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ABSTRACT

In supervised Active Learning (AL), the learner can manipulate the labeled training
set by choosing examples to be labeled by an oracle. The size of the labeled set is
termed budget. Recent years have seen significant progress in this domain in the
context of deep active learning. In particular, it has been shown that in general,
different families of AL strategies are suitable for high and low budgets. Here
we address for the first time the problem of deciding which family of strategies
is most suitable for a given budget in a given task. We start from the theoretical
analysis of a mixture model, which motivates a computational approach to decide
on the most suitable family of methods for the task and budget at hand. We then
propose a practical decision algorithm, which determines what family of strategies
should be preferred. Using this algorithm, we introduce MiSAL – a mixed strategy
active learning algorithm. MiSAL combines AL strategies from different families,
resulting in a method that fits all budgets. We support the analysis by an empirical
study, showing the superiority of our method when dealing with image datasets.

1 INTRODUCTION

In active learning, a learner is allowed to actively interfere with the learning process in order to
improve the outcome. Here we consider active learning in the context of the traditional supervised
learning framework, in which a learner can influence and shape the construction of the labeled
training set. Specifically, we assume that the learner is given an initial set of labeled examples (which
could be empty) and a set of unlabeled examples. The learner is then asked to choose a subset of the
unlabeled set (termed the active set), up to a fixed budget, and subsequently receive the labels of the
selected examples from an oracle. The challenge is to do this in an optimal manner. An effective
active learner is expected to do better than the random selection of the active set.

The optimal active learning strategy clearly depends on the learner’s inductive biases and the nature
of the problem. But even when all this is fixed, Hacohen et al. (2022) showed that the optimal
strategy still varies, depending on the size of the set of labeled examples (henceforth termed budget).
Specifically, when the budget is large, methods based on uncertainty-sampling or related criteria are
most effective, while typicality-based methods are effective when the budget is small (see Fig. 1).

In practice, given specific data and budget, it is unclear how to determine whether the budget is
considered large or small, making it unclear which active learning strategy should be used. We aim
to alleviate this problem, by suggesting a practical algorithm to determine which active learning
algorithm should be used. Starting from an abstract theoretical analysis in Section 2, we describe an
algorithm to decide upon this question. We then derive an active learning strategy that is suitable for

Figure 1: Left: when the budget is low (size of the training set is small), the learner benefits most from seeing
characteristic examples. Right: when the budget is high, unusual examples provide the most added value.
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all budgets as described in Section 3. The results of an extensive empirical study, showing that the
proposed method is beneficial (and often superior) at all budgets, are described in Section 4.

RELATION TO PRIOR WORK

By now there is a large body of fundamental work on active learning, see for example the surveys
by (Settles, 2009; Schröder & Niekler, 2020). The natural approach, which dominates deep active
learning and recent work in particular, aims to identify data whose contribution to the learner achieves
maximal added value with respect to what the learner already knows. In the context of supervised
learning, the learner may be trained on a fairly large set of already known labeled examples. Afterward,
it is allowed to pick unknown examples for human annotation based on the outcome of training.
These methods often employ either uncertainty sampling (Lewis & Gale, 1994; Ranganathan et al.,
2017; Gissin & Shalev-Shwartz, 2019; Sinha et al., 2019) – seeking examples that the learner is least
certain about, diversity sampling (Hu et al., 2010; Elhamifar et al., 2013; Sener & Savarese, 2018;
Shui et al., 2020) – seeking examples that effectively span the data space, or some combination of
both (Gal et al., 2017; Kirsch et al., 2019; Ash et al., 2020).

But what if not much is known to the learner apriori, and effective training is not possible before the
selection of queries? Recently, leveraging advances in unsupervised representation learning (e.g.,
Van Gansbeke et al., 2020; Chen et al., 2020), another set of active learning methods has emerged
(Mahmood et al., 2021; Hacohen et al., 2022; Yehuda et al., 2022). Such works assume a very small
(sometimes even empty) set of apriori known labels, and they rely instead on a representation space
as obtained by some unsupervised learner. Methods designed to be effective in this domain tend to be
qualitatively different from the more traditional methods, seeking examples that can be easily learned
rather than seeking confusing examples.

In light of this dichotomy, a new exciting question has emerged when trying to put it all together: in a
particular context, what family of methods should be preferred – those designed for high budgets or
those designed for low budgets? In particular, can we identify in advance, before we select any query,
which family of methods to use? Or maybe a mixture of such methods is to be preferred? To the
best of our knowledge, this is the first work that aims to answer this question, developing a practical
deep active learning strategy for all budgets. The method is versatile, in that it can incorporate
state-of-the-art AL strategies suitable for either the high-budget or low-budget domains.

