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Abstract

Open-vocabulary scene graph generation (OVSGG) extends traditional SGG by
recognizing novel objects and relationships beyond predefined categories, leverag-
ing the knowledge from pre-trained large-scale models. Existing OVSGG methods
always adopt a two-stage pipeline: 1) Infusing knowledge into large-scale models
via pre-training on large datasets; 2) Transferring knowledge from pre-trained
models with fully annotated scene graphs during supervised fine-tuning. However,
due to a lack of explicit interaction modeling, these methods struggle to distinguish
between interacting and non-interacting instances of the same object category.
This limitation induces critical issues in both stages of OVSGG: it generates noisy
pseudo-supervision from mismatched objects during knowledge infusion, and
causes ambiguous query matching during knowledge transfer. To this end, in this
paper, we propose an interACtion-Centric end-to-end OVSGG framework (ACC)
in an interaction-driven paradigm to minimize these mismatches. For interaction-
centric knowledge infusion, ACC employs a bidirectional interaction prompt for
robust pseudo-supervision generation to enhance the model’s interaction knowledge.
For interaction-centric knowledge transfer, ACC first adopts interaction-guided
query selection that prioritizes pairing interacting objects to reduce interference
from non-interacting ones. Then, it integrates interaction-consistent knowledge
distillation to bolster robustness by pushing relational foreground away from the
background while retaining general knowledge. Extensive experimental results on
three benchmarks show that ACC achieves state-of-the-art performance, demon-
strating the potential of interaction-centric paradigms for real-world applications.

1 Introduction

Scene graph generation (SGG) [55] aims to map an image into a structured semantic representation,
where objects are expressed as nodes and their relationships are as edges within the graph. Recently,
with the burgeoning of large-scale models, e.g., vision-language models (VLMs) and multimodal large
language models (MLLMs), OVSGG [14, 29, 9] has emerged as a promising area. It pushes beyond
predefined categories to support the recognition and generation of novel objects and relationships,
holding great potential for real-world applications.

Generally, an end-to-end VLM-based?> OVSGG pipeline consists of two phases: Knowledge Infusion
and Knowledge Transfer. The former infuses knowledge from large-scale datasets into VLMs via
pre-training. This process aims to achieve visual-concept alignment via caption-region comparison.
Specifically, due to the lack of region-level information (e.g., bounding box annotations), recent
work [14, 63, 9] adopts a weakly-supervised strategy to generate (subject, predicate, object)
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(a) Knowledge Infusion (b) Knowledge Transfer
Figure 1: Overview of the end-to-end OVSGG framework challenges. a) Knowledge Infusion, using solely
object categories for detection causes ambiguity in associating object pairs (e.g., identifying the correct “man-
surfboard” for the “hold”). b) Knowledge Transfer, vast object query® candidates make misaligned non-
interacting objects (e.g., “man X>) with interacting training target “man” in (man, riding, horse).

triplets with bounding boxes as pseudo-supervisions. As displayed in Figure 1(a), this framework
first extracts semantic graphs from image captions using SGG parsers [4 1], then grounds objects in
the graphs with off-the-shelf object detectors (e.g., Faster R-CNN [39], GLIP [27] and Grounding
DINO [35]). The latter transfers knowledge from pre-trained VLMs by refining with task-specific
objectives and high-quality annotations during supervised fine-tuning (SFT). Concretely, for specific
knowledge, it finetunes part of VLM’s parameters [9] or adapts prompt-tuning [14] on SGG dataset
with fully-supervised triplet annotations (c.f. Figure 1(b)). Leveraging these bounding box anno-
tations, a DETR-like structure [4, 60, 62] with bipartite graph matching is typically used to align
predicted object queries® with ground-truths. Moreover, knowledge distillation (KD) [13, 60, 9] is
widely used during SFT, where a generalist VLM (teacher) guides the target model (student) to retain
general knowledge, allowing robust adaptation to unseen categories in open-world scenarios.

Despite notable advancements, prevailing OVSGG frameworks exhibit an object-centric paradigm
in both knowledge infusion and transfer, i.e., lack of interaction differentiation between instances
within the same object category. For example, the man involved in a holding action and the man
without any action are represented in an indistinguishable manner. It can amplify mismatches in
relation pairs across both pre-training stage (i.e., knowledge infusion) and SFT stage (i.e., knowledge
transfer), which induces the following drawbacks: @ Bringing noisy supervision in pre-training. As
illustrated in Figure 1(a), relying solely on entity categories (e.g., man and surfboard) to detect
objects generates a large number of candidate pairs. This ambiguity makes it hard to associate relation
(e.g., “hold”) to the proper object pair (e.g., “man-surfboard”). Using mismatched triplets (e.g.,
man in red and surfboard in pink) further exacerbates the confusion, hindering the training of robust
SGG models. O Leading mismatched objects during SFT. Due to the vast object query candidates,
a non-interacting “man A” query can be mistakenly associated with man in the triplet annotation
(man, riding, horse) during bipartite graph matching, as displayed in Figure 1(b). However, the
real target is another “man ¥ engaged in riding. This mismatch further complicates the relation
classification task, making it harder to predict correct interactions.

In this paper, we propose the interACtion-Centric end-to-end OVSGG framework (ACC), which
fundamentally rethinks knowledge infusion and transfer through an interaction-driven paradigm.
Unlike conventional object-centric approaches that treat all instances uniformly, ACC explicitly
models relational dynamics at both pre-training and SFT stages to reduce the pervasive mismatch
between interacting/non-interacting object pairs. For interaction-centric knowledge infusion, we
devise a bidirectional interaction prompt to facilitate visual triplet pseudo-supervision generation,
thereby infusing more robust interaction knowledge into pre-trained VLMs. These prompts incor-
porate interaction tokens that capture contextual dependencies and relational semantics, enabling
the grounding model to distinguish interacting objects (e.g., man involved in holding action) from
non-interacting ones through the attention mechanism [49]. For interaction-centric knowledge
transfer, to achieve the paradigm shift from object-centric to interaction-centric knowledge transfer,
we first establish interaction-guided query selection, a two-step mechanism to prioritize interacting
objects and incorporate relational context into the query selection process, mitigating interference of

3Object queries are learnable embeddings input to its Transformer decoder, each specializing through
attention to global image features to predict a unique object’s localization and classification.



inactive objects and reducing mismatches in bipartite graph matching. To preserve general knowledge,
we further incorporate interaction-consistent KD to realize both point-wise semantic alignment and
inter-pair relational consistency among teacher and student. By explicitly modeling the relative
dependencies between interaction-based and non-interaction pairs, this KD strategy enhances the
model’s robustness in handling novel triplet combinations and background and avoiding catastrophic
general knowledge forgetting [13, 9].

To evaluate ACC, we conducted comprehensive experiments on the benchmark Visual Genome
(VG) [19], GQA [16], and PSG [56] datasets to validate its effectiveness in addressing the key
challenges of OVSGG. In summary, our contributions are threefold:

* We reveal key limitations in existing OVSGG frameworks, i.e., the neglect of interaction-specific
characteristics among instances of the same object category during knowledge infusion and transfer,
which leads to widespread relation pair mismatches.

