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Abstract

Generative recommendation (GR) is an emerg-
ing paradigm where user actions are tokenized
into discrete token patterns and autoregressively
generated as predictions. However, existing GR
models tokenize each action independently, as-
signing the same fixed tokens to identical ac-
tions across all sequences without considering
contextual relationships. This lack of context-
awareness can lead to suboptimal performance,
as the same action may hold different meanings
depending on its surrounding context. To address
this issue, we propose ActionPiece to explicitly
incorporate context when tokenizing action se-
quences. In ActionPiece, each action is repre-
sented as a set of item features. Given the action
sequence corpora, we construct the vocabulary
by merging feature patterns as new tokens, based
on their co-occurrence frequency both within in-
dividual sets and across adjacent sets. Consid-
ering the unordered nature of feature sets, we
further introduce set permutation regularization,
which produces multiple segmentations of ac-
tion sequences with the same semantics. Our
code is available at: https://github.com/
google-deepmind/action_piece.

1. Introduction
Generative recommendation (GR) (Rajput et al., 2023;
Zheng et al., 2024; Zhai et al., 2024) is an emerging
paradigm for the sequential recommendation task (Hidasi
et al., 2016; Kang & McAuley, 2018). By tokenizing the
user actions (typically represented by the interacted items)
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Figure 1. Illustration of the tokenization process of ActionPiece.
Each action is represented as an unordered feature set. This figure
presents two possible tokenized sequences, where features are
grouped into different segments. The same action can be tokenized
into different tokens depending on the surrounding context. A
detailed case study can be found in Section 4.5.

into discrete tokens, GR models learn to autoregressively
generate tokens, which are then parsed into recommended
items. These tokens share a compact vocabulary that does
not scale with the item pool size, improving model scalabil-
ity, memory efficiency, and recommendation performance.
The input action sequence is vital in understanding user
intentions (Hidasi et al., 2016; Li et al., 2017; Kang &
McAuley, 2018), which organizes a user’s historical in-
teractions in chronological order. The same action (e.g.,
purchasing the same item) may have different meanings in
different action sequences. Evidence of taking a certain
action can be found in the context, such as whether other
items in the sequence share the same brand, color tone, or
price range (Zhang et al., 2019; Zhou et al., 2020; Hou et al.,
2022; 2023; Yuan et al., 2023).

Despite the importance of contextual relations among ac-
tions, existing methods tokenize each action independently
of its context (summarized in Table 1). The typical pipeline
for tokenizing action sequences involves two steps: (1) To-
kenizing each action/item individually into a pattern of to-
kens; (2) Replacing each action in the input sequence with
its corresponding token pattern. In this way, the tokens do
not explicitly contain the context. Instead, they solely rely
on the autoregressive model’s parameters being well-trained
to generalize effectively in understanding the context, which
challenges the capabilities of GR models. As a compari-

1

https://github.com/google-deepmind/action_piece
https://github.com/google-deepmind/action_piece


ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation

son, tokenization in language modeling also originates from
context-independent methods, such as word-level tokeniza-
tion (Sutskever et al., 2014; Bahdanau et al., 2015). A
decade of progress has led to most tokenization methods
for modern large language models (LLMs) (OpenAI, 2022;
Anil et al., 2023; Touvron et al., 2023; Zhao et al., 2023)
adopting context-aware approaches, including BPE (Sen-
nrich et al., 2016) and Unigram tokenization (Kudo, 2018),
which tokenize the same word roots along with their adja-
cent context into different tokens.

In this work, we aim to make the first step towards context-
aware tokenization for modeling action sequences. In anal-
ogy to how characters or bytes serve as the basic units in
language modeling, we consider the associated features of
an item as initial tokens. The idea is to iteratively find the
most commonly co-occurring pairs of tokens among the
training action sequences, then merge them into new tokens
to represent segments of context. However, it’s non-trivial
to achieve this. Unlike text, where characters naturally form
a sequence, the features associated with an action form an
unordered set (Zhang et al., 2019; Zhou et al., 2020). Thus,
the proposed tokenization algorithm should be applied on se-
quences of token sets. We need to carefully consider which
pairs of tokens should be counted, whether within a single
set or between two adjacent sets, and how much weight
should be given to these different types of relationships.

To this end, we propose ActionPiece, which enables the
same actions to be tokenized into different tokens based
on their surrounding context. (1) Vocabulary construc-
tion begins by initializing the vocabulary to include every
unique feature as initial tokens. The vocabulary is then con-
structed by iteratively learning merge rules. Each merge
rule specifies that a pair of tokens can be merged into a new
token. In each iteration, we enumerate the training corpus
to count the co-occurrence of existing tokens. Considering
the structural differences between token pairs, e.g., whether
they occur within a single set or between two adjacent sets,
we assign different weights to different pairs. (2) Segmenta-
tion refers to dividing raw features in action sequences into
groups that can be replaced by tokens from the vocabulary.
To fully exploit the unordered nature of the feature set of
each action, we introduce set permutation regularization.
By randomly permuting the features within each set, we
can produce multiple token sequences of a single action
sequence that preserve the same semantics. These variations
act as natural augmentations for training data and enable
inherent ensembling during model inference.

2. Related Work
Generative recommendation. Conventional sequential
recommendation models often relies on large embedding
tables to store representations for all items, leading to signif-

Table 1. Comparison of different action tokenization methods for
generative recommendation. “Contextual” denotes whether the
same actions can be tokenized into different tokens based on the
surrounding context. “Unordered” denotes whether the item fea-
tures or semantic IDs are used in an order-agnostic manner.

Action Tokenization Example Contextual Unordered

Product Quantization VQ-Rec (Hou et al., 2023) % "

Hierarchical Clustering P5-CID (Hua et al., 2023) % %

Residual Quantization TIGER (Rajput et al., 2023) % %

Text Tokenization LMIndexer (Jin et al., 2024) % %

Raw Features HSTU (Zhai et al., 2024) % %

SentencePiece SPM-SID (Singh et al., 2024) % %

ActionPiece Ours " "

icant engineering and optimization challenges (Hidasi et al.,
2016; Li et al., 2017; Kang & McAuley, 2018). Generative
recommendation (Rajput et al., 2023; Zheng et al., 2024;
Zhai et al., 2024; Deldjoo et al., 2024; Hou et al., 2025) ad-
dresses these issues by tokenizing each item as tokens from
a shared vocabulary. By autoregressively generating the
next tokens as recommendations, this generative paradigm
offers benefits such as memory efficiency (Rajput et al.,
2023; Yang et al., 2024; Ding et al., 2024), scalability (Zhai
et al., 2024; Liu et al., 2024b), and easier alignment with
LLMs (Zheng et al., 2024; Jin et al., 2024; Tan et al., 2024;
Li et al., 2025). Existing research has developed different
action tokenization techniques, such as hierarchical cluster-
ing (Hua et al., 2023; Si et al., 2024), quantization (Rajput
et al., 2023; Wang et al., 2024a; Zhu et al., 2024a), or jointly
training with recommendation models (Liu et al., 2025).
Other works incorporate additional modalities like collab-
orative filtering (Petrov & Macdonald, 2023; Wang et al.,
2024c;b; Liu et al., 2024b;a) and natural language (Zheng
et al., 2024; Jin et al., 2024; Hou et al., 2024b; Zhang et al.,
2025a). However, current methods tokenize each action
independently, ignoring the surrounding context. In this
work, we propose the first context-aware action tokenization
method, where the same actions are tokenized differently in
different action sequences.