2 THEORETICAL ANALYSIS

In the active learning scenario considered here, a learner is given an initial set of labeled examples
(which can be empty) and a set of unlabeled examples. The learner is allowed to choose a subset of
the unlabeled set, up to a fixed budget, and obtain their labels from an oracle to be used for further
training. The selection of examples to be labeled can be done repeatedly, querying in each iteration
only part of the total budget. In order to focus the analysis, we consider henceforth a single iteration.
In each iteration, the learner is given two sets of examples – one labeled and one unlabeled, and the
task is to optimally select a fixed-sized subset of the unlabeled set to be labeled.

In Section 2.1 we introduce some notations and a computational model, which is used in Sections 2.2-
2.3 to derive optimal active learning strategies and reveal how they depend on the learning budget.

2.1 PRELIMINARIES

Notations Consider an active learning scenario with an unlabeled set of examples U, a fixed budget
B ∈ N, an active learner L, and an initial set of labeled examples L of fewer than B examples.
The goal of L is to find an optimal set of examples A ⊆ U (referred to as the active set), of size
m ≡ |A| = B − |L|, which would maximize the benefit to learner L when it is to be trained with the
labeled set T = A ∪ L of size |T| = B.

Active set selection Let HL(T) denote a hypothesis delivered by learner L when trained with T,
and let Er(HL(T)) denote its generalization error. Since deep learning training is stochastic, HL(T)
is itself a random variable. Let EL(B) = E[Er(HL(T))] denote the mean generalization error of L
over all possible hypotheses and all training sets T of size B.
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Model definition and assumptions We adopt the mixture model and assumptions introduced in
(Hacohen et al., 2022). The input domain of the mixture model is assumed to be composed of two
disjoint regions, Rl and Rh such that Rl ∪ Rh is the entire input domain. The mixture model is
composed of 2 independent general learners, each learning one of the disjoint regions of the input.

We study the error function of the mixture model on the entire input domain, which depends on
the error function of each of the learners in its corresponding region. While the error functions of
each learner may be different, we assume for simplicity that their mean generalization error takes
on a universal form. In other words, the mean generalization error of each learner is a function
that depends only on the size of the training set, up to some constant α which may differ for each
region. Formally, the error function of each learner i ∈ {l, h} can be written as E(αiBi), where
E : R→ [0, 1] is the universal error function, Bi is the budget in region i, and αi ∈ R. We further
assume that E has two properties: (i) Efficiency: E(αB) is strictly monotonically decreasing, namely,
on average the learner benefits from additional examples. (ii) Realizability: lim

B→∞
E(αB) = 0.

Given the above assumptions, the generalization error of learner L can be formalized as:

EL(B) = p · E(αlBl) + (1− p) · E(αhBh). (1)

Above p denotes the probability of region Rl. We assume w.l.o.g. that αl = 1 and αh ≡ α > 0.
Without loss of generality, we assume that Rl requires fewer examples to be adequately learned than
Rh, which implies that α < p

1−p . With this assumption, the prior art shows that it is beneficial to
sample from the easier-to-learn region Rl when the budget is low, and sample from the harder-to-learn
region Rh when the budget is high. Within this framework, the exact transition point between the low
and the high budgets depends on the specific parameters of the problem at hand.

2.2 OPTIMAL MIXED STRATEGY FOR QUERY SELECTION

We now analyze active learning strategies using the mixture model defined in Section 2.1. In this
model, there exist two pure query selection strategies, denoted Sl and Sh. Sl samples points from
Rl, and is beneficial for low budgets. Sh samples points from Rh, and is beneficial for high budgets.
Given a fixed budget B, we analyze the family of mixed strategies – each defined by q ∈ [0, 1], in
which qB points are sampled using Sl and (1 − q)B points are sampled using Sh. We seek the
optimal mixed strategy denoted q̂, which delivers a labeled set of size B with the lowest mean error.

First, we note that the mean generalization error of mixed strategy q is:

EL(B, q) = p · E(qB) + (1− p) · E(α(1− q)B). (2)

Since E is differentiable by assumption, we can find the optimum at q̂ by differentiating (2) (see
derivation in App. A), to obtain:

E
′
(q̂B)

E′ (α (1− q̂)B)
=

α (1− p)

p
. (3)

If (3) has a solution for q̂ and if this solution is unique and minimal, it defines an optimal mixed
strategy q̂E(B, p, α). ∀B such that q̂E(B, p, α) = p, this optimal mixed strategy is equivalent to
random selection from the input domain1. We denote such budgets by Bequiv , where from (3)

E
′
(pBequiv)

E′ (α (1− p)Bequiv)
=

α (1− p)

p
.

By definition, when the budget size is Bequiv , random query selection is optimal.