* We propose an interaction-centric end-to-end OVSGG framework ACC, shifting the paradigm
from object-level representations to interaction-driven learning. By explicitly encoding interactions
during both knowledge infusion and transfer, ACC enables more accurate scene graph generation
and robust generalization to unseen categories.

» Extensive experiments on three prevalent SGG benchmarks demonstrate the effectiveness and
generalizability of ACC.

2 Related Work

Open-Vocabulary SGG (OVSGG). This task bridges the gap between closed-set SGG and real-
world requirements by leveraging VLMs or MLLMs to generalize beyond predefined categories [38,

, 22, 57]. Current approaches fall into two main groups: 1) VLM-based Methods. They primarily
rely on contrastive pre-training to align visual and textual embeddings. By comparing visual features
of unseen objects/relations and their semantics in common spaces, these models (e.g., CLIP [38] and
Grounding DINO [35]) enable zero-shot generalization. Recent advancements, such as He et al. [14],
explore visual-relation pre-training and prompt fine-tuning for OVSGG. Yu et al. [59] leverage
CLIP to align relational semantics in multimodal spaces, while Chen et al. [9] use a student-teacher
framework to improve open-set relation prediction. Besides, other methods integrate class-level
descriptions [25, 20] or scene-level descriptions [6] to enrich the semantic context and enhance the
discrimination among different relationships. 2) MLLM-based Methods. They extend the capabilities
of VLMs by incorporating auto-regressive language models, predicting objects and relations in an
open-ended manner. Specifically, they use the sequential prediction capabilities of MLLMs, e.g.,
BLIP [21] and LLaVA [33], to model scene graphs as structured sequences [24]. For example,
PGSG [29] and OpenPSG [65] employ auto-regressive models to iteratively predict open-ended
objects and relations. ASMv2 [51] builds on LLaVA [33] with instruction tuning [52], unifying both
object localization [42, 43] and relation comprehension [23, 26]. Despite their power, MLLM-based
methods typically require huge computing resources. This work focuses on VLM-based methods
and proposes an interaction-centric framework that explicitly models interactions and enhances
generalization to novel categories.

Knowledge Infusion and Transfer for Open-Vocabulary Learning. Recent VLM advancements
unlock open-vocabulary downstream tasks via two main steps: 1) Knowledge infusion into VLMs
(e.g., CLIP [38]) via contrastive learning on large image-text pairs for aligned visual-textual repre-
sentations. 2) Knowledge transfer by SFT of pre-trained VLMs with task-specific objectives and
high-quality annotations for adaptation to tasks like open-vocabulary object detection/segmenta-
tion. Within this framework, effectively mining semantic knowledge and leveraging transferable
representations has emerged as a key research area to improve generalization in open-world settings
while reducing computational/annotation costs. For instance, Wu et al. [54] replace the DETR-style
encoder with CLIP’s visual encoder and employ prompt tuning [30] to adapt image-level represen-
tations to region-level tasks for OV object detection. Similarly, Cho et al. [10] fine-tune CLIP for
open-vocabulary segmentation by incorporating cost aggregation techniques [15]. Besides, Chen et
al. [9] extend this framework to OVSGG and build upon the GroundingDINO [35] with knowledge
distillation to preserve learned knowledge, but still under an object-centric paradigm. Conversely,
this work emphasizes interaction-centric knowledge infusion and transfer for robust OVSGG.
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Figure 2: Overview of ACC for OVSGG. (a) Interaction-Centric Knowledge Infusion: Employs bidirectional
interaction prompts and rule-based bounding box combinations for robust pseudo-supervision, empowering
the model’s grasp of relational knowledge. (b) Interaction-Centric Knowledge Transfer: Uses interaction-
guided query selection to prioritize learning on interacting objects, and interaction-consistent KD transfers
comprehensive relational insights from the pre-trained VLM to ensure robust generalization to novel categories.

Knowledge Distillation (KD). This strategy trains a smaller “student” model to replicate the outputs
of a larger “teacher” model, commonly used in open-vocabulary learning to transfer knowledge
from VLMs. It encourages the student to mimic the teacher’s enriched hidden space, enabling
generalization from base to novel concepts. Prior work [13, 60] explores KD in open-vocabulary
object detection by using L1/MSE loss to align the student detector’s features with the teacher
VLM’s regional visual features. However, this hard alignment may fail to capture complex feature
structures. Later work [2, 37] aligns the similarity of inter-embeddings, aiding in the acquisition of
structured knowledge. Recent work extends to multi-scale level [50] or bags-of-region level [53],
contrasting with InfoNCE loss. This paper adopts an interaction-consistent KD that combines point-
to-point concept retention and structure-aware interaction retention distillation, preserving teacher’s
knowledge and identifying novel relationships beyond backgrounds.

3 ACC: Interaction-Centric End-to-end OVSGG Framework

Formulation. Given an image I, SGG aims to construct a structured semantic graph G = (V, ).
Each node v; € V is defined by its bounding box (bbox) and category, while each edge e;; € £
represents the relationship between v; and v;. In open-vocabulary settings, the label set C for
nodes and edges is divided into base classes Cp and novel classes Cp, such that Cg UCy = C and
Cp NCy = 0. Cp contains seen classes during training, while Cy includes unseen classes that the
model is expected to generalize to during inference.

Baseline End-to-End OVSGG Architecture. As illustrated in Figure 2(b), an end-to-end OVSGG
framework [9, 36] typically follows a dual-encoder-single-decoder architecture [35], involving three
main components:

* Visual and Text Encoders. Visual encoder (VE) extracts multi-scale visual features V- € R™Vv*¢,
Text encoder (TE) processes textual prompts that concatenate all predefined object and relation
categories [03, 9], e.g., “[CLS] man. horse. [SEP] riding. above. [PAD]” to derive semantic
embeddings for objects T, € RNo*? and relation T, € RY>*? Here, N,,, N,, and N, denote the
numbers of image, object, and relation tokens, respectively. d is the feature dimension.

DETR-like Decoder. It refines the representations of K object queries {q;}X; through self-
attention and cross-attention mechanisms, leveraging both visual and text features, ultimately
predicting object bounding box coordinates. Besides, a global relation query q..; is often utilized
to capture spatial and semantic dependencies among objects [44, 9].

Entity and Relation Classifiers. For open-vocabulary recognition, node features {e,} (derived
from refined object queries) and edge features {e;; } (constructed by combining features of paired



objects, potentially augmented with global relation embeddings) are compared against the textual
object/relation class embeddings.

The training of such models conventionally relies on bipartite graph matching to align object queries
with ground-truth annotations, minimizing a cost function based on semantic and spatial criteria [4].
Optimization objectives usually include bbox regression loss (L1 £,.., and GloU loss L0, [40]),
cross-entropy based entity and relation classification losses (L,; and Lre1)*. However, the efficacy of
this process is undermined if the supervision is noisy (due to object-centric pre-training) or if query-to-
target alignment is confounded by non-interacting distractors (due to object-centric SFT). To surmount
the limitations imposed by current end-to-end OVSGG designs, ACC introduces a fundamental shift
towards an interaction-driven paradigm. As illustrated in Figure 2, ACC incorporates interaction-
centric knowledge infusion and transfer.

