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Abstract

Federated learning (FL) has become a popular tool for solving traditional Reinforcement
Learning (RL) tasks, particularly when individual agents need to collaborate due to low
sample efficiency but are concerned about data privacy. The multi-agent structure addresses
the major concern of data-hungry in traditional RL, while the federated mechanism protects
the data privacy of individual agents. Despite the advantage FL brings to RL, Federated
Reinforcement Learning (FRL) is inherently susceptible to poisoning, as both FL and RL
are vulnerable to such training-time attacks; however, the vulnerability of FRL has not
been well-studied before. In this work, we propose a general framework to characterize FRL
poisoning as an optimization problem and design a poisoning protocol that can be applied
to policy-based FRL. Our framework is versatile, catering to FRL scenarios employing both
policy-gradient local RL and actor-critic local RL. In the context of actor-critic configurations,
we conduct training for a pair of critics, one private and one public, aimed at maximizing
the potency of poisoning. We provably show that our method can strictly hurt the global
objective. We verify the effectiveness of our poisoning approach through comprehensive
experiments, supported by mainstream RL algorithms, across various RL OpenAI Gym
environments covering a wide range of difficulty levels. Within these experiments, we assess
our proposed attack by comparing it to various baselines, including standard, poisoned,
and robust FRL methods. The results demonstrate the power of the proposed protocol in
effectively poisoning FRL systems – It consistently diminishes performance across diverse
environments, proving to be more effective than baseline methods. Our work provides
new insights into the training-time vulnerability of FL in RL and poses new challenges for
designing secure FRL algorithms.

1 Introduction

Reinforcement Learning (RL) has gained popularity in recent years as a paradigm for solving complex
sequential decision-making problems and has been applied to a wide range of real-world problems, including
game playing (Silver et al., 2016; Vinyals et al., 2019), autonomous driving (Yurtsever et al., 2020), network
security (Xiao et al., 2018), design of materials (Govindarajan et al., 2024; Zhou et al., 2019; Ghugare et al.,
2023), circuit design (Roy et al., 2021), and optimization (Chen et al., 2022). In RL, the agent’s goal is
to learn an optimal policy that maximizes the long-term cumulative rewards, which is done by repeatedly
interacting with a stochastic environment, taking actions, and receiving feedback in the form of rewards.
However, despite the impressive performance of RL algorithms, they are notoriously known to be data-hungry,
often suffering from poor sample efficiency (Dulac-Arnold et al., 2021; Schwarzer et al., 2020). One traditional
solution to this challenge is Parallel RL Kretchmar (2002), which adopts multiple parallel RL agents that
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sample data from the environment and share it with a central server, as seen in practical implementations
such as game-playing (Mnih et al., 2016; Berner et al., 2019). However, transferring raw data may not be
feasible: on the one hand, it can cause significant communication costs in applications, such as the Internet
of Things (IoT) (Wang et al., 2020); On the other hand, it is not suitable for privacy-sensitive industries,
such as clinical decision support (Liu et al., 2020).

Federated Reinforcement Learning (FRL) has been proposed in order to address the limitations of traditional
parallel RL, inspired by the recent success of Federated Learning (FL). FRL allows multiple agents to solve the
same RL task collaboratively without sharing their sensitive raw data, thus addressing the drawbacks of heavy
overhead and privacy violation in traditional Parallel RL. On the communication side, the communication
efficiency of FRL is improved by the ability of FL to perform multiple local model updates during each
communication round. On the privacy side, FRL enables data privacy protection by only communicating
model updates, but not raw data, to a central server. With advantages of addressing communication efficiency
and protecting privacy, FRL is practically appealing to a wide range of applications, including IoT (Wang
et al., 2020), autonomous driving (Liang et al., 2023), robotics (Liu et al., 2019), etc. The success of FRL
applications has spurred theoretical and methodological advancements. For instance, Mnih et al. (2016);
Min et al. (2023b;a) investigate FRL under asynchronous communication, while Xie & Song (2023b); Zhu &
Gong (2023); Xie & Song (2023a); Mai et al. (2023); Fan et al. (2023) delve into FRL with heterogeneity in
local environments. Khodadadian et al. (2022); Zheng et al. (2023) provides insights into linear speed-up
convergence rates, Woo et al. (2023) proposes an algorithm with sample complexity linearly scaling with the
number of agents, and Zhao et al. (2023); Liu et al. (2023) analyze FRL with personalized local objectives.

Poisoning in FRL is practical and harmful. The inherent nature of FL and RL amplifies the susceptibility to
poisoning (training-time attacks) when combined into FRL. On the RL side, individual RL agents are designed
to dynamically learn from raw feedback from the environment, making the learning system vulnerable to
data corruption during training time (Zhang et al., 2020; Banihashem et al., 2022). As an example, a chatbot
could be misled by a small group of Twitter users, resulting in the generation of misogynistic and racist
remarks (Neff, 2016). Similarly, recommendation systems can be manipulated by a minimal number of fake
clicks, reviews, or comments, leading to products being inaccurately ranked higher. Besides, RL in material
design (Govindarajan et al., 2024; Zhou et al., 2019; Ghugare et al., 2023) is susceptible to poisoned material
data, and RL in circuit design (Roy et al., 2021) can be compromised by misleading prefix graphs and actions.
On the FL side, the impact of poisoning is exacerbated in FL frameworks compared to single-agent RL. The
lack of transparency in local training within FL naturally exposes the FRL system to adversarial attacks by
malicious agents (Fang et al., 2020; Bagdasaryan et al., 2020; Bhagoji et al., 2019; So et al., 2020).

Although practical and harmful, poisoning in FRL has yet to be explored. In this work, our goal is to
systematically study the vulnerability of FRL systems when facing adversarial attacks that attempt to mislead
the trained policy.

In the remainder of this introduction, we discuss the challenges of directly applying prior RL poisoning methods
to FRL in Section 1.1, review related work on poisoning in Section 1.2, and summarize our contributions in
Section 1.3.

1.1 Challenges of applying prior RL poisoning to FRL

Applying existing RL poisoning techniques to FRL presents several challenges. Many prior methods, such
as those by Zhang et al. (2020) and (Rakhsha et al., 2020), rely on unrealistic assumptions, including the
attacker having complete knowledge of the MDP environment, which is often impractical. Additionally, some
approaches, such as TrojDRL (Panagiota et al., 2020), target RL agents’ actions rather than rewarding
schemes, making them incompatible with our framework. Furthermore, the effectiveness of certain mechanisms,
such as VA2C-P(Sun et al., 2020), diminishes in federated settings due to small local training steps, which
lead to frequent reinitialization of the adversarial critic and impaired learning of the poisoned actor’s value
function. Nevertheless, we have included the federated version of VA2C-P as a baseline, and our experimental
results highlight the advantages of our approach compared to this federated extension of RL poisoning.
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1.2 Related Work on Poisoning

Here, we provide a comprehensive literature comparison regarding poisoning in various contexts of FL, RL,
Multi-Agent RL, Distributed RL, and FRL.

Poisoning in FL has been analyzed in different settings. Selected representative studies (Tolpegin et al., 2020;
Bhagoji et al., 2019; Fang et al., 2020; Jodayree et al., 2023b;a) strategically poison FL by either compromising
the integrity of the training dataset or manipulating submitted local model parameters. However, these
studies are under the context of Supervised Learning, which is substantially different from RL in the sense
of the availability of future data, the knowledge of the dynamics of the environment, etc (Sun et al., 2020).
Thus, the existing works on FL poisoning are not directly applicable to FRL poisoning. In contrast, our work
focuses on the poisoning designed specifically for FRL, taking into account the unique characteristics of RL.

Poisoning in RL, referring to committing attacks during the training process (Zhang et al., 2020), can be
categorized into two types: weak attacks that only poison data (e.g., rewards and states) and strong attacks
that can manipulate actions in addition to data (Panagiota et al., 2020). In this study, we focus on weak
attacks, also known as environmental poisoning, as they allow easier access for the attacker and, therefore,
are more likely to occur in real-world scenarios. Rakhsha et al. (2020) formulated optimization frameworks to
characterize RL poisoning, but they have limitations, such as requiring knowledge of the underlying MDP and
focusing on targeted poisoning. Our proposed framework, however, considers both targeted and untargeted
poisoning under the realistic assumption that the attacker does not have access to the MDP dynamics. Sun
et al. (2020) designs a vulnerability-aware poisoning method for RL. Their algorithm focuses on manipulating
the actor model, which cannot be directly applied to FRL as the critic model is also communicated among
agents and the server. In contrast, our proposed poisoning mechanism is specifically designed for FRL and
focuses on manipulating the critic model by training a pair of public and private critics.

Poisoning in Multi-Agent Reinforcement Learning (MARL) is typically different from poisoning in FRL.
Existing literature studying the robustness or poisoning of MARL more or less violates the security code in FL.
In MARL, multiple agents’ actions jointly determine the next state of the environment and the corresponding
rewards for each agent, thus exposing data and environment between agents (Wu et al., 2023; Liu & Lai, 2023;
Mohammadi et al., 2023; Li et al., 2023). On the contrary, our work strictly adheres to the privacy-oriented
settings in FRL, letting the agents independently engage in exploration and data collection solely within
their local environments, thus ensuring that no data or environment is exposed to other agents.