In the analysis below, we assume for simplicity2 that q̂E(B, p, α) is non-increasing ∀B and strictly
monotonic at Bequiv, implying that Bequiv is unique. A visualization of this case can be seen in
Fig. 2, where we plot the closed form solution of q̂a(B, p, α) with an exponential universal error
function E(x) = e−ax.

1Identity (in probability) is achieved when B → ∞.
2Otherwise, the analysis is to be repeated in each such region of q̂E(B, p, α).
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(a) Accuracy gain of mixed strategies q, where mixture coefficient
q is indicated in the legend.

(b) Optimal q̂a(B, p, α).

Figure 2: Visualization of EL(B, q), where training set of size B is selected for different values of q as indicated
in the legend. The parameters are E(x) = e−ax, a = 0.1, p = 1

2
and α = 0.05. (a) A plot of accuracy gain

when using strategy q as compared to random query selection: E(p)− E(q), as a function of budget B. Since
p = 1

2
, the plot corresponding to q = 1

2
is always 0. (b) Plots of q̂ as a function of B. Bequiv , which corresponds

to q̂ = 1
2

, is indicated by a vertical dashed line. Each plot corresponds to a different fraction |A|
B

(see legend).

2.3 OPTIMAL SELECTION STRATEGY: DEPENDENCE ON THE SIZE OF THE ACTIVE SET

In the active learning scenario as defined in Section 2.1 we have T = L ∪ A, where set L is fixed and
the optimal selection of set A is sought. Let m denote the size of the required set, namely, |A| = m
and |L| = B −m. Not knowing anything about the origin of L, we further assume that it has been
selected randomly from the input domain, which is equivalent to the mixed strategy q = p.

In this case, the selection of set T is more naturally conceived as a mixture between 3 strategies
{Sr,Sl,Sh}, where strategy Sr randomly selects data from the input domain. This is captured by the
notation S(rr, rl, rh), where (rr, rl, rh) in the 3-simplex, for a query selection strategy that selects
rrB points with Sr, rlB points with Sl, and rhB points with Sh. Note that this notation is unique
only if either rl = 0 or rh = 0 (or both).

Optimal mixed strategy The unique optimal strategy, which corresponds to mixture q̂ ≡
q̂E(B, p, α), is captured by this notation as:

Ŝ(B, p, α) =


S(1− r̂, r̂, 0) q̂ > p =⇒ B < Bequiv

S(1, 0, 0) q̂ = p =⇒ B = Bequiv

S(1− r̂, 0, r̂) q̂ < p =⇒ B > Bequiv

(4)

Above r̂ is obtained by noting that r̂ + (1− r̂)p = q̂, which implies that

r̂ =

{
1

1−p (q̂ − p) q̂ > p
1

1−p (p− q̂) q̂ < p
(5)

Achievable optimal mixed strategy Are all optimal mixed strategies feasible? Since the size of
set A is fixed at m, we can deduce from (5), and the definition of vector (rr, rl, rh), that strategy r̂ is
not feasible whenever one of the following two conditions holds

r̂B =
(q̂ − p)

1− p
B > m =⇒ q̂ > p+

m(1− p)

B
> p =⇒ B < Blow ≤ Bequiv

or (6)

r̂B =
(p− q̂)

1− p
B > m =⇒ q̂ < p− m(1− p)

B
< p =⇒ B > Bhigh ≥ Bequiv

Above, Blow is defined to be the solution of (3) when inserting q̂ → p+ m(1−p)
B , and Bhigh is the

solution of (3) when inserting q̂ → p− m(1−p)
B (see derivation of Blow and Bhigh in App. A).
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We may conclude that the optimal strategy (4) that is also achievable is:

Ŝ(B, p, α) =



S(0, 1, 0) B < Blow

S(1− r̂, r̂, 0) Blow ≤ B < Bequiv

S(1, 0, 0) B = Bequiv

S(1− r̂, 0, r̂) Bequiv < B ≤ Bhigh

S(0, 0, 1) Bhigh < B

(7)

Comparing (7) to (4), we note that at low budgets (B < Blow) one selects the active set with pure
strategy Sl since more than m points (the size of the active set) are missing from region Rl to achieve
optimal performance. At high budgets (B > Bhigh) one selects the active set with pure strategy Sh
since more than m points are missing from region Rh to achieve optimal performance.

Achievable optimal mixed strategy: incremental selection Inspecting the definition of the
transition points in the optimal achievable strategy, defined in (6), we observe that limm→0 Blow =
limm→0 Bhigh = Bequiv . In other words, if the active set A is small enough, the achievable optimal
mixed strategy can be effectively approximated by the following strategy

S̃(B, p, α) =


S(0, 1, 0) B < Blow

S(1, 0, 0) Blow ≤ B ≤ Bhigh

S(0, 0, 1) B > Bhigh

(8)

In (8), if the budget size is smaller than Blow then the active set is sampled from Rl, and if the budget
size is larger than Bhigh then the active set is sampled from Rh. Otherwise, the active set is randomly
sampled from all the data. The deviation of (8) from the optimal strategy (7) lies in a segment of
budget values whose size tends to 0 as m decreases (see visualization in Fig. 2b).