3.1 Interaction-Centric Knowledge Infusion

Addressing the challenge of noisy supervision from object-centric pseudo-labeling (issue @ in §1),
ACC’s knowledge infusion stage fundamentally alters how training targets are generated for VLM pre-
training. To ensure that pseudo-supervision effectively captures interaction distinctiveness, especially
within weakly annotated data, ACC conditions the object detection process on interactional context
rather than relying on prompts based on isolated object classes (e.g., “man. surfboard.”).

To be specific, after the semantic graph parsing process, which extracts initial subject-predicate-object
triplets from image captions with a language parser [4 1], we employ Grounding DINO [35] as the
object detector and design bidirectional interaction prompt to guide the object localization. The
bidirectional interaction prompt is constructed by combining two perspectives for each interaction
triplet: one reflecting the action from the subject’s viewpoint (e.g., “man hold surfboard”) and
another from the object’s perspective (e.g., surfboard held by man”). The former is directly
derived from the components of the interaction triplet, while the latter converses the subject and
object with a counter-action (e.g., “held by”) generated by the verb parser. This verb parser is
typically an LLM? (e.g., Llama2 [48] and Qwen [1]) or Python Library.

The dual-perspective construction process brings two key advantages: 1) Modeling Context Informa-
tion: Through the attention mechanism in the text encoder of Grounding DINO, the bidirectional
interaction prompt integrates contextual interaction information into object tokens. As shown in
Figure 2(a), the attention mechanism enables the token “man” to absorb relevant interaction semantics,
such as “hold surfboard”, ensuring that the grounded object “man” is correctly aligned with its
interaction context. 2) Enhancing Object Role Awareness: By reversing operation, the object (e.g.,
“surfboard”) of given triplet becomes the syntactic subject of the whole sentence (e.g., “surfboard
held by man”). As the central of the rephrased sentence, the syntactic subject receives heightened
attention, improving its accuracy in localization.

Furthermore, inspired by [31, 17], we adopt a rule-based combination that combines overlapping
subject and object bounding boxes to form triplet supervision by Intersection over Union (IoU) score.

3.2 Interaction-Centric Knowledge Transfer

The interaction-centric knowledge infused during pre-training (§3.1) provides a strong foundation.
Nevertheless, it still faces a mismatch problem during SFT (issue ® in §1). ACC’s interaction-centric
knowledge transfer is designed to ensure that 1) the selection and refinement of object queries are
explicitly guided by interaction potential, and 2) the rich, interaction-focused knowledge from the
pre-trained model is adequately transferred and further enhanced to discriminate between genuine
interactions and non-interacting background. This is achieved through interaction-guided query
selection and interaction-consistent knowledge distillation.

3.2.1 Interaction-Guided Query Selection

To mitigate mismatched object pairs during SFT, interaction-guided query selection instills an
interaction prior into the two-step query generation process to reduce non-interacting candidates.

“Detailed formulations are left in appendix §B.
The generation process of counter-action is in the appendix §C.



Step 1. This step aims to directly identify the most relevant visual tokens likely to participate in object
interactions. Intuitively, the visual features of interacting objects should exhibit strong correlations
with both object and relation semantics. To achieve this, for each visual token v; € V,,, a relevance
score s; is computed by combining its maximum similarity with object and relation class tokens:

8 = (max(viTI))w : (max(viT:))l_w, (1)

where max(v; T/ ) computes the maximum similarity between the visual token v; and all object
class tokens in T, while max(v; T, ) computes the maximum similarity between v; and all relation
class tokens in T,.. The parameter v € [0, 1] balances their contributions. Based on the relevance
scores, the top K query indices, denoted as Zx, are selected by the following procedure:

Tk =Top,({si | i=1,2,...,N,}). )

The visual features and the position embedding [62, 35] corresponding to the selected indices Zx are
used to initialize queries for further decoding operations.

Step I1. Nevertheless, Step I’s individual encoding of object and relation tokens struggles to capture
deeper interaction semantics and distinguishes among objects. Thus, Step II explicitly models
interaction semantics by integrating relational context into the object tokens. Specifically, after the
initial forward pass, the model predicts a set of visual relation triplets. These triplets are decomposed
into interaction pairs (subject, predicate) and (predicate, object), which serve as interaction-
guided prompts. These prompts are encoded via the TE of VLM to get interaction tokens embeddings
T;,. The decomposition process has dual advantages: First, the predicates within prompts guide the
TE’s attention to infuse object tokens with interaction information, enabling the model to capture
contextual dependencies and enhance its understanding of relationships. For instance, the token “man”
can incorporate the semantic meaning of the interaction “riding” to obtain “man ¥ in Figure 2(b).
Second, decomposing triplets into pairs avoids direct interference between object tokens, effectively
preserving their unique characteristics. As illustrated in Figure 2(b), “man ¥ and “horse »&”
are independently processed, preventing unnecessary dependencies across unrelated categories and
maintaining the individual semantics of each object.

For each visual token v;, the interaction relevance score si" is calculated by measuring the maximum
similarity with interaction tokens:

s = max(viT,,). 3)
The query indices set prioritizes the top L tokens with the highest interaction relevance:
Iz":TopL({s::n |i=1,2,...,Ny}). €}

However, relying solely on interaction relevance may fail to identify objects absent from the initially
predicted triplets yet crucial for comprehensive scene understanding. To address this, the object
relevance score s is computed similarly, but using object tokens T',. The remaining K — L query
indices are selected based on object relevance, excluding those already chosen:

Th_ =Topyx_ ({s{|i¢ Iy i=1,2,...,N,}). 5)

The final query indices set combines these two subsets Zyc = Z4" UZ% ;. This two-step strategy
effectively reduces non-interacting candidates and mitigates bipartite graph mismatches. Pseudo-code
detailing this process is in appendix §D for clarity.

3.2.2 Interaction-Consistent Knowledge Distillation

Beyond localization and classifica- Teacher Student Teacher Student
tion objectives, we adopt interaction-
consistent KD to enhance the model’s er<Q Lvrp 4 Ao es
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work is designed as a pseudo-siamese structure of the teacher, initialized with its parameters.

This KD combines visual-concept retention distillation (VRD) and relative-interaction retention
distillation (RRD) to align the student model with the teacher’s semantic space while maintaining
inter-pair relational consistency. The entire loss function contains two complementary objectives:



VRD. The first objective draws from [9] ensures that the student’s edge features remain point-wise
consistent with the teacher’s semantic space for negative samples. The loss is defined as:

1
Lvrp = 3 fles — 6
VRD V] eeN||es er|, (6)

where eg and e; represent student and teacher’s edge features, and N is the set of negative samples.

