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Abstract

Differentially private (stochastic) gradient descent is the workhorse of DP private
machine learning in both the convex and non-convex settings. Without privacy
constraints, second-order methods, like Newton’s method, converge faster than
first-order methods like gradient descent. In this work, we investigate the prospect
of using the second-order information from the loss function to accelerate DP
convex optimization. We first develop a private variant of the regularized cubic
Newton method of Nesterov and Polyak [NP06], and show that for the class
of strongly convex loss functions, our algorithm has quadratic convergence and
achieves the optimal excess loss. We then design a practical second-order DP
algorithm for the unconstrained logistic regression problem. We theoretically and
empirically study the performance of our algorithm. Empirical results show our
algorithm consistently achieves the best excess loss compared to other baselines
and is 10-40× faster than DP-GD/DP-SGD for challenging datasets.

1 Introduction

Many machine learning tasks reduce to a convex optimization problem. More precisely, given a
dataset Sn = (z1, . . . , zn) ∈ Zn, a closed, convex setW ⊆ Rd, and a loss function f :W×Z → R
such that, for every z ∈ Z , f(w, z) is a convex function inw, our goal is to compute an approximation
to arg minw∈W

(
`(w, Sn) , 1

n

∑
i∈[n] f(w, zi)

)
. In this paper, we are interested in the problem

of designing optimization algorithms in the scenario that the dataset Sn contains private information.
Differential privacy (DP) [DMNS06] is a formal standard for privacy-preserving data analysis that
provides a framework for ensuring that the output of an analysis on the data does not leak this
private information. This problem is known as private convex optimization: Design an algorithm
A : Zn →W that is both DP and ensures low excess loss , `(A(Sn), Sn)−minw∈W `(w, Sn).

The predominant algorithm for private convex optimization is DP (stochastic) gradient descent
(DP-GD/DP-SGD). This is a first-order iterative method. I.e., we start with an initial value w0

and iteratively update it using the gradient of the loss ∇wt`(wt, Sn) following the update rule
wt+1 =wt−η ·(∇wt`(wt,Sn)+ξt), where η > 0 is a constant and ξt is Gaussian noise to ensure
privacy. The number of iterations T also determines the amount of noise at each iteration, i.e., the scale
of ξt is proportional to

√
T due to the composition of DP. Note that we assume ‖∇wt

`(wt, Sn)‖ ≤ 1.

One of the major drawbacks of DP-(S)GD is slow convergence. The choice of (η, T ) exhibits a
tradeoff in terms of the excess loss: if η · T is small, the algorithm cannot reach the optimal solution;
on the other hand, the magnitude of noise at each iteration is η ·

√
T , which cannot be too large.

Therefore, to maximize η · T and minimize η ·
√
T , implementations of DP-(S)GD err on the side of
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large T and small η, which results in a long, slow path to convergence. This fact has been shown
theoretically as well: for the class of β-smooth convex functions, the optimal instantiations of DP-GD
use a step size of max{1/√n,

√
d/εn} [BFTG19] while in the non-private setting the stepsize for

GD is set to 1/β. Smaller step size requires more steps (i.e. more iterations) to converge. This
slowness is exacerbated by the facts that (1) DP-SGD requires large batch sizes for good performance
[PHKX+23] and (2) the hyperparameter tuning of DP-(S)GD, and generally DP algorithms, is a
challenging task [PS22]. Can we design a DP optimization algorithm which accelerates DP-(S)GD
by choosing the step size dynamically based on the local geometry of the loss function?

We draw inspiration from the non-private optimization literature: To address the slow convergence of
GD and of first-order methods in general, a class of algorithms based on preconditioning the gradient
using second-order information has been developed [Nes98; NW99]. This class of algorithms is
based on successively minimizing a quadratic approximation of the function, i.e., wt+1 = wt + ∆t

where ∆t = arg min∆{`(wt, Sn) + 〈∇`(wt, Sn),∆〉 + 1
2 〈Ht ·∆,∆〉} = − (Ht)

−1∇`(wt, Sn).
Here, Ht is a scaling matrix which provides curvature information about the loss `(·, Sn) at wt.
For instance, Newton’s method uses the Hessian Ht = ∇2`(wt, Sn). Second-order algorithms
significantly improve over the convergence speed of GD, and key to their success is that at each step
they automatically tune the stepsize along each dimension based on the local curvature.

In this paper, our goal is to accelerate DP convex optimization. In particular, the current paper
revolves around the following questions: Can the second-order information accelerate private convex
optimization while achieving optimal excess error? What is the best way to privatize second-order
information, e.g., the Hessian matrix? How does the achievable privacy-utility-runtime tradeoff
compare with first-order methods such as DP-GD? We show that second-order information can
accelerate DP optimization while achieving excess loss that matches or improves on DP-GD. Our
main contributions are both theoretical and empirical:
1.1 Provably Optimal Algorithm for Strongly Convex Functions

Newton’s method is a second-order optimization technique that is well-known for its rapid con-
vergence for strongly convex and smooth functions in non-private optimization. Specifically, to
achieve an excess loss of α, the method only requires O(log log(1/α)) iterations, which is provably
faster than the convergence rate of any first-order method. One natural question is whether it is
possible to design a second-order DP convex optimization algorithm that can achieve the optimal
minmax excess error erropt in O(log log(1/erropt)) iterations? We provide an affirmative answer to
this question in Section 4 by designing a second-order DP algorithm based on the cubic regularized
Newton’s method of Nesterov and Polyak [NP06]. At each step t, we compute a cubic upper bound
`(w+∆,Sn)≤`(w, Sn)+〈∇w`(w, Sn),∆〉+ 1