Tokenization for language modeling. Tokenization is the
process of transforming raw text into discrete token se-
quences (Kudo & Richardson, 2018). Early word-level
methods are context-independent and struggle to tokenize
out-of-vocabulary words (Sutskever et al., 2014; Bahdanau
et al., 2015). Consequently, subword-level tokenization has
gradually become the more mainstream choice. The vocab-
ularies of these subword-level tokenizers are constructed
iteratively, either bottom-up (starting with a small vocabu-
lary and merging commonly occurring token pairs as new
tokens) (Wu et al., 2016; Sennrich et al., 2016), or top-down
(starting with a large vocabulary and pruning tokens to min-
imize likelihood decrease) (Kudo, 2018; Yehezkel & Pinter,
2023). Once the vocabulary is built, the text can be seg-
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Algorithm 1 ActionPiece Vocabulary Construction
input Sequence corpus S ′, initial tokens V0, target size Q
output Merge rulesR, constructed vocabulary V
1: Initialize vocabulary V ← V0 # Each initial token corresponds

to one unique item feature
2: R← ∅
3: while |V| < Q do
4: # Count: accumulate weighted token co-occurrences
5: count(·, ·)← Count(S ′,V) # Algorithm 2
6: # Update: merge a frequent token pair into a new token
7: Select (cu, cv)← argmax(ci,cj) count(ci, cj)
8: S ′ ← Update(S ′, {(cu, cv)→ cnew}) # Algorithm 3
9: R← R∪ {(cu, cv)→ cnew} # New merge rule

10: V ← V ∪ {cnew} # Add new token to the vocabulary
11: end while
returnR,V

mented either using the same method employed during vo-
cabulary construction or based on additional objectives (He
et al., 2020; Provilkov et al., 2020; Hofmann et al., 2022;
Schmidt et al., 2024). As an analogy, existing action tokeniz-
ers are context-independent and function like “word-level”
language tokenizers. In this work, we take the first step
toward context-aware subaction-level action tokenizer.

3. Method
In this section, we present ActionPiece, a context-aware
method for tokenizing action sequences for generative rec-
ommendation. First, we formulate the task in Section 3.1.
Then, we introduce the proposed tokenizer, covering vocab-
ulary construction and segmentation, in Section 3.2. Finally,
we describe the model training and inference process using
ActionPiece-tokenized sequences in Section 3.3.

3.1. Problem Formulation

Given a user’s historical actions S = {i1, i2, . . . , it}, orga-
nized sequentially by their timestamps, the task is to predict
the next item it+1 the user will interact with.

Action as an unordered feature set. In the development
of modern recommender systems, each item ij is usually
associated with a set of features Aj (Zhang et al., 2019;
Zhou et al., 2020; Cheng et al., 2016). Assuming there are
m features per item, the k-th feature of item ij is denoted
as fj,k ∈ Fk, where Fk is the collection of all possible
choices for the k-th feature. Compared to representing
actions using ordered semantic IDs (e.g., those produced
by RQ-VAE (Rajput et al., 2023; Singh et al., 2024)), the
unordered set setting offers two key advantages: (1) It does
not require a specific order among features, which aligns
better with how items or actions are represented in most
recommender systems; (2) It enables the inclusion of more
general discrete and numeric features, such as category,
brand, and price (Pazzani & Billsus, 2007; Juan et al., 2016).

Action sequence as a sequence of sets. Representing each
item as an unordered set, the input action sequence can be
written as S′ = {A1,A2, . . . ,At}, which is a chronologi-
cally ordered sequence of sets. There is no order within each
set, but there are orders between the features from different
sets. The tokenizer design should account for the ordered
and unordered relationships among features.

Generative recommendation task. In this work, we aim to
design a tokenizer that maps an input action sequence S′ to
a token sequence C = {c1, c2, . . . , cl}, where l denotes the
number of tokens in the sequence. Note that l is typically
greater than the number of actions t. Next, we train a GR
model to autoregressively generate tokens {cl+1, . . . , cq},
which can be parsed as next-item predictions ît+1.

3.2. Contextual Action Sequence Tokenizer

The proposed tokenizer is designed to transform action se-
quences (represented as sequences of feature sets) into token
sequences. In the ActionPiece-tokenized sequences, each
token corresponds to a set containing varying numbers of
features. For example, a token can represent: (1) a subset of
features from one item; (2) a single feature; (3) all features
of one item; or (4) features from multiple items. We also
label these four types of tokens in Figure 1. Below, we first
describe how to construct the ActionPiece tokenizer’s vo-
cabulary given a corpus of action sequences (Section 3.2.1).
Then, we introduce how to segment action sequences into a
new sequence of sets, where each set corresponds to a token
from the constructed vocabulary (Section 3.2.2).

3.2.1. VOCABULARY CONSTRUCTION ON ACTION
SEQUENCE CORPUS

Given a corpus of action sequences S ′, the goal of vocab-
ulary construction is to create a vocabulary V of Q tokens.
Each token represents a combination of features that fre-
quently occur in the corpus. Similar to BPE (Sennrich et al.,
2016), we construct the vocabulary using a bottom-up ap-
proach. The process starts with an initial vocabulary of
tokens V0. The construction proceeds iteratively, adding one
new token to the vocabulary at each iteration until the pre-
defined target size is reached. Each iteration consists of two
consecutive steps: count, where the most frequently occur-
ring token pair is identified, and update, where the corpus
is modified by merging the selected pair into a new token.
An algorithmic workflow is illustrated in Algorithm 1.

Vocabulary initialization. In BPE, each token represents
a sequence of bytes. Thus, the most fundamental units–
the initial tokens–are single bytes, which form the initial
vocabulary of BPE. Similarly, each token in ActionPiece
represents a set of features. Therefore, we initialize Action-
Piece with a vocabulary in which each token represents a set
containing one unique item feature. Formally, we denote the

3



ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation

··· ···
flattening

··· ···

tokens in the same set: Eqn. (1)

tokens from adjacent sets: Eqn. (2)

sequence of token sets token

tokens in the same set: Eqn. (1)

Figure 2. Illustration of how weights of co-occurring token pairs are counted during vocabulary construction. In this example, two adjacent
sets in the sequence are considered: one with 4 tokens (represented as⃝) and another with 3 tokens (represented as □). Token pairs are
counted within a single set (<⃝,⃝ > and < □,□ >) and across the two adjacent sets (<⃝,□ >).

initial vocabulary as V0 = {c = {f}|f ∈ F1 ∪ . . . ∪ Fm}.
After initializing the vocabulary, each action sequence (of
feature sets) can be represented as a sequence of token sets.

Count: context-aware token co-occurrence counting. In
each iteration of vocabulary construction, the first step is to
count the co-occurrence of token pairs in the corpus. These
pairs capture important feature combinations, which are en-
coded by creating new tokens. There are two types of token
co-occurrence within a sequence of sets: (1) two tokens
exist within the same set, or (2) two tokens exist in adja-
cent sets in the sequence. Notably, the second type allows
ActionPiece to explicitly include context information.

Weighted co-occurrence counting. In one-dimensional token
sequences (e.g., text), all token pairs are typically treated
equally. However, in sequences of token sets, token pairs
vary based on their types and the sizes of their respective
sets. To account for these differences, we propose assigning
different weights to token pairs. To determine the weight for
each token pair, we relate sequences of token sets to token
sequences by randomly permuting the tokens within each
set and flattening them into a single token sequence. Let
P (c, c′) represent the expected probability that tokens c and
c′ are adjacent in the flattened sequence. For two tokens
from the same set, we have:

P (c1, c2) = P (c2, c1) =
|Ai| − 1(|Ai|

2

) =
2

|Ai|
, c1, c2 ∈ Ai,

(1)
and for two tokens from adjacent sets, we have:

P (c1, c3) =
1

|Ai| × |Ai+1|
, c1 ∈ Ai, c3 ∈ Ai+1. (2)

By considering the probabilities of all adjacent token pairs
in the flattened sequence as 1, the weights for token pairs
in the original sequence of token sets correspond to the
probabilities given in Equations (1) and (2). An illustration
is shown in Figure 2.

Accumulating co-occurrence weights. The weights de-
scribed above are calculated based solely on the co-
occurrence type and the set size. They do not take into
account the specific tokens being analyzed. Tokens ci and

cj might appear in the same set in one sequence but in two
adjacent sets in another sequence. By iterating through the
corpus, we sum up the weights for each token pair whenever
they appear together multiple times.

Update: corpus updating with action-intermediate
nodes. The next step in each iteration is to merge the token
pair with the highest accumulated co-occurrence weight.
Since token merging may change the set size, we use a
double-ended linked list (Zouhar et al., 2023) to maintain
each action sequence, where each node represents a set of to-
kens. Merging tokens within the same set is straightforward,
i.e., replacing the two tokens with a new one. However,
merging tokens from two adjacent sets is more complex,
e.g., determining which set should include the new token.

