

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030

MEDICAL THINKING WITH MULTIPLE IMAGES

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models and vision-language models score high on many medical QA benchmarks; however, real-world clinical reasoning remains challenging because cases often involve multiple images and require cross-view fusion. We present **MedThinkVQA**, a benchmark that asks models to *think with multiple images*: read each image, merge evidence across views, and pick a diagnosis with stepwise supervision. We make three parts explicit: multi-image questions, expert-annotated stepwise supervision, and beyond-accuracy evaluation. Only MedThinkVQA combines all these parts in one expert-annotated benchmark. The dataset has 8,481 cases in total, with 751 test cases, and on average 6.51 images per case; it is expert-annotated and, at this level, larger and more image-dense than prior work (earlier maxima ≤ 1.43 images per case). On the test set, GPT-5 achieves 57.39% accuracy, approximately 15 percentage points below the strongest result on the most challenging prior benchmark of a similar kind, while other strong models are lower (Qwen2.5-VL-32B: 39.54%, MedGemma-27B: 37.55%, InternVL3.5-38B: 43.14%). Giving *expert* findings and summaries brings clear gains, but using models' *self-generated* ones brings small or negative gains. Step-level evaluation shows where models stumble: errors center on image reading and cross-view integration in both decisive and non-decisive steps ($> 70\%$); when a step is decisive for the final choice, reasoning slips become more common (32.26%), while scenario and pure-knowledge slips are relatively rare ($< 10\%$). These patterns isolate and quantify the core obstacle: *extracting and integrating cross-image evidence*, rather than language-only inference. Code and example data are available at https://anonymous.4open.science/r/ICLR_DEMO-D35E/.

031
032
1 INTRODUCTION
033

034 Medical QA has advanced fast with large language models (LLMs) and vision-language models
035 (VLMs). Scores on exam-style datasets are high, and many tasks now appear to be saturated (Jin et al.,
036 2021; Pal et al., 2022; Jin et al., 2019). But the everyday diagnosis is not a single question and answer.
037 As shown in Fig. 1 (left), clinicians review the clinical scenario and interpret several images, then
038 proceed through the steps (e.g., Differential Diagnosis) before a diagnostic determination. Therefore,
039 we need a benchmark that tests and evaluates the process on multi-image cases.

040 MedThinkVQA sets a clear three-step *think-with-images* (TwI) flow (Fig. 1, middle): models first
041 read individual images (*per-image findings*), then fuse evidence across views into a *case-level imaging*
042 *summary*, and finally perform *differential-diagnosis reasoning* to select a diagnosis. Beyond this
043 diagnostic core, MedThinkVQA also includes a *Medical Education Case Discussion* task, where
044 models produce teaching-style explanations that mirror how clinicians communicate and share
045 knowledge in practice. Answer accuracy alone cannot reveal where this process breaks down, so
046 MedThinkVQA supports *beyond-accuracy* evaluation that considers both the intermediate imaging
047 and reasoning stages and the educational value of case discussions, enabling a diagnosing-style view
048 that localizes failures in image reading, cross-view fusion, and clinical reasoning (see Fig. 1 and
049 Sections 3, 4).

050 Table 1 places MedThinkVQA among recent multimodal medical QA datasets (Hu et al., 2024;
051 Ye et al., 2024; Zuo et al., 2025). Our cases are expert-annotated and include *clinical scenarios*,
052 *per-image findings*, *case imaging summaries*, and *teaching notes*. There are 8,481 cases, with 751 for
053 testing, and an average of 6.51 images per case. Prior expert-level benchmarks use far fewer images
per case ($\max \leq 1.43$). Therefore, our setup emphasizes cross-view fusion, rather than single-view

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Clinical Scenarios: One male patient aged 72 years complained of one-week chest pain and three-day exertional dyspnoea. There was no past history of cardiovascular, respiratory, or gastrointestinal disease ...



Based on ALL provided images together with the textual context, select the single best diagnosis from the options.

A. Situs inversus totalis with dextrocardia
B. Dextrocardia without situs inversus
C. Kartagener syndrome
D. Technical rotation artefact on imaging
E. Congenital cardiac malformation with positional abnormality

Medical thinking with images (TwI)

Step1: per-image radiological annotations

 Figure 1: Chest X-ray (PA view) demonstrating situs inversus totalis...
 Figure 2/3/4

Step2: case-level integrated imaging findings
 Chest X-ray demonstrated dextrocardia with a gastric bubble on the right and thereby suggested situs inversus totalis. ECG demonstrated ...

Step3: differential diagnosis reasoning
 The images show a clean mirror-image layout: the heart apex points right, the aortic arch tracks on the right, and an abdominal CT, the stomach/spleen are right-sided while the liver is left-sided: classic situs inversus totalis with dextrocardia.
 Isolated dextrocardia (B) would keep normal abdominal situs, which we do not see.
 Kartagener syndrome (C) needs ...
 Rotation artifact (D) cannot ...
 A congenital malformation with positional abnormality (E) usually gives mixed/ambiguous organ positions, not this symmetric mirror pattern. Hence only (A) Situs inversus totalis with dextrocardia fits all findings.

Diagnosing-Style Evaluation

MedTwI Eval
Step1 and Step2: ROUGE/RadCliQ
Step3: step by step
 1. Clinical Context ?
 2. Clinical Critical ?
 3. Error Analysis -

MedTwI Error Analysis
 - Clinical Scenario Understanding
 - Image Perceptual Error
 - Lack of Medical Knowledge
 - Reasoning Process Error

Case Discussion Eval
B-I-E-C-O-T
 1. Section by section eval
 2. Each section annotate sent-level correctness

Education Value Analysis
 1. Disease Definition 2. Clinical Manifestation 3. Imaging Findings 4. Diagnostic Reasoning 5. Transferable Learning → Each scored 0-2

Medical Education Case Discussion

Background:
 Situs describes the position of the thoracic and abdominal organs. Situs solitus [1]

Clinical Perspective:
 Patients with situs inversus totalis are frequently asymptomatic. However ...

Imaging Perspective:
 Initial chest radiography suggested dextrocardia with situs inversus. ECG findings further supported this. CT thorax and abdomen [5].

Clinical Significance:
 Recognition of situs inversus totalis is vital in clinical and emergency settings to prevent misdiagnosis [10], especially in ...

Outcome:
 No acute cardiac or respiratory pathology was identified in our case. The patient

Take Home Message / Teaching Points:

1. Situs inversus totalis is often discovered incidentally.
2. Awareness of such anatomical variants is essential for accurate diagnosis and treatment planning.
3. Imaging plays a vital role in confirming the diagnosis and excluding associated anomalies.
4. Patients should be informed about their condition, especially in preparation for emergencies or interventions.

Figure 1: Medical Thinking with Images (TwI): task and diagnosing-style evaluation. Left: a sample case with a clinical scenario, multi-view images (e.g., radiograph + CT), and a five-option single-best-answer diagnosis. Middle: TwI’s three supervised steps: (1) *Per-Image Findings* (detect and name key radiological signs for each image, expert-annotated, brief statements); (2) *Case-level Integrated Imaging Summary* (synthesizes cross-view evidence into a single case summary); (3) *Differential-Diagnosis (DDx) reasoning* (align the summary with candidate diagnoses, rule out distractors with image-grounded arguments, and pick the most consistent answer). Right: Beyond-accuracy evaluation. Steps 1–2 use automatic metrics (ROUGE / RadCliQ), while Step 3 and the Medical Education Case Discussion are assessed with structured human- and LLM-judge rubrics that check clinical correctness and educational value, localizing failures in image reading, cross-view fusion, and teaching quality (see Section 4).

recognition. We further design MedThinkVQA so that questions depend on imaging evidence rather than textual shortcuts; Section 3 details the ICD–10 coverage, rare-disease cases, and the filtering and option policies used to control distractors, leakage, and surface biases.

On our test split, GPT-5 achieves the highest 57.39% accuracy, while other strong models are lower (Qwen2.5-VL-72B: 49.18%, MedGemma-27B: 42.02%, InternVL3.5-38B: 43.14%); this is ~ 15 percentage points below the strongest result on the hardest prior benchmark of a similar kind and ~ 20 points below clinicians on the same 96-case subset (77.10%), highlighting substantial headroom on MedThinkVQA. Giving *expert* findings and summaries raises accuracy, whereas replacing them with models’ *self-generated* ones gives only small gains or even hurts performance. The expert audit further shows that 88.05% of images are judged supportive for the final diagnosis, that test cases typically involve around two distinct imaging modalities per case (mean modalities_count ≈ 2.13), and that 28.2% of test cases are longitudinal follow-up studies, so models must aggregate many informative views across both modality and time rather than relying on a single key image. The bottleneck is reading each image well and fusing evidence across images in the think-with-images steps, which our step-level analysis supports: across 202 labeled steps, 44 carry non-empty error tags; among these error-bearing steps, 77.27% reflect image-understanding issues and 22.73% reflect reasoning, with medical knowledge (9.09%) and scenario setup (4.55%) much rarer; within error-bearing *Critical* steps, the share of reasoning rises to 32.26% while image understanding remains high at 70.97% (scenario and knowledge near 6–10%).

Contributions. (1) A benchmark for *multi-image* diagnostic reasoning with expert supervision at three steps. (2) A *beyond-accuracy* evaluation suite with automatic intermediate metrics, error-type tagging, and education-value scoring; we release scoring scripts and formats. (3) A large and image-dense expert-annotated corpus (8,481 cases; 6.51 images per case) that, to our knowledge, is the only one that checks all columns in Table 1. (4) Evidence that cross-image evidence extraction and integration is the current medical VLMs bottleneck.

Benchmark	# Case	Expert Annotation	Clinical Scenarios	# Img per Cas	Multi-Mod Imaging	Longitud Studies	Think-with-Images Intermediate Signals	Beyond-ACC Evaluation
VQA-Rad Lau et al.	451	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	0.45	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
VQA-Med Ben Abacha et al.	500	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	1.00	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Path-VQA He et al.	6,719	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	0.13	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
SLAKE-En Liu et al.	1,061	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	0.09	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
PMC-VQA Zhang et al.	33,430	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	0.87	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
OmniMedVQA Hu et al.	127,995	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	0.92	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
GMAI-MMBench Ye et al.	21,281	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	1.00	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
GEMeX Liu et al.	1,605,575	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	1.00	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
Medical-Diff-VQA Hu et al.	700,703	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	1.23	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
MedFrameQA Yu et al.	2,851	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	3.24	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
ICG-CXR Ma et al.	11,439	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	2.00	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
MedRAX ¹ Fallahpour et al.	2,500	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	1.85	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
GEMeX-ThinkVG Liu et al.	206,071	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	1.00	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
MMMU (H & M) Yue et al.	1,752	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	1.14	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
MMMU-Pro (H & M) Yue et al.	346	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	1.25	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
S-Chain Le-Duc et al.	12,000	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	1.00	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
MedXpertQA MM Zuo et al.	2,000	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	1.43	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>
MedThinkVQA	8,481	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	6.51	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>	<input checked="" type="checkbox"/>

Table 1: Comparisons with multimodal medical QA benchmarks. **#Case/#Img/Expert Annotation.** *MedThinkVQA* is expert-annotated, averages **6.51** images per case (prior maxima ≤ 1.43 ; $\geq 4.5 \times$ more), and is the largest corpus at the expert-annotation level; a checkmark in the *Expert Annotation* column indicates that items are curated and labeled by clinicians rather than automatically generated. **Clinical Scenarios.** Prior work lacks broad, fine-grained coverage of real diagnostic scenarios; only *MedThinkVQA* and *MedXpertQA-MM* include scenario labels. **Multi-Modal Imaging / Longitudinal Studies.** We mark *Multi-Modal Imaging* when at least some questions require joint interpretation of images from multiple distinct medical imaging modalities for the same case (e.g., radiograph+CT), and *Longitudinal Studies* when questions are built from follow-up imaging of the same patient at different time points (e.g., baseline vs follow-up studies). **Think-with-Images Intermediate Signals.** This merged column indicates whether a benchmark provides intermediate supervision for think-with-images reasoning, including *per-image findings*, a *case-level imaging summary*, and a *case discussion* (teaching note). **Beyond-ACC Evaluation.** Leveraging these signals, only *MedThinkVQA* supports fine-grained, end-to-end assessment of think-with-images reasoning and teaching discussions: stepwise checks, error-type tags, education-value scoring, and automatic intermediate metrics, rather than accuracy alone.

2 RELATED WORK

Early MedVQA corpora set task forms but had small scale or shallow reasoning (Ben Abacha et al., 2019; Lau et al., 2018; Liu et al., 2021; He et al., 2020; Zhang et al., 2023). Later unified benchmarks grew breadth across modalities and specialties (Hu et al., 2024; Ye et al., 2024). General expert-level suites also add a Health/Medicine subset and try to reduce shortcuts (Yue et al., 2024a;b). But most questions are single-image or short-context, and many use automatic labels. Many datasets are built from image captions, so labels do not encode diagnostic reasoning or multi-image context. They also lack the detailed clinical information that real cases need. Coverage of medical image types is still limited compared to practice. Within chest radiography and longitudinal imaging, large-scale corpora such as GEMeX (Liu et al., 2025a), Medical-Diff-VQA (MIMIC-Diff-VQA) (Hu et al., 2023), ICG-CXR (Ma et al., 2025), and the multi-image MedFrameQA benchmark (Yu et al., 2025) expand data scale and introduce explainable, difference-aware, counterfactual, or explicitly multi-image settings. However, their QAs and rationales are largely produced by rule-based or GPT-style pipelines rather than per-item expert traces, most items remain single-view or image-pair based, and they do not provide the *per-image findings*, *case-level imaging summaries*, or *teaching notes* needed for stepwise diagnostic supervision. So evaluation stays answer-centric and lacks stepwise diagnostic supervision, as reflected in the upper rows of our comparison.

MedXpertQA raises difficulty and realism and has a multimodal track with images and histories (Zuo et al., 2025). It also provides scenario labels. But it does not release expert *per-image findings* or a *case-level imaging summary*, and it does not annotate option-wise eliminations. Items also use far fewer images per case (max ≤ 1.43), so cross-view fusion is not stressed. We fill these gaps with expert step labels (per-image findings and a case summary), with option-wise eliminations, and with a reproducible beyond-accuracy suite (step metrics, error types, and education scoring).

Eurorad-based studies often prompt models with textual descriptions from case reports (Kim et al., 2025). This probes language use, but it does not test reading raw images. Text-only prompting

cannot test multi-image fusion or image dependence. In parallel, agent-style evaluation on chest X-rays (MedRAX/ChestAgentBench) orchestrates segmentation, grounding, report-generation, and classification tools on Eurorad-derived multiple-choice cases, but the released benchmark exposes only questions and images without the underlying expert step traces, complementing rather than replacing multi-image diagnostic supervision (Fallahpour et al., 2025). So our setting requires direct multi-image reading and option-wise, evidence-grounded elimination.

Work on reasoning supervision trains or audits how models explain answers (Gai et al., 2025; Liu et al., 2024a; Wang et al., 2025b; Fan et al., 2025). Prior efforts include chain-of-thought generation, visually grounded reasoning, and cycle consistency. Recent corpora such as GEMeX-ThinkVG (Liu et al., 2025b) and S-Chain (Le-Duc et al., 2025) further introduce step-by-step rationales with explicit visual grounding and localization metrics (e.g., answer-reason scores, A-score, mIoU), moving beyond answer-only evaluation while still focusing mainly on single-image cases without clinical scenarios or multi-view, case-level synthesis. These help transparency and stability. But most corpora do not release expert, item-specific *diagnostic* traces tied to options. Without option-aligned traces, contrastive fidelity checks and step-level rubrics are hard to standardize. We release expert per-image findings and a case-level summary, and we pair them with option-wise eliminations. This enables contrastive fidelity checks, step-level scoring, and education-oriented evaluation with human and LLM judges. Teaching discussions are also a standard product of medical education, yet benchmarks rarely evaluate this skill.

3 MEDTHINKVQA

3.1 SOURCE CORPUS

MedThinkVQA is adapted from *Eurorad*, a peer-reviewed online database of radiology teaching cases curated by the European Society of Radiology (eur). The corpus covers major subspecialties (neuro, musculoskeletal, thoracic, abdominal, pediatric, etc.) and common imaging modalities (X-ray, CT, MRI, ultrasound, etc.). Each case includes: (i) a brief clinical history; (ii) a multi-image set (average 6.51 images per case); (iii) radiologist-annotated, per-image hints; (iv) a case-level *Integrated Imaging Summary* section; (v) an *Expert Reasoning & Teaching Note* that interprets the findings, highlights key diagnostic reasoning, and links to clinical relevance; (vi) the final diagnosis; and (vii) a differential-diagnosis list.

Cases are contributed by radiologists and researchers worldwide, typically based on real clinical examinations. Submissions are reviewed by the Eurorad Editorial Board (radiology experts) before publication to ensure authenticity and educational value (eur). We collected **8,481** cases and curated them into MedThinkVQA. After post-processing, we formed a held-out test set with **751** cases and a training set with **7,730** cases. These cases span 13 aggregated imaging modalities in the test split and typically involve around two distinct modalities per case; detailed modality statistics are provided in Appendix J. For concreteness, detailed field-to-annotation examples and six representative Eurorad case studies are provided in Appendix C. Details of the MCQ transformation and option policy are provided in Section 3.3. .

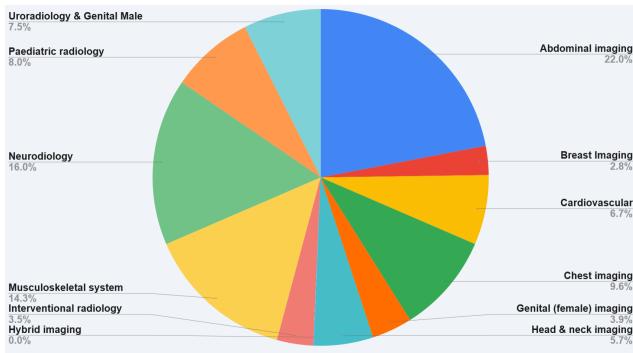


Figure 2: Distribution of radiology imaging main categories

Eurorad materials use CC BY-NC-SA 4.0; MedThinkVQA follows the same license and is for research and education only, with attribution and ShareAlike, and no commercial use. We worked with Eurorad and use the materials with permission. Cases are de-identified to the best of our knowledge; we did not collect new personal data; IRB review was not required; we remove items if residual identifiers are suspected. The benchmark is not a clinical device and must not be used for diagnosis, treatment, or triage. To lower leakage risk, we release collection and filtering scripts,

216 run de-duplication, and drop items that text-only models can solve; we also keep a path to refresh
 217 held-out items.¹
 218

219 **3.2 DATASET COVERAGE**
 220

221 **Task framing.** We characterize dataset coverage along two orthogonal
 222 axes: (i) a *disease* axis using ICD-10 chapters, and (ii) a *radiology/medical imaging* axis grouped by anatomy and subspecialty. The
 223 ICD-10 taxonomy contains 22 chapters. Using GPT-5 to map case labels
 224 to ICD-10, our held-out test set covers **20/22** chapters and additionally
 225 includes **85** rare-disease cases aligned with *Orphanet*, providing coverage
 226 of long-tail conditions.²
 227

228 To assess breadth from an imaging perspective, we aggregated the *full*
 229 *dataset* by radiology subspecialties (*anatomy & subspecialty*). Figure 3
 230 shows the distribution. The cases are not concentrated in a single region
 231 but span across all major clinical domains. The largest share comes from
 232 *abdominal imaging* (22.0%), followed by *neuroradiology* (16.0%) and
 233 *musculoskeletal* (14.3%). Mid-sized categories include *chest* (9.6%),
 234 *paediatric* (8.0%), and *urogenital imaging* (7.5%), while *cardiovascular*
 235 (6.7%) and *head & neck* (5.7%) also make substantive contributions.
 236 Smaller but non-negligible proportions are represented in *breast* and
 237 *interventional radiology*, with *hybrid imaging* appearing only rarely
 238 (<0.1%). From a temporal-structure perspective, roughly one quarter
 239 of MedThinkVQA cases are longitudinal follow-up studies (multiple
 240 time points for the same patient), so temporal disease evolution is *ex-
 241 plicitly represented*; detailed longitudinal statistics are summarized in
 242 [Appendix K](#).
 243

244 **3.3 MCQ CONVERSION AND OPTION POLICY**
 245

246 Each case is presented as a five-choice single-best-answer MCQ: *Given the clinical history and*
 247 *associated radiology images, select the most likely diagnosis from the options.* The ground-truth
 248 label is the case’s *final diagnosis*. While only the clinical history and images are provided as input
 249 context for the QA task, we also retain other curated textual fields (expert caption, Integrated Imaging
 250 Summary, and Expert Reasoning & Teaching Note) in the dataset files for potential future use. If
 251 the source differential diagnosis list has ≥ 5 candidates, we *prune* to five using a confusion-aware
 252 ranking (keep the correct answer plus four distractors that models most often confuse with the truth).
 253 If the list has < 5 candidates, we *augment* with LLM-generated distractors that meet the above rules;
 254 duplicates or contradictions are rejected.
 255

256 **TRAINING SET (LLM-AUGMENTED OPTIONS & RATIONALES)**
 257

258 When the differential diagnosis list provides fewer than five plausible options, we expand to five using
 259 a GPT-5 prompt adapted from Zuo et al. (2025) (full prompt in Appendix D). GPT-5 receives the case
 260 context (clinical history, imaging details, and current options) and proposes additional distractors with
 261 short teaching notes that explain: (i) why the distractor might seem reasonable, and (ii) what specific
 262 clue rules it out. The resulting **training set** provides five options per case, each with a teaching note.
 263

264 **TEST SET (EXPERT-FAITHFUL, CONFUSION-PRESERVING, IMAGE-DEPENDENT)**
 265

266 We design the test split to stay as close as possible to expert reasoning and image-based decision
 267 making:
 268

269 ¹For full details on licensing, permissions, privacy, safety, and leakage mitigation, see **Ethical Statement**.
 270 ²The two chapters not present in the test set are *Mental and behavioural disorders* (F01–F99) and *External*
 271 *causes of morbidity and mortality* (V01–Y98), which rarely appear as imaging-target diagnoses. A complete
 272 breakdown of ICD-10 chapters and subcategories is reported in the Appendix O.