If m is not sufficiently small to justify the use of strategy (8), query selection may be done incremen-
tally: First, m is to be divided to smaller segments of length m′, where m′ is small enough to justify
the use of (8). Second, strategy (8) is used repeatedly m

m′ times, to build the set A iteratively. While
taking longer to run, this iterative strategy can be implemented more easily and more robustly than
strategy (7), since it does not require the evaluation of the elusive mixture coefficient r̂.

Further support for the use of strategy (8) can be derived from our empirical results (see Section 2.4
below). In our experiments, the difference in the mean generalization error between strategies (7) and
(8) is marginal even when the truly optimal r̂ is manually handed to the algorithm. This supports the
adaptation of strategy (8) in practice with a small number of repetitions.

2.4 VALIDATION AND VISUALIZATION OF THEORETICAL RESULTS

Visualization In Fig. 3, we plot the error of the strategies defined in (7) and (8), using the same
exponential example as in Fig. 2. The orange curve represents a fairly large active set, where m (the
size of active set A) is equal to 30% of budget B, while the blue curve represents a very small active
set, where m is equal to 1% of the budget B. We can see that the smaller m is, the smaller the gap
between the optimal strategy in (7) and the achievable strategy in (8) becomes.

Fig.2b shows plots of the optimal mixture coefficient q̂ as a function of budget size B, when
considering different values for the active set size m, including 1%, 30% and 100% of B. We see
that as the theory predicts, the smaller m is, the more step-like the optimal q̂ becomes, suggesting
that in most cases, the entire active set A should be sampled from the same strategy.

Validation Our analysis uses a mixture model of idealized general learners. We now validate that
similar phenomena occur in practice when training deep networks on different computer vision tasks.

As our choice for pure strategies Sl and Sh, we use TypiClust and margin respectively (see details in
Section 4.1). Fig. 4 shows results when training N = 20 networks using mixed strategies S(1−r, 0, r)
and S(1− r, r, 0) on CIFAR-10 and CIFAR-100. We compare the mean performance of each strategy
to the performance of N = 20 networks trained with the random query selection strategy S(1, 0, 0).
We note that other choices for Sl and Sh yield similar qualitative results, as can be seen in Tables 1-2.

Inspecting these results, we find similar trends to those shown in the theoretical analysis. The most
beneficial value of mixture coefficient r decreases as the budget increases until a certain transition

5



Under review as a conference paper at ICLR 2023

Figure 3: Visualization of strategy (8)
for E(x) = e−ax (see Fig. 2). We
plot its gain in error reduction as com-
pared to random query selection. Two
cases are shown, with small m

B
= 0.01

and large m
B

= 0.3 active sets. The
smaller the active set is, the closer the
performance is to optimal strategy (7).

(a) CIFAR-10 (b) CIFAR-100

Figure 4: Empirical validation of the theoretical results. We plot the ac-
curacy gains of N = 20 networks trained using strategy (8), compared
to using no active learning at all. We see that as predicted by the theo-
retical analysis, the most beneficial mixture coefficient r increases as the
difference |B −Bequiv| increases.

point (corresponding to Bequiv). From this transition point onward, the bigger the budget is, the more
beneficial it is to select additional examples by one of the high-budget strategies. In fact, as in the
theoretical analysis, when the budget is low it is beneficial to use a pure low-budget strategy, when
the budget is high it is beneficial to use a pure high-budget strategy, and the transition area in between
(corresponding to the segment Blow ≤ B ≤ Bhigh) is typically rather short (see Figs. 4 and 5).

3 MISAL: MIXED STRATEGY FOR ACTIVE LEARNING

Following the theoretical discussion in Section 2.3, our method adopts the achievable optimal mixed
strategy as prescribed in (8). The method involves two main steps. In the first step, a strategy
beneficial for low budgets and another beneficial for high budgets is chosen. For each strategy, we
evaluate whether it is more effective than random sampling at the given budget B, and estimate its
added generalization accuracy for the given query size m as explained in Section 3.1. This step
determines the budget’s actual domain: (i) low (B ≤ Blow), (ii) transition (Blow ≤ B ≤ Bhigh), or
(iii) high (B ≥ Bhigh). In the second step, a strategy is chosen from among the most competitive
ones in the relevant domain, and is subsequently used to select m points for active set A.