RRD. While VRD effectively preserves point-wise semantic consistency, it fails to ensure the
relative relationships between triplets, i.e., distinguishing interaction pairs from backgrounds (c.f.
Figure 3(a)). RRD explicitly models inter-pair relativity [2, 37] by aligning the structure similarity of
triplet embeddings between the teacher and student models. The structure similarity matrices for the
teacher and student models, M; and My, are normalized by L2 norm:

g iell g iLell
M’L] _ er eT M’L] _ €g eS (7)
LTI A T S T et L el Ty
ler - ez Il2 lles - e l2
RRD then aligns these similarity matrices by minimizing the Frobenius norm || - || » between them:
1
Lrrp = WHMS - Mr|[3. (®)

Final Objectives: Combine localization and classification losses with above complementary objec-
tives to achieve point-wise semantic alignment and relational consistency:

L= Ereg + »Cgiou + »Cobj + Erel + BI»CVRD + ﬁ2£RRD~ (9)

The weights 57 and 32 control the importance of semantic alignment and relational consistency.

4 Experiments

4.1 Experiment Setup

Datasets. We evaluated ACC on three SGG benchmarks: 1) VG [19] contains annotations for 150
object categories and 50 relation categories across 108,777 images. Following standard setup [55],
70% of the images are used for training, 5,000 for validation, and the remaining for testing. For a fair
comparison, we excluded images overlapping with the pre-training dataset of Grounding DINO [35],
retaining 14,700 test images as in [63]. 2) GQA [16] uses the GQA200 split [12, 45], including
200 object categories and 100 predicate categories. We randomly sampled 70% of the object and
predicate categories as the base, and more details can be found in the appendix §A. 3) PSG [50]
offers 44,967 training, 1,000 test, and 3,000 validation images (sampled from training), with 133
object and 56 predicate categories. We adopted the same base and novel class splitting in [29].

Settings. Following [9], we compared ACC under two settings: 1) OvR-SGG: Evaluates generaliza-
tion to unseen relations while retaining original object categories. Fifteen of 50 relation categories
in VG150 are removed during training, with performance measured on “Base+Novel (Relation)”
and “Novel (Relation)”. 2) OvD+R-SGG: Assesses handling of unseen objects and relations si-
multaneously. Both novel objects and relations are excluded during training, evaluated on “Joint
Base+Novel”, “Novel (Object)”, and “Novel (Relation)”.

Metrics. We conducted experiments under the challenging Scene Graph Detection (SGDET)
protocol [55, 19], which requires detecting objects and identifying relationships between object pairs
without GT object labels or bounding boxes. We reported: 1) Recall@K (R@K): The proportion
of ground-truth triplets correctly predicted within the top-K confident predictions. 2) Mean R@K
(mR@K): The average R@K across all categories.

Implementation Details. Due to space constraints, details are provided in the appendix §A.

4.2 Comparison with State-of-the-Art Methods

We compared ACC with existing state-of-the-art methods, i.e., VS? [63], OvSGTR [9], and
RAHP [36]. The experimental results on the VG dataset [ 9] under both the OVR-SGG and OvD+R-
SGG setups are shown in Table 1 and Table 2, respectively. Notably, ACC consistently outperforms
the latest SOTA methods across all metrics. In the OvR-SGG setup, ACC surpasses the RAHP (Swin-
T) by +1.78% R @100 within the novel relation categories, demonstrating superior generalization



Table 1: Experimental results of OvR-SGG setting on VG [19] test set.

Base+Novel (Relation) Novel (Relation)
Rt Backbone | p@r)  R@50 R@I00 | R@20 R@50 R@100
IMP [55] CVPR’17 - - 12.56 14.65 - 0.00 0.00
MOTIES [61] CVPR’18 - - 15.41 16.96 - 0.00 0.00
VCTREE [47] CVPR’19 - - 15.61 17.26 - 0.00 0.00
TDE [46]  cver20 - - 15.50 17.37 - 0.00 0.00
OpenSGen [ 18] ICMR’25 - - 18.00 20.50 - 15.70 17.90
VS [63]  cver2s - 15.60 17.30 - 0.00 0.00
OvSGTR [9] ECCV’24 Swin-T - 20.46 23.86 - 13.45 16.19
RAHP [36]  aaar2s - 20.50 25.74 - 15.59 19.92
ACC (Ours) 17.49 23.22 27.40 12.90 17.89 21.70
OvSGTR [9] ECCV'24 Swin-B - 22.89 26.65 - 16.39 19.72
ACC (Ours) 18.77 24.81 29.28 14.72 20.04 24.66
Table 2: Experimental results of OvD+R-SGG setting on VG [19] test set.
Joint Base+Novel Novel (Obj) Novel (Rel)
Rt Backbone| p @50 R@350 R@100|R@20 R@50 R@100 [R@20 R@50 R@100
IMP [55] cvere17 - - 0.77 0.94 - 0.00 0.00 - 0.00 0.00
MOTIFS [61] cver1s - - 1.00 1.12 - 0.00 0.00 - 0.00 0.00
VCTREE [47] cvpr'19 - - 1.04 1.17 - 0.00 0.00 - 0.00 0.00
TDE [46] cvpr20 - - 1.00 1.15 - 0.00 0.00 - 0.00 0.00
VS® [63] cver2s - 588 7.20 - 0.00 0.00 - 0.00 0.00
OvSGTR [9] gccviasl|| Swin-T | 10.02 13.50 16.37 | 10.56 1432 1748 | 7.09 9.19 11.18
ACC (Ours) 12.61 1743 21.27 | 1248 17.16 21.10 | 11.38 1590 19.46
OvSGTR [9] Eccviaa Swin-B 12.37 17.14 21.03 | 12.63 17.58 21.70 | 10.56 14.62 18.22
ACC (Ours) 13.50 18.88 23.19 | 1346 18.84 23.29 |12.37 17.50 21.73

and reduced overfitting. With the Swin-B backbone, ACC achieves 29.28% R @ 100, which is higher
than OvSGTR across both base and novel relations, further emphasizing its robustness. In the more
challenging OvD+R-SGG scenario, ACC continues to outperform the competition. Specifically, on
the joint base and novel classes, ACC gains +4.90% and +2.16% R @100 over OvSGTR with the
Swin-T and Swin-B backbones, respectively. These results validate ACC’s superior performance and
robust generalization across both relation and object domains.

4.3 Diagnostic Experiment

To ensure a comprehensive evaluation, we performed a series of ablation studies on the VG dataset [19]
in the challenging OvD+R-SGG scenario. More experimental analyses are left in the appendix.

Knowledge Infusion Part. We analyzed the Table 3: Ablation studies (§4.3) on BIP.

effectiveness of ACC’s bidirectional interaction | Method | Split [R@20 R@50 R@I00]
rompt (BIP) for pseudo-supervision generation Ours| . . 1261 1743 21.27
?§3.1I))ir(1 Talile 37Tt can be seen that BIP leads | wo Bip | 2910 Basewliovel | [Ty 165 o'5g
to consistent improvements across all metrics. Ours| 1 (0b3) 1248 17.16 21.10
Notably, when compared to the configuration [/ BIP 1236 1609 19.65
without BIP, it achieves R@ 100 gains of 1.73% Ours |\ el (zol) 11.38 15.90 19.46
on the joint base and novel classes, 1.45% on w/o BIP 1073 1440 17.83

novel object classes, and 1.63% on novel relation classes, respectively. This demonstrates that BIP
effectively improves performance by considering interaction contexts in supervision generation.