Overall	
Samples	751
Images	6090
Per-sample	
Imgs/sample	8.11
Cap. length	2444.0
Find. length	857.7
Disc. length	2543.9
Option Length	
Avg.	27.9
Num. Density	
Macro avg.	0.0164
Other	
Pos. correct	2.88
Mean mod. cnt	2.13
All mod. types	13
Longit. share (%)	28.2

Table 2: Test stats (*Cap/Find/Disc.* = caption, findings, discussion; *Pos. correct* = avg. position of correct option; *Mean mod. cnt* = mean # of imaging modalities; see [Appendix J](#) for modality statistics and [K](#) for longitudinal-study statistics).

270 (1) **Expert differential diagnosis as starting point.** We first use cases where the *expert differential*
 271 list has ≥ 5 entries. The final diagnosis serves as the key, and the differential entries form the
 272 distractor pool. This ensures all candidate options come directly from experts and filters 2061 data.
 273

274 (2) **Leakage Detection.** To ensure the rigor of the dataset, we conducted leakage detection on each
 275 clinical history to verify whether it directly revealed the correct diagnosis. Specifically, we examined
 276 whether (i) the diagnosis label itself (exact name or ICD-standard term) appeared in the text, (ii)
 277 synonyms, abbreviations, or eponyms were explicitly present, or (iii) uncertain mentions of the
 278 label or its variants occurred (e.g., “?X,” “rule out X,” “suspected X,” “possible X”). The detailed
 279 prompt used for this detection is provided in Appendix F. In total, 35 leaked cases were identified
 280 and removed from the dataset.

281 (3) **Confusion-aware pruning.** Moreover, if there are more than five distractors, we check which
 282 wrong answers preliminary VLM (GPT-4o) models picked mistakenly. We keep these frequently
 283 confused distractors when possible, and sample the rest at random. Only deletions are made; the
 284 original Expert Reasoning & Teaching Note is lightly edited (via GPT-5 mini) to remove references
 285 to deleted options (Appendix E). No new medical content is introduced.

286 (4) **Remove text-solvable cases.** To ensure that images are necessary, we test each provisional item
 287 with three *text-only* models—Llama-3.3-70B, Qwen-3-32B, and MedGemma-27B-text. Items that all
 288 models answer correctly in all 3 runs are removed. This step keeps only problems where imaging is
 289 essential or greatly significant. This process removes ~ 611 cases.

290 (5) **Surface Bias Mitigation** We observed a surface bias in option length: in 57% of cases the
 291 correct answer was the longest choice, far above the uniform expectation of 20%. This likely arises
 292 because correct diagnoses are phrased more specifically to a patient, while distractors are shorter and
 293 more generic. However, models achieved 5–10 points higher accuracy on such items, suggesting
 294 exploitation of this heuristic rather than genuine reasoning. To prevent shortcut learning, we randomly
 295 pruned items until the distribution was balanced ($\approx 20\%$), removing 664 cases.
 296

297 3.4 MEDICAL EDUCATION CASE DISCUSSION

298 In clinical practice, difficult or representative cases are often written up as teaching notes and shared
 299 with trainees and colleagues, and Eurorad “Discussion” sections already play this role. The human-
 300 expert study in Section 4.4 and Tables 3, 4 further shows that even experienced clinicians find a
 301 subset of MedThinkVQA cases very difficult, motivating our Medical Education Case Discussion
 302 task, where models are asked to generate structured teaching content rather than only predict a single
 303 diagnosis. To make this evaluation well-defined, we focus on cases whose discussions follow a
 304 clear five-section template—*Background, Clinical Perspective, Imaging Perspective, Outcome, and*
 305 *Take-Home Messages*—yielding a subset of test cases that strictly conforms to this structure and
 306 supports section-by-section comparison.

307 4 EXPERIMENTAL SETUP

308 4.1 MODEL BASELINE

309 We establish baselines using a diverse set of vision–language models (VLMs) to ensure fair and
 310 representative evaluation. The selection spans both *Inference-Time Scaled Large Multimodal Models*
 311 (e.g., GPT-5 family with nano/mini/full variants) and *Vanilla Large Multimodal Models*, which include
 312 open-weight generalist and medical-tuned families such as Qwen2-VL, Qwen2.5-VL, MedGemma,
 313 Phi, and InternVL at different parameter scales (4B–38B).

314 4.2 AUTOMATIC EVALUATION

315 **Intermediate imaging metrics** For the per-image findings and the case-level integrated imaging
 316 summary (Steps 1–2 in Fig. 1), we follow recent radiology–report evaluation work (Yu et al., 2023;
 317 Ostmeier et al., 2024) and compute ROUGE as a lexical-overlap baseline together with RadCliQ,
 318 which correlates more strongly with radiologist preferences. We apply these metrics to compare
 319 model outputs against the expert-written findings and summaries, providing automatic, fine-grained
 320 signals for how well models capture clinically salient details.

324 **Stepwise Reasoning Evaluation** We split each model explanation into atomic steps with GPT-5-
 325 MINI, then used GPT-5 as an LLM judge to label, per step: factual correctness, whether it is *critical*
 326 to the final diagnosis, and an error type when incorrect. When a step is incorrect, the judge assigns one
 327 of four error types: **clinical-scenario misunderstanding**, missing or misread image evidence (*Image*
 328 *Understanding Err*), medical knowledge error, or flawed reasoning; this taxonomy is reused for
 329 both automatic and human evaluations. Overall, most failures stem from **image misinterpretation /**
 330 **information extraction**, especially on *critical* steps (69.23%). When answers are wrong, *Reasoning*
 331 *Err* and *Medical Knowledge Err* become more prominent alongside the image errors (details in
 332 Appendix H and Appendix M).

333 **Case Discussion Evaluation** We implemented a comprehensive automatic evaluation framework to
 334 assess the quality of generated case discussions using GPT-5 as evaluators. Each generated discussion
 335 contained multiple subsections including background, clinical perspective, imaging perspective,
 336 outcome, and take-home messages. Our evaluation employed a two-stage approach: first, we
 337 conducted sentence-level factual correctness assessment by splitting each subsection into individual
 338 sentences and tasking a prompted LLM (GPT-5) to judge the correctness of each sentence based
 339 on the provided case context, imaging findings, differential diagnosis list, image captions, and
 340 medical images. The evaluator was instructed to mark sentences as true if explicitly supported or
 341 reasonably inferable from the context, and false only if clearly contradictory or incorrect. Second,
 342 we performed quality assessment using an expert-curated rubric that scored discussions on five key
 343 criteria: disease overview, clinical pathophysiology, imaging analysis, reasoning and differentials,
 344 and transferable learning, with each criterion rated on a 0-2 scale. The LLM evaluator provided
 345 both numerical scores and brief justifications for each rubric criterion, focusing on medical accuracy,
 346 completeness, educational value, and integration of clinical and imaging perspectives. For the
 347 automatic evaluation, we randomly sampled 20 case discussions from our dataset for GPT-5 to
 348 evaluate using this framework.

349 4.3 HUMAN EVALUATION

350 **Stepwise Reasoning Evaluation** Two medical experts evaluated 50 cases (202 steps) for step
 351 factuality and error types. In total, 44 steps contained errors (21.78%), with **Image Understanding**
 352 **Err** dominant (77.27%), followed by *Reasoning Err*, supporting the automatic evaluation conclusion
 353 that image misinterpretation is the primary source of mistakes. **Inter-rater agreement was high:**
 354 **Cohen’s $\kappa = 0.82$ between the two experts, and human–LLM-judge agreement ranging from**
 355 **$\kappa = 0.70$ to $\kappa = 0.84$, confirming the reliability of the automatic judge.**

357 4.4 EXPERTS PERFORMANCE AND DATA QUALITY ANNOTATION

359 **Annotators and protocol.** All annotations were provided by two board-certified
 360 clinicians in active clinical practice.³ We randomly sampled 96 test cases and ran a
 361 two-round expert study aligned with our MCQ and stepwise evaluation. In *Round 1*,
 362 experts saw only the clinical history and all study images and selected one diagnosis
 363 out of five options, matching our VLM setup. In *Round 2*, they additionally received the full
 364 reference materials—image captions, per-image findings, the integrated imaging
 365 summary, the teaching discussion, and the ground-truth answer—and audited each case for
 366 internal consistency, difficulty, and image redundancy (supportive vs. redundant views). The same
 367 96-case subset is used to evaluate VLM baselines for a fair human–model comparison.

368 **Round 1: Diagnostic Performance.** Experts answered 74/96 cases correctly (**77.10%** accuracy).
 369 We also evaluate GPT-5, Claude 4.0, and Lingshu-32B on the same subset with the identical MCQ

370 ³One annotator is a diagnostic radiologist at a tertiary academic hospital in Asia with 7 years of post-
 371 training experience, and the other is an academic surgeon at a U.S. medical school with 5 years of post-training
 372 experience.

Case group	#Cases	#Images	#Supportive imgs	Supportive ratio (%)
All images supportive	65	463	463	100.00
Mixed supportive / redundant	31	315	222	70.48
Overall (96 cases)	96	778	685	88.05

Table 4: Round 2 expert audit: image-level redundancy vs. support. Most cases use all images as supportive evidence; even in mixed cases, the majority of views remain supportive rather than redundant.

protocol (Table 3). GPT-5 is the strongest VLM baseline but still trails human experts by about 21.9 percentage points (77.10% vs. 55.21%), and its accuracy on this subset is within 2 percentage points of its full-test performance, suggesting that the expert-study subset is representative of the overall benchmark.

Round 2: Data Quality and Image Redundancy. In the audit phase, experts marked 2/96 cases (2.1%) as *possibly inconsistent* and 18/96 (18.8%) as *very difficult*, indicating that the benchmark largely reflects coherent teaching cases while retaining a non-trivial proportion of challenging items. For image redundancy, experts judged whether each view provided supportive evidence toward the final diagnosis. In 65/96 cases (463 images), all views were deemed supportive (100%). The remaining 31/96 cases contained 315 images, of which 222 (70.48%) were judged supportive. Overall, 685/778 images were rated as supportive (**88.05%**), with the rest considered redundant for determining the final diagnosis.

The expert study shows that experienced clinicians still clearly outperform state-of-the-art VLMs on *MedThinkVQA*, that the curated items are overwhelmingly consistent with only a small fraction flagged as potentially problematic, and that most cases require aggregating evidence from many supportive views. As shown in Fig. 5, when $\text{image_ratio} = 0$ the task reduces to choosing one diagnosis out of five options with a random success probability of 20%, and accuracy then rises steadily as a larger proportion of case images is revealed across all models; together with the expert audit in Table 4, where 88% of images are rated supportive, this monotonic gain suggests that additional views are rarely pure redundancy and usually contribute useful diagnostic information, even though overall performance still remains well below human experts. At the same time, the realistic minority of redundant / non-supportive images means models must both integrate multiple supportive views and learn to down-weight redundant ones, mirroring how radiologists select and prioritize key views before forming a diagnosis.

Case Discussion Evaluation To validate our automatic evaluation framework, we conducted human evaluation using two medical experts who independently assessed radiology case discussions. Each evaluator was presented with one case discussion randomly selected and generated by three different models, ensuring blinded assessment without knowledge of the generating model. Following the same two-stage methodology as the automatic evaluation, the human evaluators first performed sentence-level factual correctness evaluation and then the evaluators applied the expert-curated rubric to provide quality scores. This human evaluation served as the gold standard for assessing the reliability and validity of our automated evaluation approach.

5 RESULTS AND DISCUSSION

5.1 BASELINE RESULTS

Table shows representative model accuracy on the held-out test set; detailed experimental settings are omitted by design. We group results into *Inference-Time Scaled Large Multimodal Models* and *Vanilla Large Multimodal Models* (all others). Strong VLMs/VLLMs remain far from expert performance, indicating *MedThinkVQA*’s difficulty. As shown in Fig. 6, when models rely on images alone (Baseline), accuracies are MedGemma-27B: 37.5, GPT-5-nano: 39.5, GPT-5-mini: 49.4, GPT-5: 57.4. Once textual hints are added, accuracy rises sharply, showing that the main bottleneck lies in *image understanding and radiological reasoning*, rather than in language reasoning.

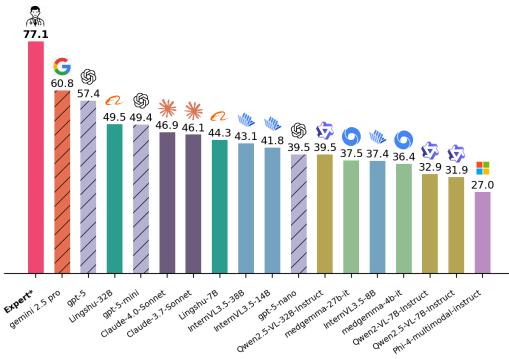
432 5.2 IMAGE REASONING CAPABILITIES
433

434
435 **Expert imaging summaries sharply boost accuracy.** Across all models, providing expert-
436 written text extracted from images leads to large gains on MedThinkVQA (Fig. 6). Feeding the
437 Integrated Imaging Summary (expert) raises accuracy by +30.8, +30.3, +23.6, and
438 +18.8 points for MedGemma-27B, GPT-5-nano, GPT-5-mini, and GPT-5, respectively, corresponding
439 to $1.82\times$, $1.77\times$, $1.48\times$, and $1.33\times$ their baselines. Once this diagnosis-oriented summary is avail-
440 able, adding an Image Hint (expert) provides only modest extra gains (+0.8–3.9 points),
441 and the summary consistently outperforms the hint alone by +2–8 points. These patterns indicate
442 that *structured findings matter more than caption-like descriptions*: the summary encodes laterality,
443 location, pattern, and extent in a way that gives the language model highly discriminative cues for
444 the final diagnosis. The inverse relation between baseline strength and relative improvement further
445 suggests that, once visual evidence is verbalized, language inference is largely adequate and the main
bottleneck is still *extracting and structuring pixel-level radiological evidence*.

446 **Self-generated text is fragile and often
447 hurts.** When models first write their own
448 Hint/Summary and then condition on it, the
449 effects are much smaller and frequently nega-
450 tive. MedGemma-27B and GPT-5-mini gener-
451 ally lose 1–5 points relative to baseline; GPT-
452 5 shows mixed results (around –4 to +0.5
453 points); only GPT-5-nano obtains modest gains
454 of roughly +1–4 points. Tab. 6 explains why:
455 Image→Caption/Findings generations achieve
456 low ROUGE-L (≈ 0.13 –0.16) and imperfect
457 RadCliQ-v1 scores, meaning that self-produced
458 descriptions often miss laterality, precise loca-
459 tions, or key patterns and may introduce subtle
460 inaccuracies. In addition, noisy text increases
461 sequence length and can dilute attention over
462 multi-view inputs, and current VLMs may over-
463 trust erroneous text when image–text ground-
464 ing is weak. Together, these factors make self-
465 generated hints a brittle scaffold for reasoning,
466 whereas concise, expert-authored imaging sum-
467 maries reliably unlock the underlying language
468 capabilities of the models.

469 **Performance on multimodal and longitudinal subsets.** As shown in Fig. 7, model behavior on
470 cases with ≥ 3 imaging modalities and on longitudinal follow-up cases does not uniformly mirror the
471 overall ranking. For highly multimodal cases, performance changes are mixed: some models (e.g.,
472 LINGSHU-32B, INTERNVL3_5-38B-HF, HUATUOGPT-VISION-7B) show modest gains over their
473 overall accuracy, while others incur small drops, suggesting that richer modality combinations are
474 helpful only when the model can correctly identify and fuse complementary information across views.
475 By contrast, longitudinal follow-up cases systematically reduce accuracy for most models, often by
476 several percentage points, indicating that current VLMs struggle to reason over temporal trajectories
477 and may implicitly treat serial studies as an unordered set of images, ignoring cues such as interval
478 change, new lesions, and post-treatment evolution. We provide qualitative GPT-5 error analyses
479 for both settings in Appendix C.4.3 (multimodal hydatid disease) and Appendix C.4.2 (longitudinal
cystic pulmonary tuberculosis), which illustrate how the model over-focuses on a subset of modalities
or a single time point and consequently fails to recover the correct diagnosis.

480 **MedThinkVQA** mainly tests *image reasoning*, with expert summaries yielding large gains. **Beyond**
481 **diagnosing an image-fusion bottleneck**—models still struggle to read and integrate many views even
482 when language reasoning is strong—We suggest three main directions. First, process-supervised SFT
483 and distillation can use our per-image findings, integrated summaries, and option-wise eliminations
484 as step labels, extending chain-of-thought and SFT ideas from general medical MedVQA rationales
485 to multi-image radiology Zhang et al. (2024); Gai et al. (2024). Second, data-centric and alignment
methods can push the model onto the right views: medical-image augmentation plus generative



490 **Figure 3: Baseline model accuracy** Google Deep-
491 Mind & Google Health AI (2025); Sellergren et al.
492 (2025); Wang et al. (2024b); Bai et al. (2025);
493 Abouelenin et al. (2025); OpenAI (2025a,b); Wang
494 et al. (2025a); Gemini Team (2025); Anthropic
495 (2024b; 2025); Xu et al. (2025); Chen et al. (2024).
496 Note: Expert scores are computed on a randomly
497 sampled subset of 96 test items; GPT-5 accuracy
498 on this subset differs from its full-test accuracy by
499 less than 2%.

counterfactual editing and semi-human radiology QA expansion Kebaili et al. (2023); Shoer & Kementchedjhieva (2025); Wang et al. (2024a), combined with preference-based objectives such as DPO and with reinforcement learning that assigns process-level rewards to image-faithful chains and penalizes shortcut solutions Rafailov et al. (2023); Liu et al. (2024b); DeepSeek-AI et al. (2025). Third, test-time “thinking” strategies like Tree-of-Thoughts and frontier multimodal thinking models (Gemini 2.5 Pro, Claude 3.5 Sonnet) motivate architectures that can encode many images while letting the language backbone retrieve only the visual tokens it needs at each step Yao et al. (2023); Kavukcuoglu (2025); Anthropic (2024a), reinforcing the need for stronger visual encoders, better image–text grounding, and concise, structured hints.

5.3 MEDICAL EDUCATION CASE DISCUSSION

The generated case discussions demonstrated high factual accuracy across all tested models, with overall correctness rates ranging from 92.81% to 99.22% shown in Tab. 14. The GPT-5 series consistently achieved the highest factual correctness, while the Clinical Perspective subsection scored highest across all models (97.89–100%). The Outcome subsection showed some performance differences, with MedGemma-27B achieving 85.71% compared to other models’ which scored above 95%. The rubric-based evaluation revealed GPT-5 achieving the highest overall score of 9.9/10. MedGemma-27B scored 7.05/10, showing particular weakness in clinical pathophysiology (1.15/2) and reasoning differentials (1.1/2), while all models demonstrated consistent strength in disease overview and imaging findings (Tab. 15).

5.4 DATA CONTAMINATION ANALYSIS

We assess potential test leakage with a strict, sliding-window variant of MELD (Memorization Effects Levenshtein Detector), which measures the character-level overlap between each model’s generated answer and its input question on the MEDTHINKVQA test set. Across seven representative LLM/VLMs (Qwen3-32B, Med-Gemma-27B-*it*, Med-Gemma-27B-*text-it*, GPT-4.1-nano, GPT-4.1-mini, Qwen2.5-VL-72B-Instruct, Llama-3.3-70B-Instruct), MELD similarities cluster around \sim 20–24% with narrow IQRs, and no item reaches the commonly used high-risk threshold of \geq 50%. Distributions are similar for text-only and vision-language models, indicating no family-specific effect. Taken together, we find no evidence of severe contamination; details and boxplots appear in Appendix N.

6 CONCLUSION

MedThinkVQA establishes the first large-scale benchmark for multimodal diagnostic reasoning in radiology, combining authentic multi-image cases with expert-authored reasoning traces. We hope it will serve as a rigorous testbed to advance models that can not only answer correctly but also reason like radiologists, ultimately driving progress toward trustworthy clinical AI.

Error type	All error steps (N=1509)	Critical error steps (N=182)
Image Understanding Err	959 (63.55%)	126 (69.23%)
Reasoning Err	583 (38.63%)	71 (39.01%)
Medical Knowledge Err	362 (23.99%)	60 (32.97%)
Clinical Scenario Err	191 (12.66%)	22 (12.09%)

Table 5: LLM-judge error-type coverage. *Note:* categories are multi-label; percentages are step-level coverage over error steps and may sum to $>100\%$. Full per-split (answer-correct vs. wrong) breakdowns are in the Appendix.

Model	ROUGE-L (\uparrow)		RadCliQ-v1 (\uparrow)	
	Caption	Findings	Caption	Findings
gpt-5-nano	0.1435	0.1585	0.8080	0.6781
gpt-5-mini	0.1510	0.1636	0.8317	0.6931
GPT-5	0.1534	0.16272	0.8341	0.6818
medgemma-27b-it	0.1336	0.1621	0.7810	0.7192

Table 6: Scores of VLMs for Image \rightarrow Caption and Image \rightarrow Findings across two metrics (ROUGE-L and RadCliQ).