3.1 DECIDING ON THE SUITABLE BUDGET REGIME

Let Sr denote the strategy that selects query points randomly. Given two strategies Sl and Sh and
given budget B, the method outlined in Alg. 1 below aims to determine (separately for each strategy)
whether its expected performance is better than random query selection, or not. In other words, we
need to determine whether m additional points, as chosen by either Sl or Sh respectively, reduce the
mean generalization error more significantly than m randomly selected points.

Unfortunately, this test cannot be decided directly without additional labels. Instead, our method
computes the result of a surrogate test, where a small set of points as chosen by each respective
strategy is removed from the labeled set. It then compares the reduction in mean generalization error
to the removal of randomly chosen points.

The proposed surrogate test raises another problem: in most active learning strategies, in particular
those suitable for high budgets, the outcome relies on a learner that is trained on the labeled set L
and is thus exposed to the points that are to be removed. As a result, the test is strongly biased to
underestimate the cost of removing known points, as also seen in our empirical study (see Fig. 6).
Instead, in order to achieve an unbiased surrogate test, we restrict the choice of active learning
strategies to methods that rely only on the unlabeled set U. We denote these methods by S ′l and S ′h.

The final method can now be summarized as follows (see Alg. 1): We begin by considering the
unlabeled pool U, and obtain an effective representation for all the data using a self-supervised
learning task. In the feature space thus defined, we create three subsets of L: datal, datah and datar.
Each subset is obtained by removing a small number of examples (but not less than 1) from each
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Algorithm 1 Select active learning regime, low budget or high budget

Input: Unlabeled pool U, Labeled pool L, Budget B, learner L, ϵ, 2 Strategies: S ′l ,S ′h
Output: Decision variable S
features← features of data L obtained by a self-supervised task trained on U
k ← # of classes, c← max{

⌊
ϵ
k

⌋
, 1}

datal, datah ← remove c examples per class as chosen by Sl, Sh respectively
datar ← remove c examples per class randomly
accl, acch, accr ← accuracy of L trained on datal, datah, datar respectively
if accl < accr and accl ≤ acch then
S ← ‘low′

else if acch < accr and acch ≤ accl then
S ← ‘high′

else
S ← ‘rand′

end if
return S

class as chosen by S ′l , S ′h, and Sr respectively. We then train the learner on each of these datasets
(this is repeated multiple times for Sr). Finally, we compute the accuracy of each method using
cross-validation, using 1% of the training data as a validation set in multiple repetitions. We choose
the strategy whose accuracy is the lowest – this is the strategy that is most critical for learning, hence
removing examples according to it decreases the performance the most.

3.2 MIXED ACTIVE LEARNING STRATEGY

The active learning strategy for query selection is described below in Alg. 2. First, it selects two active
learning strategies, S ′l , and S ′h, which are known to be beneficial in the low and high budget regimes
respectively, and which additionally rely in their computation only on the unlabeled set U. Together
with the data, they are given as input to Alg. 1, which in turn returns a decision, indicating what regime
best describes the given budget B. In its second step, Alg. 2 selects two active learning strategies, Sl,
and Sh, which are known to be beneficial in the low and high budget regimes respectively, with no
additional restrictions. This allows the selection of strategies more competitive than S ′l and S ′h. The
additional flexibility is especially important in the high budget regime, where the most competitive
strategies typically rely in their computation on all the data, including both L and U. Alg. 2 then uses
the preferred AL strategy (Sl, Sh or Sr) to select the active set A.

Algorithm 2 Mixed-Strategy Active Learning (MiSAL)

Input: Unlabeled pool U, Labeled pool L, Budget B, learner L
Output: active set A of B − |L| examples
m← B − |L|
S ′l ,S ′h ← competitive AL methods that rely only on U
S ← output of Alg. 1 given (U,L, B,L,m,S ′l ,S ′h)
Sl,Sh ← competitive AL methods (unrestricted)
if S == ‘low′ then
A← m points selected by Sl from U

else if S == ‘high′ then
A← m points selected by Sh from U

else
A← m random points from U

end if
return A

The use of S ′l and S ′h in the call to Alg. 1, rather than Sl and Sh, is a necessary evil as explained
in Section 3.1. The rationale for expecting our method to succeed lies in the theoretical analysis
presented in Section 2, which supports the hypothesis that the transition points Blow and Bhigh may
be universal, or approximately so, across pure strategies. Our empirical results, reported in Section 4,
support this supposition.
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4 EMPIRICAL RESULTS

We now describe the empirical results of our integrated active learning strategy, where Alg. 2 is used
to generate the active set. After labels are obtained for the active set, the training of the deep model
proceeds as is customary in deep supervised learning, using all the available labels in A ∪ L.