Knowledge Transfer Part. Table 4: Ablation studies (§ 43) on IGQS and ICKD.

We evaluated the efﬁcacy Components|| Joint Base+Novel Novel (Obj) Novel (Rel)
of ACC’s interaction-guided ~1GQS ICKD|[R@20 R@50 R@100R@20 R@50 R@100R@20 R@50 R@100
query selection (IGQS §3.2.1) 10.02 1350 1637 |10.56 1432 1748 ] 7.00 9.19 1118
and interaction-consistent KD | ¥ 11.37 1571 19.37 [11.43 15.80 19.61 | 9.84 13.92 17.38
. v ||11.43 1567 1920 |11.57 15.65 19.32 |10.07 14.00 17.32
(ICKD §3.2.2) in the knowl- | - 0\l 1%e4 16717 1955 1236 1609 19.65 |10.73 14.40 17.83

edge transfer phase. The re-
sults are summarized in Table 4, with the first row representing the baseline OVSGG pipeline with
visual-concept retention distillation from [9]. From this analysis, three key conclusions can be
drawn: First, IGQS refines the query selection process. By prioritizing interacting objects and
minimizing mismatched assignments, IGQS achieves notable improvements, such as 3.00% R@ 100
gains, highlighting its ability to enhance precision by focusing on interacting object pairs. Second,



Table 5: Comparison with pre-training methods. All models are pre-trained on image-caption data and tested
on VG150 [19] test set directly. Our models trained on COCO captions are used as pre-trained models.

\ SGG model [[ Backbone Grounding | R@20 R@50 R@100 |
LSWS [58] CVPR21 - - - 3.28 3.69
MOTIFS [61] CVPR’18 - Lietal [31] 5.02 6.40 7.33
Uniter [8] ECCV20 - SGNLS [64] - 5.80 6.70
Uniter [8] ECCV20 - Lietal [31] 5.42 6.74 7.62
VS®[63]  cvers GLIP-L [27] 5.59 7.30 8.62
OvSGTR [9]  Eccvoa Swin-T Grounding DINO [35] 6.61 8.92 10.90
ACC (Ours) Grounding DINO [35] 7.86 10.81 13.31
OvSGTR [9] ECCV24 Swin-B Grounding DINO [35] 6.88 9.30 11.48
ACC (Ours) Grounding DINO [35] 8.28 11.61 14.33

leveraging interaction-consistent KD with relative-interaction retention distillation ensures relational
consistency during training, resulting in significant performance boosts. It contributes 2.83% R@ 100
gains, improving the model’s ability to handle novel classes effectively. Third, the integration of
two components yields the best overall performance, with 1.80%~6.65% improvements across all
evaluation metrics. However, the improvement is less pronounced than expected, since each strategy
prioritizes interacting objects, which may lead to diminishing returns by progressively reducing
non-interacting objects. Despite this, the combined results still demonstrates enhanced relational
understanding and serve as a valuable tool for improving performance in complex scenarios.

Supervision Analysis. We investigated ACC’s original
impact in the pre-training process (c.f. Table 5).
As seen, models pre-trained on COCO [7] cap-
tions with ACC variants consistently outperform
others, achieving 13.31% R@100 with Swin-
T and 14.22% R@100 with Swin-B. These re-
sults demonstrate the effectiveness of ACC in

the VLM pre-training process.

In addition, we visualized the object detection
results from ACC and the original methods that
solely use object categories for detection. As dis-
played in Figure 2, the original method produces
redundant objects, complicating the identifica-
tion of subject-object interactions. For instance,
given the “(people, ride, bike)” triplet, the baseline detects multiple instances of “people” and
“bike”, obscuring the interaction. In contrast, ACC leverages bidirectional interaction prompts and
attention mechanisms to accurately localize the interaction-relevant objects. A similar enhancement
is observed in the “(bikes, on, boat)” triplet, where ACC focuses on interaction-relevant entities.

Figure 4: Pseudo supervision generation in ACC.

Query Visualization. To demonstrate the ef-
fectiveness of IGQS, we visualized the top-50
selected queries in Figure 5. As seen, the orig-
inal approach makes no distinction between §
instances within the same category, such as
“man” or “zebra”, resulting in both interact-
ing and non-interacting instances receiving a
similar number of queries. This indiscriminate
query generation increases the likelihood of in-
correct matches during bipartite graph matching,
as irrelevant regions compete with interaction-
relevant instances. Conversely, IGQS prioritizes
interacting queries (“man holding” or “zebra lay-
ing on” in Figure 5), increasing discrimination
among objects with the same categories.

original holding-guided

Figure 5: Interaction-guided query selection.

5 Conclusion

This work presented ACC, an interaction-centric OVSGG framework. ACC alleviates current
paradigms’ failure to distinguish interacting from non-interacting instances by adopting interaction-



centric principles in two key phases. Knowledge infusion uses a bidirectional interaction prompt
for robust pseudo-supervision, enhancing interaction understanding; knowledge transfer combines
interaction-guided query selection with interaction-consistent knowledge distillation to mitigate
mismatches and irrelevant object interference. ACC shows significant improvements on three main
benchmarks. We anticipate that ACC will not only set new standard for OVSGG but also inspire
further exploration of interaction-driven strategies in VLMs for more accurate scene understanding.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification:We carefully described our contributions in the abstract and introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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for future work.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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only tested on a few datasets or with a few runs. In general, empirical results often
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
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* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.
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address problems of privacy and fairness.
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tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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a complete (and correct) proof?
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provided details about the methodology and implementation in the main
paper and appendix. The code will be publicly available.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
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Justification: The code will be publicly available in the future.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We present the experimental setup and details in the main paper and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:We run each experiment three times and report the average and standard
deviation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification:We introduce the used computer resources in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We carefully reviewed the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification:In the appendix, we discussed our limitations, societal impact, and directions
for future work.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification:The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:We cited related papers.
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* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
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or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
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Answer: [Yes]
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Summary of the Appendix

To facilitate a deeper understanding of the main paper, we present supplementary material with
additional details, organized as follows:

* §A elaborates on the implementation details.

* §B introduces the formulations of training objectives.

* §C introduces the counter-action generation prompt.

* §D provides the pseudo-code for interaction-guided query selection.

* §E offers additional experimental results.

 §F presents further qualitative results.

* §G discusses our limitations, broader impact, and directions of future work.

A Implementation Details

Pre-training. Our models are trained with a batch size of 3, utilizing four/eight RTX 3090 GPUs
for computation. During the supervision generation phase (c.f. §3.1), we employ Llama2-7B [48] to
generate counter-actions based on the prompts described in §C. A pseudo-triplet class is annotated
when the confidence of the grounding object class exceeds 0.25, and the intersection over union
(IoU) between the subject and object is greater than 0.0. During pre-training, we initialize our model
using the pre-trained Grounding DINO checkpoints provided by [9], keeping the visual backbone
(Swin-T or Swin-B) and the text encoder (BERT-base [ ! 1]) frozen. The remaining modules, such
as the relation-aware embedding, are initialized randomly. In line with [9], we select 100 object
detections per image for pairwise relation recognition during training.