540 REPRODUCIBILITY STATEMENT
541542 We provide full details to ensure reproducibility. Dataset sources and splits are in Section 3; im-
543 plementation details and training practices are in Section 3; Hyperparameters for SFT are listed in
544 Appendix B; We attached various prompts for data construction, LLM Judge in Appendix H; We also
545 include an anonymized code repository link in Abstract.546
547 ETHICAL STATEMENT
548549 **Data source, licensing, and legal compliance.** All cases are adapted from *Eurorad*, a peer-reviewed
550 educational database maintained by the European Society of Radiology. Eurorad materials are
551 licensed under *Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license*.
552 MedThinkVQA follows the same license. Released data are for research and education only;
553 commercial use is prohibited. Derivative datasets must preserve attribution, non-commercial use, and
554 ShareAlike terms.555 **Human subjects and privacy.** Eurorad cases are intended for education and are de-identified to
556 the best of our knowledge. We did not collect new personal data and did not recruit patients or lay
557 participants; IRB review was not required. We reviewed materials for residual identifiers and removed
558 items when concerns arose.559 **Evaluation reliability.** We combine automatic scripts, expert review, and LLM-judges. On step-
560 level labels, human–human agreement is Cohen’s $\kappa = 0.822833$, human1–LLM-judge agreement
561 is $\kappa = 0.838357$, and human2–LLM-judge agreement is $\kappa = 0.701566$. These results support the
562 stability of our automated judging, but LLM-judges do not replace expert oversight.563 **Bias and fairness.** Educational repositories can encode geographic, demographic, and practice-style
564 biases. Rare conditions and certain protocols are unevenly represented. Models trained or tuned on
565 this benchmark may inherit such biases. We encourage stratified analyses and external validation
566 before any deployment.567 **Safety and misuse.** Models evaluated here are research artifacts. They must *not* be used for diagnosis,
568 treatment, triage, or other high-stakes tasks without added clinical validation, regulatory clearance,
569 and domain oversight. Generated discussions may sound authoritative yet still be incomplete or
570 wrong. Any downstream use requires human supervision, documented fail-safes, and monitoring.572 **Transparency, reproducibility, and environment.** We document data construction, metrics, and
573 judging protocols. We release code, scoring scripts, and example data, subject to third-party licenses.
574 No hidden reward models, private test sets, or special samplers were used. We report hardware and
575 runtime where relevant and encourage efficient evaluation to limit environmental impact.576 **Conflicts of interest and ethics compliance.** All authors have read and will adhere to the ICLR
577 Code of Ethics for submission, reviewing, and discussion. Any sponsorships or competing interests
578 will be disclosed in the author checklist.579 **Data leakage assessment and mitigation.** As discussed in Section 5.4, we conducted internal checks
580 for leakage and found no obvious overlap between our test items and publicly released training
581 artifacts that we were aware of. We remove text-only solvable items, strip explicit textual shortcuts,
582 and stress cross-image fusion. Still, the risk of leakage cannot be ruled out. To reduce risk further, we
583 will (i) release the full data collection and processing code for public audit, and (ii) maintain a rolling
584 test set covering the most recent 6–12 months of newly curated cases, with periodic updates and
585 refreshed scores for reported models. We will also publish de-duplication scripts (exact/near-duplicate
586 filters on images and texts) and document all split procedures.587 **Limitations** Our beyond-accuracy evaluation currently relies on a commercial LLM (GPT-5) as
588 the primary judge for stepwise reasoning and case discussions. While we partially mitigate this by
589 reporting human–LLM agreement (Cohen’s $\kappa \approx 0.70$ – 0.84 with two clinicians) and by keeping
590 experts in the loop, the approach still inherits model- and prompt-dependence: neither the GPT-5 API
591 nor any particular snapshot is guaranteed to remain available, and future model updates could change
592 judgments in subtle ways even under identical prompts and data. This limits strict replicability of
593 some scores and means that our automatic annotations should be interpreted as calibrated but not
definitive surrogates for expert review. We also experimented with open-weight judges, including

594 Qwen2.5-VL-72B, but in our setting these models underperformed GPT-5 as evaluators and showed
595 less stable alignment with human experts, even after small-scale distillation on a subset of GPT-
596 5-labeled steps. At present, they do not provide a sufficiently reliable drop-in replacement for the
597 commercial judge. Developing robust, fully open-source evaluation pipelines—e.g., ensembles of
598 open-weight VLM/LLM judges calibrated with human audits and process-level supervision—is an
599 important direction for future work.

600 **Others.** MedThinkVQA is a research benchmark, not a clinical tool. Expert-authored traces are
601 pedagogical; they may overlook interpersonal nuances, local workflows, and institutional contexts.
602 The multiple-choice setting enables standardized scoring; it also simplifies real diagnostic work and
603 stops before treatment planning and longitudinal follow-up. Coverage is broad but not complete across
604 body regions, patient groups, vendors, devices, and acquisition protocols. Although cases span many
605 conditions, some specialties (e.g., pediatrics, psychiatry) and rare diseases remain underrepresented.
606 All cases originate from a single educational repository, so distribution shifts across hospitals,
607 populations, and imaging pipelines are likely. The dataset is currently English-only; multilingual
608 generalization has not been tested. Annotations, while expert-written, can still contain noise or
609 stylistic variation. Our LLM-as-Judge components improve scalability, but they can be prompt-
610 sensitive and may reflect judge-model biases; we therefore report human agreement and keep experts
611 informed. Finally, we evaluate stepwise reasoning for differential diagnosis; reference-free evaluation
612 of clinical reasoning without ground-truth steps is left for future work.

613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 REFERENCES
649

650 Eurorad – radiology teaching cases. <https://www.eurorad.org/>. European Society of
651 Radiology, accessed 2025-08-28.

652 Abdelrahman Abouelenin et al. Phi-4-mini technical report: Compact yet powerful multimodal
653 language models via mixture-of-loras. *arXiv preprint arXiv:2503.01743*, 2025. doi: 10.48550/
654 arXiv.2503.01743. URL <https://arxiv.org/abs/2503.01743>.

655 Anthropic. Introducing claude 3.5 sonnet—our most intelligent model yet. Anthropic News, 2024a.
656 URL <https://www.anthropic.com/news/clause-3-5-sonnet>.

657 Anthropic. Claude 3.5 sonnet model card addendum. Technical report, 2024b. URL <https://www-cdn.anthropic.com/fed9cc193a14b84131812372d8d5857f8f304c52/>
658 Model_Card_Claude_3_Addendum.pdf. Accessed: 2025-11-24.

659 Anthropic. Claude 4 system card: Claude opus 4 and claude sonnet 4. Technical report, 2025. URL <https://www-cdn.anthropic.com/4263b940cabb546aa0e3283f35b686f4f3b2ff47.pdf>. Technical report.

660 Shuai Bai et al. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025. doi: 10.48550/
661 arXiv.2502.13923. URL <https://arxiv.org/abs/2502.13923>.

662 Asma Ben Abacha, Sadid A Hasan, Vivek V Datla, Dina Demner-Fushman, and Henning Müller. Vqa-
663 med: Overview of the medical visual question answering task at imageclef 2019. In *Proceedings
664 of CLEF (Conference and Labs of the Evaluation Forum) 2019 Working Notes*. 9-12 September
665 2019, 2019.

666 Junying Chen, Ruyi Ouyang, Anningzhe Gao, Shunian Chen, Guiming Hardy Chen, Xidong Wang,
667 Ruifei Zhang, Zhenyang Cai, Ke Ji, Guangjun Yu, Xiang Wan, and Benyou Wang. Huatuogpt-
668 vision, towards injecting medical visual knowledge into multimodal llms at scale, 2024. URL
669 <https://arxiv.org/abs/2406.19280>.

670 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, et al. Deepseek-
671 r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint
672 arXiv:2501.12948*, 2025. URL <https://arxiv.org/abs/2501.12948>.

673 Adibvafa Fallahpour, Jun Ma, Alif Munim, Hongwei Lyu, and Bo Wang. Medrax: Medical reasoning
674 agent for chest x-ray. *arXiv preprint arXiv:2502.02673*, 2025. URL <https://arxiv.org/abs/2502.02673>.

675 Lin Fan, Xun Gong, Cenyang Zheng, Xuli Tan, Jiao Li, and Yafei Ou. Cycle-vqa: A cycle-consistent
676 framework for robust medical visual question answering. *Pattern Recognition*, 165:111609, 2025.

677 Xiaotang Gai, Chenyi Zhou, Jiaxiang Liu, Yang Feng, Jian Wu, and Zuozhu Liu. Medthink:
678 Explaining medical visual question answering via multimodal decision-making rationale. *arXiv
679 preprint arXiv:2404.12372*, 2024. URL <https://arxiv.org/abs/2404.12372>.

680 Xiaotang Gai, Chenyi Zhou, Jiaxiang Liu, Yang Feng, Jian Wu, and Zuozhu Liu. Medthink: A
681 rationale-guided framework for explaining medical visual question answering. In *Findings of the
682 Association for Computational Linguistics: NAACL 2025*, pp. 7438–7450, 2025.

683 Gemini Team. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long
684 context, and next generation agentic capabilities. *arXiv preprint arXiv:2507.06261*, 2025. URL
685 <https://arxiv.org/abs/2507.06261>.

686 Google DeepMind and Google Health AI. Medgemma model card, 2025. URL
687 <https://developers.google.com/health-ai-developer-foundations/medgemma/model-card>.

688 Xuehai He, Yichen Zhang, Luntian Mou, Eric Xing, and Pengtao Xie. Pathvqa: 30000+ questions for
689 medical visual question answering. *arXiv preprint arXiv:2003.10286*, 2020.

702 Xinyue Hu, Lin Gu, Qiyuan An, Mengliang Zhang, Liangchen Liu, Kazuma Kobayashi, Tatsuya
 703 Harada, Ronald M. Summers, and Yingying Zhu. Expert knowledge-aware image difference graph
 704 representation learning for difference-aware medical visual question answering. In *Proceedings of*
 705 *the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '23)*, pp.
 706 4156–4165, New York, NY, USA, 2023. Association for Computing Machinery. doi: 10.1145/
 707 3580305.3599819.

708 Yutao Hu, Tianbin Li, Quanfeng Lu, Wenqi Shao, Junjun He, Yu Qiao, and Ping Luo. Omnimedvqa:
 709 A new large-scale comprehensive evaluation benchmark for medical lvlm. In *Proceedings of the*
 710 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22170–22183, 2024.

711

712 Di Jin, Edward Pan, et al. What disease does this patient have? a large-scale open-domain medical qa
 713 dataset. In *EMNLP*, 2021. MedQA (USMLE).

714

715 Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W Cohen, and Xinghua Lu. Pubmedqa: A
 716 dataset for biomedical research question answering. *arXiv preprint arXiv:1909.06146*, 2019.

717

718 Koray Kavukcuoglu. Gemini 2.5: Our most intelligent AI model. Google Deep-
 719 Mind Blog, 2025. URL <https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/>.

720

721 Aghiles Kebaili, Jérôme Lapuyade-Lahorgue, and Su Ruan. Deep learning approaches for data
 722 augmentation in medical imaging: A review. *Journal of Imaging*, 9(4):81, 2023. doi: 10.3390/
 723 jimaging9040081. URL <https://www.mdpi.com/2313-433X/9/4/81>.

724

725 Su Hwan Kim, Severin Schramm, Lisa C Adams, Rickmer Braren, Keno K Bressem, Matthias
 726 Keicher, Paul-Sören Platzek, Karolin Johanna Paprottka, Claus Zimmer, Dennis M Hedderich,
 727 et al. Benchmarking the diagnostic performance of open source llms in 1933 eurorad case reports.
 728 *npj Digital Medicine*, 8(1):97, 2025.

729

730 Jason J Lau, Soumya Gayen, Asma Ben Abacha, and Dina Demner-Fushman. A dataset of clinically
 731 generated visual questions and answers about radiology images. *Scientific data*, 5(1):1–10, 2018.

732

733 Khai Le-Duc, Duy M. H. Nguyen, Phuong T. H. Trinh, Tien-Phat Nguyen, Nghiem T. Diep, An Ngo,
 734 Tung Vu, Trinh Vuong, Anh-Tien Nguyen, Mau Nguyen, Van Trung Hoang, Khai-Nguyen Nguyen,
 735 Hy Nguyen, Chris Ngo, Anji Liu, Nhat Ho, Anne-Christin Hauschild, Khanh Xuan Nguyen, Thanh
 736 Nguyen-Tang, Pengtao Xie, Daniel Sonntag, James Zou, Mathias Niepert, and Anh Totti Nguyen.
 737 S-chain: Structured visual chain-of-thought for medicine. *arXiv preprint arXiv:2510.22728*, 2025.
 738 URL <https://arxiv.org/abs/2510.22728>.

739

740 Bo Liu, Li-Ming Zhan, Li Xu, Lin Ma, Yan Yang, and Xiao-Ming Wu. Slake: A semantically-
 741 labeled knowledge-enhanced dataset for medical visual question answering. In *2021 IEEE 18th*
742 international symposium on biomedical imaging (ISBI), pp. 1650–1654. IEEE, 2021.

743

744 Bo Liu, Ke Zou, Liming Zhan, Zexin Lu, Xiaoyu Dong, Yidi Chen, Chengqiang Xie, Jiannong
 745 Cao, Xiao-Ming Wu, and Huazhu Fu. Gemex: A large-scale, groundable, and explainable
 746 medical vqa benchmark for chest x-ray diagnosis. *arXiv preprint arXiv:2411.16778*, 2025a. URL
 747 <https://arxiv.org/abs/2411.16778>.

748

749 Bo Liu et al. Gemex-thinkvg: Towards thinking with visual grounding in medical vqa via reinforce-
 750 ment learning. *arXiv preprint arXiv:2506.17939*, 2025b. URL <https://arxiv.org/abs/2506.17939>.

750

751 Jiaxiang Liu, Yuan Wang, Jiawei Du, Joey Tianyi Zhou, and Zuozhu Liu. Medcot: Medical chain of
 752 thought via hierarchical expert. *arXiv preprint arXiv:2412.13736*, 2024a.

753

754 Ziyu Liu, Yuhang Zang, Xiaoyi Dong, Pan Zhang, Yuhang Cao, Haodong Duan, Conghui He,
 755 Yuanjun Xiong, Dahu Lin, and Jiaqi Wang. MIA-DPO: Multi-image augmented direct preference
 756 optimization for large vision-language models. *arXiv preprint arXiv:2410.17637*, 2024b. URL
 757 <https://arxiv.org/abs/2410.17637>.

756 Chenglong Ma, Yuanfeng Ji, Jin Ye, Lu Zhang, Ying Chen, Tianbin Li, Mingjie Li, Junjun He, and
 757 Hongming Shan. Towards interpretable counterfactual generation via multimodal autoregression.
 758 In *Proceedings of Medical Image Computing and Computer Assisted Intervention – MICCAI 2025*,
 759 volume 15961 of *Lecture Notes in Computer Science*, pp. 611–620. Springer Nature Switzerland,
 760 September 2025. doi: 10.1007/978-3-032-04937-7_58.

761 OpenAI. Gpt-5 system card. <https://cdn.openai.com/gpt-5-system-card.pdf>,
 762 2025a. Version dated 2025-08-13.

764 OpenAI. gpt-5-mini model card, 2025b. URL <https://platform.openai.com/docs/models/gpt-5-mini>.

766 Sophie Ostmeier, Justin Xu, Zhihong Chen, Maya Varma, Louis Blankemeier, Christian Bluethgen,
 767 Arne Edward Michalson Md, Michael Moseley, Curtis Langlotz, Akshay S Chaudhari, and
 768 Jean-Benoit Delbrouck. GREEN: Generative radiology report evaluation and error notation. In
 769 Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for
 770 Computational Linguistics: EMNLP 2024*, pp. 374–390, Miami, Florida, USA, November 2024.
 771 Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.21. URL
 772 <https://aclanthology.org/2024.findings-emnlp.21/>.

773 Ankit Pal, Logesh Kumar Umapathi, and Malaikannan Sankarasubbu. Medmcqa: A large-scale
 774 multi-subject multi-choice dataset for medical domain question answering. In *Conference on
 775 health, inference, and learning*, pp. 248–260. PMLR, 2022.

777 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D. Manning, Stefano Ermon, and Chelsea
 778 Finn. Direct preference optimization: Your language model is secretly a reward model. In *Advances
 779 in Neural Information Processing Systems*, 2023. URL <https://arxiv.org/abs/2305.18290>.

781 Andrew Sellergren et al. Medgemma technical report. *arXiv preprint arXiv:2507.05201*, 2025. doi:
 782 10.48550/arXiv.2507.05201. URL <https://arxiv.org/abs/2507.05201>.

784 Belal Shoer and Yova Kementchedjhieva. A simple data augmentation strategy for text-in-image
 785 scientific vqa. In *Proceedings of the 9th Widening NLP Workshop*, pp. 100–105, Suzhou, China,
 786 2025. Association for Computational Linguistics. doi: 10.18653/v1/2025.winlp-main.17. URL
 787 <https://aclanthology.org/2025.winlp-main.17>.

788 Xiangru Tang, Daniel Shao, Jiwoong Sohn, Jiapeng Chen, Jiayi Zhang, Jinyu Xiang, Fang Wu,
 789 Yilun Zhao, Chenglin Wu, Wenqi Shi, Arman Cohan, and Mark Gerstein. MedAgentsBench:
 790 Benchmarking Thinking Models and Agent Frameworks for Complex Medical Reasoning, 2025.
 791 URL <https://arxiv.org/abs/2503.07459>.

793 Junda Wang, Yujan Ting, Eric Z. Chen, Hieu Tran, Hong Yu, Weijing Huang, and Terrence Chen.
 794 Semihvision: Enhancing medical multimodal models with a semi-human annotated dataset and
 795 fine-tuned instruction generation. *arXiv preprint arXiv:2410.14948*, 2024a. URL <https://arxiv.org/abs/2410.14948>.

797 Peng Wang et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any
 798 resolution. *arXiv preprint arXiv:2409.12191*, 2024b. doi: 10.48550/arXiv.2409.12191. URL
 799 <https://arxiv.org/abs/2409.12191>.

801 Shansong Wang, Mingzhe Hu, Qiang Li, Mojtaba Safari, and Xiaofeng Yang. Capabilities of GPT-5
 802 on Multimodal Medical Reasoning, 2025a. URL <https://arxiv.org/abs/2508.08224>.

803 Yuan Wang, Jiaxiang Liu, Shujian Gao, Bin Feng, Zhihang Tang, Xiaotang Gai, Jian Wu, and Zuozhu
 804 Liu. V2t-cot: From vision to text chain-of-thought for medical reasoning and diagnosis. *arXiv
 805 preprint arXiv:2506.19610*, 2025b.

807 Weiwen Xu, Hou Pong Chan, Long Li, Mahani Aljunied, Ruifeng Yuan, Jianyu Wang, Chenghao
 808 Xiao, Guizhen Chen, Chaoqun Liu, Zhaodonghui Li, et al. Lingshu: A generalist foundation model
 809 for unified multimodal medical understanding and reasoning. *arXiv preprint arXiv:2506.07044*,
 2025. URL <https://arxiv.org/abs/2506.07044>.

810 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
 811 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. arXiv
 812 preprint arXiv:2305.10601, 2023. URL <https://arxiv.org/abs/2305.10601>.

813 Jin Ye, Guoan Wang, Yanjun Li, Zhongying Deng, Wei Li, Tianbin Li, Haodong Duan, Ziyuan Huang,
 814 Yanzhou Su, Benyou Wang, et al. Gmai-mmbench: A comprehensive multimodal evaluation
 815 benchmark towards general medical ai. *Advances in Neural Information Processing Systems*, 37:
 816 94327–94427, 2024.

817 Feiyang Yu, Mark Endo, Rayan Krishnan, Ian Pan, Andy Tsai, Eduardo Pontes Reis, Eduardo Kaiser
 818 Ururahy Nunes Fonseca, Henrique Min Ho Lee, Zahra Shakeri Hossein Abad, Andrew Y. Ng,
 819 Curtis P. Langlotz, Vasantha Kumar Venugopal, and Pranav Rajpurkar. Evaluating progress in
 820 automatic chest x-ray radiology report generation. *Patterns*, 4(9):100802, 2023. doi: 10.1016/j.
 821 patter.2023.100802. URL <https://doi.org/10.1016/j.patter.2023.100802>.

822 Suhao Yu, Haojin Wang, Juncheng Wu, Cihang Xie, and Yuyin Zhou. Medframeqa: A multi-image
 823 medical vqa benchmark for clinical reasoning. *arXiv preprint arXiv:2505.16964*, 2025. URL
 824 <https://arxiv.org/abs/2505.16964>.

825 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu
 826 Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal under-
 827 standing and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on*
 828 *Computer Vision and Pattern Recognition*, pp. 9556–9567, 2024a.

829 Xiang Yue, Tianyu Zheng, Yuansheng Ni, Yubo Wang, Kai Zhang, Shengbang Tong, Yuxuan Sun,
 830 Botaoy Yu, Ge Zhang, Huan Sun, et al. Mmmu-pro: A more robust multi-discipline multimodal
 831 understanding benchmark. *arXiv preprint arXiv:2409.02813*, 2024b.

832 Xiaoman Zhang, Chaoyi Wu, Ziheng Zhao, Weixiong Lin, Ya Zhang, Yanfeng Wang, and Weidi
 833 Xie. Pmc-vqa: Visual instruction tuning for medical visual question answering. *arXiv preprint*
 834 *arXiv:2305.10415*, 2023.

835 Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao, and Min Lin. Chain of preference
 836 optimization: Improving chain-of-thought reasoning in llms. In *Advances in Neural Information*
 837 *Processing Systems*, 2024. URL <https://arxiv.org/abs/2406.09136>.

838 Yuxin Zuo, Shang Qu, Yifei Li, Zhangren Chen, Xuekai Zhu, Ermo Hua, Kaiyan Zhang, Ning Ding,
 839 and Bowen Zhou. Medexpertqa: Benchmarking expert-level medical reasoning and understanding.
 840 *arXiv preprint arXiv:2501.18362*, 2025.

841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863

864 **A LLM USAGE**
865866 In accordance with the ICLR 2026 policies on LLM usage, we disclose how LLMs were used in
867 this work. LLMs were employed to assist with grammar polishing, wording improvements, and
868 drafting text during paper preparation. All technical content, proofs, experiments, and analyses were
869 conceived, implemented, and validated by the authors. Authors remain fully responsible for the
870 correctness of the claims and results.871 No LLMs were used to generate research ideas, write code for experiments, or produce results. No
872 confidential information was shared with LLMs, and no prompt injections or other inappropriate uses
873 were involved.874 This disclosure aligns with the ICLR Code of Ethics: contributions of tools are acknowledged, while
875 accountability and verification rest entirely with the human authors.
876877 **B SUPERVISED FINE-TUNING**
878879 **Training setup.** We fine-tuned InternVL3.5-1B, InternVL3.5-2B, InternVL3.5-4B,
880 MedGemma-4B-IT, Qwen2.5-VL-3B-Instruct, and Qwen2.5-VL-7B-Instruct on
881 MedThinkVQA using QLoRA (Quantized Low-Rank Adaptation). All models adopted a LoRA rank
882 of 8, $\alpha = 16$, and a dropout rate of 0.05. We trained for 2 epochs with a per-device batch size of
883 1 and 8 gradient accumulation steps (effective batch size 8), using AdamW with a learning rate of
884 2×10^{-4} , cosine learning-rate scheduling, and a warmup ratio of 0.03. The dataset was split 90/10
885 into training and validation sets. These choices were kept fixed across models to enable a controlled
886 comparison of fine-tuning gains.
887888 **SFT results.** Supervised fine-tuning yields substantial accuracy improvements over the zero-
889 shot or instruction-tuned baselines. As summarized in Tab. 13, the GPT-5 series provides a
890 strong reference point with GPT-5 achieving 57.39% accuracy. After SFT, several smaller open-
891 source models become competitive with or even surpass this level: Qwen2.5-VL-7B-Instruct
892 improves from 31.95% to 61.89%, outperforming GPT-5; InternVL3.5-4B (60.96%)
893 and Qwen2.5-VL-3B-Instruct (60.03%) reach accuracies comparable to GPT-5; and
894 MedGemma-4B-IT improves from 36.35% to 56.57%. Taken together, these gains indicate that the
895 MedThinkVQA training split provides high-quality, well-structured supervision that substantially
896 enhances medical reasoning, enabling compact vision-language models to close most of the gap to
897 much larger inference-time-scaled systems.
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

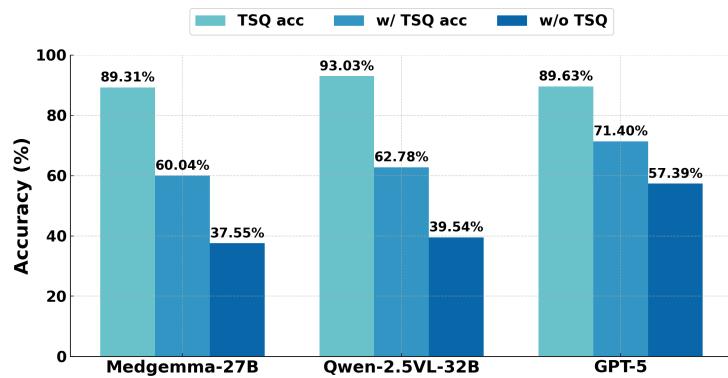


Figure 4: model accuracy across three processed datasets. **TSQ** refers to *Text-Solvable Questions*. The **TSQ acc** corresponds to model performance on the 611 text-solvable cases, where all three models achieved accuracies above 89%. In contrast, the **w/o TSQ** results are computed on the final test set after removing these text-solvable cases, showing a substantial drop in accuracy.