Intermediate Node. We introduce the concept of “interme-
diate node” to handle tokens that combine features from
multiple sets. Initially, all nodes in the maintained linked
lists contain features specific to their corresponding actions.
These nodes are referred to as “action nodes.”

(1) When tokens from two adjacent action nodes are be-
ing merged, we insert a new intermediate node between the
two action nodes. The new token is stored in the interme-
diate node, and the merged tokens are removed from their
respective action nodes;

(2) When merging tokens from an action node and an
intermediate node, the new token replaces the original token
in the intermediate node. The reason is that this new token
also combines features from multiple actions. After the
merge, the token from the action node is removed.

Following the above update rules ensures that there is at
most one intermediate node between any two action nodes,
and each intermediate node contains no more than one to-
ken. When calculating co-occurrence weights involving an
intermediate node, it can simply be treated as a set of size 1.

Efficient implementation. Naively counting and updating
the corpus requires a total time complexity of O(QNLm2),
where Q is the target vocabulary size, N is the number of
action sequences in the training corpus, and L is the average
length of these sequences. However, it is unnecessary to
count co-occurrences from scratch in each iteration. This is
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Merge tokens in
action & intermediate nodes

Merge tokens in
one action node

Merge tokens in 
two adjacent action nodes

Action Node

Intermediate Node

New Token

Original Token

Insert a new
intermediate node

New token in the
intermediate node

Linked List

New token in the
original action node

Figure 3. Illustration of how the linked list, which maintains the action sequence, is updated when merging two tokens into a new token.
Three cases are considered: (1) both tokens are in the same action node; (2) the tokens are in two adjacent action nodes; (3) one token is in
an action node, while the other is in an intermediate node.

because only a small portion of the maintained linked lists
is modified compared to the previous iteration.

Data structures. To address this, we propose creating in-
verted indices to map token pairs to all the linked lists that
contain them. A global heap is maintained to return the
token pair with the highest accumulated co-occurrence. The
key challenge lies in updating these data structures. We care-
fully compute the changes in accumulated co-occurrences
and update the inverted indices. For the heap, we employ a
lazy-update strategy. We insert the latest weights with a tag.
When fetching a value from the heap, we check the tag to
verify if the value is up-to-date. If it is not, we discard the
value and fetch the next one.

Time complexity. Let H = O(NLm) represent the maxi-
mal heap size. Using the proposed algorithm, we success-
fully reduce the original time complexity to O(logQ logH ·
NLm2), achieving efficient vocabulary construction. In
practice, the later iterations take significantly less time than
the initial ones. This is expected and because tokens with
higher accumulated co-occurrence weights typically appear
frequently in the early stages. However, the overall construc-
tion time benefits from the reduced amortized complexity.
Further details about the vocabulary construction algorithm
are provided in Appendix C.

3.2.2. SEGMENTATION BY SET PERMUTATION
REGULARIZATION

Segmentation is to convert original action sequences into a
sequence of feature sets. Each set in the segmented sequence
corresponds to a token in the vocabulary.

Naive segmentation. One segmentation strategy in Action-
Piece involves applying the same technique used to con-
struct the vocabulary. Specifically, this technique iteratively
identifies token pairs with high priorities (represented by the
IDs of tokens, where tokens added earlier may have higher
priority). However, we observed that this strategy can lead

to a bias, where only a subset of tokens in the vocabulary is
frequently used (as shown empirically in Section 4.4.2).

Set permutation regularization (SPR). To address this is-
sue and account for the unordered nature of sets, we propose
set permutation regularization, which generates multiple
segmentations for each action sequence. The key idea is to
avoid enumerating all possible pairs between tokens in a set
or adjacent sets. Instead, we generate a random permutation
of each set and treat it as a one-dimensional sequence. By
concatenating all the permutations, we create a long token
sequence. This sequence can then be segmented using tradi-
tional BPE segmentation methods (Sennrich et al., 2016). In
this approach, different permutations can produce distinct
segmented token sequences with the same semantics. These
sequences serve as natural augmentations for model train-
ing (Section 3.3.1) and enable inherent ensembling during
model inference (Section 3.3.2).

3.3. Generative Recommendation Models

3.3.1. TRAINING ON AUGMENTED TOKEN SEQUENCES

For an action sequence and its ground-truth next action in
the training corpus, we tokenize them into token sequences
Cin and Cout, respectively. Taking Cin as input, we train a
Transformer encoder-decoder module (Raffel et al., 2020) to
autoregressively generate Cout (e.g., next-token prediction
objective (Rajput et al., 2023)). During training, we tokenize
the action sequence using the set permutation regularization
described in Section 3.2.2 in each epoch. This approach nat-
urally augments the training sequences, which empirically
improves model performance, as shown in Section 4.3.

3.3.2. INFERENCE-TIME ENSEMBLING

During model inference, we tokenize each action sequence
q times using set permutation regularization. By passing
these q tokenized sequences through the model, we obtain q
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Table 2. Comparison between the widely used text tokenization method, byte-pair encoding (BPE) (Sennrich et al., 2016), and the
proposed context-aware action sequence tokenization method, ActionPiece.

Aspect BPE ActionPiece

Data Type text sequences action (unordered feature set) sequences
Token a byte sequence a feature set
Initial Vocabulary single bytes single-feature sets
Merging Unit adjacent byte pairs feature pairs within one set or between adjacent sets
Co-occurrence Weighting raw frequency counting probabilistic weighting (Figure 2)
Segmentation Strategy greedy fixed-order merging set permutation regularization (Algorithm 4)
Intermediate Structures N/A intermediate nodes for cross-action merges

output ranking lists (e.g., using beam search for inference
when TIGER (Rajput et al., 2023) is the GR backbone). We
then combine these ranking lists by averaging the scores
of each predicted item. This approach applies data-level
ensembling, which has been shown to enhance recommen-
dation performance, as discussed in Section 4.4.3.

3.4. Discussion

Orders in action sequences. In recommender systems, user
actions are typically represented as sets of features, such
as the title and price of the associated item. These features
typically have no inherent order within a single action. How-
ever, in sequential recommendation tasks, a user’s historical
actions are usually ordered by timestamp to capture tempo-
ral behavioral dynamics. Building on this, we model action
sequences as sequences of feature sets: while the features
within each action remain unordered, the temporal order-
ing of actions is preserved. This evolving composition of
features over time captures meaningful sequential patterns.

ActionPiece vs. BPE. While ActionPiece follows a similar
algorithmic framework as BPE, the key distinction lies in
the data formats they are designed to model. BPE operates
on one-dimensional byte sequences, whereas ActionPiece is
tailored for tokenizing sequences of feature sets. Modeling
each action as an unordered set aligns better with the inher-
ent structure of action sequences. For clarity, we summarize
the key differences in Table 2.

Efficiency impact of SPR. Despite introducing set permuta-
tion regularization, the training efficiency remains compara-
ble to existing methods such as TIGER. Feature permutation
is performed on the CPU and runs asynchronously alongside
TPU/GPU-based model updates, resulting in no noticeable
degradation in training speed. At inference time, SPR intro-
duces additional FLOPs due to the ensemble of augmented
test cases. However, the overall latency remains comparable
to baseline methods, as the augmented versions can be pro-
cessed in parallel across multiple computing devices (e.g.,
TPUs or GPUs). This parallelism offsets the added compu-
tation, enabling our method to maintain efficient inference
despite the use of inference-time ensembling.

Table 3. Statistics of the processed datasets. “Avg. t” denotes the
average number of actions in an action sequence.