Supervised Fine-Tuning. The supervised fine-tuning process is conducted using the same com-
putational resources as pre-training. For interaction-guided query selection (c.f. §3.2.1), we adopt
the settings from [35, 9], where the total number of selected visual tokens K is set to 900, and
the top-ranked interaction tokens L is fixed at 200. The models after the pre-training process are
leveraged as the teacher model and serve as the initialization for the student model. The weights [3;
and S5 of the loss function Ly zrp and Lrrp are set to 0.1 and 0.5, respectively, to balance different
optimization objectives.

Dataset Splits. All entity and relation categories for the GQA dataset [16] are listed in Table S1.
For the VG dataset [19], we adopted the splitting protocol from [9]. As for the PSG dataset [56], we
followed the splits utilized in [29].

B Training Objectives

As mentioned in §3, the model is guided by the bounding box regression loss, entity classification
loss, and relation classification loss. This section details their corresponding formulations.

Bounding Box Regression Loss: The primary objective of object localization is to accurately predict
the positions and sizes of objects within an image. To achieve this, the model utilizes a combination
of L1 loss (£;.cg) and GloU loss (Lgi0u) [40], ensuring both precise positioning of the bounding
boxes and effective handling of overlaps. The corresponding loss functions are defined as:
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where b; and b; denote the predicted bounding box and GT bounding box, respectively. N is
the number of the object’s bounding boxes. A;,:., represents the area of intersection between the
predicted and ground truth bounding boxes, A,,;0r, is the union area of the bounding boxes, and
A nin 18 the area of the smallest enclosing box covering both.

Entity Classification Loss: To address the class imbalance in the object classification task, the
model employs Focal Loss (Lp;) [32], which emphasizes difficult-to-classify and underrepresented



Table S1: The categories spitting of GQA [16].

| Split || Relation Categories \ Object Categories \

parked on, growing on, standing in front of,
wearing, standing on, with, looking at, under,
carrying, near, above, covered in, behind, at,
using, hanging from, sitting on, flying in,
watching, covering, mounted on, in front of,
lying on, standing next to, grazing in, holding,
beside, on the back of, catching, running on,
swimming in, playing on, on top of, floating in,
talking on, on the bottom of, standing behind,
leaning against, covered by, facing, filled with,
attached to, sitting next to, next to, worn on, in,
on the side of, driving, close to, surrounded by,
lying in, hitting, pulling, swinging, touching,
eating, throwing, skiing on, driving on, hang on,
riding, playing in, crossing, walking with, on,
growing in, sitting in, cutting, feeding, leaning on|

mountain, cow, people, face, number, pizza, tire, player, pillow,
screen, truck, kite, trunk, sock, neck, glove, coat, letter, roof,
windshield, desk, paw, leaf, flower, plant, counter, paper, eye,
book, branch, lamp, cup, phone, toilet, skateboard, logo, laptop,
vehicle, motorcycle, hill, curtain, nose, sheep, bowl, wire, bear,
banana, mouth, drawer, shelf, cap, animal, bottle, box, airplane,
finger, room, flag, seat, tower, wing, fruit, rock, house, pot, bird,
umbrella, surfboard, lady, tie, fork, vase, bag, orange, clock,
sidewalk, food, sink, cabinet, beach, boat, basket, helmet, child,
racket, post, guy, towel, arm, napkin, bush, bench, person, cone,
apple, jacket, fur, air, sign, bus, wrist, frame, floor, dress, street,
shoe, ball, girl, ear, boy, broccoli, fence, uniform, hair, sneakers,
blanket, zebra, train, camera, sticker, license plate, lid, tomato,
pants, giraffe, watch, wall, leg, bed, t-shirt, shorts, horse, spots,
arrow, field, bread, bicycle, knife, couch, ceiling

Base

on the front of, reaching for, flying, of,
parked along, talking to, sitting at, standing by
hanging on, covered with, standing near,
full of, surrounding, walking in, reflected in,
walking down, walking on, contain, below,
printed on, driving down, waiting for,
resting on, playing with, standing in,
grazing on, by, around, pulled by, beneath

ocean, car, picture, hand, snow, horn, woman, sweater, container,
paint, feet, clouds, foot, dirt, faucet, chair, sand, tail, stone, cat,
tag, traffic light, keyboard, tree, leaves, elephant, ground, glass,
frisbee, trash can, word, man, jeans, door, building, sky, table,
wheel, pole, collar, hat, cheese, mane, shirt, dog, cord, cake,
donut,plate, backpack, mirror, street light, skis, window, grass,
water, bike, road, head, cell phone

Novel

categories. Focal Loss modifies the standard cross-entropy loss by down-weighting easy examples,
focusing the model’s attention on challenging ones. The formulation is as follows:

Lopj = —a(l —ye)" log(ye), an

where y. denotes the predicted probability of the true object class ¢, « is a balancing factor, and ~y is
a focusing parameter that adjusts the emphasis on hard examples.

Relation Classification Loss: The model’s objective is to predict the relationships between objects,
aligning predicted relation scores with ground-truth annotations. This is achieved using BCE loss
(Lre1), which measures the discrepancy between predicted and true relationship probabilities. The
BCE loss function is expressed as:

Nyel

> [yij log(@iy) + (1 — yi5) log(1 — §i5)], (12)

i=1

Erel = -
Nrel

where y;; denotes the GT relation label between the i-th object and j-th object, §J;; is the predicted
relation probability.

C Counter-action Generation Prompt

In this section, we present the prompt
used for counter-action generation Question: Given the action ‘ride’, please generate its
(c.f. §3.1) in Figure S1 with LLMs, corresponding counter-action.

i.e., Llama2 [48]. The prompt is struc- | Answer: ‘be ridden by’.

tured into two key components: the Question: ‘Given the actipn ‘eat’, please generate its
example and the question. Example: | €°TSP O_nfhng counter-action.

The example, such as the instance of SRR ERiEL B

“ride”, serves as a reference for the Question: Given the action ‘{relation}’, please gener-
model to produce contextually rele- ate its corresponding counter-action.

vant outputs in an in-context learning AnSwer:

framework [3, 34]. This part of the
prompt is also generated by the LLM,
providing a model-driven demonstra-
tion of the expected output format. Question: The question, i.e. “please generate...”, prompts the
model to produce a corresponding counter-action or a related output. This structure ensures that the

Figure S1: Counter-action generation prompt.



Algorithm S1 Pseudo-code for Step I in Interaction-Guided Query Selection.

X_v: visual features of all tokens.
X_o: object class tokens.

X_r: relation class tokens.

gamma: balancing parameter.

def Stepl_QuerySelection(X_v, X_o, X_r, gamma):

scores = []

for i in range(len(X_v)):
# Calculate the relevance score for each visual token.
sim_o = max(X_v[i] @ X_o.T) # max similarity with object class tokens
sim_r max(X_v[i] @ X_r.T) # max similarity with relation class tokens
score (sim_o ** gamma) * (sim_r ** (1 - gamma)) # Eq. (1)
scores.append (score)

Select top K visual tokens based on relevance score.