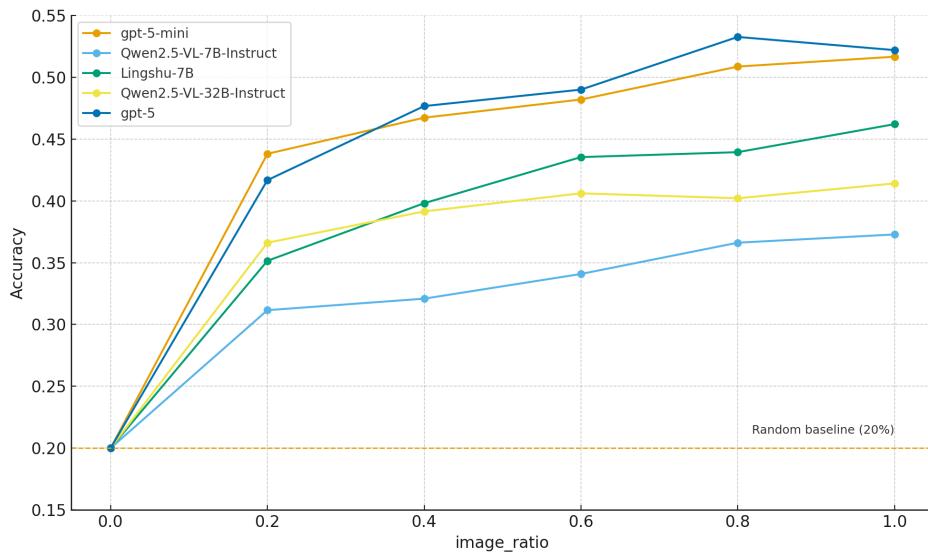


Figure 5: Accuracy on the test set as a function of the proportion of case images visible to the model (*image_ratio*). When no images are provided (*image_ratio* = 0), performance is close to the random baseline of 20% (dashed line); as the visible image proportion increases, accuracy consistently improves across models.

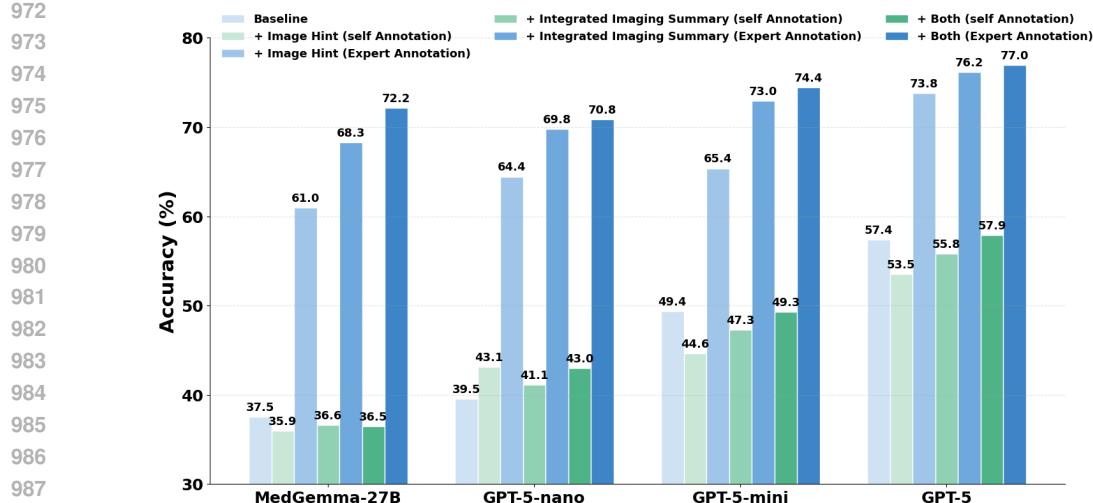


Figure 6: Accuracy on *MedThinkVQA* when augmenting images with text. We compare Image Hint (caption-like) and Integrated Imaging Summary (diagnosis-oriented findings), each provided either by an *expert* or generated by the *model itself* (self). Both combines the two.

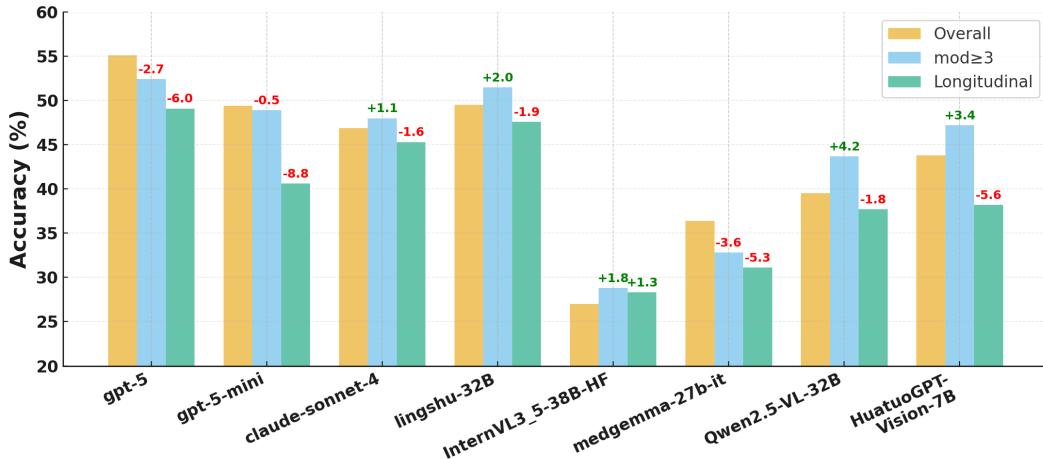


Figure 7: Comparison of accuracy for each model on the full test set (Overall), on cases with ≥ 3 imaging modalities, and on longitudinal follow-up cases. Accuracy on highly multimodal cases fluctuates around the overall level across models, whereas accuracy on longitudinal cases decreases for most models.

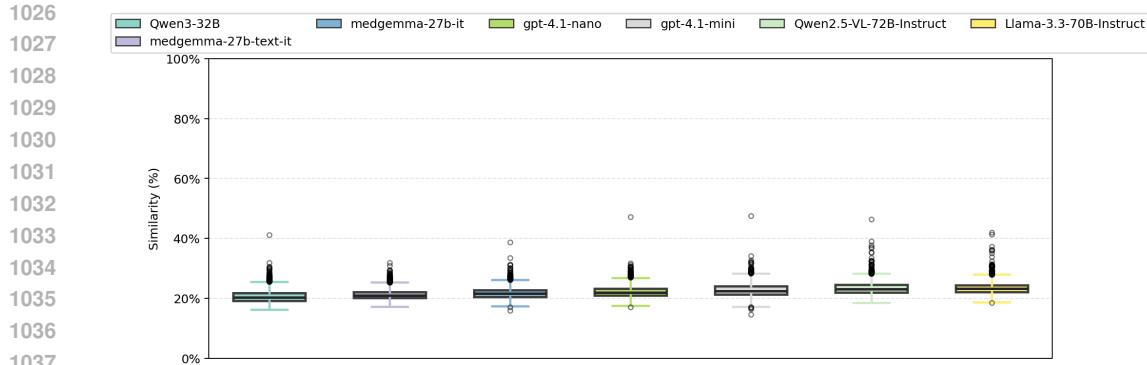


Figure 8: MELD data leakage test results on LLMs and VLMs for EuroRadQA. Boxplots show the distribution of similarity (%) between generated text and question text.

C EXAMPLE MAPPING FROM EURORAD FIELDS TO MEDTHINKVQA ANNOTATIONS

To make the supervision signals in MedThinkVQA concrete, this section uses a single Eurorad case from the test split, “*Ureteropelvic junction laceration following blunt trauma*”, whose processed JSON is stored at `cases/general/case_219/case.json`. We list the main JSON fields and show how they correspond to the supervision concepts used in the main text.

Clinical scenario.

- **JSON field:** `CLINICAL_HISTORY` (string).
- **Content:** brief free-text description of the presenting complaint and relevant history (for case 219, an elderly patient with cardiovascular comorbidities presenting with right-sided thoraco-abdominal trauma and microscopic haematuria).
- **Main-text concept:** this field is used verbatim as the *Clinical Scenario* shown to models before any images or answer options (Fig. 1, left).

Per-image hints (*Image Hint* / per-image findings).

- **JSON field:** `img` (list). Each element is a dictionary with keys `img_id`, `img_path`, `img_alt` (short legend), and `img_alt2` (full descriptive caption).
- **Content structure (case 219):**
 - Images 1–3: prior multidetector CT study 8 months earlier, showing bilateral peripelvic renal cysts with otherwise normal renal morphology.
 - Images 4–5: current CT for abdominal trauma, with right perirenal and fascial fluid and dependent hyperattenuation in the renal pelvis compatible with acute blood.
 - Image 6: arterial-phase CT and MIP reconstructions, without contrast extravasation, again emphasising hyperattenuation in the renal pelvis and a peripelvic cyst.
 - Images 7–8: delayed excretory-phase images, showing medial perirenal extraluminal opacified urine and normal parenchymal/collecting-system opacification.
 - Images 9–10: delayed images showing extraluminal opacified urine arising from a focal breach at the ureteropelvic junction and an opacified proximal ureter.
- **Main-text concept:** `img_alt2` provides the expert *per-image hint* used in Step 1 (*Image Hint* / per-image findings). In the TwI setting, models are asked to produce concise radiological finding sentences that are consistent with these captions.

Case-level Integrated Imaging Summary.

- **JSON field:** `IMAGING_FINDINGS` (string).

- 1080 • Content: a case-level narrative integrating all imaging examinations (prior CT, current
1081 CT, delayed acquisitions), key abnormalities (peripelvic cysts, perirenal fluid, extraluminal
1082 opacified urine from a UPJ breach), and absence of other traumatic lesions, plus immediate
1083 management (e.g., ureteral stenting).
- 1084 • Main-text concept: this field is the expert reference for the *Integrated Imaging Summary*
1085 (Step 2 in Fig. 1); models must fuse per-image findings into a single summary that matches
1086 this cross-view evidence.

1088 **Differential diagnosis and MCQ construction.**

- 1090 • JSON field: `DIF_DIAGNOSIS_LIST` (string with comma-separated diagnoses).
- 1091 • Content (case 219, simplified): contains the target diagnosis “Ureteropelvic junction laceration
1092 following blunt trauma” and related entities such as “Ureteropelvic avulsion”, “Renal
1093 parenchymal laceration with calyceal disruption”, “Urinoma”, “Perinephric haematoma”,
1094 and “Subcapsular haematoma”.
- 1095 • Additional JSON fields used for the MCQ:
 - 1096 – `options`: dictionary mapping option letters (“A”–“E”) to diagnosis strings.
 - 1097 – `correct_answer`: the correct option letter (e.g., “C”).
 - 1098 – `correct_answer_text`: the correct diagnosis string (e.g., “Ureteropelvic junction
1099 laceration following blunt trauma.”).
- 1100 • Main-text concept: these fields instantiate the five-option single-best-answer MCQ used
1101 in Step 3 (*Differential-Diagnosis Reasoning*); models compare their Integrated Imaging
1102 Summary to the options and must select `correct_answer_text`.

1104 **Medical Education Case Discussion.**

- 1106 • JSON field: `DISCUSSION` (string).
- 1107 • Content: long-form teaching text covering epidemiology (e.g., rarity of UPJ injuries),
1108 mechanisms, imaging pitfalls, management strategies, and prognosis.
- 1109 • Main-text concept: this field is the expert reference for the *Medical Education Case Discus-*
1110 *sion* task, where models generate a structured explanation (Background, Clinical Perspective,
1111 Imaging Perspective, Clinical Significance, Outcome, Take-Home Notes) that is graded
1112 against `DISCUSSION` for clinical correctness and educational value.

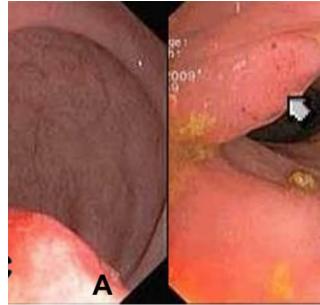
1114 Overall, this case illustrates how raw Eurorad sections and figure captions are mapped onto the
1115 *Clinical Scenario*, *Image Hint*, *Integrated Imaging Summary*, *Differential Diagnosis*, and *Medical*
1116 *Education Case Discussion* supervision signals defined in the main text and implemented as JSON
1117 fields in MedThinkVQA.

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

1134 C.1 MULTIMODAL CASE STUDY: PRIMARY CARCINOMA OF THE RECTOVAGINAL SEPTUM
1135

1136 This MedThinkVQA case is a 61-year-old woman with pelvic pain and inguinal lymphadenopathy,
1137 ultimately diagnosed with *primary carcinoma of the rectovaginal septum*. In the JSON, all four
1138 modalities (Endoscopy, CT, MRI, Histology / pathology) share the same CLINICAL_HISTORY,
1139 IMAGING_FINDINGS, DISCUSSION, and each image is referenced by its img_id and stored
1140 under images/cases/modality/{img_id}.jpg with img_alt and img_alt2 captions.
1141

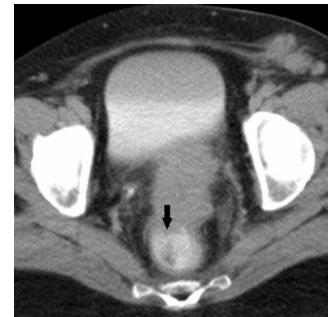
1142 **Endoscopy.** The endoscopic modality contains a single sigmoidoscopy frame (img_id =
1143 19iMrGt3) that documents both focal bulging of the sigmoid wall and a 3 cm vegetative rectal
1144 lesion; these findings are encoded in the corresponding img_alt and img_alt2 fields.
1145



1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158 **Figure 9:** Endoscopy image for this case (img_id = 19iMrGt3).
1159
1160

1161 **CT.** The CT modality consists of two axial contrast-enhanced CT images (3uIJtKe-,
1162 pfx97TC8) that show a heterogeneous mass in the pouch of Douglas, invasion of adjacent structures,
1163 and inguinal lymphadenopathy; the excretory-phase scan with rectal contrast further clarifies rectal
1164 wall involvement.
1165

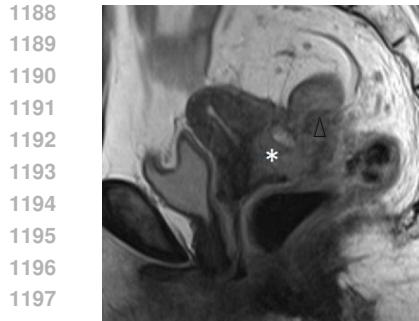
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177 **3uIJtKe-.** Axial contrast-
1178 enhanced CT with pelvic mass
1179 and enlarged left inguinal nodes.
1180



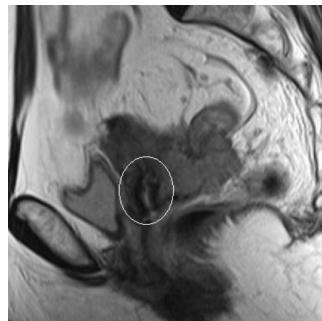
1181 **pfx97TC8.** Excretory-phase CT
1182 with rectal contrast, better defin-
1183 ing rectal wall involvement.
1184

Figure 10: CT images (img_id = 3uIJtKe-, pfx97TC8) stored under images/cases/modality/.

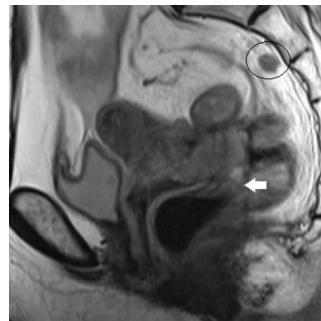
1185 **MRI.** The MRI modality includes five T2-weighted images (O5kEGVZq, IAV1h4UN, FjWYFzXB,
1186 F0K1jEeq, U14cWn_5) that jointly characterise mass location (rectovaginal septum), extension to
1187 cervix and myometrium, intimate contact with the rectal wall, nodal disease, and preservation of the
1188 right ovary and inner cervical stromal layer.



O5kEGVZq. Sagittal T2: mass in pouch of Douglas extending to cervix and myometrium.

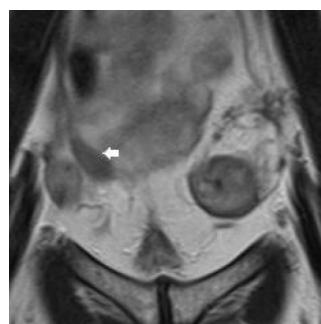


IAV1h4UN. Preserved low-signal inner cervical stroma.



FjWYFzXB. Mass inseparable from the anterior rectal wall.

F0KIjEeq. Multiple enlarged pelvic and abdominal lymph nodes.



U14cWn_5. Coronal T2: normal right ovary separately identified from the mass.

Figure 11: MRI images (img_id = O5kEGVZq, IAV1h4UN, FjWYFzXB, F0KIjEeq, U14cWn_5) with uniform image size and aligned top edges.

Histology / pathology. The histology / pathology modality contains a single composite slide (3xrCMRPY) showing solid tumour growth with marked atypia and immunostaining for CAM5.2, CK7, and WT1, all encoded in the img_alt2 description.

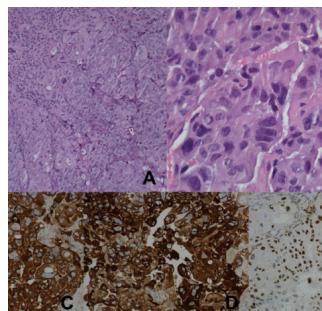


Figure 12: Histology / pathology image for this case (img_id = 3xrCMRPY).

Multimodal reasoning signal. In the dataset, this case is formatted as a five-option diagnostic MCQ with ground-truth label *primary carcinoma of the rectovaginal septum*. Endoscopy and CT highlight an extraluminal pelvic mass with rectal involvement; MRI localises the tumour to the rectovaginal septum and shows preserved cervix and ovaries with nodal spread; histology confirms a Müllerian-type carcinoma. A model must integrate all four modalities together with the shared textual fields in the JSON to distinguish this entity from rectal, cervical, and ovarian primaries.

1242
1243

C.2 LONGITUDINAL CASE STUDY: CYSTIC PULMONARY TUBERCULOSIS

1244
1245
1246
1247
1248

This MedThinkVQA case is a nine-year-old boy with severe cystic pulmonary tuberculosis, followed radiologically over almost a year. In the JSON, the shared `CLINICAL_HISTORY`, `IMAGING_FINDINGS`, and `DISCUSSION` fields are linked to chest radiographs and CT scans at multiple time points. Below, we group images by clinical time point to illustrate longitudinal disease evolution.

1249
1250
1251
1252
1253

Baseline imaging at admission. Baseline chest radiographs (posteroanterior and lateral views) show a bilateral diffuse micronodular acinar infiltrate. A same-day chest CT (lung and mediastinal windows) reveals a diffuse micronodular pattern with random distribution throughout both lungs, suggestive of an inflammatory or infectious process.

1254
1255
1256
1257
1258
1259
1260
1261

PA view. Baseline chest radiograph with diffuse micronodular infiltrates.



Lateral view. Baseline chest radiograph confirming bilateral involvement.

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272

CT, lung window. Diffuse micronodular pattern in both lungs.

CT, lung window. Randomly distributed nodules throughout the parenchyma.

CT, mediastinal window. No large focal mass; diffuse micronodular disease.

1273

Figure 13: Baseline chest radiographs and CT at admission, all displayed with a uniform relative size.

1278
1279
1280
1281
1282

Early course with pneumothoraces. During the ICU stay, the patient develops spontaneous pneumothoraces requiring chest drainage. Serial radiographs show persistent diffuse micronodular infiltrates with evolving unilateral and bilateral pneumothoraces and multiple chest tubes in place.

1283
1284
1285
1286

Development of confluent cystic disease. A subsequent contrast-enhanced CT demonstrates extensive confluent cystic lesions predominantly in the upper lobes and posterior regions, consistent with cystic pulmonary tuberculosis and explaining the recurrent pneumothoraces.

1287
1288
1289
1290

Persistent cysts and larger pneumothoraces. A further CT shows similar cystic disease but larger bilateral pneumothoraces, pneumomediastinum, and multiple chest drains in place, underscoring the mechanical complications of cystic tuberculosis.

1291
1292
1293
1294
1295

Pre-discharge CT. Before discharge, CT still shows cystic lesions and residual pneumothorax, but with improved overall ventilation. The patient tolerates these sequelae after chest tube removal and can leave the hospital.

Late follow-up. At eight months after discharge, follow-up CT shows near-complete resolution of the cystic and nodular lesions, with only subtle residual cysts and fibrotic sequelae.