4.1 METHODOLOGY

Our experimental framework is based on the code of (Munjal et al., 2020), which allows for the
comparison of different active learning strategies in a robust and fair way. While the architecture
trained by this framework does not achieve state-of-the-art results on CIFAR and ImageNet, it makes
it possible to compare many active learning methods in a competitive environment, while using
an architecture with which these strategies have been shown to be beneficial. In the following
experiments, we trained ResNet-18 (He et al., 2015) on CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009) and ImageNet-50 – a subset of ImageNet (Deng et al., 2009) containing 50 classes as done in
(Van Gansbeke et al., 2020). Hyper-parameters are the same as in Munjal et al. (2020), see App. B.

As our choice of competitive pure active learning strategies that use only the unlabeled set U for
training (see Alg. 2), we choose TypiClust (Hacohen et al., 2022) for S ′l and inverse TypiClust for S ′h.
In the latter strategy, the most atypical examples are selected; we note that inverse TypiClust is an
effective strategy for high budgets, see App. C.1. As our unrestricted choice of competitive pure AL
strategies, we choose ProbCover (Yehuda et al., 2022) for Sl and BADGE (Ash et al., 2020) for Sh.
Other choices yield similar patterns of improvement, as can be verified from Tables 1-2.

In the experiments below, we use several active learning strategies, including Min margin, Max
entropy, Least confidence, DBAL (Gal et al., 2017), CoreSet (Sener & Savarese, 2018), BALD (Kirsch
et al., 2019), BADGE (Ash et al., 2020), TypiClust (Hacohen et al., 2022) and ProbCover (Yehuda
et al., 2022). When available, we use for each strategy the code provided in (Munjal et al., 2020).
For low-budget strategies, which are not implemented in (Munjal et al., 2020), we used the available
code provided in the git of each paper. When using Alg. 2, the underline feature space is SimCLR.
Other choices of feature spaces yield similar results, see the comparison in App. 8.

4.2 EVALUATING ALG. 1 IN ISOLATION

We start by isolating the strategy selection test as describe in Alg. 1 in Section 3.1. In order to
generate the 3 subsets of labeled examples datal, datah and datar, we remove 5% of the labeled
data (but not less than 1 datapoint per class). Results are shown in Fig. 5. We can see that in the
low-budget regime, removing examples according to S ′l yields worse performance as compared to
the removal of random examples, while better performance is seen in the high-budget regime. The
opposite behavior is seen when removing examples according to the high-budget strategy S ′h.

(a) CIFAR-10 (b) CIFAR-100 (c) ImageNet-50

Figure 5: Accuracy gain when using S ′
l to select points for removal as compared to random selection (orange),

or S ′
h to select points for removal (green). Negative gain implies that the strategy is beneficial, and vice versa.

4.3 OPTIMAL STRATEGY: RESULTS

Tables 1-2 show the performance of our proposed method in comparison with the performance of the
other baselines. In all these experiments, the integrated strategy is successful in its identification of a
suitable budget regime. As a result, it works well both in the low and high-budget regimes, matching
or surpassing both the low and high-budget strategies at all budgets. As MiSAL chooses an active
learning strategy dynamically for each budget, any state-of-the-art improvements for either low or
high budgets AL strategies would also reflect an improvement of MiSAL as well.
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Table 1: Mean accuracy and standard error of N = 10 networks trained on CIFAR-10 and CIFAR-100, using
various budgets and active learning strategies. In each dataset, we display results for 3 budget choices: one
smaller than Blow (left column), one between Blow and Bhigh (middle column), and one larger than Bhigh

(right column). We highlight in boldface the best result in each column, and additionally all the results that lie
within its interval of confidence (the standard error bar). While most strategies are effective only in the low or the
high budgets, MiSAL is effective in both regimes. As predicted, between Blow and Bhigh, most AL strategies
do not significantly outperform random query selection.

CIFAR-10 CIFAR-100
Budget (L+ A) 100+100 7k+1k 25k+5k 100+100 9k+1k 30k+7k
random 31.8± 0.3 76 ± 0.3 87.2± 0.2 5.3± 0.2 39.9 ± 0.3 60.7± 0.3
TypiClust 34.1± 0.4 75.7± 0.3 87.1± 0.2 7.1± 0.1 39.7 ± 0.4 60.4± 0.2
BADGE 31.3± 0.4 76.5 ± 0.4 88.1 ± 0.1 5.3± 0.2 39.5 ± 0.3 61.9 ± 0.1
DBAL 30.2± 0.3 76.4 ± 0.4 87.8± 0.1 4.6± 0.2 38.9± 0.4 61.5± 0.2
BALD 30.8± 0.3 76.3 ± 0.2 88 ± 0.2 4.9± 0.2 39.8 ± 0.5 61.5± 0.2
CoreSet 29.4± 0.4 75.8 ± 0.3 87.7± 0.2 5.6± 0.4 39.1 ± 0.3 61.4± 0.2
ProbCover 35.1 ± 0.3 76.1 ± 0.3 87.1± 0.1 8.2 ± 0.1 40 ± 0.4 61.4± 0.3
Min Margin 30.7± 0.4 71.1± 0.2 87.9 ± 0.2 5.2± 0.1 39.2± 0.2 61.6± 0.3
Max Entropy 30.2± 0.3 76.1 ± 0.3 87.8 ± 0.2 4.9± 0.2 39± 0.2 61.6± 0.2
Least Confidence 29.7± 0.2 76.1 ± 0.3 88.1 ± 0.2 4.7± 0.4 38.9± 0.4 61.5± 0.2