2

〈
∇2
w`(w, Sn)·∆,∆

〉
+O
(
‖∆‖3

)
. We can minimize

this cubic upper bound using any DP convex optimization subroutine; the minimizer becomes the
next iterate wt+1. Since the cubic is a universal upper bound, our algorithm converges globally
1.2 Fast Practical Algorithms for DP Logistic Regression

DP logistic regression is a popular approach for private classification, with DP-GD/DP-SGD being
the predominant class of algorithms for this task. As we numerically show, DP-GD/DP-SGD exhibit
slow convergence for this task (See Figure 1). In Section 5, we develop a practical algorithm that
injects carefully designed noise into Newton’s update rule as follows:

wt+1 =wt−Ψ
(
∇2
wt̀

(wt,Sn)
)−1·(∇wt̀

(wt,Sn)+ξt,1)+ξt,2. (1)
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Figure 1: Excess loss versus runtime of
DP-GD & our algorithms.

In particular, we inject noise twice: ξt,1 privatizes the
gradient and ξt,2 privatizes the direction. The function Ψ
modifies the Hessian to ensure that the eigenvalues are not
too small; this is essential for bounding the sensitivity and,
hence, the scale of ξt,2. We consider two types of modifica-
tion based on eigenvalue clipping and eigenvalue adding.
For eigenvalue clipping, Ψ(∇2

wt̀
(wt,Sn)) replaces the

eigenvalues λi of ∇2
wt̀

(wt,Sn) with max{λi, λ0}, where
λ0 > 0 is a carefully chosen constant. For eigenvalue
adding, Ψ(∇2

wt̀
(wt,Sn)) = ∇2

wt̀
(wt,Sn) + λ0I . Using

Ψ we can control the sensitivity and still have fast conver-
gence, since important curvature information is generally
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contained in the larger eigenvalues/vectors of the Hessian. We prove the local convergence of the
update rule (1) in Section 5.3 and perform a thorough empirical evaluation Section 6. We demonstrate
that our algorithm outperforms existing baselines on a variety of benchmarks.

Ensuring Global Convergence. One limitation of the update rule in Equation (1) is it does not
converge globally (even without noise added for DP). That is, if the initial point w0 is too far from
the optimal solution, then the iterates may diverge. To address this problem, we propose a variant of
Newton’s update rule where we replace the Hessian with a different form of second-order information
which gives a Quadratic Upperbound (QU) on the logistic loss. This is guaranteed to converge
globally, like the cubic Newton approach. And we show numerically that this algorithm converges
almost as fast as the regular Newton’s method in the private setting. Figure 1 shows the convergence
speed of our algorithms and DP-GD in terms of real wall time for the task of logistic regression
on the Covertype dataset for (ε, δ) = (1, (num. samples)−2)-DP. Despite DP-GD having a lower
per-iteration cost, our algorithm is 30× faster than DP-GD and achieves better excess loss.

Stochastic Minibatch Variant. We also show that our algorithms naturally extend to the minibatch
setting where gradient and second-order information are computed on a subset of samples. We
numerically compare it with DP-SGD and show that it has faster convergence.

2 Related Work

DP optimization is a well-studied topic [e.g., SCS13; MRTZ17; ACGM+16; STU17; WLKC+17;
INST+19; STT20; SSTT21; GTU22; GLL22; BFTG19; BST14]. Most similar to our work, Avella-
Medina, Bradshaw, and Loh [ABL21] consider second-order methods for DP convex optimization.
We provide a detailed comparison between our results and theirs in Remark 4.5 and Section 6 showing
that our algorithms relax restrictive assumptions and provide better excess error for logistic regression.

There are numerous non-private second-order optimization methods in the literature. The choice of
method depends primarily on the values of n and d. When n is large, several works consider various
sampling techniques for constructing second-order information, see [RM19; XYRRM16; Erd15;
EM15]. When d is large, various methods are proposed in the literature for efficient approximation of
the Hessian matrix, see [ABH17; Erd15; EM15; XYRRM16; GKLR19]. There is also a family of
algorithms based on the estimation of the curvature from the change in gradients. These algorithms
are generally known as quasi-Newton methods stemming from the seminal BFGS algorithm [JM23].

3 Preliminaries

Let d ∈ N. For a vector x ∈ Rd, ‖x‖ denotes the `2 norm of x. Let n,m ∈ N. For a matrix
A ∈ Rn×m, ‖A‖ = supx∈Rm:‖x‖≤1 ‖Ax‖ denotes the operator norm, and ‖A‖F ,