Poisoning in Distributed RL, similar to poisoning in MARL, can violate the privacy code within the FRL
context. Previous studies on poisoning or robustness in Distributed RL can expose data to the central server.
For instance, Chen et al. (2023) illustrates that local agents are tasked with exploring the environment and
collecting data for the central server without conducting any local training. This arrangement grants the
server access to all data, thereby compromising the privacy safeguards in FRL. In contrast, our work allows
local agents to conduct local training and prohibits data leakage to the central server. We further discuss
differences between FRL and Distributed RL in Appendix E.1.

Poisoning in FRL is an almost unexplored territory, except for very limited existing studies. Fan et al. (2021);
Jordan et al. (2024) provide a fault-tolerance guarantee for FRL. However, their frameworks require the
central server to access local environments, which is a form of privacy leakage. In contrast, our work prohibits
the central server from accessing any local tasks; Anwar & Raychowdhury (2021) restricts local agents from
multiple local updates in its algorithm, which is not only against the nature of RL exploration but also
severely expensive in the communication costs in applications. In contrast, our poisoning method is uniquely
tailored to accommodate multiple local steps, aligning with realistic settings of RL scenarios. Zhang et al.
(2022); Jordan et al. (2024) present FRL methods resilient against Byzantine failure. However, Byzantine
failure is considered relatively naive and weak compared with real-world attacks that can be meticulously
designed. In contrast, our work addresses the gap in studying strategic malicious attacks in FRL.

Finally, our work is also related to the literature of RL in strategic settings such stochastic games. In stochastic
games, the RL agents (players) are often selfish and optimize their own objectives, and the goal is to see
whether their collective behavior results in any equilibrium outcome (Ning & Xie, 2024; Altabaa et al., 2023).
However, in our poisoning FRL framework, the goal is to optimize an objective function through a central
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server whose computations are poisoned by malicious RL agents. Thus, although a group of distributed
agents perform RL in both settings, their objectives and learning tasks are very different.

1.3 Overview and Contributions

We provide an overview of the remaining content in this work as follows. To address the vulnerability of FRL
to adversarial attacks, we start by proposing a theoretical framework (Sections 2 and 3) that characterizes
the problem of environment poisoning in FRL as an optimization problem. We assume the presence of a
suspicious agent within the federated system, which can be either a malicious client or a compromised victim.
This high-risk agent is trained by perturbed observations through reward manipulation. However, the attacker
does not have prior knowledge of the underlying Markov Decision Process (MDP) of the environment and
can only learn it through observations. As mentioned previously, this type of attack is practical and can be
easily implemented in real-world scenarios, such as buying an IoT device to participate in an FRL system
and providing false signals to its sensors.

To assess this risk, we design a novel poisoning mechanism (Section 4) that targets FRL with policy-based local
training. Our protocol is designed to target not only general policy-based methods but also the Actor-Critic
setting, wherein the attacker trains a set of both public and private critics. The private critic calculates
optimized poisoned rewards, while the public critic manipulates the coordinator’s model during the training
process. Notably, our poisoning protocol operates without requiring knowledge of the MDP of the environment
and remains consistent with the multiple local steps setting of FRL. Furthermore, we offer a theoretical
guarantee for our attack mechanism (Section 5), demonstrating that our approach can lead to a substantial
drop in the performance of the FRL system. We establish a theoretical result that our attack is effective even
in the most challenging scenario for the attacker.

Our method is evaluated through extensive experiments on OpenGYM environments (Brockman et al.,
2016), which represent standard RL tasks across various difficulty levels such as CartPole, InvertedPendulum,
LunarLander, Hopper, Walker2d, and HalfCheetah. These experiments employ different FRL backbone
models. The findings conclusively illustrate that, through our attack mechanism, a malicious agent can
effectively poison the entire FRL system.

Contributions. Our findings highlight the vulnerability of the FRL framework to local poisoning attacks,
emphasizing the need for awareness of system risks during training.

• Innovative FRL Poisoning Method. Our method addresses the challenges of prior RL poisoning
in two key aspects: (a) Adherence to federated privacy code. Our method strictly avoids accessing
the environment’s MDP, a code often violated by previous RL poisoning. (b) Leveraging historical
federated rounds. Our double-critic mechanism leverages historical data from prior federated rounds,
overcoming the reduced poisoning effectiveness of prior RL attacks applied to federated contexts.

• Theoretical Analysis. We provide theoretical evidence demonstrating the impact of our method in
poisoning the system. Our main theoretical findings imply that the extent of the objective’s decrease
scales with the square of the attack budget. Moreover, a larger learning rate and a smaller system
size increase the system’s vulnerability to our attack.

• Empirical Validation. We validate the effectiveness of our poisoning protocol through extensive
experiments targeting mainstream RL algorithms like VPG and PPO. These experiments encompass
OpenGYM environments with varying difficulty levels, as detailed in Section 6. This evaluation
includes comparisons with various baseline models and assessments of different (targeted and non-
targeted) poisoning types.

In summary, our work indicates that when FL is applied to RL training, the systematic security risk can
make FRL susceptible to poisoning and threats in applications. Consequently, the trained policy of FRL may
not be entirely reliable and requires a more robust and secure protocol. Our findings highlight the potential
risks of FRL under adversarial attacks and inspire future research toward developing more robust algorithms.

4



2 Preliminaries and Notations

In this section, we overview some background and notations that are necessary for introducing the concept of
poisoning in FRL. We consider single-task FRL, where a number of agents work together to achieve a common
task. As such, all agents are trained on the same MDP. We consider the ubiquitous on-policy training setting
(Singh et al., 2000).

MDP and RL. An MDP is a discrete stochastic control process for decision-making (Puterman, 1990) that
is defined by a tuple M = (S,A, r, P, γ), where S is a state space, A is an action space, r(·) : S × A → R
is a reward function, P (·) : S× A× S→ [0, 1] is a state transition probability function, and γ ∈ (0, 1) is a
discount factor. Given an MDP, the goal of RL is to find an optimal policy, π(·) : S → ∆A, where ∆A is
the set of all probability distributions over the action space A, which maximizes the expected accumulated
discounted reward. As is common in the literature (Agarwal et al., 2021), we often represent a policy π by
its parametrization θ (e.g., tabular parametrization or neural network weight parametrization). During the
process, at each step t, the decision maker begins in some state st, selects an action at according to the policy
π(st), receives a reward r(st, at), and transitions to the next state st+1 with probability P (st+1|st, at). This
decision-making and interaction process continues until the MDP terminates.

Federated Reinforcement Learning (FRL). An FRL system consists of n agents and a central server.
The agents perform local training for L steps and then send their updated policies to the central server. The
server performs aggregation to create a central policy, which is then broadcast back to all the agents. This
process is repeated for T rounds, and the broadcast policy is used to initialize the next round of local training.
More specifically, at each round p ≤ T , at the start of local step q ≤ L, denote the policy of each agent i
by its policy parameter θp,q−1

(i) . Following this policy, the agent interacts with its environment, gathering
sequences of states, actions, and rewards: Op,q

(i) = (Sp,q
(i) , Ap,q

(i) , Rp,q
(i) ) =

(
(s1, s2, . . .), (a1, a2, . . .), (r1, r2, . . .)

)
.

Based on Op,q
(i) , the local policy is typically updated using θp,q

(i) = arg maxθ J(θ, θp,q−1
(i) , Op,q

(i) ), where J is
some objective function. After completing L steps of local training, all agents update their local policies to
{θp,L

(i) }i∈[n], which are then submitted to the server.1 Subsequently, the server forms a new global policy
using θp

(0) := Aagg({θp,L
(i) }

n
i=1), where Aagg is an aggregation algorithm. The server broadcasts the updated

global policy θp
(0) to all agents, after which each agent i updates its local policy as θp+1,0

(i) = θp
(0), and the

system proceeds to the next round p + 1. This process repeats until the maximum federated round T .

3 Problem Formulation

We propose a theoretical framework to conceptualize the challenge of reward poisoning attacks to FRL as
a sequential optimization problem as Problem (P). Problem (P) is defined in terms of the notations and
concepts introduced in Section 2, such as the local policies, global policy, and aggregation algorithms. The
remainder of this section is organized as follows. In Section 3.1, we elaborate on the rationale for implementing
local reward poisoning. In Sections 3.2 and 3.3, we provide a detailed explanation of the objective function,
feasible domain, and constraints in Problem (P). Finally, in Section 3.4, we present the knowledge possessed
by each involved party, ensuring alignment with established security protocols in FL.

3.1 Local Reward Poisoning

We consider a threat model targeting FRL systems through reward poisoning. This model assumes the
presence of an untrustworthy participant in the system, categorized as either an internal malicious agent
(typical in FL poisoning (Tolpegin et al., 2020)) or a victim contaminated by external attackers (a common
scenario in RL poisoning (Zhang et al., 2020)). We consider the rewards of the suspicious agents get poisoned
during local training, following established practices in RL poisoning (Huang & Zhu, 2019; Zhang et al., 2020;
Rakhsha et al., 2021; Banihashem et al., 2022). For clarity, we designate the compromised agent as agent
n. At each round p and step q, the attacker may manipulate the reward sequence of Rp,q

(n), transforming it

1We distinguish the parameters related to the server by index 0.
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into R̂p,q
(n). Throughout this paper, we will use the notation ·̂ to indicate variables that are poisoned by the

attacker.