Datasets #Users #Items #Actions Avg. t

Sports 18,357 35,598 260,739 8.32
Beauty 22,363 12,101 176,139 8.87

CDs 75,258 64,443 1,022,334 14.58

4. Experiments
4.1. Experimental Setup

Datasets. We use three categories from the Amazon Re-
views dataset (McAuley et al., 2015) for our experiments:
“Sports and Outdoors” (Sports), “Beauty” (Beauty), and
“CDs and Vinyl” (CDs). Each user’s historical reviews are
considered “actions” and are sorted chronologically as ac-
tion sequences, with earlier reviews appearing first. To
evaluate the models, we adopt the widely used leave-last-
out protocol (Kang & McAuley, 2018; Zhao et al., 2022;
Rajput et al., 2023), where the last item and second-to-last
item in each action sequence are used for testing and vali-
dation, respectively. The statistics of the processed datasets
are shown in Table 3. More details about the datasets can
be found in Appendix F.

Compared methods. We compare the performance of Ac-
tionPiece with the following methods: (1) ID-based sequen-
tial recommendation methods, including BERT4Rec (Sun
et al., 2019), and SASRec (Kang & McAuley, 2018);
(2) feature-enhanced sequential recommendation methods,
such as FDSA (Zhang et al., 2019), S3-Rec (Zhou et al.,
2020), and VQ-Rec (Hou et al., 2023); and (3) generative
recommendation methods, including P5-CID (Hua et al.,
2023), TIGER (Rajput et al., 2023), LMIndexer (Jin et al.,
2024), HSTU (Zhai et al., 2024), and SPM-SID (Singh
et al., 2024), each representing a different action tokeniza-
tion method (Table 1). A detailed description of these base-
lines is provided in Appendix G.

Evaluation settings. Following Rajput et al. (2023), we use
Recall@K and NDCG@K as metrics to evaluate the meth-
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Table 4. Performance comparison of different methods on the Amazon Reviews dataset (McAuley et al., 2015). The best and second-best
performance is denoted in bold and underlined fonts. “R@K” and “N@K” are short for “Recall@K” and “NDCG@K”, respectively.
“Improv.” denotes the percentage improvement of our method compared to the strongest baseline method.

Datasets Metric
ID-based Feature + ID Generative

Improv.
BERT4Rec SASRec FDSA S3-Rec VQ-Rec P5-CID TIGER LMIndexer HSTU SPM-SID ActionPiece

Sports

R@5 0.0115 0.0233 0.0182 0.0251 0.0181 0.0287 0.0264 0.0222 0.0258 0.0280 0.0316 ± 0.0005 +12.86%
N@5 0.0075 0.0154 0.0122 0.0161 0.0132 0.0179 0.0181 0.0142 0.0165 0.0180 0.0205 ± 0.0002 +11.71%
R@10 0.0191 0.0350 0.0288 0.0385 0.0251 0.0426 0.0400 — 0.0414 0.0446 0.0500 ± 0.0007 +12.11%
N@10 0.0099 0.0192 0.0156 0.0204 0.0154 0.0224 0.0225 — 0.0215 0.0234 0.0264 ± 0.0003 +12.82%

Beauty

R@5 0.0203 0.0387 0.0267 0.0387 0.0434 0.0468 0.0454 0.0415 0.0469 0.0475 0.0511 ± 0.0014 +7.58%
N@5 0.0124 0.0249 0.0163 0.0244 0.0311 0.0315 0.0321 0.0262 0.0314 0.0321 0.0340 ± 0.0011 +5.92%
R@10 0.0347 0.0605 0.0407 0.0647 0.0741 0.0701 0.0648 — 0.0704 0.0714 0.0775 ± 0.0017 +4.59%
N@10 0.0170 0.0318 0.0208 0.0327 0.0372 0.0400 0.0384 — 0.0389 0.0399 0.0424 ± 0.0011 +6.00%

CDs

R@5 0.0326 0.0351 0.0226 0.0213 0.0314 0.0505 0.0492 — 0.0417 0.0509 0.0544 ± 0.0005 +6.88%
N@5 0.0201 0.0177 0.0137 0.0130 0.0209 0.0326 0.0329 — 0.0275 0.0337 0.0359 ± 0.0004 +6.53%
R@10 0.0547 0.0619 0.0378 0.0375 0.0485 0.0785 0.0748 — 0.0638 0.0778 0.0830 ± 0.0008 +5.73%
N@10 0.0271 0.0263 0.0186 0.0182 0.0264 0.0416 0.0411 — 0.0346 0.0424 0.0451 ± 0.0005 +6.37%

ods, where K ∈ {5, 10}. Model checkpoints with the best
performance on the validation set are used for evaluation on
the test set. We run the experiments with five random seeds
and report the average metrics.

Implementation details. Please refer to Appendix H for
detailed implementation and hyperparameter settings.

4.2. Overall Performance

We compare ActionPiece with sequential recommenda-
tion and generative recommendation baselines, which use
various action tokenization methods, across three public
datasets. The results are shown in Table 4.

For the compared methods, we observe that those using
item features generally outperform item ID-only methods.
This indicates that incorporating features enhances recom-
mendation performance. Among the methods leveraging
item features (“Feature + ID” and “Generative”), generative
recommendation models achieve better performance. These
results further confirm that injecting semantics into item
indexing and optimizing at a sub-item level enables genera-
tive models to better use semantic information and improve
recommendation performance. Among all the baselines,
SPM-SID achieves the best results. By incorporating the
SentencePiece model (Kudo & Richardson, 2018), SPM-
SID replaces popular semantic ID patterns within each item
with new tokens, benefiting from a larger vocabulary.

Our proposed ActionPiece consistently outperforms all base-
lines across three datasets, achieving a significant improve-
ment in NDCG@10. It surpasses the best-performing base-
line method by 6.00% to 12.82%. Unlike existing methods,
ActionPiece is the first context-aware action sequence tok-
enizer, i.e., the same action can be tokenized into different
tokens depending on its surrounding context. This allows
ActionPiece to capture important sequence-level feature

Table 5. Ablation analysis of ActionPiece. The recommendation
performance is measured using NDCG@10. The best performance
is denoted in bold fonts.

Variants Sports Beauty CDs

TIGER with varying vocabulary sizes

(1.1) TIGER - 192 (4× 48) 0.0231 0.0362 N/A†

(1.2) TIGER - 768 (3× 28) 0.0220 0.0378 0.0331
(1.3) TIGER - 1k (4× 28) 0.0225 0.0384 0.0411
(1.4) TIGER-49k (6× 213) 0.0162 0.0317 0.0338
(1.5) TIGER-66k (4× 214) 0.0194 N/A‡ 0.0319

Vocabulary construction

(2.1) w/o tokenization 0.0215 0.0389 0.0346
(2.2) w/o context-aware 0.0258 0.0416 0.0429
(2.3) w/o weighted counting 0.0257 0.0412 0.0435

Set permutation regularization

(3.1) only for inference 0.0192 0.0316 0.0329
(3.2) only for training 0.0244 0.0387 0.0422
(3.3) TIGER + SPR 0.0202 0.0330 0.0351

ActionPiece (40k) 0.0264 0.0424 0.0451

†not applicable because the number of conflicts among semantic
ID prefixes (the first three tokens) in CDs exceeds 48.
‡not applicable because 214 is larger than #items in Beauty.

patterns that enhance recommendation performance.

4.3. Ablation Study

We conduct ablation analyses in Table 5 to study how each
proposed technique contributes to ActionPiece.

(1) To examine whether the performance gain of Ac-
tionPiece stems from the choice of vocabulary size, we
conduct an ablation study by varying the vocabulary size of
TIGER. We increase the number of semantic ID digits per
item (4→ 6) and the number of candidate semantic IDs per
digit (28 → 213 or 214), resulting in two TIGER variants

7



ActionPiece: Contextually Tokenizing Action Sequences for Generative Recommendation

N/A5k 10k 20k 30k 40k
Vocabulary Size

0.022

0.023

0.024

0.025

0.026

ND
CG

@
10

Sports

0.7

0.8

0.9

1.0

NS
L

N/A5k 10k 20k 30k 40k
Vocabulary Size

0.036

0.038

0.040

0.042

ND
CG

@
10

Beauty

0.7

0.8

0.9

1.0

NS
L

N/A5k 10k 20k 30k 40k
Vocabulary Size

0.036

0.038

0.040

0.042

0.044

ND
CG

@
10

CDs

0.80

0.85

0.90

0.95

1.00

NS
L

NDCG@10 NSL

Figure 4. Analysis of recommendation performance (NDCG@10, ↑) and average tokenized sequence length (NSL, ↓) w.r.t. vocabulary
size across three datasets. “N/A” indicates that ActionPiece is not applied, i.e., action sequences are represented solely by initial tokens.
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Figure 5. Analysis of token utilization rate (%) during model train-
ing w.r.t. segmentation strategy.

with vocabularies larger than ActionPiece. We also include
two variants with reduced vocabulary sizes by decreasing
the number of digits or candidates per digit. Despite the
broader range of vocabulary sizes, all TIGER variants per-
form worse than ActionPiece, and in some cases, even worse
than the original TIGER with 1,024 tokens. These results
suggest that the performance improvement of ActionPiece
is not simply due to scaling the vocabulary size up or down.
Instead, they highlight the difficulty of effectively scaling
vocabulary size in generative recommendation models, con-
sistent with the observations from Zhang et al. (2024).