#
I_K = top_K(scores, K)

return I_K

Algorithm S2 Pseudo-code for Step II in Interaction-Guided Query Selection.

X_v: visual features of all tokens.
X_in: interaction tokens from text encoder.
X_o: object class tokens.

def Step2_QuerySelection(X_v, X_in, X_o):
interaction_scores = []
for i in range(len(X_v)):
# Compute interaction relevance score based on interaction tokens.
sim_in = max(X_v[i] @ X_in.T) # max similarity with interaction tokens
interaction_scores.append(sim_in)

# Select top L visual tokens based on interaction relevance score.
I_L_in = top_L(interaction_scores, L)

# Compute object relevance for remaining tokens.
object_scores = []
for i in range(len(X_v)):
if i not in I_L_in:
sim_o = max(X_v[i] @ X_o.T) # max similarity with object class tokens
object_scores.append(sim_o)

# Select top (K-L) tokens based on object relevance.
I_K_L_o = top_K_minus_L(object_scores, K - L, I_L_in)

# Final query set is the union of both sets.
IK=1I1Lin+ I KL o

return I_K

model can generate responses specific to the action at hand, supporting more relevant and consistent
counter-action generation.

D Pseudo Code

To make the interaction-guided query selection (§3.2.1) process easier to understand, we provide
pseudo-code for Step I and Step II in Algorithm S1 and Algorithm S2, respectively.

E More Experimental Results

E.1 Comparison with State-of-the-Arts on GQA dataset

In Table S2, we compared our ACC with the existing SOTA method (i.e., OvSGTR [9]) on the
GQA [16] dataset under the more challenging OvD+R-SGG setting. The backbones are uniformly
set to Swin-T. Notably, ACC consistently outperforms OvSGTR across all metrics, demonstrating the
universality and effectiveness of our approach.



Table S2: Experimental results of OvD+R-SGG setting on GQA [16] test set.

Joint Base+Novel Novel (Obj) Novel (Rel)
R@20 R@50 R@100|R@20 R@50 R@100 R@20 R@50 R@100

OvVSGTR [9] Eccvos|| 11.21 15.80 19.14 | 1032 1492 18.76 | 2.59 521  7.40
ACC (Ours) 12.30 16.88 20.63 | 11.51 16.16 20.57 | 341 6.60 9.80

Method

Table S3: Experimental results of OvR-SGG setting on PSG [56] test set.

Method Joint Base+Novel Novel (Rel)
R@20 R@50 R@100 | R@20 R@50 R@100

SGTR [28]  cver22 - 14.2 18.2 - - -
PGSG [29]  cver2a - 18.0 20.2 - - .
OVSGTR [9] Ecevas || 15.14  17.76 19.50 5.32 6.93 8.08
ACC (Ours) 16.69 20.01 21.71 6.78 8.78 9.70

Table S4: Extra metrics of OvD+R-SGG setting on VG150 [19] test set.

Base (Obj) Base (Rel) Novel (Obj) Novel (Rel)
R@20R@50 R@100R@20 R@50 R@100\mR@20 mR@50 mR @100/ mR @20 mR @50 mR @ 100

OvSGTR [9] || 8.78 11.95 14.79 |12.07 16.47 20.09 | 1.69 2.44 3.06 0.82 1.13 1.47
ACC (Ours) |[11.66 16.46 20.35 |12.20 16.67 20.57 | 1.93 2.84 3.61 1.64 2.59 3.38

Method

E.2 Comparison with State-of-the-Arts on PSG dataset

Given that the PSG dataset split proposed by [29] exclusively addresses novel relation categories, our
evaluation consequently focused on the OVD-R-SGG setting. As detailed in Table S3, when compared
with other prominent state-of-the-art methods (e.g., SGTR [28], PGSG [29], and OvSGTR [9]), our
ACC framework also demonstrates superior performance across all reported metrics.

E.3 Evaluation with More Metrics

We reported both recall of base classes and mean Recall (m@R) in S4. It can be seen that our ACC
outperforms the previous SOTA method (i.e., OvSGTR [9]) in both metrics. This demonstrates that
our approach provides a more comprehensive and powerful generalization capability, enhancing
performance across the board, not just for unseen classes.

E.4 Ablation Study on Interaction-Centric Knowledge Infusion

Effectiveness of bidirectional Table S5: Ablation study on the verb parser in counter-action generation.

interaction prompt. To investi- N o % Joint Base+Novel

gate the bidirectional interaction etho ero Farser “¢ R@20 R@50 R@100
prompt’s sensitivity to the choice  [ACC (Ours) Llama2 7B | 13.50 18.88 23.19
of verb parser for counter-action ACC (Ours) Qwen2.5 0.5B| 13.64 18.99 23.43
generation’ we replaced the de- ACC (Ours) Pattern (Python Lib) - 13.36 18.56 22.64

fault Llama2 parser with two alternatives: a smaller Large Language Model (LLM), Qwen2.5-
0.5B [1], and the Pattern (a Python library) under OvD+R-SGG setting on VG test set (Swin-B as
backbone). As shown in Table S5, ACC sustains high performance even when utilizing a smaller LLM
or a non-LLM parser for this task. This demonstrates the robustness of our bidirectional interaction
prompt in generating effective pseudo-supervision across various verb parsing mechanisms.

E.5 Ablation Study on Interaction-Centric Knowledge Transfer

Effectiveness of query selection. We per- Table S6: Ablation on two-step query selection in IGQS on
formed an ablation study of the two-step OVD+R-SGG setting of VG150 [19] test set.

query selection in IGQS (c.f. §3.2.1), as 1GQS Joint Base+Novel
shown in Table S6. The general end-to-end Stepl  Stepll | R@20 R@50 R@100
OVSGG pipeline with visual-concept reten- 10.02 13.50 16.37
tion distillation as the baseline. The results v 11.30 1571 19.16
demonstrate that using a single step also v 1132 1570 19.29
yields performance improvements over the 4 4 11.37 1571 19.37

baseline, with the best performance achieved by employing both steps simultaneously.



Table S7: Experimental results of HICO-DET [5] dataset under the OvR-SGG setting.

Method Joint Base+Novel Novel (Rel)
R@20 R@50 R@100 | R@20 R@50 R@100
OVSGTR [9]  Eccv4 34.62 37.39 39.04 2294  28.48 31.84
ACC (Ours) 3574 38.58  40.19 | 24.44 30.77  34.38
Table S8: Inference costs on the VG150 [19] test set.

\ Method || Training costs (min) | Inference costs (s/I) |
OVSGTR [9]  Eccvi4 68 0.3871220016479492
ACC 71 0.3896771125793457
ACC w/ Step 11 94 0.6402182579040527

Parameter B1 Analysis Parameter B2 Analysis

Hyperparameters in ICKD. We T < o < o
conducted an ablation study on B B N ] B P o
the hyperparameters (3, and (32) v Tommm- <

Recall (%)
Recall (%)

in the ICKD (visual-concept re-
tention distillation and relative-
interaction retention distillation). u
Results in Figure S2 show that o
increasing (3, (e.g., raising VRD
weight) decreases overall perfor-
mance, consistent with results
in [9]. RRD demonstrates robustness for different hyperparameters. The best performance can
be achieved with 5= 0.1 and S5 = 0.5, respectively.