3.2 Objective Function and Feasible Domain

Objective Function. In the optimization Problem (P), the objective LA represents the loss of the attacker,
which can characterize both untargeted and targeted poisoning settings. In the case of untargeted poisoning,
LA is the benefit of the server, typically represented by the long-term cumulated reward. In the case of
targeted poisoning, LA is a policy matrix distance, measuring the difference between the learned policy θT

(0)

and some targeted policy θ†. This captures the attacker’s goal to manipulate the global model to align with
a specifically targeted policy.

Feasible Domain. The objective LA is minimized over manipulated rewards R̂, which is subject to the
constraint that R̂ should closely align with the ground-truth rewards R (Eq. 5). Although R may initially
seem to behave as a random variable, it is essential to note that in Problem P, we characterize the process
such that once Rp,q

n is obtained and observed, it is treated as a deterministic variable. Subsequently, the
attacker refers to this observed deterministic variable Rp,q

n to optimize its manipulated rewards R̂p,q
n .

arg min
R̂
LA

(
θT

(0)

∣∣∣{R̂p,q
(n)

}1≤q≤L

1≤p≤T

)
(P)

s.t. θp,0
(i) = θp−1

(0) , ∀i ≤ n, (1)

θp,q
(i) = arg max

θ
J(θ, θp,q−1

(i) , Op,q−1
(i) ), ∀i < n, (2)

θp,q
(n) = arg max

θ
J(θ, θp,q−1

(n) , Ôp,q−1
(n) ), (3)

θp
(0) = Aagg

(
{θp,L

(i) }i∈[n]
)
, (4)

D
(
R̂p,q

(n), Rp,q
(n)

)
≤ ϵ. (5)

3.3 Constraints

The constraints in optimization (P) characterize the process of poisoning in FRL, including local initialization
(Eq. 1), local train (Eq. 2, 3), attack with limited budget (Eq. 5), and global aggregation (Eq. 4). A concise
summary is provided in Table 1, and further details are explained below.

Local train. Constraints 2 and 3 outline the local update of each agent at local step q in round p. In
Constraint 2, each clean agent uses its current policy, denoted by θp,q−1

(i) , to roll out an observation sequence
Op,q−1

(i) . Then, based on this observation, the agent updates its policy from θp,q−1
(i) to θp,q

(i) by maximizing an
objective function J(·), defined by the agent’s specific RL algorithm. Constraint 3 characterizes the update
for the suspicious agent’s update, akin to 2, with the distinction that the local update for a suspicious agent
is based on the manipulated rewards R̂.

Attack budget. Constraint 5 captures the budget constraint for the attacker, where D(·, ·) represents
the distance between the perturbed (poisoned) observations and the clean observations, which is restricted
by a cost budget ϵ. The consideration of the attack budget is crucial. On the one hand, a limited budget
constitutes a standard assumption in RL reward poisoning Huang & Zhu (2019); Rakhsha et al. (2021).
On the other hand, our framework strives to encompass scenarios of both internal malicious clients and
victim clients susceptible to external poisoning – From a practical standpoint, an internal malicious agent
may seek to avoid detection, necessitating caution in its manipulation, while an external attacker is likely to
be concerned about the costs associated with their attacks. Therefore, the inclusion of an attack budget is
imperative for both scenarios.

Global aggregation and local initialization. Constraint 4 models the aggregation step of the central
server by an aggregation algorithm Aagg. This algorithm processes the models sent from agents, denoted by
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Table 1: Constraints of Problem P.
Party Constraints

Agent (i), i < n .Eq. 1: Local initialization
(Clean agents) Eq. 2: Local training

Agent (n) Eq. 1: Local initialization
(suspicious agents) Eq. 3: Local training

Eq. 5: Attack Budget

Coordinator Eq. 4: aggregation

{θp−1,L
(i) }, as inputs and produces the new global model θp

(0) as an output. Constraint 1 stipulates that at the
start of local training, all agents initialize their individual policies as the global model.

3.4 Information Structure

We present the knowledge of each party in the FRL system to guarantee strict adherence to privacy protection
in FL. Table 2 shows the knowledge of the three parties involved in FL, namely, the coordinator, the attacker,
and the agents, and clarifies the knowledge of each party to guarantee the data privacy expected from FL.

The coordinator only has knowledge of the submitted models and the global policy, while the agents only
have knowledge of their local data, policy, and the broadcast global model. The attacker only has knowledge
of its own observations, manipulations, model, and the broadcast global policy. This ensures that the agents’
private data is kept confidential.

Table 2: Knowledge of the parties in a poisoned FRL.
Coordinator Agent (i), i < n Agent (n)

LA(·)
√

J(·)
√ √

Aagg(·)
√

θp
(0)

√ √ √

θp,q
(i) , i ̸= n

√

θp,q
(n)

√

ϵ
√

Op,q
(i) , i ̸= n

√

Op,q
(n)

√

Ôp,q
(n)

√

Rp,q
(i) , i ̸= n

√

Rp,q
(n)

√

R̂p,q
(n)

√

We refer to Appendix A for a specification of this framework to the case of Proximal Policy Optimization
(Schulman et al., 2017), which provides an illustrative example, demonstrating how our framework characterizes
poisoning in FRL for local actor-critic algorithms.

4 Method

In this section, we propose practical local reward poisoning methods for FRL. We consider two scenarios
when the local RL training in the FRL system uses actor-critic methods (Algorithm 2) and policy gradient
methods (Algorithm 3). We note that our reward poisoning methods can be employed for both targeted
and untargeted reward poisoning, as detailed in Section 3.2, by employing the appropriate corresponding
objective. As before, we use ·̂ to denote the suspicious agent’s parameters communicated with the server.
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4.1 Reward Poisoning for Actor-Critic-based FRL

Actor-Critic mechanism. In actor-critic algorithms (Peters & Schaal, 2008), we have a policy parameterized
by θ alongside a corresponding value function Vθ(s), determined by policy θ and state s. Besides the policy
model, each agent incorporates a critic model ϕω(·) parameterized by ω, providing an estimation of the policy-
related value function Vθ(s), denoted by V (s) = ϕω(s). To simplify notations, by some abuse of notation, we
refer to the critic model ϕω by its parametrization ω in subsequent analysis. The estimated value function
V (s) generated by the critic ω further gives an estimation of the Q-function as Q(s, a) = r(s, a) + γ · V (s′),
where r(s, a) is the observed reward, and s′ is the next observed state. The critic model updates itself by
minimizing the temporal-difference error between its model estimation and ground-truth observation (Tesauro
et al., 1995). The policy parameter θ is updated by θt+1 = arg maxθ J(θ, θt, Ot), where J(·) is some objective
function specified by the actor-critic algorithm, t is the exploration step, and Ot is the observed trajectory.
In the following, we describe the poisoning mechanism in detail and summarize it in Algorithm 2, which uses
Algorithm 1 as a subroutine.

Algorithm 1 Poisoned Local Train for Actor-Critic-based FRL

1: Input: current actor θ̂
p,q−1
(n) , current private critic ωp,q−1

(n) , current public critic ω̂p,q−1
(n) .

2: Output: updated actor θ̂
p,q

(n), updated private critic ωp,q
(n), updated public critic ω̂p,q

(n).

3: Agent n uses current actor θ̂
p,q−1
(n) to obtain ground-truth observation Op,q

(n),
4: computes true objective Jp,q

(n) using ground-truth observation Op,q
(n) and private critic ωp,q−1

(n) ,
5: poisons rewards as R̂p,q

(n) using true objective Jp,q
(n) and budget ϵ by Eq. 6,

6: obtains poisoned objective Ĵp,q
(n) with poisoned observation Ôp,q

(n) and public critic ω̂p,q−1
(n) ,

7: updates poisoned actor to θ̂
p,q

(n) with poisoned objective Ĵp,q
(n),

8: updates public critic to ω̂p,q
(n) with poisoned observation Ôp,q

(n),
9: updates private critic to ωp,q

(n) with true observation Op,q
(n).

Public and private critics. The term “public critic" implies that the agent uses this critic for communication
with the server (Line 23), while “private critic" signifies that the agent retains this critic solely for local
computation purposes (Line 4). To manipulate the global model by training (Line 8) and submitting (Line
23) a poisoned public critic, the attacker also undergoes training for an unpoisoned private critic (Line 9).
This approach allows the attacker to possess knowledge of a true estimation of the value function (Line 4) to
make optimal poisoning decisions (Line 5).

We denote the pair of public and private critics respectively as ω̂p,q
(n) and ωp,q

(n). The private critic ωp,q
(n) is

trained using ground-truth rewards Rp,q
(n) (Line 9), and then the attacker harnesses the private critic ωp,q

(n) to
obtain poisoned rewards R̂p,q

(n) (Line 5). R̂p,q
(n) is then utilized to train the public critic ω̂p,q

(n) (Line 8). Due
to the different goals and training methods of the pair of critics, their initialization also differs. At the
beginning of a new round of local training, the agent initializes its public critic with the broadcast global
model (i.e., ω̂p,0

(n) = ωp−1
(0) in Line 10), while inherits its private critic from the end of last round of training

(i.e., ωp,0
(n) = ωp−1,L

(n) in Line 10).