(2) To evaluate the effectiveness of the proposed vocab-
ulary construction techniques, we introduce the following
variants: (2.1) w/o tokenization, which skips vocabulary con-
struction, using item features directly as tokens; (2.2) w/o
context-aware, which only considers co-occurrences and
merges tokens within each action during vocabulary con-
struction and segmentation; and (2.3) w/o weighted count-
ing, which treats all token pairs equally rather than using
the weights defined in Equations (1) and (2). The results
indicate that removing any of these techniques reduces per-
formance, demonstrating the importance of these methods
for building a context-aware tokenizer.

(3) To evaluate the effectiveness of SPR, we revert to
naive segmentation, as described in Section 3.2.2, during
model training and inference, respectively. The results show
that replacing SPR with naive segmentation in either training
or inference degrades performance. We also introduce an
ablation variant that applies SPR to the existing GR model
TIGER. The results indicate that SPR alone is insufficient to
improve the GR model. When applied to action sequences
tokenized by context-independent methods, SPR does not
change token frequencies and merely disrupts the internal to-

ken order within RQ-VAE-based semantic IDs. In contrast,
ActionPiece derives different tokens for the same item based
on its neighboring context, improving token utilization and
serving as an effective form of data augmentation.

4.4. Further Analysis

4.4.1. PERFORMANCE AND EFFICIENCY W.R.T.
VOCABULARY SIZE

Vocabulary size is a key hyperparameter for language tok-
enizers (Meta AI, 2024; Dagan et al., 2024). In this study,
we investigate how adjusting vocabulary size affects the
generative recommendation models. We use the normalized
sequence length (NSL) (Dagan et al., 2024) to measure the
length of tokenized sequences, where a smaller NSL indi-
cates fewer tokens per tokenized sequence. We experiment
with vocabulary sizes in {N/A, 5k, 10k, 20k, 30k, 40k},
where “N/A” represents the direct use of item features as
tokens. As shown in Figure 4, increasing the vocabulary
size improves recommendation performance and reduces
the tokenized sequence length. Conversely, reducing the
vocabulary size lowers the number of model parameters, im-
proving memory efficiency. This analysis demonstrates that
adjusting vocabulary size enables a trade-off between model
performance, sequence length, and memory efficiency.

4.4.2. TOKEN UTILIZATION RATE W.R.T.
SEGMENTATION STRATEGY

As described in Section 3.3.1, applying SPR augments the
training corpus by producing multiple token sequences that
share the same semantics. In Table 5, we observe that
incorporating SPR significantly improves recommendation
performance. One possible reason is that SPR increases
token utilization rates. To validate this assumption, we
segment the action sequences in each training epoch using
two strategies: naive segmentation and SPR. As shown
in Figure 5, naive segmentation uses only 56.89% of tokens
for model training, limiting the model’s ability to generalize
to unseen action sequences. In contrast, SPR achieves a
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Figure 6. Analysis of performance (NDCG@10, ↑) w.r.t. the num-
ber of ensembled segments q during model inference.

token utilization rate of 87.01% after the first training epoch,
with further increases as training progresses. These results
demonstrate that the proposed SPR segmentation strategy
improves the utilization of ActionPiece tokens, enabling
better generalization and enhanced performance.

4.4.3. PERFORMANCE W.R.T. INFERENCE-TIME
ENSEMBLES

As described in Section 3.3.2, ActionPiece supports
inference-time ensembling by using SPR segmentation. We
vary the number of ensembled segments, q, in {N/A, 1, 3, 5,
7}, where “N/A” indicates using naive segmentation during
model inference. As shown in Figure 6, ensembling more to-
kenized sequences improves ActionPiece’s recommendation
performance. However, the performance gains slow down
as q increases to 5 and 7. Since a higher q also increases
the computational cost of inference, this creates a trade-off
between performance and computational budget in practice.

4.5. Case Study

To understand how GR models benefit from the unordered
feature setting and context-aware action sequence tokeniza-
tion, we present an illustrative example in Figure 1.

Each item in the action sequence is represented as a feature
set, with each item consisting of five features. The features
within an item do not require a specific order. The first
step of tokenization leverages the unordered nature of the
feature set and applies set permutation regularization (Sec-
tion 3.2.2). This process arranges each feature set into a
specific permutation and iteratively groups features based
on the constructed vocabulary (Section 3.2.1). This results
in different segments that convey the same semantics. Each
segment is represented as a sequence of sets, where each set
corresponds to a token in the vocabulary.

By examining the segments and their corresponding token
sequences, we identify four types of tokens, as annotated
in Figure 1: (1) a subset of features from a single item (token
14844 corresponds to features 747 and 923 of the T-shirt);
(2) a set containing a single feature (feature 76 of the socks);
(3) all features of a single item (token 7995 corresponds to
all features of the shorts); and (4) features from multiple
items (e.g., token 8316 includes feature 923 from the T-

shirt and feature 679 from the socks, while token 19895
includes feature 1100 from the socks as well as features
560 and 943 from the shorts). Notably, the fourth type of
token demonstrates that the features of one action can be
segmented and grouped with features from adjacent actions.
This results in different tokens for the same action depending
on the surrounding context, showcasing the context-aware
tokenization process of ActionPiece.

5. Conclusion
In this paper, we introduce ActionPiece, the first context-
aware action sequence tokenizer for generative recommen-
dation. By considering the surrounding context, the same
action can be tokenized into different tokens in different
sequences. We formulate generative recommendation as
a task on sequences of feature sets and merge important
feature patterns into tokens. During vocabulary construc-
tion, we propose assigning weights to token pairs based on
their structures, such as those within a single set or across
adjacent sets. To enable efficient vocabulary construction,
we use double-ended linked lists to maintain the corpus and
introduce intermediate nodes to store tokens that combine
features across adjacent sets. Additionally, we propose set
permutation regularization, which segments a single action
sequence into multiple token sequences with the same se-
mantics. These segments serve as natural augmentations for
training and as ensemble instances for inference.

In the future, we plan to align user actions with other modal-
ities by constructing instructions that combine ActionPiece
tokens and other types of tokens. We also aim to extend
the proposed tokenizer to other tasks that can be framed as
set sequence modeling problems, including audio modeling,
sequential decision-making, and time series forecasting.
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Table 6. Notations and explanations.

Notation Explaination

i, i1, ij Item, item identifier, item ID
t The number of actions in the input action sequence; the timestamp when the model makes a prediction

it+1 The ground-truth next item
ît+1 The predicted next item

S = {i1, i2, . . . , it} The action sequence where each action is represented with the interacted item ID
A, A1, Aj A set of item features or tokens
m = |Aj | The number of features associated with each item

fj,k The k-th feature of item ij
Fk The collection of all possible choices for the k-th feature

S′ = {A1,A2, . . . ,At} The action sequence where each action is represented with a set of item features
c, c1, cj Input & generated tokens

l The number of tokens in the token sequence
C = {c1, c2, . . . , cl} The token sequence tokenized from the input action sequence S′

{cl+1, . . . , cq} The tokens generated by the GR model
V The vocabulary of ActionPiece tokenizer
R The merge rules of ActionPiece tokenizer

{(cu, cv)→ cnew} One merge rule indicating two adjacent tokens cu and cv can be replaced by a token cnew
Q = |V| The size of ActionPiece vocabulary
P (c, c′) The probability that tokens c and c′ are adjacent when flattening a sequence of sets into a token sequence

N The number of action sequences in the training corpus
L The average length of action sequences in the training corpus
H Maximal heap size, O(NLm)
q The number of segmentations produced using set permutation regularization during inference

Appendices

A. Notations
We summarize the notations used in this paper in Table 6.

B. Algorithmic Details
In this section, we provide detailed algorithms for vocabulary construction and segmentation.

B.1. Vocabulary Construction Algorithm

The overall procedure for vocabulary construction is illustrated in Algorithm 1. As described in Section 3.2.1, this process
involves iterative Count (Algorithm 2) and Update (Algorithm 3) operations.