03

B1 B2
Figure S2: Ablation on 31 and 32 in VRD and RRD loss function under
OvD+R-SGGQG setting on VG test set.

E.6 Comparison on Human-Object Interaction Detection Tasks

Human-Object Interaction (HOI) detection, particularly on benchmarks like HICO-DET [5], is
primarily a detection task over a set of specific human-centric interactions (i.e., <action, object>
pairs). In contrast, SGG addresses a more general and compositional challenge: generating <subject,
action, object> triplets between any pair of objects. To empirically validate the effectiveness of
the proposed ACC, we evaluated ACC and OvSGTR [9] on the HICO-DET benchmark. As shown
in Table S7, ACC consistently outperforms OvSGTR, achieving 2.54% absolute improvement in
R@100 of novel classes. This result is significant: it demonstrates that our model’s core principles
are so robust. They excel not only on the general OVSGG task they were designed for, but also on
the specialized HOI task.

E.7 Computational Overhead

We conducted a time analysis on VG [19], with training on the entire dataset and testing on 20 images.
We report the mean value in Table S8 of our ACC (w/o and with Step II in IGQS). We would like
to claim that: 1) Our Step I in IGQS just introduces minor computational complexity in elementary
matrix operations (c.f., Eq. 1). 1) Due to the requirement of forward prediction for self-enhancement,
Step II will induce extra computational overhead, but the performance gain brought by Step II is
optional.

F More Qualitative Comparison Results

F.1 Grounded Entity Visualization

To evaluate the effectiveness of the proposed bidirectional interaction prompt (§3.1), we visualized
the entity grounding results for various types of prompts during the pre-training process in Figure S3:

Object Prompt. Prior methods [9] often rely on concatenating the subject and object entities
extracted from a scene graph parser, such as “man. knife”.

Interaction Prompt. It incorporates relation triplets into a phrase, e.g., “man hold knife.”
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Figure S3: Entity grounding results of different prompts.
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Figure S4: Qualitative Results of OvSGTR and ACC on the SGDet task and VG dataset [19]. The dashed line
represents the predicted novel categories, and the red represents the unreasonable predictions.

Bidirectional Interaction Prompt. This proposed prompt further integrates relation triplets with their
corresponding counter-action, forming phrases like “man hold knife. knife held by man.”.

From the visualization results, the following observations can be made: 1) Directly adopting object
prompts tends to generate redundant bounding box candidates (e.g., multiple instances of “man”
and “kid” in Figure S3). This redundancy complicates the identification of interacting object
pairs. Additionally, some interacting object boxes are missing. For example, the imperceptibly held
“knife” is not detected, while the non-interacting “knife” is identified. These limitations result in
mismatched relational pairs, which ultimately mislead the subsequent training process. 2) While
incorporating interaction prompts significantly reduces the number of redundant object boxes, it often
over-focuses on the subject (e.g., detecting only the “man” subject bounding box), leading to the
omission of critical object boxes. 3) By leveraging bidirectional interaction prompts, both the subject
and object bounding boxes are accurately detected under the given relation triplet. This approach not
only resolves the redundancy issue but also ensures the inclusion of subtle yet crucial interactions
(e.g., correctly identifying the “knife” being held). Consequently, it provides a more comprehensive
and precise grounding for subsequent training stages.

F.2 Mismatched Examples Visualization.

To intuitively illustrate the chal-
lenges stemming from current
paradigms, Figure S5 visualizes
representative examples of mis-
matched relational triplets. As
depicted, a common error in-
volves triplets such as (man,
riding, horse) being incor- riding
rectly assigned. This type of mis-

7 riding
2: man O——— @ O0: horse 4: man @— 0 9: horse

Figure S5: Mismatched relation triplets examples.



assignment frequently occurs be-

cause models lacking explicit interaction modeling struggle to distinguish the specific “man” instance
actively engaged in the “riding” interaction from other, non-interacting “man” instances that may be
present in the scene. Such visualizations highlight the critical need for interaction-centric approaches
to achieve more precise relation recognition.

F.3 Scene Graph Visualization

Figure S4 displays the scene graph predictions generated by OvSGTR and ACC on the Swin-T
backbone using the VG dataset. Apparently, the scene graph produced by OvSGTR includes several
incorrect and redundant relationships, such as “(number, on, wave)” and “(dog, on, leg)”. Instead,
our ACC eliminates such unreasonable predictions and can generate easily missing the relationship
triplet, such as “(wave, behind, dog)”. Even interactive relationships, like “(dog, has, head)” and
“(head, of, dog)”, are accurately captured, showcasing ACC’s enhanced capacity to reason over
subject-object interactions and identify precise and semantically coherent relationships in complex
scenes.

F.4 Failure Cases Analysis

We analyzed the examples in Fig-
ure S6 where ACC misidentifies non-
interacting object pairs, and find that:
1) For Interaction-Centric Knowledge
Infusion, it is difficult to correctly
match small objects (e.g., hat in
background) and their related ob-
jects through bidirectional interaction
prompts. 2) For Interaction-Centric
Knowledge Transfer, when multiple subject-object pairs with the same relational triplet categories
(e.g., (person, riding, horse)) appear in the same image, the model might mistakenly match the
subject in one triplet to the object in another triplet.

man wear hat. hat worn by man. person riding horse

Figure S6: Failure cases.

G Discussion

Limitation Analysis. Our approach employs a knowledge infusion and transfer framework §2
for open-vocabulary scene graph generation. While this framework reduces annotation costs and
effectively leverages transferable representations from pre-trained vision-language models, it also
inherits inductive biases from the teacher model. Like two sides of a coin, any biases in the vision-
language model toward specific feature traits or classes may propagate to our model. Besides, our
method can alleviate mismatched relational pairs, but cannot avoid all mismatches.

Potential Broader Impact. This paper presents work aimed at advancing the field of open vocabulary
scene graph generation. By introducing interaction-aware mechanisms, our approach enhances the
model’s ability to recognize novel objects and relationships, improving the robustness and accuracy of
scene understanding in real-world applications such as robotics, autonomous systems, and augmented
reality. While our work has the potential to drive innovation in these fields, ethical considerations
must be taken into account, particularly regarding the fairness and representativeness of the training
data used. Ensuring that our models are inclusive and minimize bias will be crucial to preventing
harmful misinterpretations or exclusions in practical applications.

Future Work. Our current algorithm is tailored for open-vocabulary scene graph generation, adopting
a dual-encoder-single-decoder architecture as proposed in [9, 36]. It prioritizes base-novel generaliza-
tion over real-time performance, which may not fully meet the timeliness requirements of real-world
applications. In future work, we aim to enhance the computational efficiency of our approach to
better address these practical demands.
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