Reward poisoning and actor update. The attacker aims to minimize the objective function J of the policy
model (the actor) by poisoning its local rewards. When deciding how to poison the rewards, the attacker
should use the unpoisoned objective J given by the ground-truth rewards R and private critic ω (Line 4) to
obtain a true estimation and make a right poisoning decision (Line 5). Concretely, the attacker minimizes
the original objective J with respect to R: for each round p ≤ T and local step q ≤ L, the corrupted agent
n interacts with the environment and obtains the ground-truth observation Op,q

(n). The attacker computes
the unpoisoned objective Jp,q

(n) using true rewards Rp,q
(n) and private critic ωp,q

(n) (Line 4). Then, the attacker
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Algorithm 2 Reward Poisoning for Actor-Critic-based FRL
1: Input: max federated rounds T , max local episodes L, number of agents n, poisoning budget ϵ, aggregation

algorithm Aagg, actor-critic objective function J .
2: Output: server’s actor model θT

(0) and critic model ωT
(0).

3: Initialize the server’s actor model θ0
(0) and critic model ω0

(0).
4: for p = 1 to T do
5: for i = 1 to n do
6: if i ̸= n then
7: Agent i initializes local actor and critic: θp,0

(i) ← θp−1
(0) , ωp,0

(i) ← ωp−1
(0) .

8: else
9: Agent n initializes local actor θ̂

p,0
(n) ← θp−1

(0) ,
10: initializes local private critic as ωp,0

(n) ← ωp−1,L
(n) and local public critic as ω̂p,0

(n) ← ωp−1
(0) .

11: end if
12: for q = 1 to L do
13: if i ̸= n then
14: Agent i uses local actor θp,q−1

(i) to obtain observation Op,q
(i) ,

15: computes objective Jp,q
(i) with observation Op,q

(i) and local critic ωp,q−1
(i) ,

16: updates local actor to θp,q
(i) with Jp,q

(i) , and updates local critic to ωp,q
(i) with Op,q

(i) .
17: else
18: Agent n runs Algorithm 1 (Poisoned Local Train for Actor-Critic-based FRL).
19: end if
20: end for
21: end for
22: Central server aggregates global actor θp

(0) = Aagg
(
θp,L

(1) , ..., θp,L
(n−1), θ̂

p,L

(n)
)
,

23: Central server aggregates global critic ωp
(0) = Aagg

(
ωp,L

(1) , ..., ωp,L
(n−1), ω̂p,L

(n)
)
.

24: end for

poisons the reward according to

R̂p,q
(n) ← Rp,q

(n) − ϵ ·
∇RJp,q

(n)

∥∇RJp,q
(n)∥

, (6)

which guarantees that the manipulation power is within the attack budget ϵ. After the attacker has generated
poisoned rewards R̂p,q

(n) (Line 5), the actor is updated according to the poisoned objective Ĵp,q
(n) (Line 7).

4.2 Reward Poisoning for Policy-Gradient-based FRL

In Policy Gradient (PG) algorithms (Silver et al., 2014), agents do not require a critic model. Therefore,
we have adapted the poisoning method described in Section 4.1 that uses Actor-Critic for agents’ local RL
algorithm. The overall procedure is outlined in Algorithm 3. The attacker’s goal is still to minimize the
objective function J of the policy model. Since there is no critic, the agent directly calculates J from the
observed O (Lines 14 and 15), and uses this information to decide how to poison the rewards to R̂ by Eq. 6
(Line 16). The policy is then updated (Line 18) with the poisoned objective Ĵ calculated by the poisoned
rewards (Line 17).

5 A Theoretical Performance Guarantee

In this section, we prove that our poisoning method can strictly decrease the global objective under certain
assumptions. We begin by considering the following assumptions, which is standard for theoretical analysis
in the existing FRL literature (Jordan et al., 2024; Zhang et al., 2022; Fan et al., 2021).
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Algorithm 3 Reward Poisoning for Policy Gradient-based FRL
1: Input: max federated rounds T , max local episodes L, number of agents n, poisoning budget ϵ, aggregation

algorithm Aagg, policy gradient objective function J .
2: Output: server’s policy θT

(0).
3: Initialize the server’s policy θ0

(0).
4: for p = 1 to T do
5: for i = 1 to n do
6: for q = 1 to L do
7: if i ̸= n then
8: Initialize local policy θp,0

(i) ← θp−1
(0)

9: Interact with environment and obtain Op,q
(i)

10: Compute Jp,q
(i) with Op,q

(i)
11: Update θp,q

(i) with Jp,q
(i)

12: else
13: Initialize local policy θp,0

(n) ← θp−1
(0)

14: Interact with environment and obtain clean observation Op,q
(n)

15: Compute clean objective Jp,q
(n) with the clean observation Op,q

(n)

16: Poison reward as R̂p,q
(n) using the clean objective Jp,q

(n) and the clean observation Op,q
(n) by Eq. 6

17: Obtain poisoned objective Ĵp,q
(n with poisoned observation Ôp,q

(n)

18: Update local policy θ̂
p,q

(n) with the poisoned objective Ĵp,q
(n)

19: end if
20: end for
21: end for
22: θp

(0) = Aagg
(
θp,L

(1) , ..., θp,L
(n−1), θ̂

p,L

(n)
)

23: end for

Assumption 1 (Single-step local training). We assume that for each round, all local agents only apply
single-step local training, i.e., L = 1.

Clean local reward sequence function. Let us denote the dimensions of θ and r by dθ and dr, respectively.
Given a policy θ, define r(i)(·) : Rdθ → Rdr as the function of the reward sequence generated by the agent
interacting with the local environment i under policy θ. Under Assumption 1, denote the reward sequence
observed by agent i during round p by rp

(i). Then, we have rp
(i) = r(i)(θp−1

(0) ).

Clean local objective function. With slight abuse of notations, let J(θ; r) denote the local RL objective
function given the policy θ and the reward sequence r, where we have J : Rdθ×dr → R. According to
the mechanism of FRL, we further define the objective of local agent i given an initialized policy θ as
J(i)(θ) := J(θ; r(i)(θ)). If we denote the objective of local agent i at the start of round p by Jp

(i), we have

Jp
(i) = J(θp−1

(0) ; r(i)(θp−1
(0) )) = J(θp−1

(0) ; rp
(i)).

Poisoned local reward sequence and local objective. Under Assumption 1, agent n is poisoned.
According to our algorithms 2 and 3, we have r̂p

(n) = rp
(n) − ϵ · e⃗(∇rp

(n)
Jp

(n)), where e⃗(v) := v
∥v∥ for any vector

v. Therefore, the poisoned objective is given by Ĵp
(n) = J(θp−1

(0) ; r̂p
(n)).

Local policy update function. Under Assumption 1, each agent performs only a one-step local update.
Denote the update rate as λθ ∈ R. Since only agent n is poisoned, we have

θ̂
p

(n) = θp−1
(0) + λθ · ∇θp−1

(0)
Ĵp

(n).
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Assumption 2 (Central Aggregation). Suppose the server updates global policy by the conventional FedAVG
settings, i.e., θp

(0) = 1
n

∑
i∈[n] θp

(i) for clean training. In particular, when agent n is poisoned, we have
θ̂

p

(0) = 1
n (

∑
i∈[n−1] θp

(i) + θ̂
p

(n)).

In fact, the aggregation method described in Assumption 2 aligns with common practices found in established
FRL literature (Xie & Song, 2023b; Zhu & Gong, 2023).

Global objective function. Under the conventional setting of FL, given model θ, the global objective
is defined as J(0)(θ) := 1

n

∑n
i=1 J(i)(θ) (McMahan et al., 2017). In FRL, at the end of round p, the clean

federated objective is given by Jp
(0) = J(0)(θp

(0)). When agent n is poisoned, we have Ĵp
(0) = J(0)(θ̂

p

(0)).

Assumption 3 (Objective smoothness). We assume that Jp
(0) is differentiable with respect to r and θ almost

everywhere, and Jp
(0) is Lr−smooth with respect to rp

(n).

Assumption 3 is well-founded, aligning with prevalent local RL objectives. We provide two illustrative
examples: a) Discounted Cumulative Reward (Kaelbling et al., 1996): In this case, we have Jp

(i) := γ · rp
(i),

where γ := (γ0, γ1, γ2, ..., γdr) is the discount vector. Here, γ ∈ (0, 1) is a discount factor, and dr represents
the cardinality of rp

(i). b) Average Reward (Kaelbling et al., 1996): In this case, the local objective is expressed
as Jp

(i) := (1⃗ · rp
(i))/dr, where dr denotes the cardinality of rp

(i), and 1⃗ := (1, 1, ..., 1) ∈ Rdr stands for an all-one
vector. We note that the primary purpose of Assumption 3 is to facilitate our theoretical analysis. However,
in our numerical experiments (Section 6.1), we demonstrate the effectiveness of our proposed attack even if
this assumption fails to hold (e.g., when the states/actions/rewards are discrete).
Assumption 4 (Worst-Case). We assume the attacker is only able to attack in the latest round.
Remark 5. Assumption 4 is designed to encapsulate the most challenging scenario for the attacker, where
manipulation is restricted solely to the latest round. The proven guarantee under this assumption serves as
an indicator of the effectiveness of our attack method in more general and lenient scenarios, wherein the
attacker has the ability to poison the system over multiple rounds. Furthermore, our experiments showcase
the effectiveness of the attack when deployed over multiple rounds (refer to Section 6).