B.2. Segmentation with Set Permutation Regularization Algorithm

The detailed algorithm for segmenting action sequences into token sequences using set permutation regularization (SPR) is
shown in Algorithm 4. In practice, we often run Algorithm 4 multiple times to augment the training corpus or ensemble
recommendation outputs, as described in Sections 3.3.1 and 3.3.2.

C. Efficient Vocabulary Construction Implementation
To efficiently construct the ActionPiece vocabulary, we propose using data structures such as heaps with a lazy update trick,
linked lists, and inverted indices to speed up each iteration of the construction process. The key idea is to avoid recalculating
token co-occurrences in every iteration and instead update the data structures. The pseudocode is shown in Figure 7.
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Algorithm 2 ActionPiece Vocabulary Construction – Count (Figure 2)
input Action sequence corpus S ′, current vocabulary V
output Accumulated weighted token co-occurrences count(·, ·)

1: for i← 0 to |V|, j ← 0 to |V| do
2: count(ci, cj)← 0
3: end for
4: for all sequence S′ ∈ S ′ do
5: t← length(S′) # Number of action nodes in sequence
6: for k ← 0 to t− 1 do
7: Ak ← S′[k] # Current action node
8: # Process all unordered token pairs within Ak

9: for all ci, cj ∈ Ak, i ̸= j do
10: count(ci, cj)← count(ci, cj) + 2/|Ak| # Weight of tokens within a single set (Equation (1))
11: count(cj , ci)← count(cj , ci) + 2/|Ak| # Symmetric update
12: end for
13: # Process all ordered token pairs between Ak and Ak+1

14: if k < t− 1 then
15: Ak+1 ← S′[k + 1]
16: for all ci ∈ Ak, cj ∈ Ak+1 do
17: count(ci, cj)← count(ci, cj) + 1/(|Ak| × |Ak+1|) # Weight of tokens from two adjacent sets (Equation (2))
18: end for
19: end if
20: end for
21: end for
return count(·, ·)

C.1. Data Structures

The data structures used in the proposed algorithm are carefully designed to optimize the efficiency of vocabulary construction.
Here is a detailed discussion of their roles and implementations:

• Linked list: Each action sequence in the training corpus is stored as a linked list. This allows efficient local updates
during token merging. When a token pair (cu, cv) is replaced by a new token cnew, only the affected nodes and their
neighbors in the linked list need to be modified (as shown in Algorithm 3 and Figure 3).

• Heap with lazy update trick: A max-heap prioritizes token pairs by their co-occurrences. Instead of recalculating the
heap entirely in each iteration, a “lazy update” strategy is employed: outdated entries (with mismatched co-occurrence
counts) are retained but skipped during extraction. In the pseudocode, the loop checks if the top element is outdated via
is outdated. Invalid entries are discarded, and only valid ones are processed. Updated co-occurrences are pushed
as new entries (with negative counts for max-heap emulation).

• Inverted indices: The pair2head dictionary maps token pairs to the sequences containing them. When a pair
(cu, cv) is merged, the algorithm directly retrieves affected sequence IDs via pair2head[(c u, c v)], avoiding a
full corpus scan. After merging, the inverted indices are incrementally updated: new token pairs (e.g., (cprev, cnew)
and (cnew, cnext)) are added to pair2head, while obsolete pairs are removed. This enables targeted updates and
ensures subsequent iterations efficiently access relevant sequences.

These structures collectively reduce time complexity by focusing computation on dynamically changing parts of the corpus
and avoiding redundant global operations. The linked list enables localized edits, the heap minimizes priority recalculation,
and the inverted indices eliminate brute-force searches, making the algorithm scalable to large corpora.

C.2. Time Complexity

The time complexity of the efficient vocabulary construction algorithm can be analyzed through two main components:
initialization and iterative merging.
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Algorithm 3 ActionPiece Vocabulary Construction – Update (Figure 3)
input Action sequence corpus S ′ before updating, current merge rule {(cu, cv)→ cnew}
output Updated action sequence corpus S ′

1: for all sequence S′ ∈ S ′ do
2: t← length(S′)
3: for k ← 0 to t− 1 do
4: Ak ← S′[k]
5: # Merge tokens in one action node
6: if cu ∈ Ak and cv ∈ Ak then
7: Replace cu and cv in Ak with cnew
8: end if
9: # Merge tokens from two adjacent nodes

10: if k < t− 1 then
11: Ak+1 ← S′[k + 1]
12: if cu ∈ Ak and cv ∈ Ak+1 then
13: if Ak,Ak+1 are both action nodes then
14: Create intermediate node M between Ak and Ak+1

15: M ← {cnew} # Linked list: Ak →M → Ak+1

16: Ak ← Ak \ cu
17: Ak+1 ← Ak+1 \ cv
18: else if Ak is intermediate node then
19: Ak ← {cnew}
20: Ak+1 ← Ak+1 \ cv
21: else if Ak+1 is intermediate node then
22: Ak ← Ak \ cu
23: Ak+1 ← {cnew}
24: end if
25: end if
26: end if
27: end for
28: end for
return S ′

• Initialization phase involves building the initial max-heap to track co-occurrence frequencies. Given N input
sequences (each with an average length of L), we count co-occurrences for all O(m2) token pairs within each set of
size m. This requires O(NLm2) time.

• Iterative merging phase dynamically processes the involved sequences. The total number of such sequences across all
iterations is approximately

O

(
N

|V0|

)
+O

(
N

|V0|+ 1

)
+ · · ·+O

(
N

Q

)
≃ O(logQN).

For each sequence, updating the linked list requires O(Lm) time, counting co-occurrences takes O(Lm2) time, and
inserting co-occurrences into the max-heap requires at most O(Lm2 logH) time. Here, H represents the heap size,
which is at most O(NLm). Thus, the overall time complexity for iterative merging is

O(logQN(Lm+ Lm2 + Lm2 logH)) = O(logQ logH ·NLm2).

Therefore, the overall time complexity of our proposed vocabulary construction algorithm is O(logQ logH · NLm2),
where the iterative merging phase dominates. This complexity is significantly better than the naive vocabulary construction
complexity of O(QNLm2).
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Algorithm 4 Segmentation via Set Permutation Regularization (SPR) (Section 3.2.2)
input Action sequence S, merge rulesR
output Segmented token sequences C

1: C ← [ ] # Initialize permuted initial token sequence
2: for all token set Ai ∈ S do
3: Generate random permutation of Ai as [c1, c2, . . . , c|Ai|]
4: Extend C with [c1, c2, . . . , c|Ai|] # Concatenate permutations
5: end for
6:
7: # Apply BPE (Sennrich et al., 2016) segmentation on permuted sequence
8: repeat
9: R′ ← ∅ # Candidate merge rules

10: for i← 0 to |C| − 1 do
11: if {(ci, ci+1)→ c′} ∈ R then
12: R′ ← R′ ∪ {(ci, ci+1)→ c′}
13: end if
14: end for
15: Select {(ck, ck+1)→ c′} ∈ R′ with the smallest index among all merge rulesR
16: C ← [c1, . . . , ck−1, c

′, ck+2, . . . ] # Replace (ck, ck+1) with a new token c′

17: untilR′ is ∅
return C

D. Additional Related Work
Aligning LLMs with user actions. A key motivation for developing action tokenization methods is to provide an efficient
and effective way of aligning pretrained generative models (e.g., LLMs (OpenAI, 2022; Anil et al., 2023; Touvron et al.,
2023; Zhao et al., 2023)) with user action data (Geng et al., 2022; Zheng et al., 2024; Hou et al., 2025). A typical pipeline
involves tokenizing action sequences into action tokens and then performing instruction tuning on inputs that combine both
language and action tokens. The choice of tokenization strategy plays a critical role. We identify three main paradigms:

• One token per item: Each action is represented by a single token, resulting in a dense vector that is typically derived
from a pretrained semantic encoder or a learnable embedding table (Hou et al., 2022; Liao et al., 2024; Zhu et al.,
2024b; Zhang et al., 2025b; Kim et al., 2024). While this approach is efficient in terms of sequence length, it suffers
from memory and scalability issues, particularly since the number of unique items often exceeds the typical vocabulary
size of LLMs. Aligning LLMs with such large vocabularies introduces both engineering and optimization challenges.