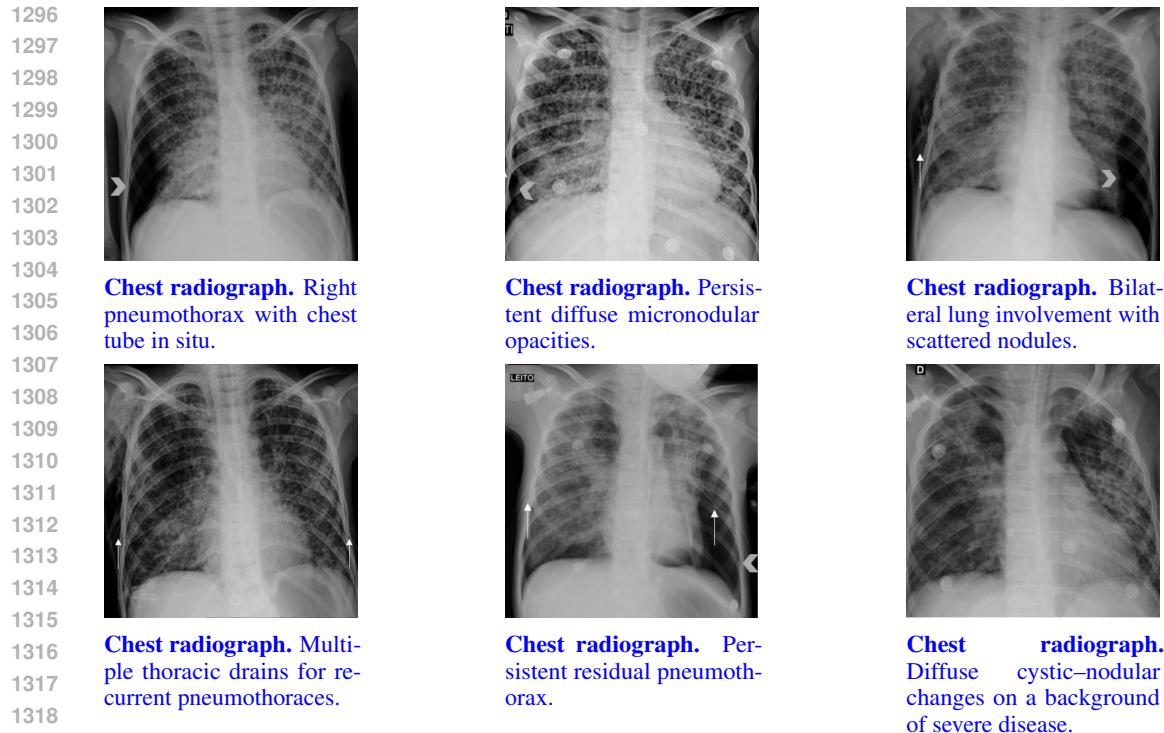


Figure 14: Serial chest radiographs during ICU stay, showing pneumothoraces and multiple chest drains.

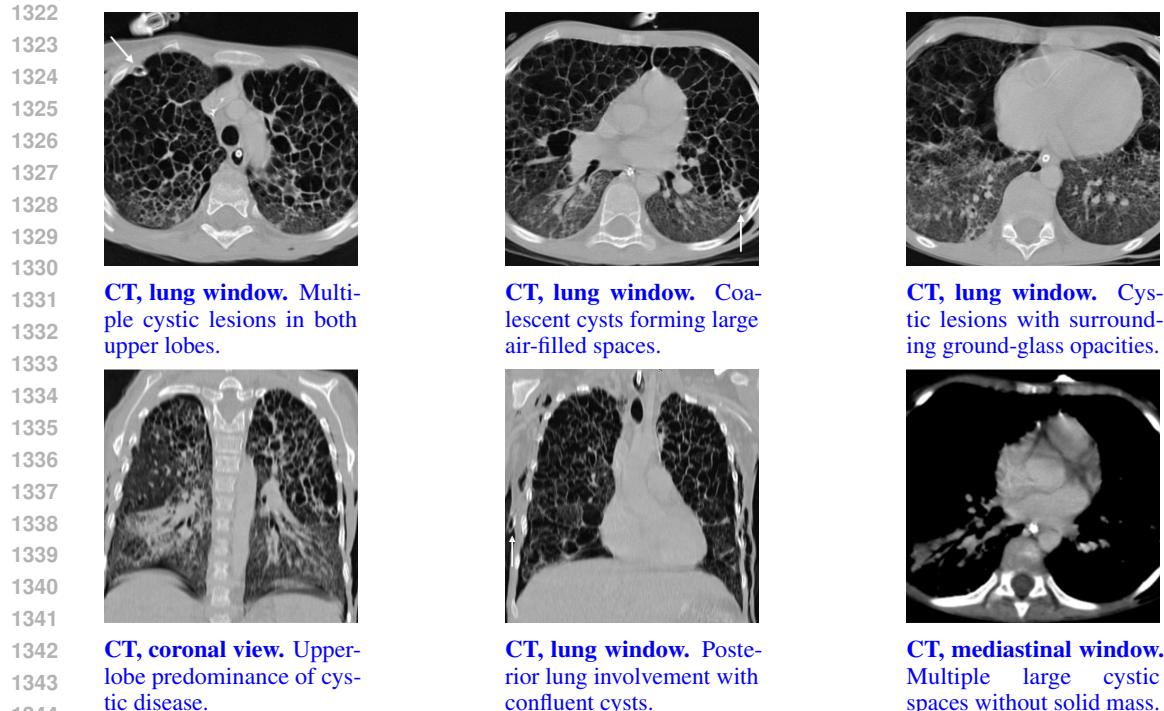


Figure 15: CT during peak disease severity, with confluent cystic lesions and diffuse parenchymal involvement.

Longitudinal reasoning signal. In MedThinkVQA, this case is encoded as a five-option diagnostic MCQ with the correct answer *cystic pulmonary tuberculosis*. A model must integrate longitudinal information across all time points—progression from micronodular infiltrates to confluent cystic dis-

1350

1351

1352

1353

1354

1355

1356

1357

1358

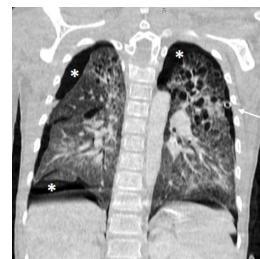
1359

1360

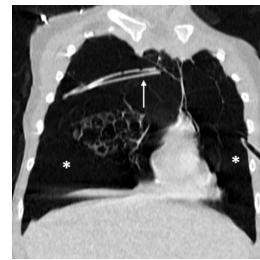
CT, lung window. Large right pneumothorax on a cystic background.

CT, mediastinal window. Pneumomediastinum and thoracic drains.

CT, lung window. Extensive bilateral cystic changes.

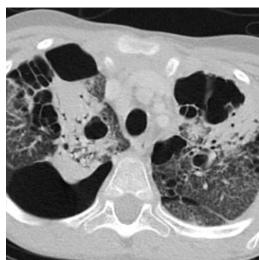


CT, coronal view. Bilateral pneumothoraces with upper-lobe cysts.



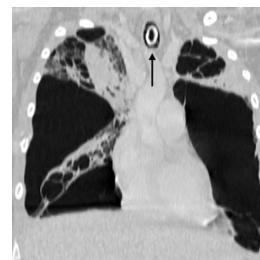
CT, lung window. Persistent cystic lesions despite drainage.

Figure 16: CT with larger pneumothoraces and pneumomediastinum, on a background of cystic pulmonary tuberculosis.



CT, lung window. Residual cystic changes with improved aeration.

CT, lung window. Decreased extent of parenchymal disease.



CT, coronal view. Tracheostomy in place with residual cysts.

Figure 17: Pre-discharge CT: persistent cystic lesions but improved clinical tolerance and removal of chest drains.

ease, recurrent pneumothoraces requiring multiple drains, and eventual radiologic recovery—together with the clinical text to distinguish this entity from other cystic lung diseases (e.g., *Pneumocystis jirovecii* pneumonia, Langerhans cell histiocytosis, Birt–Hogg–Dubé syndrome). The unified, uniformly sized image panels highlight how temporal evolution in a single patient can be represented as a structured longitudinal multimodal item in our dataset.

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417

CT, lung window. Marked improvement with near-normal parenchyma.

CT, lung window. Few residual discrete cysts.

CT, coronal view. Almost complete radiologic recovery.

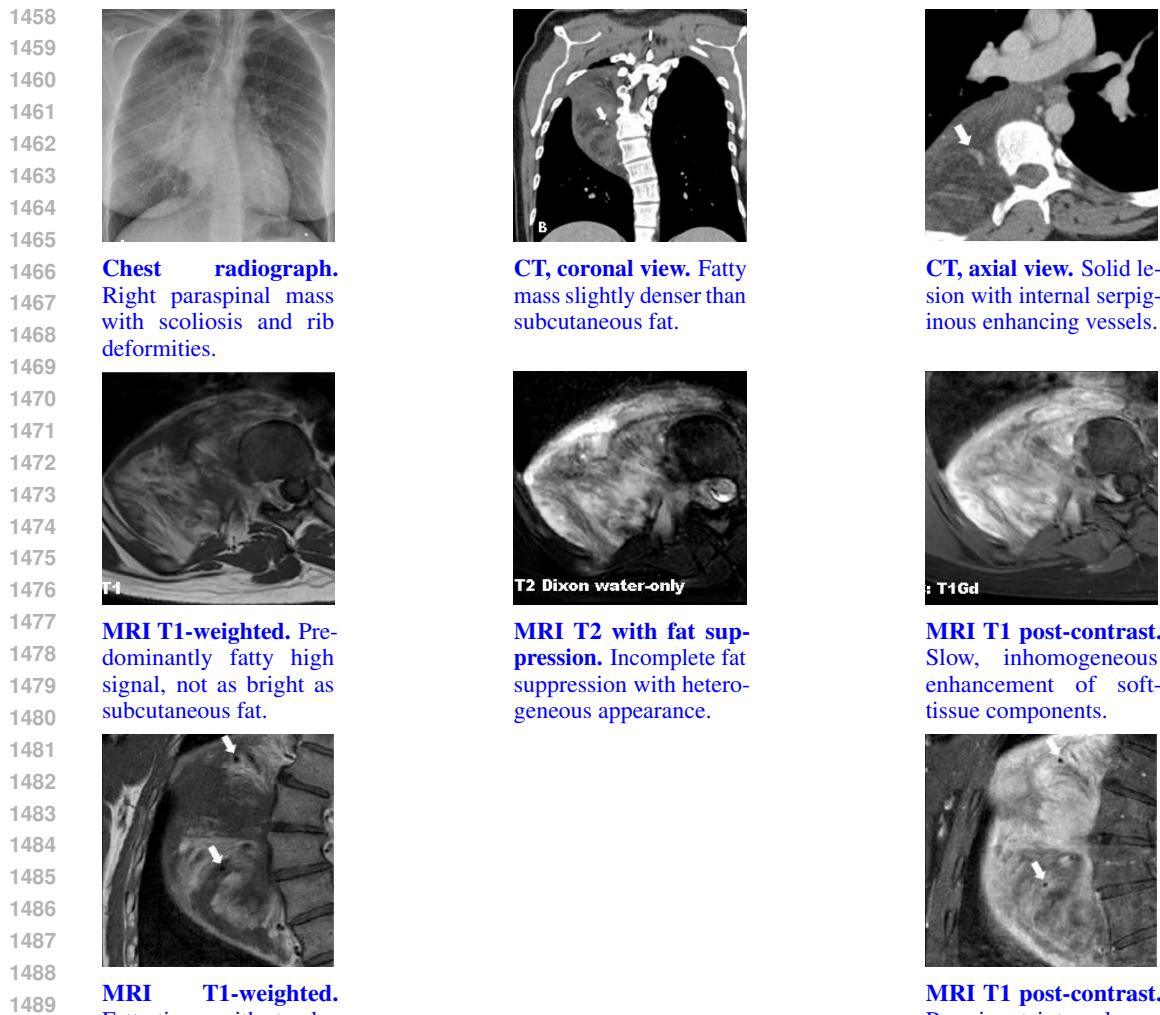
Figure 18: Late follow-up CT eight months after discharge, demonstrating almost complete recovery with limited sequelae.

1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440

C.3 GPT-5 CORRECT CASE STUDY: HIBERNOMA OF THE CHEST WALL

1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451

1452 A 28-year-old woman underwent a conventional chest examination for suspected pneumonia, which
1453 incidentally revealed a right paraspinal chest-wall mass. Radiography showed a paraspinal opacity
1454 with scoliosis and rib deformities. CT demonstrated a solid, non-mineralised paravertebral lesion with
1455 fatty components slightly denser than subcutaneous fat and prominent internal serpiginous vessels.
1456 MRI confirmed predominantly fatty signal intensity that was slightly less bright than subcutaneous
1457 fat, with incomplete fat suppression, streaky soft-tissue components and slow, inhomogeneous
1458 enhancement after contrast—features typical of a hypervascular brown-fat tumour (hibernoma).



1512 subcutaneous fat on CT, slightly less T1-bright on MRI, incomplete fat suppression) and emphasises
1513 the key hallmark of hibernoma: a hypervascular intramuscular lesion with prominent serpiginous
1514 internal vessels and slow, inhomogeneous enhancement rather than a homogeneous pure-fat mass.
1515 It then uses these imaging cues, plus the patient's young age and paraspinal chest-wall location, to
1516 rule out the main differentials: atypical lipomatous tumour and other liposarcomas (typically less
1517 vascular, in older patients, with thick septa and nodular non-fatty components), clear cell sarcoma (no
1518 macroscopic fat, usually distal extremities), and resolving haematoma (lacking persistent vascular
1519 flow voids and avid enhancement). This stepwise, modality-aware reasoning is consistent with the
1520 teaching point for hibernoma and leads to the correct diagnosis for this MedThinkVQA item.
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

1566 C.4 GPT-5 ERROR CASE STUDY
15671568 C.4.1 GPT-5 ERROR CASE STUDY: COMBINED WILKIE, NUTCRACKER, AND MAY-THURNER
1569 SYNDROMES
1570

1571 A 26-year-old woman with a three-year history of weight loss and postprandial abdominal discomfort,
1572 prior anorexia nervosa, and known pelvic congestion syndrome underwent contrast-enhanced
1573 abdominal CT. Imaging demonstrated: (i) compression of the third portion of the duodenum between
1574 the superior mesenteric artery (SMA) and aorta with reduced aortomesenteric angle and distance
1575 (Wilkie / SMA syndrome), (ii) compression of the left renal vein between the aorta and SMA with
1576 the classic “beak sign,” proximal left renal vein dilatation and engorged left ovarian and pelvic veins
1577 (Nutcracker syndrome), and (iii) compression of the left common iliac vein by the right common
1578 iliac artery against the lumbar spine (May–Turner syndrome), together with gastric and proximal
1579 duodenal dilatation.

1580
1581
1582
1583
1584
1585
1586
1587
1588 **Sagittal CT.** Third
1589 portion of the duodenum
1590 compressed between
1591 aorta and SMA.

1592
1593
1594
1595
1596
1597
1598
1599
1600 **Aortomesenteric angle.**
1601 Markedly reduced SMA–
1602 aorta angle.

1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619 **Aortomesenteric**
1619 **distance.** Narrowed
aortomesenteric distance
with duodenal compres-
sion.

1613
1614
1615
1616
1617
1618
1619 **LRV beak sign.** Abrupt
narrowing of the left renal
vein between aorta and SMA.

1613
1614
1615
1616
1617
1618
1619 **LRV dilatation.** Proxi-
mal enlargement of the
left renal vein.

1613
1614
1615
1616
1617
1618
1619 **Beak geometry.** An-
gulated, tapered appear-
ance of the compressed
left renal vein.

1613
1614
1615
1616
1617
1618
1619 **Pelvic veins.** Tortu-
ous left ovarian vein
and dilated pelvic ve-
nous plexus.

1613
1614
1615
1616
1617
1618
1619 **May–Turner.** Com-
pression of the left com-
mon iliac vein by the
right common iliac
artery.

1613
1614
1615
1616
1617
1618
1619 **Global effect.** Dilata-
tion of stomach and
proximal duodenum
from outflow obstruc-
tion.

1613
1614
1615
1616
1617
1618
1619 **Figure 20:** Nine CT slices from a single case demonstrating three concurrent vascular compression syndromes: Wilkie (SMA) syndrome, Nutcracker syndrome with pelvic venous congestion, and May–Turner syndrome. All images are stored as separate files but belong to one MedThinkVQA item.

1620
 1621 **GPT-5 answer (incorrect).** For the five-option question (iliac vein compression by an occult pelvic
 1622 mass; hereditary megaduodenum; scleroderma with duodenal involvement; superior mesenteric artery
 1623 syndrome; Nutcracker syndrome and May–Turner syndrome), GPT-5 selected *superior mesenteric*
 1624 *artery syndrome* and produced the following explanation:

1625 CT demonstrates a markedly reduced aortomesenteric angle ($\approx 18^\circ$) and aortomesenteric
 1626 distance (~ 2 mm), which are diagnostic measurements for compression of the third portion
 1627 of the duodenum by the SMA, that is, superior mesenteric artery (SMA) syndrome. The
 1628 clinical context of a young woman with significant weight loss and anorexia nervosa,
 1629 plus postprandial abdominal discomfort, is classic for SMA syndrome due to loss of the
 1630 mesenteric fat pad. While other vascular compression findings may be present, the imaging
 1631 and symptoms most directly support SMA syndrome as the primary diagnosis.

1632 **Why GPT-5 is wrong: failure of multi-image reasoning.** Although this explanation is internally
 1633 coherent for an *isolated* Wilkie / SMA syndrome, it systematically ignores the additional information
 1634 carried by the other six images. Three CT slices do quantify the reduced aortomesenteric angle and
 1635 distance and show duodenal compression, but the remaining views encode two further, independent
 1636 haemodynamic abnormalities:

- 1637 • Several slices through the renal hilum show an abrupt, “beak”-shaped narrowing of the left
 1638 renal vein between the aorta and SMA with proximal dilatation and engorged ovarian and
 1639 pelvic veins, which is classic for Nutcracker syndrome with pelvic congestion.
- 1640 • A slice at the iliac bifurcation demonstrates focal compression of the left common iliac vein
 1641 by the right common iliac artery against the spine, characteristic of May–Turner syndrome.

1643 The ground-truth label for this MedThinkVQA item reflects the *combination* of vascular compression
 1644 syndromes documented in the full nine-image set, not just SMA syndrome. However, GPT-5
 1645 effectively behaves as if it were solving a single-image task: it focuses on the most salient slice
 1646 showing SMA–duodenum compression, maps this to the textbook pattern of superior mesenteric
 1647 artery syndrome, and then dismisses the rest with the remark that other compression findings “may
 1648 be present.”

1649 This behaviour illustrates a central limitation of current multimodal LLMs on genuinely multi-
 1650 image cases. Instead of integrating heterogeneous evidence across different anatomical levels and
 1651 mechanisms (duodenal obstruction, renal venous outflow obstruction, iliac venous compression), the
 1652 model implicitly treats the images as redundant views of one problem and optimises for a single,
 1653 locally consistent story. In other words, GPT-5 correctly explains one mechanism, but it fails at joint,
 1654 cross-region reasoning over a curated set of complementary images, which is precisely what this
 1655 multi-syndrome case is designed to test.

1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674 C.4.2 GPT-5 ERROR CASE STUDY: LONGITUDINAL CYSTIC PULMONARY TUBERCULOSIS
1675

1676 This MedThinkVQA item is a longitudinal case of a previously healthy nine-year-old boy with
1677 cystic pulmonary tuberculosis. The clinical course spans almost eleven months: initial presentation
1678 with fever, cough, dyspnoea and diffuse micronodular infiltrates; multiple bilateral spontaneous
1679 pneumothoraces requiring repeated chest drainage and intensive care; evolution on CT from diffuse
1680 micronodules and ground-glass opacities to extensive thin-walled cystic change with recurrent
1681 pneumothoraces; and, after prolonged anti-tuberculous therapy, near-complete radiologic recovery
1682 with only a few residual cysts and fibrotic sequelae. All time points are encoded as separate images
1683 but linked to a single question whose ground-truth diagnosis is *cystic pulmonary tuberculosis*.
1684

1685 **GPT-5 answer (incorrect).** For the five-option question (*Pneumocystis jirovecii* pneumonia; Lym-
1686 phoid interstitial pneumonia; Langerhans cell histiocytosis; Cystic pulmonary tuberculosis; Birt-
1687 Hogg–Dubé syndrome), GPT-5 chose *Pneumocystis jirovecii* pneumonia and produced the following
1688 explanation:

1689 The imaging shows an initial diffuse interstitial/ground-glass process (crazy-paving appear-
1690 ance) followed by the development of numerous thin-walled cysts/pneumatoceles throughout
1691 both lungs and recurrent bilateral spontaneous pneumothoraces. This evolution – diffuse
1692 GGO progressing to widespread pneumatoceles with high risk of pneumothorax – is classic
1693 for *Pneumocystis jirovecii* pneumonia, especially in children with underlying or occult
1694 immunodeficiency. Langerhans cell histiocytosis typically affects young adult smokers with
1695 upper-lobe-predominant, irregular cysts and costophrenic angle sparing; lymphoid interstitial
1696 pneumonia is a chronic disease with lower-lobe cysts and not an acute febrile presentation;
1697 tuberculosis produces cavities rather than numerous thin-walled cysts; Birt–Hogg–Dubé
1698 syndrome presents in adults with basilar subpleural cysts without acute diffuse ground-glass
1699 opacities. Thus, *Pneumocystis jirovecii* pneumonia best fits the overall picture.
1700

1701 **Error analysis: ignoring the longitudinal time axis.** GPT-5’s reasoning is internally consistent
1702 for an acute, immunodeficiency-related *Pneumocystis* pneumonia, but it fails as a longitudinal
1703 interpretation of this case. Several key aspects of the time series are either misread or ignored:
1704

- 1705 • **Disease duration and follow-up.** The patient is an immunocompetent nine-year-old boy
1706 followed over almost eleven months, with documented near-complete radiologic recovery
1707 after prolonged anti-tuberculous therapy. This long clinical evolution with structured follow-
1708 up CTs is far more typical of tuberculosis than of uncontrolled *Pneumocystis* infection,
1709 which in an undiagnosed immunodeficient child would be expected to progress or relapse
1710 rather than steadily resolve.
- 1711 • **Full temporal chain, not a single snapshot.** GPT-5 effectively compresses the sequence
1712 “diffuse micronodules/ground-glass → extensive thin-walled cysts → gradual resolution”
1713 into a standard short-course template for *Pneumocystis* pneumonia. It focuses on the middle
1714 phase (GGO with cysts and pneumothoraces) and treats the early and late time points as
1715 redundant, rather than evidence of a slowly evolving, ultimately reversible granulomatous
1716 infection under long-term treatment.
- 1717 • **Misconception about tuberculosis morphology.** The explanation assumes that tuberculosis
1718 “produces cavities rather than numerous thin-walled cysts,” implicitly excluding cystic or
1719 pneumothorax-prone forms of TB. However, the discussion explicitly describes cystic
1720 pulmonary tuberculosis as a rare but recognised entity in which diffuse nodules and ground-
1721 glass change can evolve into confluent thin-walled cysts with recurrent pneumothoraces,
1722 followed by gradual radiologic improvement once therapy is effective.
- 1723 • **Underuse of sequential improvement as a diagnostic cue.** A core signal in this longitu-
1724 dinal case is the progressive improvement across follow-up CTs: cysts shrink, pneumothoraces
1725 resolve, and only sparse cystic or fibrotic sequelae remain. Such a trajectory is strongly sup-
1726 portive of treated infection (here, tuberculosis) and less compatible with chronic interstitial
1727 or cystic diseases (such as LCH, LIP, Birt–Hogg–Dubé) that typically show persistent or
1728 progressive structural damage.