√
trace(AT ·A)

denotes the Frobenius norm of A where trace denotes the trace operator. Id ∈ Rd×d denotes
the identity matrix. 〈·, ·〉 denotes the standard inner product in Rd. For a convex and closed
subset W ⊆ Rd, let ΠW : Rd → W be the Euclidean projection operator, given by ΠW(x) =
arg miny∈W ‖y − x‖2. For a (measurable) space R, M1(R) denotes the set of all probability
measures onR. Note that the statements in the paper about random variables hold almost surely. We
will skip such declarations to aid readability. Let Z be the data and letW ⊆ Rd be the parameter
space. Let f : W × Z → R be a loss function. Throughout the paper, we assume f is doubly
continuous, a convex function in w, andW is a closed and convex set. We say (1) f is L0-Lipschitz
iff there exists L0 ∈ R such that ∀z ∈ Z , ∀w, v ∈ W : |f(w, z) − f(v, z)| ≤ L0 ‖w − v‖, (2) f
is L1-smooth iff there exists L1 ∈ R such that ∀z ∈ Z , ∀w, v ∈ W : ‖∇f(w, z)−∇f(v, z)‖ ≤
L1 ‖w − v‖, (3) f has a L2-Lipschitz Hessian iff there exists L2 ∈ R such that ∀z ∈ Z , ∀w, v ∈ W :∥∥∇2f(w, z)−∇2f(v, z)

∥∥ ≤ L2 ‖w − v‖, (4) f is µ-strongly convex iff for all w, v ∈ W and z ∈ Z
we have f(v, z) ≥ f(w, z) + 〈∇f(w, z), v − w〉+ µ

2 ‖v − w‖
2.

3.1 Zero-Concentrated DP

For our privacy analysis, we use concentrated differential privacy [DR16; BS16], as it provides a
simpler composition theorem – the privacy parameter ρ adds up when we compose.
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Definition 3.1 ([BS16, Def. 1.1]). A randomized mechanism A : Zn → M1(R) is ρ-zCDP,
iff, for every neighbouring dataset (i.e., addition or removal) Sn ∈ Zn and S′n ∈ Zn, and for
every α ∈ (1,∞), it holds Dα(A(Sn)‖A(S′n)) ≤ ρα, where Dα(An(Sn)‖An(S′n)) is the α-Renyi
divergence between An(Sn) and An(S′n).

We should think of ρ ≈ ε2: to attain (ε, δ)-DP, it suffices to set ρ = ε2

4 log(1/δ)+4ε [BS16, Lem. 3.5].

Lemma 3.2 ([BS16, Prop. 1.3]). Assume we have a randomized mechanism A : Z →M1(R) that
satisfies ρ-zCDP, then for every δ > 0, A is (ρ+ 2

√
ρ log(1/δ), δ)-DP.

4 Optimal Algorithm for the Class of Strongly Convex Functions

In this section, we present a DP variant of the cubic-regularized Newton’s method of Nesterov and
Polyak [NP06]. To motivate the idea behind our algorithm, we revisit DP gradient descent (DP-GD)
for the class of L0-Lipschitz and L1-smooth convex loss functions.

Let {wGD
t }t∈[T ] be the iterates of DP-GD. The smoothness of ` lets us construct a global quadratic

upper bound on the function [Nes98, Thm. 2.1.5] as follows ∀w ∈ W and Sn ∈ Zn :

`(w, Sn) ≤ qt(w) , `(wGD
t , Sn) +

〈
∇`(wGD

t , Sn), w − wGD
t

〉
+

L1

2

∥∥w − wGD
t

∥∥2
. (2)

Then, DP-GD can be seen as a two-step process:

(Step I) vt+1 =arg min
v

qt(v)=wGD
t −L−1

1 ∇`(wGD
t , Sn), (Step II) wGD

t+1 =ΠW(vt+1 + L−1
1 ξt),

where ξt = N (0, σ2Id) with σ2 =
L20

2ρn2 so that wGD
t+1 satisfies ρ-zCDP [BS16, Lem. 2.5]. That is, in

each iteration of DP-GD, we find a minimum of the quadratic upper bound qt(w) and then project
back toW . (In the unconstrained setting whereW = Rd we do not need the second projection step.)

Consider the class of L2-Lipschitz Hessian convex loss functions. Nesterov and Polyak [NP06,
Lem. 1] show that we can construct a global cubic upper bound exploiting the second-order informa-
tion (i.e., Hessian) as follows: for all w and wt, `(w, Sn)≤φt(w) where

φt(w),`(wt,Sn)+〈∇`(wt, Sn), w−wt〉+
1

2

〈
∇2`(wt,Sn)(w−wt),w−wt

〉
+
L2

6
‖w−wt‖3 . (3)

Their non-private algorithm is based on the exact minimization of φt(w), i.e., the next iterate is
wt+1 = arg minφt(w). Note that arg minφt(w) does not admit a closed form solution, as opposed
to the quadratic upper bound (2). Similar to the intuition for DP-GD on smooth loss functions
(2), our algorithms in this section are based on privately minimizing φt(w) at each iteration. Our
algorithm is shown in Algorithm 1. In each iteration the algorithm makes an oracle call to obtain
(`(wt, Sn),∇`(wt, Sn),∇2`(wt, Sn)). Then, the algorithm calls an efficient DPSolver for privately
optimizing the cubic upper bound (3). The privacy analysis of Algorithm 1 is a direct application
of the composition property of zCDP [BS16, Lemma 2.3]; the output of DPSolver at each iteration
satisfies ρ/T -zCDP where ρ is the total privacy budget and T is the total number of iterations.
Remark 4.1. DPSolver in Algorithm 1 does not affect the oracle complexity of Algorithm 1, as it is
applied to the proxy loss φt(w), rather than the underlying loss `(w, Sn). /

Algorithm 1 Meta Algorithm
1: Input: training set Sn ∈ Zn, privacy budget
ρ-zCDP, initialization w0 ∈ W , number of iter-
ations T .