• Text-based tokenization: Each action is expressed as a textual string, which naturally aligns with the LLMs’ native
modality (Geng et al., 2022; Zhang et al., 2025a; Bao et al., 2023). However, this leads to substantially longer token
sequences, resulting in inefficiencies during tokenization and increased inference latency.

• Discrete tokens: Actions are tokenized into a small number of discrete tokens drawn from a compact, shared vocab-
ulary (Zheng et al., 2024; Tan et al., 2024; Jin et al., 2024). This approach balances sequence length and memory
efficiency, making it a practical choice for building LLM-based recommender systems.

E. Additional Discussions
E.1. Benefits of Set Permutation Regularization

SPR benefits the model from multiple perspectives:

• Token utilization perspective. SPR effectively prevents the features of a single action from being consistently merged
into the most compressed (high-level) tokens. Instead, it allows the action to be tokenized into both high-level and
low-level tokens, depending on the permutation and token merge rules. This increases the number of tokens actively
involved during both training and inference. As shown in Figure 5 and discussed in Section 4.4.2, SPR significantly
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1 def vocab_construction_iteration(max_heap, vocab, rules, pair2head):
2 """Performs one iteration of efficient vocabulary construction.
3

4 Args:
5 max_heap (PriorityQueue): Max-heap storing (co_occurrence, (c_u, c_v)) pairs.
6 vocab (List[Tuple]): Current vocabulary with merge rules.
7 rules (Dict): Merge rule {(c_u, c_v): c_new} mapping.
8 pair2head (Dict): Inverted indices that store mappings from the token pair to

all sequences that contain this token pair.
9 """

10 # Get most frequent valid pair (c_u, c_v) from max-heap
11 # Efficient version of "Count" in Algorithm 1
12 # Avoid recalculating co-occurrences for each iteration, by maintaining them in a

max-heap with the lazy update trick
13 while not max_heap.empty():
14 co_occurrence, (c_u, c_v) = max_heap.get()
15 if not is_outdated((c_u, c_v), co_occurrence): # Outdated values are lazily

removed.
16 break
17

18 # Create new token and update vocabulary
19 c_new = len(vocab)
20 vocab.append((c_u, c_v))
21 rules[(c_u, c_v)] = c_new
22

23 # Update sequences containing (c_u, c_v)
24 seq_ids = pair2head[(c_u, c_v)].copy() # IDs of affected sequences
25 delta_counts = defaultdict(int)
26

27 for sid in seq_ids:
28 # Merge all (c_u, c_v) pairs in sequence
29 new_seq = merge_sequence(seqs[sid], c_u, c_v, c_new) # Replace pairs
30 seqs[sid] = new_seq
31

32 # Calculate pair co-occurrence changes
33 new_freqs = count_pairs(new_seq) # Get token co-occurrences of the updated

sequence
34 delta = diff_counts(new_freqs, old_freqs[sid]) # Compute co-occurrence

differences
35 update_index(pair2head, delta, sid) # Update inverted index
36 old_counts[sid] = new_freqs
37

38 # Accumulate global co-occurrence changes
39 for p, cnt in delta.items():
40 delta_counts[p] += cnt
41

42 # Lazy update max-heap with new co-occurrences
43 for (c_u, c_v), delta in delta_counts.items():
44 if abs(delta) < eps: continue # eps: minimum update threshold
45 all_pair_freqs[(c_u, c_v)] += delta # Global co-occurrences
46 max_heap.put( (-all_pair_freqs[(c_u, c_v)], (c_u, c_v)) )

Figure 7. Pseudocode for a single iteration of the efficient vocabulary construction algorithm, illustrating how a max-heap with lazy
updates is used to track and merge frequent token pairs.

improves token utilization - from 56.89% to 95.33% by the 5th epoch - indicating that a greater proportion of tokens
are trained after applying SPR.

• Data augmentation perspective. From the perspective of data augmentation, SPR enriches the token sequences available
for model training. Without SPR, each action sequence can only be tokenized into a single, fixed token sequence.
In contrast, SPR allows each action sequence to be tokenized in multiple ways (as shown in Figure 1). While these
augmented sequences preserve the same semantic information, they expose the model to richer token patterns. Training
on these diverse token sequences helps the model generalize better, as evidenced by the performance of variant (3.1)
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in Table 5.

• Ensemble perspective. SPR also enables inference-time augmentation. A given input action sequence can be augmented
into multiple token sequences during inference. Each sequence may yield a different ranking of the next possible items.
By ensembling these recommendation results, overall performance can be enhanced, as demonstrated by variant (3.2)
in Table 5 and further illustrated in Figure 6.

E.2. Connections Between ActionPiece and Feature Crossing

A core component of ranking models is automatically capturing feature-crossing patterns that are helpful for recommendation
performance (Shan et al., 2016; Wang et al., 2017; 2021; Bian et al., 2022), which is conceptually related to ActionPiece.
The key difference lies in the level at which interactions are modeled. Prior works typically perform automatic feature
crossing at the model level, learning interactions implicitly through the network architecture. In contrast, ActionPiece
merges features at the data level.

Although we do not directly compare against these specific feature-crossing models, we include several baselines that
follow a similar design philosophy. For example, HSTU in Table 4 and variant (2.1) in Table 5 use the same underlying
item features as ActionPiece but input them in a flattened form, without merging. In these setups, feature interactions are
expected to be learned by the autoregressive model via self-attention and feed-forward layers, i.e., at the model level.

Our results demonstrate that ActionPiece, which performs data-level feature merging, consistently outperforms these methods
in both recommendation quality (Tables 4 and 5) and efficiency (Figure 4). This is particularly evident in normalized
sequence length (NSL): both HSTU and variant (2.1) yield NSL values of 1, reflecting longer sequences compared to the
more compact sequences tokenized by ActionPiece.

F. Datasets
Categories. Among all the datasets, “Sports” and “Beauty” are two widely used benchmarks for evaluating generative
recommendation models (Rajput et al., 2023; Jin et al., 2024; Hua et al., 2023). We conduct experiments on these
benchmarks to ensure fair comparisons with existing results. Additionally, we introduce “CDs”, which contains about
4× more interactions than “Sports”, making it a larger dataset for evaluating the scalability of GR models. For “CDs”,
since there are no publicly available results from generative recommendation methods to date, we closely followed the
experimental settings used in public benchmarks like “Sports” and “Beauty” to ensure fair comparisons.

Sequence truncation length. Following Rajput et al. (2023), we filter out users with fewer than 5 reviews and truncate
action sequences to a maximum length of 20 for “Generative” methods, including ActionPiece. For “ID-based” and “Feature
+ ID” baselines, we set the maximum length to 50, as suggested in their original papers.

Item text features. Following Rajput et al. (2023); Zheng et al. (2024); Hou et al. (2024a); Sheng et al. (2025), the first
step for feature engineering is to combine multiple raw text features into a single sentence for each item. Then, we use a
pretrained sentence embedding model to encode this sentence into a vector representation. In all our implementations, we
concatenate title, price, brand, feature, categories, and description, and use sentence-t5-base (Ni et al., 2022) as the
sentence embedding model.

