policy πE , and
EstimErr is an estimation error term that vanishes with the number of expert annotation examples
and iterations increasing. By Proposition 2, for LOGGER-M and LOGGER-ME, their ApproxErr

terms are both µH ·Bias(B,ΠB, N). For their EstimErr = H·SRegN (B)
N , we use Theorems 9 and 11

to calculate the minimum total numbers of interaction rounds I(ε), expert annotations A(ε), and
oracle calls C(ε), so that EstimErr is at most ε with probability at least 1 − δ. As presented in
Table 1, LOGGER-ME has the same sample complexity order as LOGGER-M, but has a much lower
interaction round complexity (µH2/ε vs. µ2H2/ε2).

On the other hand, by standard ERM analysis [58] and conversion from supervised learning to
imitation learning guarantees ([65, 34]), behavior cloning on B using K samples outputs a policy
π̂, such that Equation (2) holds with ApproxErr = H2 · Bias(B, {πE}, 1), and EstimErr =

H2
√

2 ln(2B/δ)/K (see Appendix E.3 for a detailed derivation), where Bias(B, {πE}, 1) =

minh∈B Es∼dπE
[
I(h(s) 6= πE(s))

]
. We also summarize behavior cloning’s performance guarantees

in Table 1. Compared with the two interactive IL algorithms above, behavior cloning requires only
one interaction round and one call to the oracle O, however its ApproxErr has a larger coefficient on
the optimal classification loss (H2 vs. µH), and needs more expert annotations (H4/ε2 vs. H2µ2/ε2)
to achieve approximation error smaller than ε with probability at least 1− δ.
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Algorithm ApproxErr I(ε) A(ε) C(ε)

LOGGER-M µH · Bias(B,ΠB, N) Õ(µ
2H2

ε2 ) Õ(µ
2H2

ε2 ) Õ(µ
4H4

ε4 )

LOGGER-ME µH · Bias(B,ΠB, N) Õ(µH
2

ε ) Õ(µ
2H2

ε2 ) Õ(µ
2H5

ε3 )

Behavior cloning H2 · Bias(B, {πE}, 1) 1 Õ(H
4

ε2 ) 1

Table 1: A comparison between our algorithms and the behavior cloning baseline, in terms of
approximation error, and numbers of interaction rounds I(ε), expert annotations A(ε), oracle calls
C(ε) needed for estimation error to be at most ε with probability 1− δ. Here Õ(·) hides dependences
on ln(µH/ε), X,A, ln(S), ln(B), ln(µ), ln(1/δ). See Appendix E.3 for the full version of the table.

5 Computational hardness of sublinear dynamic regret guarantees

Finally, we study dynamic regret minimization for COIL in the LOGGER framework. Although in the
abstract continuous online learning setup, dynamic regret minimization has recently been shown to
be computationally hard [16], given the peculiar linear loss structure of the LOGGER framework, the
computational tractability of dynamic regret minimization within this framework still remains open.

We fill this gap by showing that, under a standard complexity-theoretic assumption (that PPAD-
complete problems do not admit randomized polynomial-time algorithms), there do not exist
polynomial-time algorithms that achieve sublinear dynamic regret in COIL. Specifically, we have:
Theorem 12. Fix γ > 0, if there exist a COIL algorithm such that for anyM and expert πE , it
interacts withM, CSC oracle O, expert feedback ζE(s, a) = AE(s, a), and outputs a sequence of
{πn}Nn=1 ∈ ΠN

B s.t. with probability at least 1/2,

DRegN (B) ≤ O(poly(S,A,B) ·N1−γ),

in poly(N,S,A,B) time, then all problems in PPAD are solvable in randomized polynomial time.

The key insight behind our proof of Theorem 12 is that, achieving a sublinear dynamic regret in the
COIL setup is at least as hard as finding an approximate Nash equilibrium in a two-player general-sum
game, a well-known PPAD-complete problem [13]. To establish a reduction from a two-player
general-sum game to a COIL problem, we carefully construct a tree-structured MDP whose “leaf
states” consist of two major groups: one group has costs encoding the two players’ payoffs, and
the other group has a large constant cost, ensuring that any policy in ΠB with small dynamic regret
encodes near-optimal strategies of both players. We refer the readers to Appendix F for details.

6 Conclusion

In this work, we investigate the fundamental statistical and computational limits of classification-
based online imitation learning (COIL). On the positive side, we propose the LOGGER framework
that enables the design of oracle and regret efficient COIL algorithms with different sample and
interaction round complexity tradeoffs, outperforming the behavior cloning baseline. On the negative
side, we establish impossibility results for sublinear static regret using proper learning in the COIL
setting. We also show the computational hardness of sublinear dynamic regret guarantees in the
LOGGER framework.

Looking forward, it would be interesting to investigate the optimality of our sample complexity
and interaction round complexity guarantees; we also speculate that it is possible to relax the small
separator set assumption on B by utilizing very recent results on smoothed online learning [11, 28].
Finally, we are also interested in empirically evaluating our algorithms.
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