2: for t = 0, . . . , T − 1 do
3: Query `(wt, Sn),∇`(wt, Sn),∇2`(wt, Sn)
4: Construct φt(w) from Equation (3)
5: wt+1 = DPSolver(φt(w), ρ/T,wt)

6: Output wT .

Algorithm 2 DPSolver

1: Input: function φ :W → R : φ(θ) = `+〈g, θ − θ0〉+
1
2
〈H(θ − θ0), (θ − θ0)〉+ L2

6
‖θ − θ0‖3, privacy bud-

get ρ̃-zCDP, initialization θ0.
2: N = 2ρ̃(L0+L1D+L2D

2)2n2

(L0+L1D)2d
, σ2 = N(L0+L1D)2

2ρ̃

3: for i = 0, . . . , N − 1 do
4: ηi = 2

µ(i+2)

5: gradi = g+H(θi− θ0) + L2
2
‖θi − θ0‖ (θi− θ0).

6: θi+1 = ΠW(θi − ηi(gradi +N (0, σ2Id)))

7: Return
∑N−1
i=0

2i
N(N+1)

θi
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Theorem 4.2. Let f be a L0-Lipschitz, L1-smooth, L2-Lipschitz Hessian, and µ-strongly convex
function. Also, assume thatW ⊆ Rd has finite diameter D. Let w? = arg minw∈W `(w, Sn). Then,
for every ρ > 0, β ∈ (0, 1), and Sn ∈ Zn for sufficiently large n, by setting the number of iterations
in Algorithm 1 to

T = Θ
(√L2

µ3/4
(`(w0, Sn)− `(w?, Sn))

1
4 + log log

( n
√
ρ√

log(1/β)d

))
,

and using Algorithm 2 as DPSolver, we have the following: The output of Algorithm 1, i.e., wT ,
satisfies ρ-zCDP and with probability at least 1− β

`(wT , Sn)− `(w?, Sn) ≤ Õ
(d(L0 + L1D)2 log(1/β)

µρn2
· (L

2
2L0D

µ3
)

1
4

)
Remark 4.3. The lower bound on the excess error of any DP algorithm for the class of strongly
convex functions [BST14, Thm. 5.5] implies that the achievable excess error in Theorem 4.2 is
optimal in terms of the dependence on d, ρ, and n. Also, the oracle complexity of our algorithm is an
exponential improvement over the oracle complexity of first-order methods [STU17]. /
Remark 4.4. The proof of Theorem 4.2 suggests that Algorithm 1 has two phases. First, while wt is
far from w?, the convergence rate is 1/T 4. Second, when wt is close to w?, the algorithm exhibits the
convergence rate of exp(exp(−T )). Notice that Algorithm 1 is agnostic to this transition in the sense
that we do not have an explicit switching step in Algorithm 1 and Algorithm 2. It is also interesting
to note that the transition happens when ‖wt − w?‖ ≤ 3µ/4L2. /
Remark 4.5 (Comparison with [ABL21].). In [ABL21, §4], the authors propose a DP variant of
Newton’s method. Their main idea is to add independent noise directly to the Hessian matrix and
the gradient vector using the Gaussian mechanism. They also require that the Hessian be a rank-1
matrix. The issue with adding noise directly to a full-rank Hessian matrix is that the noise scales with
the dimension d, which can lead to a suboptimal excess loss. In contrast, our algorithm has a global
convergence without placing restrictions on the rank of the Hessian matrix or the initialization. /
Remark 4.6. We showed in Theorem 4.2 that our algorithm has an exponentially smaller oracle
complexity than the first-order methods in terms of the dependence to n. For the class of convex,
smooth, Lipschitz, and strongly convex, [ZZMW17] proposes a first-order algorithm with an oracle
complexity of T1 = Θ

(√
L1/
√
µ+ log(n)

)
. It is important to note that the constant term in T1

differs from our result, making a direct comparison challenging. It is an interesting question to
develop a second-order DP algorithm with a smaller oracle complexity than both the algorithms
proposed in [ZZMW17] and ours in Algorithm 1. /
Remark 4.7. The cubic Newton method has a non-private convergence rate of T−2 for the class of
convex (but not strongly convex) functions [NP06, Thm. 4]. We leave it as an open question whether
there exists a DPSolver such that Algorithm 1 achieves an optimal excess error and oracle complexity
for convex functions. However, this can be achieved by a DP variant of the first-order accelerated
Nesterov’s method [Nes98; NJLS09; GL12]; see Appendix A.2. /

5 DP Logistic Regression using Second-Order Information

The main limitation of our cubic Newton’s method (Algorithm 1) is that each iteration requires
solving a nontrivial subproblem. So, despite low oracle complexity, it is computationally expensive.
Moreover, many loss functions, such as logistic loss, are not strongly convex in the unconstrained
setting. In this section, we aim to develop a fast second-order algorithm for unconstrained logistic
regression avoiding this issue. In many real-world classification tasks, the logistic loss is the loss of
choice. The logistic loss is a convex surrogate of the 0-1 loss, and satisfies many regularity conditions
that give rise to various practical optimization algorithms [Bac10; Erd15; KSJ18]. Also, note that our
results in this section can readily be extended to the class of smooth and convex GLMs.