We are now ready to state our main theoretical result, whose proof is deferred to Appendix A.
Theorem 6. Let Assumptions 1, 2, 3, and 4 hold. Suppose that all agents are updated cleanly at the first
p− 1 rounds, and at round p, agent n is poisoned. Let ϵ+ := 2λθB

nLr
, where B is a scalar defined as

B = [∇θ′J(0)(θ′)]⊤ · [∇r,θJ(θ, r)] · e⃗(∇rJ(θ, r))
∣∣∣θ=θp−1

(0)
θ′=θp

(0)

r=rp

(n)

.

Then, for B > 0 and ϵ < ϵ+, we have Ĵp
(0) ≤ Jp

(0) − α, where α ∈ (0,
ϵ2

+
8 ].

Remark 7. Theorem 6 asserts that the gap α is strictly positive, and its upper bound increases proportionally
with ϵ2

+, which is the square of the upper limit of the attack budget. With a small poison budget ϵ, we can
guarantee that the poisoned global objective Ĵp

(0) is strictly smaller than the clean global objective Jp
(0), and a

higher attack budget ϵ can indicate a greater decrease in the global objective. Similarly, a larger local learning
rate λθ or fewer agents can increase ϵ+, indicating a stronger objective decrease α. In Appendix A, we not
only explore a practical scenario ensuring B > 0 but also highlight that a higher learning rate λθ enhances the
likelihood of B > 0.

6 Numerical Experiments

In this section, we conduct a series of experiments to evaluate the effectiveness of our poisoning method on the
FRL system. Our results show that the proposed poisoning method can effectively reduce the mean episode
reward of the server in the FRL system. Additionally, our poisoning protocol does not require knowledge of
the MDP of the environment and is consistent with the multiple local steps setting of FRL.
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6.1 Environments

Nature of FRL: Following existing FRL literatures (Jordan et al., 2024; Zhang et al., 2022), we implement
experiments on various OpenAI Gym environments (Brockman et al., 2016) with increasing complexity,
including CartPole, Inverted Pendulum, Hopper, Lunar Lander, and Half Cheetah, all of which are standard
RL task environments. The selection of these datasets reflects the inherent nature of FRL, where the focus is
on solving RL tasks, and FL serves as a versatile toolbox.

It is worth noting that environments such as Inverted Pendulum, Hopper, Half Cheetah feature continuous
reward spaces, aligning with our theoretical analysis (Assumption 3). Additionally, we incorporate environments
such as Cartpole and Lunar Landar, providing discrete reward spaces, to demonstrate the applicability of our
attack in diverse scenarios of reward space.

6.2 Backbone Model

We explain our backbone framework by describing both its local RL model and its global FL mechanism.

Local RL models. Our local training backbones cover both the Policy Gradient method (corresponding to
Algorithm 3) and the Actor-Critic method (corresponding to Algorithm 2), maintaining consistency with our
attack methods in Section 4. For the Policy Gradient backbone, we opt for the conventional Vanilla Policy
Gradient (VPG) (Sutton et al., 1999). For the Actor-Critic backbone, we choose a widely applicable model,
Proximal Policy Optimization (PPO) (Schulman et al., 2017). In Appendix E.2, we discuss broader RL
backbones and justify that VPG and PPO maintain accessibility and practicality while delivering competitive
performance.

Federated mechanism. We adhere to a prevalent practice observed in existing FRL literature (Xie & Song,
2023b; Zhu & Gong, 2023), where the central server aggregates the models submitted by local agents by
taking the average at the end of each communication round and then broadcasts the new global model, which
is used by the local agents as initialization for the next round of local training. This federated mechanism
aligns with the settings in our theoretical analysis (Assumption 2).

6.3 Baselines

We evaluate our methods against diverse baselines, including standard FRL, poisoned FRL, and robust FRL.

Standard FRL. In this setting, agents undergo regular training without any poisoning, adhering strictly
to the conventional rules of local updates and federated communications. The baseline comprises both
VPG-based standard FRL (Algorithm 5) and PPO-based standard FRL (Algorithm 4). We refer to Appendix
C for a detailed description of those algorithms.

Poisoned FRL. To the best of our knowledge, no existing FRL method designed for poisoning matches the
criteria of a standard and reasonable FRL setting, encompassing multiple local steps and data security code
(refer to Section 1.2). Therefore, we establish two baselines for poisoned FRL: 1) the federated version of
prior RL poisoning methods designed for single-agent systems, and 2) a randomized attack. Further details
are provided below:

1. Federated version of prior RL poisoning. As one of our baselines, we include the federated
extension of VA2C-P (Sun et al., 2020), a prior RL poisoning method. This choice is due to VA2C-P’s
compatibility with our reward-manipulating scheme and its adherence to the knowledge limitation that
the attacker does not have access to the environment’s MDP. In contrast, other prior RL poisoning
methods either present compatibility issues or violate this knowledge limitation, as discussed in
Section 1.1 on the challenges of applying prior RL poisoning to FRL.

2. Randomized Poisoning. In this attack, Eq. 6 is replaced by

R̂p,q
(j) ← Rp,q

(j) − ϵ · x, (7)
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where x is a vector with the same cardinality as R, denoted as |x| = |Rp,q
(j) |. Each index-wise value

in x follows a uniform distribution, such that x = (x1, x2, ..., x|R|), where xi ∼ U(0, 1) for all i ≤ |R|.
Here, U(a, b) represents the uniform distribution in the range from a to b. The detailed algorithm is
provided in Appendix C.2.

Robust FRL. To our knowledge, no existing robust FRL method aligns with the criteria of a standard and
reasonable FRL setting (refer to Section 1.2). Therefore, we adopt a standard robust mechanism inspired by
FL, where the aggregation is executed by re-weighting with the clients’ reliability (Fu et al., 2019; Tahmasebian
et al., 2022; Wan & Chen, 2021). The detailed defense algorithm is outlined in Algorithm 6.

6.4 Experimental Settings

Evaluation matrix. The evaluation metrics can vary based on the type of poisoning. For untargeted
poisoning, we evaluate the performance of these methods by measuring the mean-episode reward of the
central model, which is calculated based on 100 test episodes at the end of each federated round. For targeted
poisoning, we measure the similarity between learned policy and targeted policy. Moreover, for discrete action
space, we calculate the proportion of target actions among all actions, while for continuous action space, we
collect 1–scaled distance. Under both measurements, a higher value indicates a closer learned policy to the
target policy. By default, our assumed poisoning type is untargeted unless stated otherwise.

Attack Budget. We have two configurations for the attack budget: a) Small Budget. We set ϵ = 1 to
simulate a small-budget scenario where the attacker is cautious and cost-conscious. We choose ϵ = 1 as it
represents the maximum possible value gained by one action move in the CartPole and Inverted Pendulum
environments. It is important to note that ϵ = 1 is generally much smaller than the maximum possible reward
per action in the other environments (i.e., 100 for Lunar Lander). b) Large Budget. For a large-budget
scenario where the attacker is bold and almost indifferent to costs, we use ϵ = 100. In instances without
specific notation, we refer to a small-budget attack.

Hyper-parameters. For both VPG and PPO settings, we let the malicious agent attack the reward with
a budget of ϵ = 1. There are 200 total communication rounds, and all agents run 5 local steps in each
communication round. The number of poisoned agents is set to one if it is not specifically mentioned. For all
experiments, we average the results over 5 random seeds.2

6.5 Empirical Results

We present experimental results that demonstrate the effectiveness of our proposed poisoning method. We
compare its performance with various baselines outlined in Section 6.3, including standard FRL (Section 6.5.1),
poisoned FRL (Section 6.5.2), and robust FRL (Section 6.5.2). The Experiments cover diverse backbone
models (Section 6.2) and environments (Section 6.1), consistently demonstrating superior performance. In
addition to evaluating the effectiveness of untargeted poisoning, we further validate our method through
targeted poisoning (Section 6.5.3). Furthermore, we demonstrate the adaptability of our approach in scenarios
involving multiple suspicious agents (Section 6.5.3). The results affirm that our method is both practical and
detrimental for real-world applications. To enhance clarity, we have smoothed the plots by preserving values
from the first 5 rounds and subsequently applying a moving average with a window size of 10 rounds.

6.5.1 Comparison with Standard FRL

We conducted experiments to poison standard VPG-based FRL (Fig. 1) and PPO-based FRL (Fig. 2). The
backbones for these experiments were constructed as outlined in Section 6.2, utilizing Algorithms 4 and 5.

Poison standard VPG-based FRL. We present our results in Fig. 1. We see that across several
environments, a single attacker successfully poisons a system of up to 3 to 4 agents using our method. We
only present the results of systems with maximum sizes that our method can poison. For instance, in the
first plot of Fig. 1, the system size is four, indicating that our method can poison a VPG-based FRL with

2We refer to Appendix D.1.1 for additional settings.
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Figure 1: Poison VPG-based FRL. The red line, labeled poison, shows the performance of our adversarial
attack, while the green line, labeled clean, represents the performance of the standard FRL system. The blue
line, labeled rand, denotes a random poisoning baseline. The yellow line, labeled VA2C-P(Fed), illustrates
the federated version of VA2C-P, an existing poisoning method for single-agent RL. We specifically highlight
the results for the largest system sizes that our method can successfully attack: 4 for CartPole and Hopper,
and 3 for Inverted Pendulum and Walker.