MiSAL 35.1 ± 0.3 76 ± 0.3 88.1 ± 0.1 8.2 ± 0.1 39.9 ± 0.3 61.9 ± 0.1

Table 2: Same as Table 1, using ImageNet 50.

ImageNet-50
B (L+ A) 100+100 7k+1k 25k+5k
random 9.3± 0.2 61.8 ± 0.4 79.8± 0.2
TypiClust 11.3 ± 0.3 61.8 ± 0.5 80.1± 0.2
BADGE 9.4± 0.2 61.3 ± 0.5 80.8 ± 0.2
DBAL 9± 0.4 61.1 ± 0.6 80.1± 0.2
BALD 9.4± 0.4 61.7 ± 0.3 80.7 ± 0.1
CoreSet 8.6± 0.3 61.7 ± 0.2 80.7 ± 0.3
ProbCover 11.4 ± 0.6 61.6 ± 0.8 77.7± 0.3
Min Margin 9.8± 0.2 61.2 ± 0.5 80.4± 0.1
Max Entropy 8.9± 0.2 61.8 ± 0.4 80.1± 0.1
Least Conf. 8.9± 0.1 61.5 ± 0.4 79.6± 0.5

MiSAL 11.4 ± 0.6 61.8 ± 0.4 80.8 ± 0.2

Figure 6: Similarly to Fig. 5a, comparing S ′
h

with BADGE as the strategy for the removal
of examples. Unlike the original S ′

h (green),
BADGE (orange) shows no transition point.

Why should the choice of AL strategies in Alg. 1 be restricted? For a given task and a given
budget, Alg. 1 is designed to identify the suitable family of AL strategies, whether low or high budget,
using a respective choice of S ′l and S ′h. To achieve the results reported above, we use TypiClust for S ′l
and inverse TypiClust for S ′h. In Section 3.1 we discuss why we do not use to this end the subsequent
selection of the most competitive strategies Sl and Sh, arguing that the selection must be restricted
to AL strategies that do not rely on the labeled set L. We now demonstrate what happens when
the selection is not restricted in this manner, and in particular if S ′h is chosen to be a competitive
AL strategy that relies on the labeled set L for its successful outcome. Specifically, we repeat the
experiments whose results are reported in Fig. 5a, but where strategy S ′h – the one used for the
removal of examples – is BADGE. Results are shown in Fig. 6. Unlike Fig. 5a, there is no transition
point, as it is always beneficial to remove examples selected by BADGE rather than random examples.
This is because the added value of all points used for training diminishes after training is completed.

5 SUMMARY AND DISCUSSION

It has been shown in previous work that different active learning strategies are suited for different
budgets. In this paper, we present a hybrid integrated method, which combines competitive methods
from the two different domains in order to achieve an active learning strategy that is suitable for all
budgets. Our main contribution is twofold: First, we provide a theoretical analysis of the transition
between low and high budgets, suggesting that this phenomenon may be universal. The main technical
contributions, motivated by this analysis, involve: (i) the design of an effective test to distinguish
between the domains in a given scenario, (ii) practical implementation. Finally, the performance of
our method is shown to match or surpass other active learning strategies at all budgets.
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APPENDIX

A DERIVATION OF TRANSITION POINTS

Recall that the mean generalization error of mixed strategy q is:

EL(T) = p · E(qB) + (1− p) · E(α(1− q)B).

for differentiable function E. The mixture coefficient q, which obtains the minimal generalization
error, must satisfy

0 =
∂EL(T)

∂q
= pBE′(qB)− (1− p)αBE′(α(1− q)B)

=⇒ E
′
(qB)

E′ (α (1− q)B)
=

α (1− p)

p
(9)

The transition points can now be defined as follows:

• Bequiv is obtained by solving (9) with q = p.

• Blow is obtained by solving (9) with q = p+ m(1−p)
B .

• Bhigh is obtained by solving (9) with q = p− m(1−p)
B .

B HYPER-PARAMETERS

B.1 SUPERVISED TRAINING

When training on CIFAR-10 and CIFAR-100, we used a ResNet-18 trained over 50 epochs. We
used an SGD optimizer, with 0.9 Nesterov momentum, 0.0003 weight decay, cosine learning rate
scheduling with a base learning rate of 0.025, and batch size of 100 examples. We used random
croppings and horizontal flips for augmentations. An example use of these parameters can be found
at (Munjal et al., 2020).