First, we recall the logistic loss function. Let d ∈ N and Z = Bd(1) × {−1, 1} be the dimension
and data space, where Bd(1) = {x ∈ Rd : ‖x‖ ≤ 1} is the unit ball in Rd. Let fLL : Rd ×Z → R
denote the logistic loss function defined as

fLL(w, (x, y)) = log(1 + exp(−y · 〈w, x〉)). (4)
The gradient and Hessian of fLL are given by

∇wfLL(w, (x, y))=
−xy

1+exp(y 〈w, x〉) , ∇
2
wfLL(w,(x,y))=

xx>

(exp(− 〈w,x〉2 )+exp( 〈w,x〉2 ))2
. (5)
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Newton’s method [BV04, §9.5] is based on successively minimizing a local second-order Taylor
approximation on the function. Newton’s method does not guarantee a global convergence [JT16];
the reason is that the second-order Taylor approximation of the logistic loss can greatly underestimate
the function. Next we show that it is possible to obtain a quadratic global upper bound on the logistic
loss function. We will use this to develop an algorithm that converges globally.

Lemma 5.1. For every v ∈ Rd, x ∈ Rd, w ∈ Rd, and y ∈ {−1,+1}, we have

fLL(w, (x, y)) ≤ fLL(v, (x, y)) + 〈∇fLL(v, (x, y)), w − v〉+
1

2
〈Hqu(v, (x, y))(w − v), w − v〉 ,

where Hqu(v, (x, y)) ,
tanh(〈x,v〉/2)

2 〈x, v〉 xx> ∈ Rd×d.

Remark 5.2. Since fLL is 1
4 -smooth, we can construct a simpler global quadratic upper-bound

as follows [Nes98, Thm. 2.1.5]: fLL(w, (x, y)) ≤ fLL(v, (x, y)) + 〈∇fLL(v, (x, y)), w − v〉 +
1
8 ‖w − v‖

2
. Lemma 5.1 is tighter than this, since Hqu(v, (x, y)) 4 1

4Id; see Appendix B.2. /

Remark 5.3. The second-order Taylor approximation and our upper bound in Lemma 5.1 both provide
a quadratic approximation of the logistic loss. In the remainder of the paper, we write H(v, (x, y))
to refer to both ∇2fLL(v, (x, y)) and Hqu(v, (x, y)). We refer to H(v, (x, y)) as the second-order
information (SOI) and to Hqu as quadratic upperbound SOI. Finally, notice both∇2fLL(v, (x, y))
and Hqu(v, (x, y)) are PSD rank-1 matrices, with maximum eigenvalue ≤ 1

4‖x‖2 ≤ 1
4 . /

5.1 Algorithm Description

We are given a dataset Sn = ((x1, y1), . . . , (xn, yn)) ∈ (Bd(1) × {−1,+1})n and we aim to
minimize `LL(w, Sn) , 1

n

∑
i∈[n] fLL(w, (xi, yi)). Our algorithm iteratively minimizes a quadratic

approximation of `LL(w, Sn). Consider

qt(w) , `LL(wt, Sn) + 〈∇`LL(wt, Sn), w − wt〉+
1

2
〈H(wt, Sn)(w − wt), (w − wt)〉 , (6)

where H(wt, Sn) , 1
n

∑
i∈[n]H(wt, (xi, yi)). In the non-private setting the next iterate is set

to wt+1 = arg minw qt(w) = wt − H(wt, Sn)−1∇`LL(wt, Sn). To develop a private variant of
Newton’s method, we need to characterize the sensitivity of this update rule. Our key observation
is that the directions corresponding to small eigenvalues of H(wt, Sn) are more sensitive than the
directions corresponding to large eigenvalues. To overcome this issue, we modify the eigenvalues
of H(wt, Sn) to ensure a minimum eigenvalue ≥ λ0, where λ0 > 0 is a carefully chosen constant.
We show how to adaptively tune λ0 in Section 5.2. This procedure yields the desired stability with
respect to neighbouring datasets. Formally, the modification operator is defined as follows:

Definition 5.4. Let A ∈ Rd×d be a positive semi-definite (PSD) matrix and λ0 ≥ 0. Define

Ψλ0(A, clip) =

d∑
i=1

max{λ0, λi}uiu>i , Ψλ0(A, add) =

d∑
i=1

(λi + λ0)uiu
>
i = A+ λ0Id.

where A =
∑d
i=1 λiuiu

>
i is the eigendecomposition of A – i.e., 0 ≤ λ1 ≤ · · · ≤ λd are the

eigenvalues and u1, . . . , ud ∈ Rd are the eigenvectors, which satisfy ∀i 6= j ‖ui‖ = 1∧ 〈ui, uj〉 = 0.

Algorithm 3 describes our algorithm. First, we state the privacy guarnatee of Algorithm 3 whose
proof can be found in Appendices B.3 and B.4.

Theorem 5.5. Assume in Algorithm 3 we choose add for the SOI modification. Then, for every
training set Sn ∈ (Rd × {−1,+1})n, w0 ∈ W , λ0 > 0, T ∈ N, ρ ∈ R+, and θ ∈ (0, 1), by setting
σ1 =

√
T

n
√

2ρ(1−θ)
and σ2 =

√
T

(4nλ2
0+λ0)

√
2ρθ

, wT satisfies ρ-zCDP.