1728 C.4.3 GPT-5 ERROR CASE STUDY: MULTIMODAL-HYDATID
1729

1730 This MedThinkVQA item is a multimodal, multi-organ case of disseminated hydatid disease in a
 1731 19-year-old man presenting with seizures and low-grade fever. Cranial CT and MRI show a solitary
 1732 parietal cystic lesion with mild peripheral enhancement and no diffusion restriction; chest X-ray and
 1733 body CT demonstrate multiple, well-defined peripheral pulmonary nodules with water attenuation;
 1734 thoracic ultrasound confirms the cystic nature of the lung lesions; and abdominal CT reveals a cystic
 1735 hepatic lesion with peripheral calcification. Serology for *Echinococcus granulosus* confirms the
 1736 diagnosis, and the ground-truth label for the item is *disseminated hydatid disease*.
 1737

1738 **GPT-5 answer (incorrect).** For the five-option question (Disseminated hydatid disease; Lung:
 1739 pulmonary septic emboli; Pulmonary metastases; Brain: cystic brain tumour; Brain abscess), GPT-5
 1740 selected *Brain abscess* and produced the following explanation:

1741 The clinical presentation of seizures and febricula along with laboratory findings of leuko-
 1742 cytosis and neutrophilia suggests an infectious or inflammatory process. The absence of
 1743 respiratory symptoms makes options related to pulmonary pathology less likely as the
 1744 primary diagnosis. Given the neurological symptoms, the most plausible diagnosis would
 1745 involve the brain. Between options D and E, brain abscess (E) is more likely to present
 1746 acutely with seizures and fever, and is often associated with leukocytosis and neutrophilia,
 1747 whereas a cystic brain tumor (D) might not typically present with such acute infectious
 1748 symptoms. The imaging findings, although not described, would likely show a localized
 1749 area of infection in the brain for an abscess, which aligns with the clinical picture provided.

1750 **Error analysis: failure to integrate multimodal, multi-organ evidence.** GPT-5’s reasoning treats
 1751 this case as if it were a purely neuroradiologic vignette: it focuses on seizures, low-grade fever and
 1752 inflammatory markers, implicitly assumes the key information is “ring-enhancing brain lesion plus
 1753 infection,” and then chooses brain abscess by comparing only options D and E. This single-modality
 1754 shortcut neglects almost all of the structured multimodal evidence presented:

- 1755 • **Pulmonary imaging is downgraded to “background”.** Chest X-ray and chest CT clearly
 1756 show numerous, well-defined, peripheral pulmonary nodules with water attenuation and no
 1757 features of suppurative consolidation or infarction. Thoracic ultrasound further confirms that
 1758 these nodules are true cysts (anechoic with posterior acoustic enhancement), a pattern much
 1759 more typical of hydatid disease than septic emboli or metastases. GPT-5’s statement that
 1760 pulmonary options are “less likely” because of absent respiratory symptoms ignores that
 1761 hydatid cysts are often asymptomatic in the lungs and that imaging, not symptoms, carries
 1762 the main diagnostic weight here.
- 1763 • **Hepatic cyst is completely ignored.** Body CT demonstrates a classic hydatid cyst in the
 1764 left hepatic lobe with a well-defined cystic lesion and peripheral calcification of the pericyst.
 1765 This second non-brain, non-lung organ involvement is a strong clue for systemic parasitic
 1766 disease. GPT-5’s explanation does not mention the liver at all, indicating that this modality
 1767 and organ channel are effectively dropped from its reasoning.
- 1768 • **Brain MRI is interpreted through a generic “ring-enhancement = abscess” template.**
 1769 The brain lesion in this case is a solitary, CSF-like cyst with a thin rim, mild peripheral en-
 1770 hancement, no diffusion restriction, and only moderate oedema. These features, particularly
 1771 the absence of diffusion restriction and the characteristic low-signal rim on T2-weighted
 1772 images, are more consistent with a hydatid cyst than with a pyogenic abscess. GPT-5 instead
 1773 imagines a typical abscess pattern and even states that the imaging findings “would likely”
 1774 show a focal infection, revealing that it is reasoning from a mental template rather than
 1775 actually integrating the provided MRI sequences.
- 1776 • **Cross-organ pattern is never assembled.** The correct diagnosis requires noticing a triad: (i)
 1777 multiple cystic pulmonary lesions, (ii) a calcified hepatic cyst, and (iii) a solitary brain cyst
 1778 with hydatid-like MRI characteristics. Taken together, these represent a classic multi-organ,
 1779 haematogenously disseminated parasitic infection. GPT-5 never composes this cross-organ,
 1780 cross-modality picture; instead, it chooses the most salient single modality (brain MRI/CT)
 1781 and maps the entire case to a focal intracranial infection.

1782 C.5 STEP-LEVEL EVALUATION CASE STUDY: BILATERAL SUBAREOLAR ABSCESSES
17831784 C.5.1 ERROR TAXONOMY FOR MODEL RESPONSES
1785

- 1786 • **Reasoning Error (Reasoning Err).** The imaging and clinical facts themselves are correctly
1787 stated, but the model misconstruits the causal chain or diagnostic logic, reaches an incorrect
1788 conclusion, selects an inappropriate differential diagnosis, or uses correct facts to support an
1789 incorrect judgment.
- 1790 • **Image Understanding Error (Image Understanding Err).** The model misreads or hallucinates
1791 objective visual information that is directly apparent on the images (e.g., location,
1792 morphology, signal intensity, enhancement pattern, extent), and the error originates from
1793 image interpretation rather than downstream reasoning.
- 1794 • **Clinical Scenario Error (Clinical Scenario Err).** The model misunderstands, misquotes,
1795 or inaccurately restates clinical information provided in the stem (e.g., symptoms, age,
1796 duration, physical findings, laboratory data), or treats information that is not given as if it
1797 were explicitly provided.
- 1798 • **Medical Knowledge Error (Medical Knowledge Err).** The model violates general medical
1799 knowledge or textbook-level facts—such as typical manifestations of a lesion, epidemiology,
1800 key features for differential diagnosis, or common complications—in ways that are
1801 independent of how the specific images or clinical history are read.

1802 **Clinical scenario and imaging summary.** A 39-year-old woman presented with unilateral, single-
1803 orifice nipple discharge (galactorrhoea) from the right breast and no fever, palpable mass, or skin
1804 inflammatory changes. Initial mammography (craniocaudal and oblique views) and ultrasound of
1805 both breasts were reported as normal. Galactography of the right breast showed an intraductal filling
1806 defect in a canalised nipple duct and raised the suspicion of an intraductal papilloma. Subsequent
1807 contrast-enhanced breast MRI revealed bilateral subareolar fluid-filled cavities without internal
1808 enhancement, with intensely enhancing peripheral capsules and surrounding inflammatory tissue.
1809 A repeat ultrasound, performed after the patient clarified that the discharge was actually bilateral,
1810 showed bilateral subareolar hypoechoic nodules with anechoic centres, consistent with abscesses.
1811 Cytology confirmed bilateral subareolar abscesses.

1812 **GPT-5 diagnosis and explanation.** The multiple-choice options included galactocele, fat necrosis,
1813 intracystic papillomas, and subareolar abscesses (correct answer: subareolar abscesses). GPT-5
1814 instead chose *intracystic papillomas* and produced the following free-text explanation:
1815

1816 Unilateral, single-duct nipple discharge suggests a focal intraductal process. Mammography
1817 is essentially negative. Ultrasound shows a dilated retroareolar duct containing an intracystic
1818 solid nodule. MRI demonstrates a small enhancing subareolar intraductal lesion without sur-
1819 rounding inflammatory change. Findings are classic for an intraductal/intracystic papilloma,
1820 not a galactocele (no fat–fluid level), abscess (no pain, erythema or inflammatory changes),
1821 or fat necrosis.

1822 **Step-level parsing and expert error annotation.** We use GPT-5 to decompose its own explanation
1823 into discrete reasoning steps, then ask a breast imaging expert to judge the factual correctness of each
1824 step and assign an error type when applicable. Error types follow our taxonomy: *Clinical Scenario*
1825 *Err*, *Image Understanding Err*, *Reasoning Err*, and *Medical Knowledge Err* as defined in Section ??.

- 1827 1. **Step 1:** “Unilateral, single-duct nipple discharge suggests a focal intraductal process.”
1828 *Expert factual judgment: Incorrect. Error type: Clinical Scenario Err.*
1829 Although the original history was recorded as unilateral, single-orifice discharge, the case
1830 narrative later clarifies that the galactorrhoea is actually bilateral. GPT-5 treats the initial,
1831 incomplete history as definitive and over-anchors on a classic teaching pattern for intraductal
1832 papilloma, misrepresenting the true clinical scenario.
- 1833 2. **Step 2:** “Mammography is essentially negative.”
1834 *Expert factual judgment: Correct. Error type: None.*
1835 The report states that mammography did not show any pathological findings, so this step
1836 accurately reflects the imaging description.

1836 3. **Step 3:** “Ultrasound shows a dilated retroareolar duct containing an intracystic solid nodule.”
 1837 *Expert factual judgment: Incorrect. Error type: Image Understanding Err.*
 1838 In reality, the initial ultrasound was normal, and the follow-up ultrasound showed bilateral
 1839 subareolar hypoechoic nodules with anechoic centres (abscesses), not a duct with an intra-
 1840 cystic solid nodule. GPT-5 hallucinates a very specific retroareolar papilloma pattern directly
 1841 from the images, so the primary error is misreading the imaging rather than subsequent
 1842 reasoning.

1843 4. **Step 4:** “MRI demonstrates a small enhancing subareolar intraductal lesion without sur-
 1844 rounding inflammatory change.”
 1845 *Expert factual judgment: Incorrect. Error type: Image Understanding Err.*
 1846 The MRI actually showed bilateral fluid-filled cavities without internal enhancement, sur-
 1847 rounded by an intensely enhancing capsule and inflammatory tissue with moderate enhance-
 1848 ment. GPT-5 inverts this pattern (solid enhancing nodule, no inflammation), again indicating
 1849 a failure to correctly translate the described MRI findings into its intermediate reasoning.

1850 5. **Step 5:** “These imaging findings are classic for an intraductal/intracystic papilloma.”
 1851 *Expert factual judgment: Incorrect. Error type: Reasoning Err.*
 1852 Given the true imaging pattern (bilateral subareolar fluid collections with enhancing capsule
 1853 and surrounding inflammation), the correct diagnosis is abscess. Here GPT-5 generalises
 1854 from its misread ultrasound/MRI steps and commits a diagnostic reasoning error: it asserts
 1855 a papilloma pattern even though the combination of bilateral disease, fluid-filled cavities,
 1856 and inflammatory enhancement better matches abscess.

1857 6. **Step 6:** “The findings are not compatible with a galactocele because there is no fat–fluid
 1858 level.”
 1859 *Expert factual judgment: Correct as stated. Error type: None.*
 1860 The expert accepts that there is no explicit fat–fluid level described. While the accompanying
 1861 textual explanation overstates how definitively this excludes a galactocele, the literal step
 1862 (“no fat–fluid level is seen”) is factually consistent with the report, so no image or scenario
 1863 error is assigned at the step text level.

1864 7. **Step 7:** “The findings are not compatible with an abscess because there is no pain, erythema,
 1865 or inflammatory changes.”
 1866 *Expert factual judgment: Incorrect. Error types: Reasoning Err, Clinical Scenario Err,
 1867 Medical Knowledge Err.*
 1868 This step bundles three distinct problems:

- **Clinical Scenario Err:** It equates the absence of external pain, erythema, or skin
 1869 signs with the absence of inflammation, ignoring the MRI description of surrounding
 1870 inflammatory tissue and the later clarification of bilateral symptoms.
- **Medical Knowledge Err:** It assumes that breast abscesses cannot present without
 1872 overt systemic or cutaneous signs, which contradicts the broader discussion that non-
 1873 puerperal central abscesses can be subtle.
- **Reasoning Err:** It uses this flawed premise to exclude the true diagnosis (abscess),
 1874 despite direct imaging and cytology evidence to the contrary.

1875 8. **Step 8:** “The findings are not compatible with fat necrosis.”
 1876 *Expert factual judgment: Correct. Error type: None.*
 1877 The described lesions are fluid-filled cavities with enhancing capsules and inflammatory
 1878 tissue, without oil cysts or internal fat signal; this pattern is more characteristic of abscess
 1879 than fat necrosis, so excluding fat necrosis at this step is reasonable.

1890 D OPTION & DISCUSSION AUGMENTATION PROMPT

1891
 1892 To ensure reproducibility, we document the exact prompts used for augmenting *Options* and expanding
 1893 the *Discussion* in the medical multiple-choice QA setting.
 1894

1895 D.1 SYSTEM PROMPT

1896
 1897 You are a careful medical QA assistant.
 1898

1899 # Prompt for Option Generation

1900 ### Task

1901 Given a medical multiple-choice question of the form "Select the single best diagnosis"
 1902 based on CLINICAL_HISTORY, several patient images, the current provided options,
 1903 the correct answer, and an existing discussion (including reasoning about the current options)

1904 1. Generate additional incorrect options so that the total number of answer choices
 1905 is exactly 5 (no more, no less).
 1906 2. Expand and refine the provided discussion, ensuring it thoroughly explains how
 1907 to eliminate all incorrect answers and why the correct answer is most appropriate,
 1908 using reasoning grounded in the CLINICAL_HISTORY and images.

1909 ### Suggested Approaches

1910 1. Consider Erroneous Perspectives: Add distractors that misinterpret or
 1911 overemphasize aspects of the CLINICAL_HISTORY or images.
 1912 2. Leverage Common Misconceptions: Create distractors based on common diagnostic
 1913 errors or frequently confused conditions.
 1914 3. Logical Misdirection: Introduce distractors grounded in logical reasoning
 1915 that appear plausible but are ultimately incorrect.

1916 ### General Requirements

1917 1. Maintain Consistency: Ensure new options match the original ones in length,
 1918 structure, and professional wording.
 1919 2. Avoid Oversimplified Distractors.
 1920 3. Ensure High Plausibility.
 1921 4. Expand Discussion:
 1922 - Include reasoning for the newly generated distractors.
 1923 - Strengthen explanations for ruling out incorrect answers.
 1924 - Deepen justification for selecting the correct answer.
 1925 5. Final Output Format:
 1926 Return valid JSON with exactly these fields: options (A-E), correct_answer, discussion.

1927 ### Important Output Rules

1928 - Keep all *original* options text unchanged; only add new distractors
 1929 to reach exactly five total options.
 1930 - Do NOT reorder existing options; append only the missing letters
 1931 (e.g., add D/E) so that A-E are filled.
 1932 - The final correct_answer must correspond to the original correct option's text.
 1933 - No extra commentary outside the JSON body.

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944 E DISCUSSION PRUNING PROMPT
19451946 This section documents the prompts used to prune *Discussion* paragraphs by removing references to
1947 extra differential diagnoses that are not among the allowed answer options.
19481949 E.1 SYSTEM PROMPT
19501951 You are a careful clinical editor. Your job is to MINIMALLY edit a medical DISCUSSION.
1952 Goal: remove references to extra differential diagnoses that appear in
1953 DIF_DIAGNOSIS_LIST but are NOT among the five ALLOWED OPTIONS.
1954 Preserve all content related to ALLOWED OPTIONS.
1955 Keep the original clinical reasoning flow, tone, and meaning. Do not add new facts.
1956

1956 Rules:

1957 1) NEVER delete information that relates to any ALLOWED_OPTIONS
1958 (even if an EXTRA item partially overlaps).
1959 2) Remove sentences/clauses whose main role is to introduce, justify, or
1960 list items in EXTRA_TO_REMOVE.
1961 If a sentence mixes allowed and extra diagnoses, keep the allowed part
1962 and delete only the extra part, then fix grammar to remain fluent.
1963 3) Keep general disease definitions, imaging/lab reasoning, and conclusions
1964 that support ALLOWED_OPTIONS.
1965 4) Maintain coherence and clinical correctness; do NOT invent new claims.
1966 5) Output strictly as JSON with one key: discussion_new.
1967 6) If EXTRA_TO_REMOVE is empty, return the original discussion as discussion_new.
19681967 E.2 USER PROMPT TEMPLATE
19681969 Edit the DISCUSSION by deleting only the parts about the extra differentials.
19701971 ALLOWED_OPTIONS (keep anything related to these):
1972 <ALLOWED_OPTIONS_JSON>1973 DIF_DIAGNOSIS_LIST_CLEAN:
1974 <DIF_DIAGNOSIS_LIST_CLEAN_JSON>1975 EXTRA_TO_REMOVE (delete content only about these):
1976 <EXTRA_TO_REMOVE_JSON>
19771978 DISCUSSION:
1979 '''text
1980 <DISCUSSION>
1981 Return JSON: {"discussion_new": "..."}

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998 F PROMPTS FOR DATA LEAKAGE AUDITING
1999

2000

2001

2002 SYSTEM MESSAGE
2003

2004

2005 You are a meticulous clinical QA auditor for multiple-choice diagnosis questions. You
2006 Given ONLY the CLINICAL HISTORY text and the list of candidate diagnosis OPTIONS, decide
2007 whether the history text DIRECTLY REVEALS any option(s).
2008

2009

2010 Definition of DIRECT REVEAL (diagnosis label appears in the text itself, not inferred):
2011 • L3 Explicit label: the exact diagnosis name or ICD/standard label appears, or pattern
2012 "Diagnosis: X", "biopsy-proven X".
2013 • L2 Explicit synonym/acronym/eponym/foreign-language variant of the diagnosis label
2014 (e.g., "MI" for myocardial infarction; "Osler-Weber-Rendu" for HHT).
2015 • L1 Explicit but uncertain mention of the diagnosis label (or its synonym/acronym/eponym)
2016 e.g., "?X", "r/o X", "rule out X", "query X", "suspected X", "possible/probable X",
2017 "consistent with X", "concern for X", "Hx of/known case of X".
2018

2019

2020 NOT a leak: symptoms, signs, risk factors, imaging descriptors, or lab patterns that
2021 SUGGEST a diagnosis. Only mark a leak if the diagnosis LABEL itself (or its standard
2022 synonym/acronym/eponym) occurs in the text.
2023

2024

2025 Use the OPTIONS solely as a dictionary of candidate labels and their widely-used
2026 synonyms/acronyms/eponyms to search for DIRECT textual mentions. Do NOT infer diagnoses
2027 from context. Do NOT mark based on reasoning.
2028

2029

2030 For each leaked option, return:
20312032 - option_id, option_text
2033 - overall leak_level (max severity across its evidences; L3>L2>L1)
2034 - evidences: verbatim snippet(s) with [start,end) character indices into the EXACT CLINICAL
2035 HISTORY string
2036 - a brief justification

2037

2038 If no option is leaked, set has_leak=false and provide non_leak_reason.
2039

2040

2041 Return ONLY valid JSON following the required schema. No extra prose.
2042

2043

2044 USER MESSAGE (TEMPLATE)
2045

2046

2047 CLINICAL HISTORY (use this exact string when computing char spans):
2048 <<<HISTORY>>>
2049 {CLINICAL_HISTORY}
2050 <<<END_HISTORY>>>

2051

2052 OPTIONS (candidate diagnoses; DO NOT infer--use only as label dictionary):
2053

2054

2055 A) {option_A_text}
2056 B) {option_B_text}
2057 C) {option_C_text}
2058 D) {option_D_text}
2059 E) {option_E_text}

2060

2061 ... (continue as needed, preserving order)
2062

2063

2064 Task: Identify ALL options (if any) that are directly revealed by the HISTORY text
2065 under L1/L2/L3 definitions. Extract verbatim evidence snippet(s) and 0-based [start,
2066 end) character spans into the exact HISTORY string above. If none, set has_leak=false.
2067

2052 **G PROMPTS FOR DISCUSSION GENERATION**
20532054 **SYSTEM PROMPTS**
20552056 You are a board-certified radiologist. Given clinical history, imaging
2057 findings, a differential diagnosis list, the final diagnosis, and one or
2058 more images (with captions), write a Discussion with five sections:
2059 Background; Clinical Perspective; Imaging Perspective; Outcome; Take Home
2060 Message. Be accurate, concise, and grounded in the provided info.

2061 Return strict JSON with keys exactly:

2062 {
2063 "Background": "...",
2064 "Clinical Perspective": "...",
2065 "Imaging Perspective": "...",
2066 "Outcome": "...",
2067 "Take Home Message": "..."
2068 }2069 Example of tone/structure (content is just an example; DO NOT copy text):
20702071 {
2072 "Background": "May and Thurner described for the first time in 1956
2073 a spur-like formation on the left common iliac vein in 22% of autopsies.
2074 May-Thurner syndrome, also known as Iliac Venous Compression Syndrome
2075 (IVCS), is a condition of venous compression by the overlying artery,
2076 usually the left common iliac vein by the right common iliac artery.",
2077
2078 "Clinical Perspective": "This disease is reported to be more frequent
2079 in women and the main clinical presentation is deep vein thrombosis.
2080 The true prevalence of this condition is unknown, but some autopsies
2081 series reported 22% to 33%. May-Thurner syndrome is a progressive
2082 vascular disease with long-term disabling complications.",
2083
2084 "Imaging Perspective": "Iliac vein compression, with or without
2085 thrombosis, should be treated if symptomatic. The procedure includes
2086 an ascending venogram through the iliac vein to show the stenotic area.
2087 A guidewire is advanced through the lesion and a stent is then placed
2088 over-the-wire.",
2089
2090 "Outcome": "Since 1995 venous stents have been placed into the narrowed
2091 vein area. Stents seem to be beneficial, improving the clinical outcome
2092 and the quality of life of these patients.",
2093
2094 "Take Home Message": "If a patient has discomfort, swelling or deep
2095 venous thrombosis (DVT), in the iliofemoral vein territory, especially
2096 on the left side think about May-Thurner syndrome."
2097 }2098 **H LLM JUDGE PROMPT**
20992100 **H.1 SYSTEM PROMPT**2101 You are an evaluator for radiology case analyses. Judge the correctness of each step
2102 based on the provided context (Clinical history, Captions, Imaging findings, Discussion
2103 and relevant teaching value/domain knowledge.