Figure 2: Poison PPO-based FRL. The annotation is the same as Fig. 1. We specifically showcase results
for the largest system size that our method can successfully attack. The maximum system size is 3 for
Inverted Pendulum and 4 for the others.

the number of agents equaling 1, 2, 3, 4. However, our method would fail when the system size is 5. Across
environments of varying difficulty levels, we consistently observe a significant performance gap between clean
training (the green line) and training under our poisoning attack (the red line) as the number of training
rounds increases. This proves the capability of our VPG attack method in poisoning federated systems.

Poison standard PPO-based FRL. Similar to the VPG-based FRL case, we report those systems with
maximum possible size that our method can poison. Attacking a PPO-based FRL system (Fig. 2) lends
itself to a much different dynamic because the separate value parameters allow all agents to learn more
effectively, and thus, we expect both clean and malicious agents to be more successful in their opposite goals.
We observe a consistent performance gap emerging more quickly, with fewer federated rounds, compared to
the VPG-based FRL system (Fig 1). This indicates that our method is particularly effective in PPO-based
FRL systems, benefiting from the double-critic protocol specifically designed for actor-critic backbones.

6.5.2 Comparison with Poisoned FRL and Robust FRL

Poisoned FRL. We conduct experiments on random attacks against standard VPG-based FRL and PPO-
based FRL. We outline two poisoning baselines, a federated version of a prior RL poisoning method (VA2C-P)
and a randomized attack in Section 6.3, with detailed algorithms provided in Section C.2. For VPG-based
FRL, we observe that our method (Fig. 1, the red line) significantly reduces rewards of various environments
compared to both the federated version of VA2C-P poisoning (Fig. 1, the yellow line) and the random attack
(Fig. 1, blue line). For PPO-based FRL, both the federated version of VA2C-P (Fig. 2, the yellow line) and
the random attack (Fig. 2, the blue line) perform very poorly in poisoning, as they are overwhelmed by the
strength of the clean agents, leading to rewards that remain close to clean training (Fig. 2, the green line)
over time, considering performance variance. In contrast, our poisoning (Fig. 2, the red line) significantly
harms the system performance, outperforming the poisoning baselines.
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Robust FRL. The selection of the robust FRL baseline is detailed in Section 6.3. Experiments are conducted
following settings in Section 6.4 and D.1.1. Results are presented in Fig. 3. It is noteworthy that, although
the defense mechanism can successfully mitigate the harm of our poisoning in relatively simple environments
(CartPole, Hopper, Walker2d), for complicated environments (Half Cheetah), which are closer to real-world
scenarios, the defense mechanism fails against our poisoning. Thus, our results consolidate that this kind of
poisoning is harmful in real-world applications.

Figure 3: Poison Robust FRL. The red dashed line, labeled as Poison, depicts the performance of our
adversarial attack in a standard FRL system. The green dashed line, labeled as Clean, represents the standard
FRL system’s performance. The blue dashed line, labeled as Defense, showcases the performance of our
attack in a robust FRL system.

6.5.3 Additional Results

All additional results are deferred to Appendix D.2, including:

(a) Multiple Poisoned Agents. Fig 5 illustrates the method’s applicability to scenarios with multiple
poisoned agents. The attack performance remains stable, given a consistent ratio of poisoned agents
to unpoisoned agents.

(b) Targeted Poisoning. Fig 6 demonstrates the effectiveness of our proposed method in targeted
poisoning scenarios.

(c) High-Budget Poisoning. Fig 4 showcases that, with a sufficiently high attack budget, our proposed
method empowers a single poisoned agent to impact an FRL system of considerable size (e.g., a
system of 100 agents).

7 Broader Impact

The development of our poisoning method for FRL has significant implications for both research and practical
applications. By highlighting the vulnerabilities inherent in FRL frameworks, our work raises critical security
concerns in sensitive domains such as healthcare and finance, while guiding the design of robust policies to
mitigate these risks. Additionally, our research paves the way for further exploration of adversarial poisoning
and defensive strategies in FRL, emphasizing the need for resilient algorithms capable of withstanding
malicious manipulation during the training process.

Moreover, our findings initiate important ethical discussions about the responsible use of federated learning
technologies. As these systems become more integrated into critical reinforcement learning applications, it is
essential to establish guidelines that ensure their deployment is both secure and beneficial. By highlighting
potential poisoning risks, we encourage the adoption of security measures that not only protect data privacy
but also enhance public trust in FRL systems.

8 Conclusions

In this work, we have proposed a novel method for poisoning FRL under both general policy-based and
actor-critic algorithms, which can provably decrease the system’s global objective. Our method is evaluated
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through extensive experiments on various OpenGYM environments using popular RL models, and the results
demonstrate that our method is effective in poisoning FRL systems. Our work highlights the potential risks of
FRL and inspires future research to design more robust algorithms to protect FRL against poisoning attacks.
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A Proof of Theorem 6

Theorem 8 (Theorem 6-restated). Let Assumptions 1, 2, and 3 hold. Suppose that all agents are updated
cleanly at the first p− 1 rounds, and at round p, agent n is poisoned. Let ϵ+ := 2λθB

nLr
, where B is defined as

B = [∇θ′J(0)(θ′)]⊤ · [∇r,θJ(θ, r)] · e⃗(∇rJ(θ, r))
∣∣∣θ=θp−1

(0)
θ′=θp

(0)

r=rp

(n)

.

Then, for B > 0 and ϵ < ϵ+, we have Ĵp
(0) < Jp

(0) − α,, where α ∈ [0,
ϵ2

+
8 ].

Proof. Since Jp
(0) is Lr-smooth with respect to rp

(n), we have

Ĵp
(0) ≤ Ĵp

(0) + [∇rp

(n)
Jp

(0)]
⊤ · [r̂p

(n) − rp
(n)]

+ Lr

2 ∥r̂
p
(n) − rp

(n)∥
2. (8)

Moreover, we can write

[∇rp

(n)
Jp

(0)]
⊤ = [∇rp

(n)

1
n

∑
i∈[n]

J(i)(θp
(0))]

⊤

= [∇θp

(0)

1
n

∑
i∈[n]

J(i)(θp
(0))]

⊤ · [∇rp

(n)
θp

(0)], (9)

and

∇rp

(n)
θp

(0) = ∇rp

(n)

1
n

∑
i∈[n]

θp
(i)

= 1
n
∇rp

(n)
θp

(n)

= 1
n
∇rp

(n)
[θp−1

(0) + λθ∇θp−1
(0)

J(θp−1
(0) , rp

(n))]

= λθ

n
∇rp

(n)
∇θp−1

(0)
J(θp−1

(0) , rp
(n)). (10)
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Substituting Eq. 10 into Eq. 9, we obtain

[∇rp

(n)
Jp

(0)]
⊤ = λθ

n2

∑
i∈[n]

[∇θp

(0)
J(i)(θp

(0))]
⊤ · [∇rp

(n)
∇θp−1

(0)
J(θp−1

(0) , rp
(n))]. (11)

On the other hand, we have

r̂p
(n) = rp

(n) − ϵ · e⃗(∇rp

(n)
Jp

(n)). (12)

If we combine Eq. 12 with Eq. 11, we get

[∇rp

(n)
Jp

(0)]
⊤ · [r̂p

(n) − rp
n] = −ϵ · λθ

n2

∑
i∈[n]

[∇θp

(0)
J(i)(θp

(0))]
⊤ · [∇rp

(n)
∇θp−1

(0)
J(θp−1

(0) , rp
(n))] · e⃗(∇rp

(n)
Jp

(n)). (13)

Substituting Eq. 13 into Eq. 8 and using the fact that Lr
2 ∥r̂

p
(n) − rp

(n)∥
2 = ϵ2·Lr

2 , we get

Ĵp
(0) ≤ Ĵp

(0) −
λθ ·B

n
ϵ + Lr

2 ϵ2. (14)

As the right-hand side of Eq. 14 is a quadratic function with respect to ϵ, we get that when B > 0 and
0 < ϵ < 2λθB

nLr
, it holds that Ĵp

(0) < Jp
(0), indicating a strict decrease in the objective of FRL being poisoned

compared with clean training. In particular, the smallest bound in Eq. 14 is achieved when ϵ = λθB
nLr

, implying

Ĵp
(0) ≤ Jp

(0) −
λ2

θB2

2L2
rn2 = Jp

(0) −
ϵ2

+
8 .

A case where B > 0. Suppose J(θ; r) = γ⊤ · r, where r is the reward sequence and γ is the discount factor
vector. This objective corresponds with the typical accumulated discounted reward setting. Suppose that
r(n)(θ) is a differentiable function. Recall that

B = [∇θ∗J(0)(θ∗)]⊤ · [∇r,θJ(θ, r)] · e⃗(∇rJ(θ, r))
∣∣∣θ=θp−1

(0)
θ∗=θp

(0)

r=rp

(n)

.