Theorem 5.6. Assume in Algorithm 3, we choose clip for the SOI modification. Then, for every
training set Sn ∈ (Rd × {−1,+1})n, w0 ∈ W , λ0 > 0, T ∈ N, ρ ∈ R+, and θ ∈ (0, 1) such that
n > 1

4λ0
, by setting σ1 =

√
T

n
√

2ρ(1−θ)
and σ2 =

√
T

(4nλ2
0−λ0)

√
2ρθ

, wT satisfies ρ-zCDP.
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Algorithm 3 Newton Method with Double noise
1: Inputs: training set Sn ∈ Zn, λ0 > 0, θ ∈ (0, 1),

privacy budget ρ-zCDP, initialization w0, number of
iterations T , SOI modification ∈ {clip, add}.

2: Set σ1 =
√
T

n
√

2ρ(1−θ)
3: if SOI modification = Add then
4: σ2 =

√
T

(4nλ2
0+λ0)

√
2ρθ

5: else if SOI modification = Clip then
6: σ2 =

√
T

(4nλ2
0−λ0)

√
2ρθ

7: for t = 0, . . . , T − 1 do
8: Query∇f(wt, Sn) and H(wt, Sn)

9: H̃t = Ψλ0(H(wt, Sn), SOI modification)
10: g̃t = ∇fLL(wt, Sn) +N (0, σ2

1Id)

11: wt+1 = wt − H̃−1
t g̃t +N (0, ‖g̃t‖2 σ2

2Id)

12: Output wT .

Our DP algorithm differs from the non-private
Newton’s method in three ways: (1) We first
privatize the gradient by adding noise. (2) We
modifyH(wt, Sn) to ensure its eigenvalues are
not too small. And (3) we add a second noise to
the update computed using the noised gradient
and modified second-order information (SOI).

Notice that Algorithm 3 has four variations
based on the SOI and the modification of
SOI, namely, Hess-clip, Hess-add, QU-clip,
and QU-add which refer to using Hessian and
clip, Hessian and add, quadratic upper bound
(See Lemma 5.1) and clip, and quadratic upper
bound and add, respectively.
Remark 5.7 (Generalization of Algorithm 3).
In this section our main focus is on DP logistic
regression, and the privacy guarantees hold for

the logistic loss. Nevertheless, in Appendix B.6, we present a generalization of Algorithm 3 whose
privacy guarantee holds for every convex, doubly differentiable, Lipschitz, and smooth loss function
without any constraints on the rank of Hessian. The main technical challenge for sensitivity analysis is
proving the approximate Lipschitzness of Ψ in the operator norm (See Lemma B.7). This demonstrates
that our algorithm is more general than objective perturbation [CMS11; KST12; INST+19] and the
private damped Newton’s method [ABL21] which both require a low-rank Hessian. /

5.2 Private and Adaptive Selection of Minimum Eigenvalue

One of the hyperparameters of Algorithm 3 is the minimum eigenvalue λ0. There exists a
tradeoff for choosing λ0. We ideally want the modification to be as small as possible, so that
the SOI is preserved. However, decreasing λ0 increases σ2 and we add more noise. To deal
with this problem, we propose a heuristic rule for an adaptive, private, and time-varying se-
lection of the minimum eigenvalue. We wish to find λ0,t that minimizes expected loss at the
next iteration, for which we have the quadratic approximation (6). More formally, we com-
pute λ0,t as arg minλ E [qt (wt −Ψλ(H(wt, Sn),SOI modification)g̃t + ‖g̃t‖σ2(λ) · ξ)] where qt
is given in (6) and ξ ∼ N (0, Id). We show in Appendix B.5 that an approximate minimizer is

λ0,t ∝
( trace(Ht(wt,Sn))
n2×privacy budget for the direction

) 1
3 . Note that λ0,t depends on the data through trace(H(wt, Sn)),

which has sensitivity 1/4n, so it can be estimated privately. In Appendix B.5, we provide the algo-
rithmic description of a variant of Algorithm 3 with an adaptive and private minimum eigenvalue. In
particular, we divide the privacy budget at each iteration into three parts: (1) privatizing the gradient;
(2) estimating the trace of SOI; and (3) privatizing the direction. We use this variant for our numerical
experiments in Section 6.

5.3 Convergence Results for Algorithm 3

In this section, we provide data-dependent convergence guarantees for Algorithm 3. We express
these guarantees in terms of the conditional expectation Et [·] = E

[
·|{wi}i∈[t]

]
and they can be

easily extended to obtain high probability bounds. Before presenting the results, we introduce a
notation. For a dataset Sn = ((x1, y1), . . . , (xn, yn)) ∈ (Rd × {−1,+1})n, let V ∈ Rd×d denote
the orthogonal projection matrix on the linear subspace spanned by {x1, . . . , xn}. For every vector
u ∈ Rd, define ‖u‖V ,

√
u>V u. This norm naturally arises since for every w ∈ Rd we have

`LL(w, Sn)− `LL(w?, Sn) ≤ 1
8 ‖w − w?‖

2
V where w? = arg min `LL(w, Sn) (See Appendix B.7).

5.3.1 Local Convergence Guarantee of Hess-clip and Hess-add

Theorem 5.8. Let Sn denote the dataset and rank denote the dimension of the linar subspace
spanned by {x1, . . . , xn}. Let λmin,t be the smallest non-zero eigenvalue of∇2`LL(wt, Sn) and ρ be
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Figure 2: Privacy-Utility tradeoff on different datasets.

the privacy budget (in zCDP) per iteration. Then,

Et
[
‖wt+1 − w?‖2V

]
≤ ν2

1,t ‖wt − w?‖2V + 2ν1,tν2,t ‖wt − w?‖3V + ν2
2,t ‖wt − w?‖4V + ∆,

where the coefficients are given by

ν1,t = 1− λ̃min,t

λ0
+

√
rank

(4nλ2
0 − λ0)

√
2ρθ

, ν2,t =
0.05

λ̃min,t
, ∆ = O

(
rank

ρ(1− θ)n2

1

(λ̃min,t)2

)
. (7)

Here, λ̃min,t =

{
min{λmin,t, λ0} for Hess-clip,
λmin,t + λ0 for Hess-add,

depends on the modification procedure.