2104 Rules:

2105 1) Evaluate whether each step is correct or reasonably supported; reasonable analysis
2) Mark True if the step is explicitly supported, correctly implied, or logically rea

2106 and your teaching value/domain knowledge.
 2107 3) Mark False only if the step is clearly wrong, contradictory, or cannot be reasonable
 2108 the context or standard domain knowledge.
 2109 4) Ignore style, redundancy, or reasoning quality--focus only on correctness.
 2110 5) Provide exactly one concise 1-2 sentence explanation per step.
 2111 6) Return ONLY JSON following the provided schema; one verdict per step, same order.
 2112

2113 H.2 USER PROMPT (TEMPLATE)

2114 Task: For each step below, judge if it is supported by the provided context and relevant
 2116 teaching value/domain knowledge.

2117 - Title: {{title}}
 2118 - Clinical history: {{clinical_history}}
 2119 - Imaging findings: {{imaging_findings}}
 2120 - Discussion: {{discussion}}
 2121 - Captions (all):
 2122 {{captions_block}} # e.g., lines like "- {{caption_i}}"; if none, use "(none)"
 2123
 2124 Steps to judge (in order):
 2125 {{steps_block}} # e.g., "1. {{step_1}}\n2. {{step_2}}\n..."
 2126
 2127 Output strictly as JSON; one verdict per step in the same order, using this schema:
 2128 {
 2129 "verdicts": [
 2130 {
 2131 "is_factual": true,
 2132 "explanation": "A brief, self-contained justification (1-2 sentences). If true,
 2133 }
 2134 // ... one object per step, in order
 2135]
 2136 }

2137 H.3 LLM AS JUDGE FOR CASE DISCUSSIONS

2138 You are a board-certified radiologist tasked with evaluating the factual
 2140 correctness of radiology case discussions.

2141 Judge the correctness of each sentence from the Discussion section
 2142 (Background / Clinical Perspective / Imaging Perspective / Outcome /
 2143 Take-Home) based on the provided case context (Clinical history, Imaging
 2144 findings, Differential list), the image captions, and the images themselves.
 2145

2146 Rules:

- 2147 1) Mark True if the sentence is explicitly supported, correctly implied,
 or logically reasonable given the context and standard domain knowledge.
- 2148 2) Mark False only if clearly wrong, contradictory, or not reasonably
 inferable.
- 2149 3) Ignore style and redundancy--focus only on correctness.
- 2150 4) Provide exactly one concise 1-2 sentence explanation per sentence.
- 2151 5) Return ONLY JSON for the schema below.

2154 Return STRICT JSON with this schema:

```
2155 {  

  2156   "sentence_judgments": {  

  2157     "<sentence_key>": {  

  2158       "text": "<original sentence>",<br>  

  2159       "factual": true|false,<br>  

  2160       "explanation": "<ONE concise 1-2 sentence explanation>"  

  2161     }  

  2162   }  

  2163 }
```

```

2160     }
2161   }
2162 }
2163
2164 H.4 RUBRIC EVALUATION PROMPT
2165
2166 You are a board-certified radiologist tasked with evaluating the quality
2167 of radiology case discussions.
2168
2169 TASK: Evaluate the Discussion section of the provided radiology case
2170 using a standardized rubric.
2171
2172 MATERIALS PROVIDED:
2173 - Clinical history and imaging findings
2174 - Differential diagnosis list
2175 - Medical images with captions
2176 - Discussion section (containing: Background, Clinical perspective,
2177   Imaging perspective, Outcome, Take-Home messages)
2178
2179 EVALUATION INSTRUCTIONS:
2180 1. Read the entire Discussion section carefully
2181 2. Score each of the 5 rubric criteria on a 0-2 scale.
2182 3. For each rubric score, provide a brief 1-2 sentence justification
2183 4. Calculate total score (sum of all 5 rubrics, range 0-10)
2184
2185 FOCUS ON:
2186 - Medical accuracy and evidence-based content
2187 - Completeness of information
2188 - Educational value for radiology trainees
2189 - Clear communication of key concepts
2190 - Integration of clinical and imaging perspectives
2191
2192 OUTPUT FORMAT:
2193 Return ONLY a valid JSON object following the specified schema.
2194 Do not include any additional text or explanations outside the
2195 JSON structure.
2196
2197 Return STRICT JSON with this schema:
2198 {
2199   "rubric_scores": {
2200     "rubric_1_disease_overview": {"score": 0|1|2, "explanation": "<1-2 sentences>"},
2201     "rubric_2_clinical_pathophysiology": {"score": 0|1|2, "explanation": "<1-2 sentences>"},
2202     "rubric_3_imaging": {"score": 0|1|2, "explanation": "<1-2 sentences>"},
2203     "rubric_4_reasoning_differentials": {"score": 0|1|2, "explanation": "<1-2 sentences>"},
2204     "rubric_5_transferable_learning": {"score": 0|1|2, "explanation": "<1-2 sentences>"},
2205     "total": 0-10
2206   }
2207 }
2208
2209
2210
2211
2212
2213

```

2214 I ADDITIONAL EVALUATION TABLES FOR TEXT-SOLVABLE CASES1

2215
 2216 All results below are evaluated on the same **raw test set of 2,159 items**. For each model we perform
 2217 three independent runs using the same evaluation protocol and report per-run accuracy (*Correct/Total*),
 2218 along with the *joint-correct* statistic—i.e., the size of the intersection of items answered correctly by
 2219 *all three runs* of the same model. Small variations across runs are expected due to non-determinism
 2220 in decoding. Where the third-run line is not available in the input data, we report the provided runs
 2221 and the reported joint-correct number as-is.

2222 **Table 7:** Llama-3.3-70B-Instruct: per-run and joint-correct results on the 2,159-item raw test set.

Run	Total	Correct	Accuracy
Run 1	2,159	1,199	0.555 (55.53%)
Run 2	2,159	1,207	0.559 (55.91%)
Run 3	2,159	1,197	0.554 (55.44%)
Joint-correct	2,159	1,172	0.543 (54.28%)

2230 Mean across 3 runs: $55.63\% \pm 0.25$ (std. dev., in percentage points).

2231 **Table 8:** medgemma-27b-text-it: per-run and joint-correct results on the 2,159-item raw test set.

Run	Total	Correct	Accuracy
Run 1	2,159	1,236	0.572 (57.25%)
Run 2	2,159	1,212	0.561 (56.14%)
Run 3	2,159	1,213	0.562 (56.18%)
Joint-correct	2,159	975	0.452 (45.16%)

2240 Mean across 3 runs: $56.52\% \pm 0.63$ (std. dev., in percentage points).

2241 **Table 9:** Qwen3-32B: per-run and joint-correct results on the 2,159-item raw test set.

Run	Total	Correct	Accuracy
Run 1	2,159	1,193	0.553 (55.26%)
Run 2	2,159	1,184	0.548 (54.84%)
Run 3	2,159	1,183	0.548 (54.79%)
Joint-correct	2,159	1,118	0.518 (51.78%)

2249 Mean across 3 runs: $54.96\% \pm 0.26$ (std. dev., in percentage points).

2268 **J MODALITY STATS IN DATASET**
2269

2270 We analyze imaging modality statistics of our dataset using the GPT-5.1-mini model. Each case
2271 consists of one or more images and associated textual metadata. For every image, we infer a fine-
2272 grained `imaging_technique` from the alt-text and, when necessary, from the imaging findings.
2273 These fine-grained techniques are then mapped into a set of aggregated modality groups stored
2274 in `imaging_technique_group`. At the case level, we define `modalities_count` as the
2275 number of distinct aggregated modality groups present among all images belonging to a given case.
2276

2277 **J.1 AGGREGATED MODALITY CATEGORIES**
2278

2279 Across the training split, we obtain 14 aggregated modality groups: *X-ray / plain radiograph*,
2280 *CT*, *Ultrasound*, *Other / Unknown*, *Histology / pathology*, *MRI*, *Clinical photo*, *Mammography*,
2281 *Fluoroscopy*, *PET-CT*, *Nuclear medicine*, *Angiography*, *Endoscopy*, and *PET*. The test split covers
2282 the same set of categories except Mammography, i.e., 13 aggregated modalities in total.
2283

2284 **J.2 PER-IMAGE MODALITY DISTRIBUTION**
2285

2286 Table 10 reports the frequency of each aggregated modality computed over all images in the training
2287 and test splits. The training split contains 49,159 images, while the test split contains 6,090 images.
2288

2289 **Table 10:** Per-image distribution of aggregated imaging modalities in the training and test splits.
2290 Counts are absolute image counts, and percentages are relative to the total number of images in each
2291 split.
2292

Modality	Train images	Train (%)	Test images	Test (%)
X-ray / plain radiograph	3,803	7.74	398	6.54
CT	20,766	42.24	2,510	41.22
Ultrasound	4,092	8.32	505	8.29
Other / Unknown	312	0.63	44	0.72
Histology / pathology	929	1.89	176	2.89
MRI	15,060	30.64	2,156	35.40
Clinical photo	407	0.83	79	1.30
Mammography	393	0.80	0	0.00
Fluoroscopy	1,059	2.15	57	0.94
PET-CT	238	0.48	55	0.90
Nuclear medicine	243	0.49	13	0.21
Angiography	1,623	3.30	56	0.92
Endoscopy	180	0.37	32	0.53
PET	54	0.11	9	0.15
Total	49,159	100.00	6,090	100.00

2308 Overall, CT and MRI dominate both splits, together accounting for approximately 73% of training
2309 images and 76% of test images, followed by Ultrasound and X-ray / plain radiograph. The remaining
2310 modalities (e.g., Angiography, Histology / pathology, Fluoroscopy, PET-CT) appear less frequently
2311 but provide additional multimodal diversity.
2312

2313 **J.3 PER-CASE MODALITY DIVERSITY**
2314

2315 Beyond per-image counts, we characterize the multimodal diversity of each case using
2316 `modalities_count`. This quantity measures how many distinct aggregated modality groups are
2317 present in a case’s image set. Table 11 summarizes the distribution of `modalities_count` for
2318 the training and test splits.
2319

2320 The training split contains 7,729 cases with an average of 1.84 modalities per case, while the test split
2321 contains 751 cases with an average of 2.13 modalities per case. In both splits, most cases involve one
2322 or two modalities, but a non-trivial fraction of cases exhibit higher multimodal diversity.
2323

2322 **Table 11:** Distribution of the number of distinct aggregated modalities per case
 2323 (`modalities_count`) in the training and test splits.

# Modalities	Train cases	Train (%)	Test cases	Test (%)
1	3,359	43.46	230	30.63
2	2,775	35.90	291	38.75
3	1,178	15.24	152	20.24
4	345	4.46	61	8.12
5	64	0.83	15	2.00
6	5	0.06	2	0.27
7	2	0.03	0	0.00
8	1	0.01	0	0.00
Total	7,729	100.00	751	100.00

2335
 2336 In the training split, 79.4% of cases contain at most two modalities. The test split is slightly more
 2337 multimodal on average: 69.4% of cases have one or two modalities, and around 30.6% contain three
 2338 or more modalities.

2339 **J.4 COMMON MODALITY COMBINATIONS AT THE CASE LEVEL**

2341 We also examine which combinations of modalities co-occur at the case level. Here, a modality
 2342 combination is defined as the set of distinct aggregated modality groups present in a given case. We
 2343 report statistics over these sets without regard to the number of images per modality.

2344 For the test split (751 cases), the five most frequent modality combinations are:

2346

- 2347 • CT alone (128 cases, 17.0%),
- 2348 • MRI alone (84 cases, 11.2%),
- 2349 • CT + MRI (84 cases, 11.2%),
- 2350 • CT + X-ray / plain radiograph (54 cases, 7.2%),
- 2351 • CT + Ultrasound (41 cases, 5.5%).

2353 For the training split (7,729 cases), the most frequent combinations are:

2354

- 2355 • CT alone (1,496 cases, 19.4%),
- 2356 • MRI alone (1,100 cases, 14.2%),
- 2357 • CT + X-ray / plain radiograph (679 cases, 8.8%),
- 2358 • CT + MRI (610 cases, 7.9%),
- 2359 • CT + Ultrasound (372 cases, 4.8%).

2376 **K LONGITUDINAL STUDIES IN MEDTHINKVQA**
23772378 We additionally track whether each case contains longitudinal follow-up imaging (i.e., multiple time
2379 points for the same patient). In the held-out test set, 212 out of 751 cases are longitudinal ($\approx 28.2\%$).
2380 In the training set, 1,947 out of 7,729 cases are longitudinal ($\approx 25.2\%$). Aggregating across both splits,
2381 MedThinkVQA contains 2,159 longitudinal cases out of 8,480 total cases ($\approx 25.5\%$), indicating that
2382 roughly one quarter of the dataset requires reasoning over temporal disease evolution.
23832384 **Table 12:** Prevalence of longitudinal studies in MedThinkVQA.
23852386

Split	# Cases	# Longitudinal	Share (%)
Train	7729	1947	25.2
Test	751	212	28.2
Overall	8480	2159	25.5

2430 **L PROMPTS FOR STEPWISE EXPLANATION EXTRACTION**
24312432 **L.1 SYSTEM PROMPT**
24332434 You are a meticulous clinical reasoning editor. Convert a given explanation paragraph
2435 into an ordered list of numbered steps that preserves the original meaning and evidence
2436 Rules:

- 2437 1) Preserve content: do NOT introduce facts not present in the explanation.
- 2438 2) Decompose into atomic inferences or observations -- each step one concise sentence
(<= ~30 words).
- 2439 3) Order steps to reflect the reasoning flow (e.g., findings -> interpretation -> decision).
- 2440 4) Rewrite references like 'option A/B/C' into plain statements; avoid option letters.
- 2441 5) If the explanation contrasts entities (e.g., 'X not Y'), separate them into distinct steps.
- 2442 6) Use the same language as the explanation text (typically English).
- 2443 7) If the explanation is very short, return a single clear step.

2444 Return ONLY the JSON that matches the provided schema.

2445

2446 **L.2 USER PROMPT (TEMPLATE)**
2447

2448 Task: Convert the following explanation into an ordered list of steps.

2449

2450 Context (for referent clarity only - do NOT add facts not present in the explanation):
2451 - Title: {title}
2452 - Clinical history: {clinical_history}
2453 - Imaging findings: {imaging_findings}

2454 Explanation to convert (source of truth):

2455 <<<

2456 {explanation}

2457 >>>

2458

2459 Output strictly as JSON following the schema (no extra text).

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

Model	Accuracy (%)
InternVL3.5-1B	43.96
InternVL3.5-2B	58.96
InternVL3.5-4B	60.96
MedGemma-4B-it	56.57
Qwen2.5-VL-3B-Instruct	60.03
Qwen2.5-VL-7B-Instruct	61.89

Table 13: Supervised fine-tuning results on the 751-item test set.

Model	Background (%)	Clinical (%)	Imaging (%)	Outcome (%)	Take-Home (%)	Overall (%)
gpt-5	100.0	100.0	97.81	98.70	100.0	99.08
gpt-5-mini	98.59	98.65	99.10	100.0	100.0	99.22
gpt-5-nano	97.87	98.99	97.39	95.89	98.46	97.76
medgemma-27b-it	89.0	97.89	94.93	85.71	93.65	92.81

Table 14: Sentence-level factual correctness evaluation across discussion subsections

Model	Total	Disease Overview	Clinical Pathophys.	Imaging	Reasoning Different.	Transfer Learning
gpt-5	9.9	2.0	1.9	2.0	2.0	2.0
gpt-5-mini	9.4	1.95	1.6	2.0	1.85	2.0
gpt-5-nano	8.4	1.7	1.25	2.0	1.45	2.0
medgemma-27b-it	7.05	1.4	1.15	1.85	1.1	1.55

Table 15: Rubric evaluation scores across different models

Pairwise comparison	Cohen's κ
Expert 1 vs. Expert 2	0.822833
Expert 1 vs. LLM judge	0.838357
Expert 2 vs. LLM judge	0.701566

Table 16: Inter-rater reliability on step factuality (Cohen's κ). High agreement with Expert 1 and substantial agreement with Expert 2 support the reliability of the LLM judge.

M LLM JUDGE STATS

GPT-5 was evaluated on the **entire** test set, whereas the other three models were evaluated on a **random sample of 100** test cases due to cost and time constraints. *Error-type coverage is computed over erroneous steps; since a step may bear multiple error labels, the percentages can exceed 100%.*

M.1 GPT-5 (FULL TEST SET WITH 6,425 STEPS)

Correctly answered (*is_correct=True*).

- Steps (with valid *is_factual*): **3,903**
- Step factual accuracy: **3311/3903 (84.83%)**
- Critical steps: **1,264**
- Critical-step factual accuracy: **1212/1264 (95.89%)**
- Erroneous steps (all): **592**
- Error-type coverage (among erroneous steps):
 - Reasoning Err: **167/592** (28.21%)
 - Image Understanding Err: **374/592** (63.18%)
 - Clinical Scenario Err: **53/592** (8.95%)
 - Medical Knowledge Err: **91/592** (15.37%)
 - Other/Unspecified: **60/592** (10.14%)
- Erroneous *critical* steps only: **52**
- Error-type coverage (among erroneous critical steps):
 - Reasoning Err: **14/52** (26.92%)
 - Image Understanding Err: **37/52** (71.15%)
 - Clinical Scenario Err: **6/52** (11.54%)
 - Medical Knowledge Err: **11/52** (21.15%)

Incorrectly answered (*is_correct=False*).

- Steps (with valid *is_factual*): **2,522**
- Step factual accuracy: **1605/2522 (63.64%)**
- Critical steps: **520**
- Critical-step factual accuracy: **390/520 (75.00%)**
- Erroneous steps (all): **917**
- Error-type coverage (among erroneous steps):
 - Reasoning Err: **416/917** (45.37%)
 - Image Understanding Err: **585/917** (63.79%)
 - Clinical Scenario Err: **138/917** (15.05%)
 - Medical Knowledge Err: **271/917** (29.55%)
 - Other/Unspecified: **9/917** (0.98%)

2592 • Erroneous *critical* steps only: **130**
2593 • Error-type coverage (among erroneous critical steps):
2594 – Reasoning Err: **57/130** (43.85%)
2595 – Image Understanding Err: **89/130** (68.46%)
2596 – Clinical Scenario Err: **16/130** (12.31%)
2597 – Medical Knowledge Err: **49/130** (37.69%)
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

2646 M.2 INTERNVL3_5-14B_100_SAMPLE (100-SAMPLE SUBSET)
 2647

2648 **Overall.** Total number of steps (all samples): **607**.
 2649

2650 **Correctly answered (is_correct=True).**
 2651

- 2652 • Steps (with valid `is_factual`): **247**
- 2653 • Step factual accuracy: **189/247 (76.52%)**
- 2654 • Critical steps: **91**
- 2655 • Critical-step factual accuracy: **88/91 (96.70%)**
- 2656 • Erroneous steps (all): **58**
- 2657 • Error-type coverage (among erroneous steps):
 - 2658 – Reasoning Err: **23/58** (39.66%)
 - 2659 – Image Understanding Err: **29/58** (50.00%)
 - 2660 – Clinical Scenario Err: **9/58** (15.52%)
 - 2661 – Medical Knowledge Err: **24/58** (41.38%)
- 2662 • Erroneous *critical* steps only: **3**
- 2663 • Error-type coverage (among erroneous critical steps):
 - 2664 – Reasoning Err: **0/3** (0.00%)
 - 2665 – Image Understanding Err: **3/3** (100.00%)
 - 2666 – Clinical Scenario Err: **0/3** (0.00%)
 - 2667 – Medical Knowledge Err: **0/3** (0.00%)

2671 **Incorrectly answered (is_correct=False).**
 2672

- 2673 • Steps (with valid `is_factual`): **360**
- 2674 • Step factual accuracy: **195/360 (54.17%)**
- 2675 • Critical steps: **61**
- 2676 • Critical-step factual accuracy: **52/61 (85.25%)**
- 2677 • Erroneous steps (all): **165**
- 2678 • Error-type coverage (among erroneous steps):
 - 2679 – Reasoning Err: **104/165** (63.03%)
 - 2680 – Image Understanding Err: **84/165** (50.91%)
 - 2681 – Clinical Scenario Err: **33/165** (20.00%)
 - 2682 – Medical Knowledge Err: **81/165** (49.09%)
- 2683 • Erroneous *critical* steps only: **9**
- 2684 • Error-type coverage (among erroneous critical steps):
 - 2685 – Reasoning Err: **4/9** (44.44%)
 - 2686 – Image Understanding Err: **6/9** (66.67%)
 - 2687 – Clinical Scenario Err: **2/9** (22.22%)
 - 2688 – Medical Knowledge Err: **2/9** (22.22%)

2692
 2693
 2694
 2695
 2696
 2697
 2698
 2699

2700 M.3 MEDGEMMA27B_100_SAMPLE (100-SAMPLE SUBSET)
 2701

2702 **Overall.** Total number of steps (all samples): **1,074**.
 2703

2704 **Correctly answered (is_correct=True).**
 2705

- 2706 • Steps (with valid `is_factual`): **376**
- 2707 • Step factual accuracy: **285/376 (75.80%)**
- 2708 • Critical steps: **102**
- 2709 • Critical-step factual accuracy: **97/102 (95.10%)**
- 2710 • Erroneous steps (all): **91**
- 2711 • Error-type coverage (among erroneous steps):
 - 2712 – Reasoning Err: **22/91** (24.18%)
 - 2713 – Image Understanding Err: **50/91** (54.95%)
 - 2714 – Clinical Scenario Err: **15/91** (16.48%)
 - 2715 – Medical Knowledge Err: **36/91** (39.56%)
- 2716 • Erroneous *critical* steps only: **5**
- 2717 • Error-type coverage (among erroneous critical steps):
 - 2718 – Reasoning Err: **3/5** (60.00%)
 - 2719 – Image Understanding Err: **4/5** (80.00%)
 - 2720 – Clinical Scenario Err: **0/5** (0.00%)
 - 2721 – Medical Knowledge Err: **1/5** (20.00%)