When training ImageNet-50, we used the same hyper-parameters as CIFAR-10/100, only changing
the base learning rate to 0.01 and the batch size to 50.

B.2 UNSUPERVISED REPRESENTATION LEARNING

CIFAR-10/100 We trained SimCLR using the code provided by (Van Gansbeke et al., 2020) for
CIFAR-10 and CIFAR-100. Specifically, we used ResNet18 with an MLP projection layer to a 128
vector, trained for 500 epochs. All the training hyper-parameters were identical to those used by
SCAN. After training, we used the 512 dimensional penultimate layer as the representation space. As
in SCAN, we used an SGD optimizer with 0.9 momentum and an initial learning rate of 0.4 with a
cosine scheduler. The batch size was 512 and a weight decay of 0.0001. The augmentations were
random resized crops, random horizontal flips, color jittering, and random grayscaling. We refer to
(Van Gansbeke et al., 2020) for additional details. We used the L2 normalized penultimate layer as
embedding.

ImageNet-50 We extracted embedding from the official (ViT-S/16) DINO weights pre-trained on
ImageNet. We used the L2 normalized penultimate layer as embedding.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 HIGH BUDGET STRATEGIES

In Section. 4, we are required to use a high budget strategy S ′h, which relies in its computation only
on the unlabeled set U. We use reverse-TypiClust, which is calculated similarly to TypiClust, only
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Figure 7: Accuracy gain by reverse-TypiClust, as compared to random query sampling.

using the most atypical example at each iteration instead of the most typical example. In Fig. 7, we
plot the performance of such a strategy on CIFAR-10, as a function of budget B, similarly to the
analysis done in Fig. 4.

We see that while reverse-TypiClust is not a competitive high-budget strategy, it still outperforms
random sampling in the high-budget regime, making it a suitable AL strategy for this regime.

C.2 OTHER FEATURE SPACES

C.2.1 REMOVING DATA ACCORDING TO OTHER FEATURE SPACES

In section 3.2, we propose an active learning method that determines the budget size by removing
examples in a given feature space. The feature space used in section 3.2 was obtained by SimCLR, as
these features proved beneficial to several low-budget active learning methods.

In this section, we check the dependency of MiSAL on the specific choice of feature space. In Fig. 8,
we plot the strategy selection test as described in Alg. 1 in Section 3.1. The plotted results are trained
on CIFAR-10. In order to generate the 3 subsets of labeled examples datal, datah and datar, we
remove 5% of the labeled data (but not less than 1 datapoint per class). This test is done using 3
different feature spaces 1. MoCo (He et al., 2020), a transformer based approach. 2. SimCLR, as
done in section 3.2. 3. SCAN (Van Gansbeke et al., 2020).

Similarly to the results reported in section 3.2, we can see that using any of the 3 feature spaces
resulted in a similar result – MiSAL would behave similarly regardless of the choice of the underlying
feature space.

(a) SimCLR (b) SCAN (c) MoCo

Figure 8: Similar to Fig. 5, but removing examples according to different feature spaces in CIFAR-10. Accuracy
gain when using S ′

l to select points for removal as compared to random selection (orange), or S ′
h to select points

for removal (green). Negative gain implies that the strategy is beneficial, and vice versa.

C.2.2 OTHER FEATURE SPACES IN TYPICLUST

In Table 1 and Table 2, we plot the results of different AL strategies across different datasets and
budgets. Low-budget strategies such as TypiClust and ProbCover require the choice of feature space
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to work properly. Following the original papers, we used the feature space given by SimCLR trained
on the entire unlabeled pool U.

To check whether the choice of the feature space affects the results of the low-budget performance,
we trained TypiClust on the TinyImageNet dataset with various choices of feature spaces.

In Fig. 9, we plot 5 active learning iterations with an active set of m = 1000 of ResNet-50 trained on
TinyImageNet. We considered 5 different feature spaces: 1. MoCo (He et al., 2020), a transformer
based approach. 2. DINO (Caron et al., 2021), an SSL-based approach. 3. SimCLR, which was used
in the original TypiClust paper. 4. SWAV an SSL-based approach. 5. A simple autoencoder on the
pixel values (AE). We found that except for the AE, all methods perform similarly, suggesting that
the choice of the representation space has little effect on the training of low-budget methods such as
TypiClust.

Figure 9: Comparing TypiClust with different representations on TinyImageNet for 5 AL iterations in the low
budget regime. The active set size is m = 1000. The final test accuracy in each iteration is reported. The shaded
area reflects standard error. All results are with respect to the ’random’ representation, which is the pixel value
of each image.
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