This type of convergence is known as composite convergence, as it is a combination of linear and
quadratic rates, and has been observed in the convergence analysis of several quasi-Newton’s methods
[EM15; Erd15; RM16; XYRRM16].
Remark 5.9. λmin,t is the smallest non-zero eigenvalue of∇2`LL(wt, Sn). Therefore, for sufficiently
large n we have 0 < ν1,t < 1. It shows Algorithm 3 with Hessian as SOI is, in-expectation, a descent
algorithm locally given ‖wt − w?‖ is sufficiently larger than ∆. Roughly speaking, Theorem 5.8
guarantees a linear convergence to a ball around the optimum whose radius is given by ∆. We also
observe the linear rate in Figure 3. Moreover, the error due to the privacy, i.e., ∆ in Equation (7),
is proportional to the rank of the feature vectors which is always smaller than d. These interesting
properties is due to the convergence analysis with respect to ‖·‖V . /

Remark 5.10. The coefficients of the convergence in Equation (7) depend on the iteration step which is
an undesirable aspect of the results. In Lemma B.11, we prove that |λmin,t−λ?min| ≤ 0.1 ‖wt − w?‖V
where λ?min is the smallest non-zero eigenvalue of∇2`LL(w?, Sn). Therefore, the coefficients can be
well-approximated by their analogous values evaluated at the optimum. /

5.3.2 Global Convergence Guarantee of QU-clip and QU-add

We also establish a global convergence guarantee for QU-clip and QU-add. Due to the space the
formal statement and proof are deferred to Appendix B.9. Roughly speaking, under the assumption
of local strong convexity at the optimum [Bac14], QU-clip and QU-add converge globally: this is
intuitive since QU-clip and QU-add are based on minimizing a global upper bound on the function.

6 Numerical Results

In this section, we evaluate the performance of our algorithm (Algorithm 3 with the adaptive
minimum eigenvalue selection from Section 5.2) for the problem of binary classification using logistic
regression. For brevity, many of the details behind our implementation and more experimental results
are deferred to Appendix C.

6.1 Setup

The setup of the experiments is as follows: Baseline1- DP-(S)GD: The update rule is wt+1 =
wt − η∇`(wt, Sn) + ξ where ξ is a Gaussian noise [SCS13; BST14; ACGM+16]. Since the logistic
loss is 1-Lipschitz, we do not need gradient clipping. The Lipschitzness parameter controls the
variance of the Gaussian random vector. To draw a fair comparison and show the advantage of using
second-order information, we chose the stepsize to be equal to the inverse smoothness. Baseline2-
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Figure 3: Comparison with DP-GD Oracle where at each iteration the stepsize tuned non-privately.

T ?DP–GD

T ?ours
T ?ours(sec)

ε = 0.01 ε = 0.1 ε = 1 ε = 10 min(T ?ours) (sec.) max(T ?ours) (sec.)

a1a 4.87× 2.95× 5.09× 30.59× 2.45 4.2
synthetic 2.90× 2.90× 5.19× 11.61× 0.18 0.21
adult 12.08× 11.84× 22.17× 38.16× 6.81 8.07
covertype 24.19× 19.85× 35.70× 36.20× 2.93 3.58

Table 1: Comparison between the run time of our algorithm and DP-GD in terms of the ratio
T ?DP-GD/T

?
our. The last two columns show the minimum and maximum run time of our algorithm.

Approximate Objective Perturbation (AOP): AOP is built on objective perturbation [CMS11;
KST12]. Objective perturbation consists of a two-stage process: (1) perturbing the objective function
by adding a random linear term and (2) outputting the minimum of the perturbed objective. Releasing
such a minimum is sufficient for achieving DP guarantees [CMS11; KST12], but only if we can
find the exact minimum of the perturbed objective. AOP extends objective perturbation to permit
using an approximate minimum of the perturbed objective [INST+19; INST+]. Notice AOP is not
an iterative optimization algorithm. Baseline3- Damped Newton Method [ABL21]: The algorithm
in [ABL21] is a variant of damped Newton’s method with the assumption that the Hessian of
loss function is rank-1, which holds for the logistic loss. Their algorithm is based on adding two
i.i.d. noises to the Hessian and the gradient: wt+1 = wt − ηtHnoisy,t(wt, Sn)−1g̃t, where ηt is the
stepsize, Hnoisy,t(wt, Sn) = ∇2`LL(wt, Sn) + Ξt and g̃t = ∇`LL(wt, Sn) + ξt. Here Ξt and ξt
are carefully chosen Gaussian noise. With ηt = 1, our experiments show that their algorithm is
not converging. We use the strategy suggested in [ABL21, Page 22] and set ηt = log(1 + βt)/βt
where βt =

∥∥∇2`LL(wt, Sn)−1∇`LL(wt, Sn)
∥∥. This stepsize selection makes the algorithm non-

private, however, it serves as a good baseline. Datasets: We conducted experiments on six publicly
available datasets: a1a, Adult, covertype, synthetic, fashion-MNIST, and protein (Appendix C
includes fashion-MNIST and protein results). The synthetic dataset is generated as follows: Fix
d ∈ N and w? ∈ Rd. Then, (1) the feature vectors {xi ∈ Rd : i ∈ [n]} are independent and
sampled uniformly at random from the unit sphere in Rd, (2) for the i-th datapoint the label is +1
with probability (1 + exp(−〈xi, w?〉))−1 and −1 otherwise. Privacy Notion: The privacy notion
for our experiments is (ε, δ = (num. of samples)−2)-DP. Next, we present the results.