Define

B1 := ∇θ∗J(0)(θ∗)
∣∣∣
θ∗=θp

(0)

,

B2 := ∇r,θJ(θ, r)
∣∣∣θ=θp−1

(0)

r=rp

(n)

,

B3 := e⃗(∇rJ(θ, r))
∣∣∣θ=θp−1

(0)

r=rp

(n)

.

We have B = B⊤
1 ·B2 ·B3. To intuitively understand B, we simplify the reward |r| = 1, where | · | denotes

cardinality, and correspondingly γ is simplified to a scalar: γ = 1. Since

J(0)(θp
(0)) = 1

n

n∑
i=1

J(i)(θp
(0)) = 1

n

n∑
i=1

J(θp
(0); r(i)(θp

(0))) = 1
n

∑
i∈[n]

r(i)(θp
(0)).

we have

B1 := ∇θ∗J(0)(θ∗)
∣∣∣
θ∗=θp

(0)

= 1
n
·
[ ∑

i∈[n]

r′
(i)(θ

p
(0))

]
.

Since

J(θp−1
(0) , rp

(n)) := J(θp−1
(0) , r(n)(θp−1

(0) )) = r(n)(θp−1
(0) ) = rp

(n),
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we have

B2 := ∇r,θJ(θ, r)
∣∣∣θ=θp−1

(0)

r=rp

(n)

= ∇rp

(n)
∇θp−1

(0)
r(n)(θp−1

(0) ) = ∇rp

(n)

[[
r′

(n)(θ
p−1
(0) )

]]
= r′′

(n)(θ
p−1
(0) ) · (r′

(n)(θ
p−1
(0) ))−1,

B3 = 1.

Therefore,

B =
[

1
n

∑
i∈[n]

r′
(i)(θ

p
(0))

]
·

r′′
(n)(θ

p−1
(0) )

r′
(n)(θ

p−1
(0) )

.

Suppose that agents interact with the same environment, that is r(i)(θ) = r(θ),∀i ∈ [n]. Then, if r′′′(θ) = 0,
we get

θp
(0) = θp−1

(0) + λθr′(θp−1
(0) ),

and hence,

B =
r′(θp

(0))r
′′(θp−1

(0) )

r′(θp−1
(0) )

=

[
r′(θp−1

(0) ) + r′′(θp−1
(0) )λθ · r′(θp−1

(0) )
]
r′′(θp−1

(0) )

r′(θp−1
(0) )

=
(

1 + λθ · r′′(θp−1
(0) )

)
r′′(θp−1

(0) ),

which is a quadratic function w.r.t. r′′(θp−1
(0) ). Therefore, in this case we always have B > 0, as long as

r′′(θp−1
(0) ) ∈ (−∞,−λ−1

θ )
⋃

(0, +∞). In particular, a higher rate λθ makes it easier to achieve a positive B.

B Proximal Policy Optimization (PPO)-Specific Framework

In this appendix, we focus on a specific local RL algorithm, Proximal Policy Optimization (PPO) (Schulman
et al., 2017), for the individual agents in FRL and propose a corresponding framework for poisoning. By
specifying the local RL algorithm as PPO, we are able to tailor the problem formulation in Problem P
and accordingly propose a targeted solution in Section 4 to poisoning PPO-specific FRL. In Section B, we
introduce PPO preliminaries to specify the general variable in Problem P. Then we discuss the PPO-specific
problem formulation for poisoning FRL in Section B. This will allow us to take into account the specific
characteristics of the PPO algorithm when defining the problem.

PPO Preliminaries

PPO is a popular Actor-Critic algorithm that uses a clipped surrogate objective. For agent i at federated round
p and local episode q, denote the pair of state and action at its t-th step of rollout as Op,q,t

(i) = (sp,q,t
(i) , ap,q,t

(i) )
and denote the V -function and Q-function defined by Bellman Equation (Baird, 1995) as V (·) and Q(·, ·),
respectively. Then the advantage function is Ap,q,t

(i) := Q(sp,q,t
(i) , ap,q,t

(i) )− V (sp,q,t
(i) ).

PPO’s critic. Let us use · to denote estimation. Denote PPO’s critic model as ϕ(·
∣∣ωp,q

(i) ), where ω is
the model’s weights. As with all typical actor-critic algorithms, the critic is a Value neural network to help
estimate the V-value of the actor so as to further calculate the actor’s objective. In PPO, the actor’s objective
is a clipped advantage (Eq. 15), where the advantage is estimated by the critic and observation, which
can be written in the form of A

p,q,t

(i) = A(ωp,q
(i) , Op,q,t

(i) ). The critic model updates itself by minimizing the
temporal-difference error (Tesauro et al., 1995) between the estimated and observed V -value. We denote the
critic’s objective by δp,q

(i) .
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PPO’s actor. Denote the actor model as πθ(·|s, θ), where θ is the model weight and s is some given state.
To specify the general problem P to the PPO case, the clean agent’s objective J(·) (Eq. 2) should be the
PPO surrogate objective

Jp,q
(i) := Et

[
min

(
γp,q,t

(i) ·Ap,q,t

(i) , cp,q,t
(i) ·A

p,q,t

(i)
)]

, (15)

where γp,q,t
(i) := π(ap,q,t

(i) |s
p,q,t
(i) , θp,q

(i) )
/

π(ap,q,t
(i) |s

p,q,t
(i) , θp,q−1

(i) ), and A
p,q,t

(i) is estimated based on both PPO’s critic
and the observation that the actor samples. Here, cp,q,t

(i) := clip(γp,q,t
(i) , 1− η, 1 + η), where clip(·) is a clipping

function parameterized by η.

PPO-specific FRL poisoning.

As an actor-critic algorithm, when we fit single-agent PPO into a federated framework, we assume that
besides the actor model, the critic model should also be updated from individual agents to the server, then
aggregated by the server and finally broadcast to the local agents at each federated round p. Denote the
aggregated actor as θp

(0) and the aggregated critic as ωp
(0). To specify the server’s aggregation function Aagg

(Eq. 4), we take a conventional paradigm in FL:

θp
(0) = Aagg(θp−1

(0) , {θp,L
(i) }

n
i=1) (16)

:= θp−1
(0) + 1

n

n∑
i=1

(θp,L
(i) − θp,0

(i) ) =
∑n

i=1 θp,L
(i)

n
, (17)

where Aagg aggregates the local models by adding the averaged local model update to the server’s
model (Bhagoji et al., 2019; Bagdasaryan et al., 2020). By substituting θp,0

(i) = θp−1
(0) , Aagg is equivalent to

assigning the averaged local model as the server’s model (Bhagoji et al., 2019).

We set the poison cost as D(Rp,q, R̂p,q)=∥Rp,q − R̂p,q∥2, and thereby propose the PPO-specific Problem as:

arg min
R̂
LA

(
θT

(0), ωT
(0)

∣∣∣{R̂p,q
(n)

}1≤q≤L

1≤p≤T

)
(P-PPO)

s.t. ∀1 ≤ p ≤ T, 1 ≤ q ≤ L, (18)
θp,0

(i) = θp−1
(0) ,∀i ≤ n, (19)

ωp,0
(i) = ωp−1

(0) ,∀i ≤ n, (20)

θp,q
(i) = arg max

θ
Jp,q

(i) ,∀i < n, (21)

ωp,q
(i) = arg min

ω
δp,q

(i) ,∀i < n, (22)

θp,q
(n) = arg max

θ
[Ĵp,q

(n)|Ô
p,q
(n)], (23)

ωp,q
(n) = arg min

ω

[
δ̂p,q

(n)|Ô
p,q
(n)], (24)

θp
(0) =

n∑
i=1

θp,L
(i) /n, (25)

∥Rp,q − R̂p,q∥2 ≤ ϵ. (26)

In Problem P-PPO, ·̂ denotes the poisoned variables induced by Ôp,q. The constraints interpretation is
similar to that in Section 3.3, except that all the equations related to ω characterize the initialization and
local training for the critic, while those related to θ are for the actor. The constraints are summarized in
Table 3.
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Table 3: Constraints of Problem P-PPO.

Party Constraints Interpretation

Agent i, i ̸= n Eq.(19) local actor Initialization
(clean agents) Eq.(21) local actor train

Eq.(20) Local critic initialization
Eq.(22) local critic train

Agent n Eq.(19) local actor initialization
(attacker) Eq.(23) local actor train

Eq.(20) local critic initialization
Eq.(24) local critic train
Eq.(26) Attack budget

Coordinator Eq.(25) aggregation

C Baseline Algorithms

In this appendix, we provide the baseline algorithms described in Section 6.3.

C.1 Standard FRL

Standard Actor-Critic-based FRL is given in Algorithm 4, and the standard Policy-Gradient-based FRL is
given in Algorithm 5.

Algorithm 4 Standard Actor-Critic-based FRL
1: Input: max federated rounds T , max local episodes L, number of agents n, aggregation algorithm Aagg,

actor-critic objective function J .
2: Output: server’s actor model θT

(0) and critic model ωT
(0).