• The encoded sentence embeddings of 768 dimension are directly used as textual item representations for UniSRec.

• We quantize the sentence embeddings using residual quantization (RQ) (Rajput et al., 2023; Zeghidour et al., 2021;
Zheng et al., 2025) into three codes, each with 256 candidates. To prevent conflicts, we add an extra identification code.
These four codes together serve as the RQ-based semantic IDs for TIGER and SPM-SID.

• For other baselines that require item features, such as FDSA, S3-Rec, VQ-Rec, HSTU, and our method, we follow Hou
et al. (2023) and quantize the sentence embeddings using optimized product quantization (OPQ) (Ge et al., 2013).
Except for VQ-Rec, where the sentence embeddings are quantized into 32 codes as suggested in the original paper, we
quantize the sentence embeddings into 4 codes for all other methods to ensure a fair comparison. The codebook size is
256 for each digit of code. For generative methods HSTU and ActionPiece, we also include an additional identification
code to prevent conflicts. Note that, unlike RQ-based semantic IDs, features produced by product/vector quantization
do not require a specific order.
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G. Baselines
We compare ActionPiece with the following representative baselines:

G.1. ID-Based Sequential Recommendation Methods

• SASRec (Kang & McAuley, 2018) represents each item using its unique item ID. It encodes item ID sequences with a
self-attentive Transformer decoder. The model is trained by optimizing a binary cross-entropy objective.

• BERT4Rec (Sun et al., 2019) also represents each item using its unique item ID. Unlike SASRec, it encodes sequences
of item IDs with a bidirectional Transformer encoder. The model is trained using a masked prediction objective.

G.2. Feature-Enhanced Sequential Recommendation Methods

• FDSA (Zhang et al., 2019) integrates item feature embeddings with vanilla attention layers to obtain feature representa-
tions. It then processes item ID sequences and feature sequences separately through self-attention blocks.

• S3-Rec (Zhou et al., 2020) first employs self-supervised pre-training to capture the correlations between item features
and item IDs. Then the checkpoints are loaded and fine-tuned for next-item prediction, using only item IDs.

• VQ-Rec (Hou et al., 2023) encodes text features into dense vectors using pre-trained language models. It then applies
product quantization to convert these dense vectors into semantic IDs. The semantic ID embeddings are pooled together
to represent each item. Since the experiments are not performed in a transfer learning setting, we omit the two-stage
training strategy outlined in the original paper. Instead, we reuse the model architecture and train it from scratch using
an in-batch contrastive loss with a batch size of 256.

G.3. Generative Recommendation Methods

Each generative recommendation baseline corresponds to an action tokenization method described in Table 1.

• P5-CID (Hua et al., 2023) is an extension of P5 (Geng et al., 2022), which formulates recommendation tasks in
a text-to-text format. Building on P5, the authors explored several tokenization methods to index items for better
recommendations. In this study, we use P5-CID as a representative hierarchical clustering-based action tokenization
method. It organizes the eigenvectors of the Laplacian matrix of user-item interactions into a hierarchy and assigns
cluster IDs at each level as item indices. When implementing this baseline method, we adopt the same model backbone
as ActionPiece (encoder-decoder Transformers trained from scratch) and use the indices produced by P5-CID.

• TIGER (Rajput et al., 2023) encodes text features similarly to VQ-Rec but quantizes them into semantic IDs using
RQ-VAE. The model is then trained to autoregressively predict the next semantic ID and employs beam search for
inference. We use a beam size of 50 in beam search to generate the top-K recommendations.

• LMIndexer (Jin et al., 2024) takes text as input and predicts semantic IDs. The text description of each item is first
tokenized using a text tokenizer. The resulting text tokens are then concatenated to form input action sequences. The
model is trained with self-supervised objectives to learn the semantic IDs of target items. The reported results in Table 4
are taken from the original paper. We do not report the results of LMIndexer on the large dataset “CDs” because it does
not converge under similar computing budget as the other methods.

• HSTU (Zhai et al., 2024) discretizes raw item features into tokens, treating them as input tokens for generative
recommendation. The authors also propose a lightweight Transformer layer that improves both performance and
efficiency. For action tokenization, we use the same item features as our method and arrange them in a specific order to
form the tokenized tokens of each item.

• SPM-SID (Singh et al., 2024) first tokenizes each item into semantic IDs. It then uses the SentencePiece model
(SPM) (Kudo & Richardson, 2018) to merge important semantic ID patterns within each item into new tokens in
the vocabulary. While the original paper introduces this method for ranking models, we adapt it for the generative
recommendation task. Specifically, we concatenate the SPM tokens as inputs, feed them into the T5 model, and
autoregressively generate SPM tokens as recommendations.
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Table 7. Hyperparameter settings of ActionPiece for each dataset.

Hyperparameter Sports Beauty CDs

learning rate 0.005 0.001 0.001
warmup steps 10,000 10,000 10,000
dropout rate 0.1 0.1 0.1
weight decay 0.15 0.15 0.07
vocabulary size 40,000 40,000 40,000
n inference segments 5 5 5
beam size 50 50 50
num layers 4 4 4
d model 128 128 256
d ff 1,024 1,024 2,048
num heads 6 6 6
d kv 64 64 64
optimizer adamw adamw adamw
lr scheduler cosine cosine cosine
train batch size 256 256 256
max epochs 200 200 200
early stop patience 20 20 20

H. Implementation Details
Baselines. The results of BERT4Rec, SASRec, FDSA, S3-Rec, TIGER, and LMIndexer on the “Sports” and “Beauty”
benchmarks are taken directly from existing papers (Zhou et al., 2020; Rajput et al., 2023; Jin et al., 2024). For other
results, we carefully implement the baselines and tune hyperparameters according to the suggestions in their original papers.
We implement BERT4Rec, SASRec, FDSA, and S3-Rec using the open-source recommendation library RecBole (Zhao
et al., 2021). For other methods, we implement them ourselves with HuggingFace Transformers (Wolf et al., 2020) and
PyTorch (Paszke et al., 2019). We use FAISS (Douze et al., 2024) to quantize sentence representations.

ActionPiece. We use an encoder-decoder Transformer architecture similar to T5 (Raffel et al., 2020). We use four layers
for both the encoder and decoder. The multi-head attention module has six heads, each with a dimension of 64. For the
public benchmarks “Sports” and “Beauty”, we follow Rajput et al. (2023) and set the token embedding dimension to 128
and the intermediate feed-forward layer dimension to 1024. This results in a total of 4.46M non-embedding parameters. For
the larger “CDs” dataset, we use a token embedding dimension of 256 and an intermediate feed-forward layer dimension
of 2048, leading to 13.11M non-embedding parameters. For model inference, we use beam search with a beam size of
50. Note that the baselines P5-CID, TIGER, and SPM-SID use the same model architecture, differing only in their action
tokenization methods. For ActionPiece-specific hyperparameters, we set the number of segmentations produced using set
permutation regularization during inference to q = 5. We tune the vocabulary size in {5k, 10k, 20k, 30k, 40k}.

Training. We train the GR models from scratch for up to 200 epochs, using early stopping if the model does not achieve a
better NDCG@10 on the validation set for 20 consecutive epochs. The training batch size is set to 256. The learning rate is
selected from {1× 10−3, 3× 10−3, 5× 10−3} with a warmup step of 10,000. We use a dropout rate of 0.1 and tune the
weight decay from {0.07, 0.1, 0.15, 0.2}. For all methods implemented by us, we conduct five repeated experiments using
random seeds {2024, 2025, 2026, 2027, 2028}. The model checkpoints with the best average NDCG@10 on the validation
set are selected for evaluation on the test set, and we report these results. Each model is trained on a single 40G NVIDIA
A100 GPU.

Inference. The inference process of ActionPiece follows the same procedure as TIGER. The decoder autoregressively
generates token sequences representing the target items. During training, we use the original item features as labels, without
any augmentation or token merging. At inference time, for each augmented version of a test case, we apply beam search to
generate top-ranked token sequences. The most probable sequences (i.e., prefixes) are retained in the beam (with beam size
specified in Table 7), and the model continues generating tokens one at a time until the target sequence length is reached.
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