6.2 Privacy-Utility-Run Time Tradeoff

We study the tradeoff for our algorithm and compare it with other baselines for a broad range of
ε ∈ {0.01, . . . , 10}. We non-privately tune the total number of iterations of the iterative algorithms
and report the best achievable excess error in Figure 2. As can be seen our algorithm almost always
achieves the best excess loss for a broad range of ε. Also, Figure 2 shows that damped private Newton
method of [ABL21] achieves a low excess loss only for large ε. Figure 2 indicates that DP-GD and
our algorithm are the best in terms of excess loss. In Table 1, we compare the run time of DP-GD and
our algorithm, i.e., the computational time in seconds for achieving the excess loss in Figure 2. As can
be seen, for many challenging datasets, our algorithm is 10-40× faster than DP-GD. Our experiments
are run on CPU. We also remark that each step of Algorithm 3, i.e., computing gradient and SOI, is
heavily parallelizable implying that the run time of Algorithm 3 can be made much smaller by an
efficient implementation. Also, the reported numbers in Figure 2 and Table 1 correspond to Hess-clip.
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Figure 4: Minibatch Variant of Our Algorithm and Comparison with DP-SGD

6.3 Second Order Information vs Optimal Stepsize

In non-private convex optimization, the key to the success of second-order optimization algorithms
is that the second-order information acts as a preconditioner, and the same performance cannot be
attained by optimally tuning the stepsize for GD algorithm. To investigate whether the same holds for
our algorithms, we consider the following variant of DP-GD. Let g̃t denote the perturbed gradient
obtained by adding a Gaussian random vector to∇`LL(wt, Sn). Instead of a constant stepsize, the
stepsize at iteration t is chosen based on ηt = arg minη≥0 `LL(wt − ηg̃t). Notice this variant is
obviously not DP. We refer to this variant as DP-GD-Oracle. The comparison with DP-GD-Oracle
lets us answer the following question: Could we have just computed a single number, i.e., stepsize, to
achieve the same performance as our second-order optimization algorithms which require computing
a d×d matrix? In Figure 3, we compare the convergence speed of our algorithms with DP-GD-Oracle
in low- and high-privacy regimes. Figure 3 shows our algorithms converge faster than DP-GD-Oracle
which is not even a DP algorithm. Figure 3 confirms the expectation that as the privacy budget
increases the difference between our algorithms and DP-GD-Oracle increases since we can use more
curvature information.

6.4 Minibatch Variant of Our Algorithm and Comparison with DP-SGD

So far we have considered full-batch algorithms that compute first- and second-order information
on the entire dataset. We extend Algorithm 3 to the minibatch setting, where, at each iteration, the
gradient and SOI matrix are computed using a subsample of the data points. In Appendix C.1 we
provide a formal algorithmic description of the minibatch version of Algorithm 3 along with its
privacy proof. Then, we compare the convergence speed and excess loss with DP-SGD.

DP-SGD is faster than DP-GD, but to achieve good privacy and utility, we need large batches
[PHKX+23, Fig. 2]. This is in stark contrast with non-private SGD, where larger batch sizes yield
diminishing returns [ZLNM+19]. In particular, to achieve the best excess loss we need to select
the batch size as large as possible. We select the batch size of DP-SGD so that the achievable
excess loss will be close to the full batch versions. Specifically, we select batch size DP-SGD

number of samples ≈ 0.02 and
tune the number of iterations of DP-SGD to obtain the best result. Figure 4 shows the progress of
different algorithm versus run time. Obviously, for a fixed run time DP-SGD performs more iterations
compared to our algorithms. Nevertheless, our algorithms achieve the same excess error as DP-GD
with 8-10× faster run time over all the datasets while the batch sizes of our algorithms are larger
than that of DP-SGD. We observe that the variations of our algorithms based on the adding operator
performs better in the minibatch setting. This can be attributed to the smaller σ2 for the adding
operator in Algorithm 3. In summary, the comparison between privacy-utility-wall time tradeoff of
the subsampled variant of our algorithm and DP-SGD is similar to their full-batch counterparts.

7 Conclusion and Limitations

We showed that second-order methods can be used in the DP setting both for improving worst-case
convergence guarantees and designing faster practical algorithms. We believe our results open up
many directions: A limitation of our algorithms is that the cost of forming and inverting the Hessian
can be prohibitive when d is large. In the non-private setting, a line of research tries to address this
limitation by constructing an approximation to SOI such that the update is efficient, yet still provides
sufficient SOI [EM15; Erd15; XYRRM16; ABH17]. It would be interesting to investigate how the
ideas developed in our paper could be incorporated into these methods.
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