3: Initialize the server’s actor model θ0
(0) and critic model ω0

(0).
4: for p = 1 to T do
5: for i = 1 to n do
6: Initialize local actor θp,0

(i) ← θp−1
(0)

7: Initialize local critic ωp,0
(i) ← ωp−1

(0)
8: for q = 1 to L do
9: Interact with environment and obtain Op,q

(i)

10: Compute Jp,q
(i) with Op,q

(i) and ωp,q−1
(i)

11: Update θp,q
(i) with Jp,q

(i)
12: Update ωp,q

(i) with Op,q
(i)

13: end for
14: end for
15: θp

(0) = Aagg
(
θp,L

(1) , ..., θp,L
(n−1), θp,L

(n)
)

16: ωp
(0) = Aagg

(
ωp,L

(1) , ..., ωp,L
(n−1), ωp,L

(n)
)

17: end for
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Algorithm 5 Standard Policy-Gradient-based FRL
1: Input: max federated rounds T , max local episodes L, number of agents n, aggregation algorithm Aagg,

policy gradient objective function J .
2: Output: server’s policy θT

(0).
3: Initialize the server’s policy θ0

(0).
4: for p = 1 to T do
5: for i = 1 to n do
6: for q = 1 to L do
7: Initialize local policy θp,0

(i) ← θp−1
(0)

8: Interact with environment and obtain Op,q
(i)

9: Compute Jp,q
(i) with Op,q

(i)
10: Update θp,q

(i) with Jp,q
(i)

11: end for
12: end for
13: θp

(0) = Aagg
(
θp,L

(1) , ..., θp,L
(n−1), θp,L

(n)
)

14: end for

C.2 Random Poisoning

Below we give random poisoning algorithms mentioned in Baselines (Section 6.3).

Random Poisoning for Actor-Critic-based FRL. The algorithm is implemented almost the same as
Algorithm 2, except that Line 5 should be replaced with “Poison Reward as R̂p,q

(n) using true objective Jp,q
(n)

and budget ϵ by Eq. (7)”.

Random Poisoning for Policy-Gradient-based FRL. The algorithm is implemented almost the same as
Algorithm 3, except that Line 16 should be replaced with “Poison Reward as R̂p,q

(n) using true objective Jp,q
(n)

and budget ϵ by Eq. (7)”.

C.3 Robust FRL

To mitigate the risk of FRL being exposed to malicious agents, below we describe a defense mechanism
against FRL (Algorithm (6)) that inherits from conventional FL defense mechanisms, where the aggregation
is implemented by re-weighting with the clients’ reliability. To adapt this robust aggregation protocol from
FL to FRL, we let the clients’ local RL performance be a reflection of their reliability. The aggregation
process incorporates a re-weighting mechanism based on the clients’ reliability, as discussed in prior work (Fu
et al., 2019; Tahmasebian et al., 2022; Wan & Chen, 2021). In adapting this robust aggregation protocol
from FL to FRL, we leverage the local RL performance of clients as an indicator of their reliability. To be
more precise, the re-weighting is accomplished by assigning credits to each agent’s policy according to its
performance. To that end, the central server runs tests on each policy it receives from the agents and records
the observations denoted by Op,test

(i) . The server then calculates the average reward rp,test
i for each policy

by averaging the rewards in the sequence {rt}p,test
(i) . Finally, the server normalizes the average rewards by

dividing them by the sum of all averaged rewards, resulting in a set of normalized weights cp,q
i . These weights

are used to weight the average aggregation of the policies:

θp
(0) ←

∑
i∈M

cp,q
i θ̂

p,L

(i) +
∑
i/∈M

cp,q
i θp,L

(i) , (27)

ωp
(0) ←

∑
i∈M

cp,q
i ω̂p,L

(i) +
∑
i/∈M

cp,q
i ωp,L

(i) . (28)

The defense mechanism is outlined in Algorithm 6. This protocol can be integrated into Algorithm 3 and 2
as the aggregation algorithm Aagg.
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Algorithm 6 FRL Defense Aggregation
1: Input: Submitted local actors {θp,L

(i) }i≤n; Submitted local critics {ωp,L
(i) }i≤n.

2: Output: Aggregated actor and critic θp
(0), ωp

(0).
3: for i = 1 to n do
4: Server obtains Op,test

(i) by θp,L
(i) ,

5: Gets mean reward rp,test
(i) from Op,test

(i) .
6: end for
7: for i = 1 to n do
8: Server normalizes the credit cp,q

i ← rp,q
i∑
i

rp,q
i

9: end for
10: Server obtains θp

(0) and ωp
(0) by Eq. (27) and (28).

D Experiments

D.1 Additional Settings

D.1.1 Settings for Main Experiments

Additional general settings. We measure the attack cost by the ℓ2 distance between the poisoned reward
and the ground-truth observed reward. During each local training step, the maximum number of steps before
termination is 300 unless restricted by the environment. The learning rate is set to 0.001, and the discount
parameter is set to γ = 0.99.

Additional settings for robust FRL. For each model uploaded to the server, we ran it for 10 episodes and
collected the mean reward per episode. We then used the normalized rewards as the weights of aggregation.
We structure the system with only 2 agents for all environments to ensure that the suspicious agent possesses
the maximum possible power to poison the system since a smaller number of agents corresponds to a more
potent attack.

D.1.2 Settings for Additional Experiments

General settings. Since VPG is more challenging to attack (refer to Section 6.5.1), in Section D.2 our focus
is on attacking VPG-based FRL.

Targeted poisoning. For simplicity, we choose the target policy to be a single action, whether in discrete
or continuous space. We ensure the chosen environments encompass both discrete and continuous action
spaces, featuring diverse cardinalities and dimensions for the action space. Concretely, we set the target
policies to be 0 ∈ {0, 1} for CartPole, 0 ∈ {0, 1, 2, 3} for Lunar Lander, 3 ∈ [−3, 3] for Inverted Pendulum,
and 06 ∈ [−1, 1]6 for Half Cheetah. We choose environments of different action space: CartPole (two discrete
actions), LunarLander (four discrete actions), InvertedPendulum (one continuous dimension), HalfCheetah
(six continuous dimensions).

Multi-agent attack. We opt for the CartPole environment, a relatively simple task, to balance between
manageable computation costs and a clear understanding of how a fixed proportion operates in a multi-agent
attack scenario. In Section 6.5.1, we have determined that the maximum size of the system one agent can
effectively attack is 4 for the CartPole environment and a VPG-based FRL system. Therefore, we initiate
the system size from 4, and accordingly, the number of poisoned agents begins at 1. Subsequently, we
incrementally enlarge the system size and the corresponding number of poisoned agents while maintaining a
constant proportion between the number of poisoned agents and the system size.

D.2 Results of Experiments

All additional results are obtained from experiments following settings in Section 6.4 and D.1.2.
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Large-budget Attack. We evaluated the performance of our poisoning with a large budget in Figure (4).
The results show that with a larger budget, our method is able to attack much larger systems compared with
the constraints that appeared in the case of a small budget, i.e., we can attack up to 100 agents.

Figure 4: High-Budget Poisoning. The red dashed line, labeled as Poison, depicts the performance of
our adversarial attack in a standard FRL system. The green dashed line, labeled as Clean, represents the
standard FRL system’s performance.

Multi-agent poisoning. We have shown that the proportion of malicious agents required to poison a system
is consistent regardless of the size of the system. We found that when we increase the system size from 4
agents to 100 agents, a fixed proportion of attackers can always poison the system successfully. This result is
depicted in Figure (5).

Figure 5: Multi-Agent Poisoning. The annotation is the same as Fig. 4.

Targeted attack. Our poisoning works well for targeted attack, shown in Figure (6).

Figure 6: Targeted attack. The green dashed line, labeled as poison, depicts the performance of our
adversarial attack in a standard FRL system. The red dashed line, labeled as clean, represents the standard
FRL system’s performance.
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E Additional Background

E.1 Differences between distributed RL and FRL

Distributed RL and FRL are both advanced paradigms in the field of machine learning, but they differ
significantly in their architecture and application. Distributed RL involves distributing the computation
of a single RL algorithm across multiple machines to accelerate learning and handle larger datasets. This
approach focuses on parallelizing the training process to improve efficiency and scalability. On the other hand,
FRL is designed to enable multiple independent agents to collaboratively train an RL model without sharing
their local data. In FRL, each agent trains a local model using its own data and periodically shares model
updates (rather than raw data) with a central server, which aggregates these updates to improve the global
model. This method preserves data privacy and is particularly useful in scenarios where data cannot be
centralized due to privacy concerns or regulatory restrictions. Thus, while distributed RL aims at enhancing
computational efficiency, FRL emphasizes data privacy and decentralized training, making it suitable for
applications where data sharing is limited.

E.2 Different RL algorithms

Reinforcement learning encompasses a variety of algorithms designed to enable agents to learn optimal
behaviors through interactions with their environment. Among these, actor-critic algorithms, such as
Advantage Actor-Critic (A2C), Asynchronous Advantage Actor-Critic (A3C), and more advanced methods
like Proximal Policy Optimization (PPO) and Trust Region Policy Optimization (TRPO), are notable
for their efficiency in handling high-dimensional action spaces. PPO, recognized for its robustness and
simplicity, prevents large updates that can destabilize training, balancing exploration and exploitation
effectively. We chose to focus on PPO and VPG due to their practical balance between performance and
computational efficiency. While more advanced algorithms like Deep Deterministic Policy Gradient (DDPG)
or Soft Actor-Critic (SAC) offer better performance in certain scenarios, they come with increased complexity
and computational costs. We focus on VPG and PPO to ensure the approach remains accessible and practical
while achieving competitive performance.
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