2725 **Incorrectly answered (is_correct=False).**
 2726

- 2727 • Steps (with valid `is_factual`): **698**
- 2728 • Step factual accuracy: **383/698 (54.87%)**
- 2729 • Critical steps: **114**
- 2730 • Critical-step factual accuracy: **78/114 (68.42%)**
- 2731 • Erroneous steps (all): **315**
- 2732 • Error-type coverage (among erroneous steps):
 - 2733 – Reasoning Err: **156/315** (49.52%)
 - 2734 – Image Understanding Err: **221/315** (70.16%)
 - 2735 – Clinical Scenario Err: **72/315** (22.86%)
 - 2736 – Medical Knowledge Err: **119/315** (37.78%)
- 2737 • Erroneous *critical* steps only: **36**
- 2738 • Error-type coverage (among erroneous critical steps):
 - 2739 – Reasoning Err: **16/36** (44.44%)
 - 2740 – Image Understanding Err: **22/36** (61.11%)
 - 2741 – Clinical Scenario Err: **9/36** (25.00%)
 - 2742 – Medical Knowledge Err: **14/36** (38.89%)

2743
 2744
 2745
 2746
 2747
 2748
 2749
 2750
 2751
 2752
 2753

2754 M.4 QWEN2.5VL-32B_100 (100-SAMPLE SUBSET)
 2755

2756 **Overall.** Total number of steps (all samples): **781**.
 2757

2758 **Correctly answered (is_correct=True).**
 2759

- 2760 • Steps (with valid `is_factual`): **337**
- 2761 • Step factual accuracy: **274/337 (81.31%)**
- 2762 • Critical steps: **103**
- 2763 • Critical-step factual accuracy: **100/103 (97.09%)**
- 2764 • Erroneous steps (all): **63**
- 2765 • Error-type coverage (among erroneous steps):
 - 2766 – Reasoning Err: **22/63** (34.92%)
 - 2767 – Image Understanding Err: **36/63** (57.14%)
 - 2768 – Clinical Scenario Err: **6/63** (9.52%)
 - 2769 – Medical Knowledge Err: **31/63** (49.21%)
- 2770 • Erroneous *critical* steps only: **3**
- 2771 • Error-type coverage (among erroneous critical steps):
 - 2772 – Reasoning Err: **0/3** (0.00%)
 - 2773 – Image Understanding Err: **3/3** (100.00%)
 - 2774 – Clinical Scenario Err: **0/3** (0.00%)
 - 2775 – Medical Knowledge Err: **0/3** (0.00%)

2776 **Incorrectly answered (is_correct=False).**
 2777

- 2778 • Steps (with valid `is_factual`): **444**
- 2779 • Step factual accuracy: **236/444 (53.15%)**
- 2780 • Critical steps: **67**
- 2781 • Critical-step factual accuracy: **35/67 (52.24%)**
- 2782 • Erroneous steps (all): **208**
- 2783 • Error-type coverage (among erroneous steps):
 - 2784 – Reasoning Err: **130/208** (62.50%)
 - 2785 – Image Understanding Err: **113/208** (54.33%)
 - 2786 – Clinical Scenario Err: **52/208** (25.00%)
 - 2787 – Medical Knowledge Err: **109/208** (52.40%)
- 2788 • Erroneous *critical* steps only: **32**
- 2789 • Error-type coverage (among erroneous critical steps):
 - 2790 – Reasoning Err: **21/32** (65.62%)
 - 2791 – Image Understanding Err: **26/32** (81.25%)
 - 2792 – Clinical Scenario Err: **4/32** (12.50%)
 - 2793 – Medical Knowledge Err: **11/32** (34.38%)

2800
 2801
 2802
 2803
 2804
 2805
 2806
 2807

2808 N MELD-BASED DATA CONTAMINATION ANALYSIS (FULL DETAILS)
28092810 **Detector.** We use MELD (Memorization Effects Levenshtein Detector) in a stricter, sliding-window
2811 form. For a model output y and its corresponding question x , we compute normalized Levenshtein
2812 similarity over fixed-width windows on the longer string and take the maximum across windows.
2813 Scores are reported as percentages; higher values indicate longer, more verbatim copying. Following
2814 prior medical-QA practice Tang et al. (2025), samples with similarity $\geq 50\%$ are flagged as high-risk
2815 for contamination.2816 **Protocol.** We run the exact inference setup used in our main experiments on the MEDTHINKVQA
2817 test set and apply MELD between each generated answer and its input question. We evaluate seven
2818 models spanning both LLMs and VLMs: Qwen3-32B, Med-Gemma-27B-*it*, Med-Gemma-27B-*text-it*,
2819 GPT-4.1-nano, GPT-4.1-mini, Qwen2.5-VL-72B-Instruct, and Llama-3.3-70B-Instruct.
28202821 **Results.** Appendix Figure 8 plots the full distributions. Across all models, medians lie near
2822 $\sim 20\text{--}24\%$ with tight interquartile ranges, and the upper tails are short. Importantly, we do not observe
2823 any case with MELD similarity $\geq 50\%$; the largest outliers remain below that threshold. Text-only
2824 LLMs and VLMs exhibit highly similar distributions, suggesting that the presence of images does
2825 not drive overlap behavior.
28262827 **Context vs. prior benchmarks.** MedAgentsBench Tang et al. (2025) reports broader spreads
2828 and heavier right tails (with many outliers above 50%) on several widely used QA datasets (e.g.,
2829 MMLU, MedQA, MedMCQA). In contrast, MEDTHINKVQA shows uniformly low overlap and no
2830 high-similarity spikes, indicating a substantially lower contamination risk.
28312832 **Limitations.** MELD is a surface-form detector; heavy paraphrasing or template-level memorization
2833 may evade detection. Our analysis should therefore be viewed as strong negative evidence for
2834 verbatim leakage rather than a proof of absence of all forms of contamination.
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

2862 N.1 MELD AND OUR WINDOWED VARIANT
28632864 We first restate the original MELD procedure (Algorithm 1), and then present our implementation
2865 (Algorithm 2), which adds (i) a fixed-denominator Levenshtein ratio with respect to $|q_2|$, (ii) a length-
2866 $|q_2|$ sliding window over the model’s continuation restricted to its early prefix, and (iii) length-aware
2867 bucketing and generation caps for efficient parallel decoding.

2868

2869 **Algorithm 1:** MELD (original reproduction)2870 **Data:** Generative model g ; dataset D of question–answer pairs; tokenizer T ; threshold
2871 $Y \in [0, 1]$.2872 **Result:** Z : percentage (or average strength) of completions with overlap above Y .2873 1 Initialize an empty list L 2874 2 **foreach** $(q, a) \in D$ **do**2875 3 Split q into two halves: q_1 and q_2 2876 4 Tokenize: $t_1 \leftarrow T(q_1)$ and $t_2 \leftarrow T(q_2)$ 2877 5 Set sampling temperature to 0 and pass q_1 as context to g 2878 6 Let $k \leftarrow |t_2|$ and generate a continuation x consisting of k tokens from g

2879 7 Compute the (paper-style) Levenshtein-based overlap ratio

2880
$$\ell = \frac{\text{int}(\text{round}(\frac{2.0 \times M}{|q|} \times 100))}{100},$$

2881

2882 where $|q|$ is the total number of characters in both strings and M is the number of matches.2883 8 **if** $\ell > Y$ **then**2884 | append ℓ to L 2885 10 $Z \leftarrow \text{mean}(L)$ 2886 11 **return** Z

2887

2888
2889 **Algorithm 2:** MELD (ours, concise): windowed Levenshtein with length-aware batching2890 **Data:** Model g ; dataset D ; tokenizer T ; threshold Y ; cap multiplier $c \geq 1$; min gen tokens m ;
2891 batch size B .2892 **Result:** Z (near-exact rate), $\bar{\ell}$ (mean similarity).2893 1 **Build items.** For each $r \in D$: form text $q \leftarrow \text{build}(r)$; if empty, continue. Tokenize $\text{ids} \leftarrow T(q)$;
2894 split at $h = \max(1, \lfloor |\text{ids}|/2 \rfloor)$; set $q_1 = T^{-1}(\text{ids}[:h])$, $q_2 = T^{-1}(\text{ids}[h:])$, $k = |\text{ids}| - h$. Collect
2895 tuples $(q_1, q_2, k, |q_2|)$.2896 2 **Bucket.** Group tuples into batches of size $\leq B$ with similar k (length-aware).2897 3 **foreach** batch b **do**2898 4 $G \leftarrow \max(m, c \cdot \max_{i \in b} k_i)$; set decoding (temp = 0, top- p = 1, max tokens = G)2899 5 Generate in parallel $x_i \leftarrow g(q_{1,i})$ for all $i \in b$ 2900 6 **foreach** item i in b **do**2901 7 $L \leftarrow |q_{2,i}|$,2902 8 $\text{region} \leftarrow \text{first } cL \text{ characters of } x_i$ 2903 9 $\rho_i \leftarrow \max_{0 \leq j \leq |\text{region}| - L} \left(1 - \frac{\text{Lev}(\text{region}[j:j+L], q_{2,i})}{L} \right);$ 2904 10 $s_i \leftarrow \mathbf{1}[\rho_i \geq Y]$ 2905 11 $Z \leftarrow \frac{1}{n} \sum_i s_i$;2906 12 $\bar{\ell} \leftarrow \frac{1}{n} \sum_i \rho_i$;2907 12 **return** $Z, \bar{\ell}$

2908

2909

2910

2911

2912

2913

2914

2915

2916 O DISEASE CATEGORY BREAK DOWN
29172918 **Test set size:** $n = 751$ ($n = 680$ common + $n = 71$ rare).2919 **Rare cases:** $n = 71$ (~9.5% of total). Rare cases are a cross-category tag and are *not* double-counted
2920 in the chapter breakdown below.2922 SUBCATEGORY DETAIL (WITHIN EACH ICD-10 CHAPTER)
29232924 **1. Certain infectious and parasitic diseases** ($n = 35$; 4.7% of total)
29252926

- **1.1** A00–A09 Intestinal infectious diseases — 4
- **1.2** A15–A19 Tuberculosis — 13
- **1.3** A20–A28 Certain zoonotic bacterial diseases — 2
- **1.4** A50–A64 Infections with a predominantly sexual mode of transmission — 2
- **1.5** B15–B19 Viral hepatitis — 1
- **1.6** B20 Human immunodeficiency virus [HIV] disease — 2
- **1.7** B65–B83 Helminthiases — 11

2936 **2. Neoplasms** ($n = 241$; 32.1% of total)
29372938

- **2.1** C00–C14 Malignant neoplasms of lip, oral cavity and pharynx — 2
- **2.2** C15–C26 Malignant neoplasms of digestive organs — 11
- **2.3** C30–C39 Malignant neoplasms of respiratory and intrathoracic organs — 10
- **2.4** C40–C41 Malignant neoplasms of bone and articular cartilage — 6
- **2.5** C45–C49 Malignant neoplasms of mesothelial and soft tissue — 13
- **2.6** C50 Malignant neoplasms of breast — 1
- **2.7** C51–C58 Malignant neoplasms of female genital organs — 9
- **2.8** C60–C63 Malignant neoplasms of male genital organs — 3
- **2.9** C64–C68 Malignant neoplasms of urinary tract — 4
- **2.10** C69–C72 Malignant neoplasms of eye, brain and other parts of CNS — 10
- **2.11** C73–C75 Malignant neoplasms of thyroid and other endocrine glands — 3
- **2.12** C76–C80 Malignant neoplasms of ill-defined, other secondary and unspecified sites — 17
- **2.13** C7A Malignant neuroendocrine tumors — 5
- **2.14** C81–C96 Malignant neoplasms of lymphoid, hematopoietic and related tissue — 20
- **2.15** D00–D09 In situ neoplasms — 1
- **2.16** D10–D36 Benign neoplasms (except benign neuroendocrine tumors) — 98
- **2.17** D37–D48 Neoplasms of uncertain behavior, polycythemia vera and MDS — 22
- **2.18** D49 Neoplasms of unspecified behavior — 6

2963 **3. Diseases of the blood and blood-forming organs and certain disorders involving the immune
2964 mechanism** ($n = 14$; 1.9% of total)
29652966

- **3.1** D55–D59 Hemolytic anemias — 1
- **3.2** D70–D77 Other disorders of blood and blood-forming organs — 6
- **3.3** D80–D89 Certain disorders involving the immune mechanism — 7

2970 **4. Endocrine, nutritional and metabolic diseases** ($n = 12$; 1.6% of total)
29712972

- 2973 • **4.1** E00–E07 Disorders of thyroid gland — 1
- 2974 • **4.2** E20–E35 Disorders of other endocrine glands — 4
- 2975 • **4.3** E70–E88 Metabolic disorders — 7

2976 **5. Diseases of the nervous system** ($n = 16$; 2.1% of total)
29772978

- 2979 • **5.1** G00–G09 Inflammatory diseases of the central nervous system — 3
- 2980 • **5.2** G20–G26 Extrapyramidal and movement disorders — 1
- 2981 • **5.3** G30–G32 Other degenerative diseases of the nervous system — 2
- 2982 • **5.4** G35–G37 Demyelinating diseases of the CNS — 2
- 2983 • **5.5** G50–G59 Nerve, nerve root and plexus disorders — 3
- 2984 • **5.6** G70–G73 Diseases of myoneural junction and muscle — 2
- 2985 • **5.7** G89–G99 Other disorders of the nervous system — 3

2986 **6. Diseases of the eye and adnexa** ($n = 2$; 0.3% of total)
29872988

- 2989 • **6.1** H00–H05 Disorders of eyelid, lacrimal system and orbit — 1
- 2990 • **6.2** H25–H28 Disorders of lens — 1

2991 **7. Diseases of the circulatory system** ($n = 32$; 4.3% of total)
29922993

- 2994 • **7.1** I20–I25 Ischemic heart diseases — 2
- 2995 • **7.2** I26–I28 Pulmonary heart disease and diseases of pulmonary circulation — 1
- 2996 • **7.3** I30–I5A Other forms of heart disease — 3
- 2997 • **7.4** I60–I69 Cerebrovascular diseases — 5
- 2998 • **7.5** I70–I79 Diseases of arteries, arterioles and capillaries — 12
- 2999 • **7.6** I80–I89 Diseases of veins, lymphatic vessels and lymph nodes, NEC — 9

3000 **8. Diseases of the respiratory system** ($n = 27$; 3.6% of total)
30013002

- 3003 • **8.1** J00–J06 Acute upper respiratory infections — 1
- 3004 • **8.2** J09–J18 Influenza and pneumonia — 5
- 3005 • **8.3** J30–J39 Other diseases of upper respiratory tract — 4
- 3006 • **8.4** J40–J47 Chronic lower respiratory diseases — 3
- 3007 • **8.5** J60–J70 Lung diseases due to external agents — 1
- 3008 • **8.6** J80–J84 Other respiratory diseases principally affecting the interstitium — 6
- 3009 • **8.7** J90–J94 Other diseases of the pleura — 3
- 3010 • **8.8** J96–J99 Other diseases of the respiratory system — 4

3011 **9. Diseases of the digestive system** ($n = 81$; 10.8% of total)
30123013

- 3014 • **9.1** K00–K14 Diseases of oral cavity and salivary glands — 4
- 3015 • **9.2** K20–K31 Diseases of esophagus, stomach and duodenum — 10
- 3016 • **9.3** K35–K38 Diseases of appendix — 4

- 3024 • **9.4** K40–K46 Hernia — 5
- 3025 • **9.5** K50–K52 Noninfective enteritis and colitis — 2
- 3026 • **9.6** K55–K64 Other diseases of intestines — 20
- 3027 • **9.7** K65–K68 Diseases of peritoneum and retroperitoneum — 8
- 3028 • **9.8** K70–K77 Diseases of liver (note: viral hepatitis → Chapter 1, B15–B19) — 8
- 3029 • **9.9** K80–K87 Disorders of gallbladder, biliary tract and pancreas — 20

3032 **10. Diseases of the skin and subcutaneous tissue** ($n = 2$; 0.3% of total)

- 3033 • **10.1** L60–L75 Disorders of skin appendages — 2

3034 **11. Diseases of the musculoskeletal system and connective tissue** ($n = 43$; 5.7% of total)

- 3035 • **11.1** M05–M14 Inflammatory polyarthropathies — 7
- 3036 • **11.2** M20–M25 Other joint disorders — 6
- 3037 • **11.3** M30–M36 Systemic connective tissue disorders — 3
- 3038 • **11.4** M45–M49 Spondylopathies — 1
- 3039 • **11.5** M50–M54 Other dorsopathies — 2
- 3040 • **11.6** M60–M63 Disorders of muscles — 1
- 3041 • **11.7** M65–M67 Disorders of synovium and tendon — 5
- 3042 • **11.8** M70–M79 Other soft tissue disorders — 5
- 3043 • **11.9** M80–M85 Disorders of bone density and structure — 3
- 3044 • **11.10** M86–M90 Other osteopathies — 9
- 3045 • **11.11** M91–M94 Chondropathies — 1

3046 **12. Diseases of the genitourinary system** ($n = 40$; 5.3% of total)

- 3047 • **12.1** N10–N16 Renal tubulo-interstitial diseases — 6
- 3048 • **12.2** N25–N29 Other disorders of kidney and ureter — 6
- 3049 • **12.3** N30–N39 Other diseases of the urinary system — 4
- 3050 • **12.4** N40–N53 Diseases of male genital organs — 6
- 3051 • **12.5** N60–N65 Disorders of breast — 2
- 3052 • **12.6** N70–N77 Inflammatory diseases of female pelvic organs — 4
- 3053 • **12.7** N80–N98 Noninflammatory disorders of female genital tract — 11
- 3054 • **12.8** N99 Intraoperative and postprocedural complications and disorders of genitourinary system, NEC — 1

3055 **13. Pregnancy, childbirth and the puerperium** ($n = 5$; 0.7% of total)

- 3056 • **13.1** O00–O08 Pregnancy with abortive outcome — 3
- 3057 • **13.2** O30–O48 Maternal care related to the fetus and amniotic cavity and possible delivery problems — 1
- 3058 • **13.3** O94–O9A Other obstetric conditions, NEC — 1

3059 **14. Congenital malformations, deformations and chromosomal abnormalities** ($n = 82$; 10.9% of total)

- 3078 • **14.1** Q00–Q07 Congenital malformations of the nervous system — 7
- 3079 • **14.2** Q10–Q18 Congenital malformations of eye, ear, face and neck — 1
- 3080 • **14.3** Q20–Q28 Congenital malformations of the circulatory system — 20
- 3081 • **14.4** Q30–Q34 Congenital malformations of the respiratory system — 10
- 3082 • **14.5** Q38–Q45 Other congenital malformations of the digestive system — 13
- 3083 • **14.6** Q50–Q56 Congenital malformations of genital organs — 4
- 3084 • **14.7** Q60–Q64 Congenital malformations of the urinary system — 10
- 3085 • **14.8** Q65–Q79 Congenital malformations and deformations of the musculoskeletal system — 11
- 3086 • **14.9** Q80–Q89 Other congenital malformations — 6

3092 **15. Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified**
 3093 (*n* = 5; 0.7% of total)

- 3094 • **15.1** R40–R46 Symptoms and signs involving cognition, perception, emotional state and behavior — 1
- 3095 • **15.2** R50–R69 General symptoms and signs — 1
- 3096 • **15.3** R90–R94 Abnormal findings on diagnostic imaging and in function studies, without diagnosis — 3

3102 **16. Injury, poisoning and certain other consequences of external causes** (*n* = 37; 4.9% of total)

- 3103 • **16.1** S00–S09 Injuries to the head — 2
- 3104 • **16.2** S20–S29 Injuries to the thorax — 3
- 3105 • **16.3** S30–S39 Injuries to the abdomen, lower back, lumbar spine, pelvis and external genitals — 7
- 3106 • **16.4** S40–S49 Injuries to the shoulder and upper arm — 2
- 3107 • **16.5** S80–S89 Injuries to the knee and lower leg — 1
- 3108 • **16.6** T15–T19 Effects of foreign body entering through natural orifice — 3
- 3109 • **16.7** T51–T65 Toxic effects of substances chiefly nonmedicinal as to source — 1
- 3110 • **16.8** T80–T88 Complications of surgical and medical care, NEC — 18

3111 **17. Factors influencing health status and contact with health services** (*n* = 4; 0.5% of total)

- 3112 • **17.1** Z00–Z13 Persons encountering health services for examinations — 2
- 3113 • **17.2** Z77–Z99 Family/personal history and certain other factors influencing health status — 2

3114 **18. Codes for special purposes** (*n* = 2; 0.3% of total)

- 3115 • **18.1** U00–U49 Provisional assignment of new diseases of uncertain etiology or emergency use (incl. U07.x) — 2

3116 *Note:* Subcategory counts within each chapter sum to the chapter total for the *common* set (*n* = 680).

3117 Rare-tagged cases (*n* = 71) are reported separately and are not included in the subcategory lines.

3118 Abbreviations: NEC = not elsewhere classified.

3132 **P RUBRIC FOR DISCUSSION EVALUATION**

3133 **P.1 RUBRIC 1: DISEASE OVERVIEW & CORE DEFINITION (0–2 POINTS)**

3134 **Focus:** Understanding of the disease’s fundamental attributes, including: nomenclature, classification, and
3135 etiology.

3136

- 3137 • **0 points:** Unable to identify or define the disease.
- 3138 • **1 point:** States the disease name, but classification or core etiology is vague or inaccurate.
- 3139 • **2 points:** Accurately states the standard medical name, clearly defines its essential nature, and
3140 identifies principal etiologies or key risk factors.

3141 **P.2 RUBRIC 2: CLINICAL PRESENTATION & PATHOPHYSIOLOGY (0–2 POINTS)**

3142 **Focus:** How the disease manifests and its underlying mechanisms.

3143

- 3144 • **0 points:** Unable to describe any clinical features.
- 3145 • **1 point:** Describes some common symptoms/signs but cannot explain the underlying pathophysiology,
3146 or omits critical features.
- 3147 • **2 points:** Systematically outlines the typical clinical presentation and clearly explains the core
3148 pathophysiologic mechanisms.

3149 **P.3 RUBRIC 3: KEY IMAGING FINDINGS & INTERPRETATION (0–2 POINTS)**

3150 **Focus:** Recognition, description, and interpretation of disease-specific imaging features across modalities.

3151

- 3152 • **0 points:** Unable to describe any imaging characteristics.
- 3153 • **1 point:** Provides only generic descriptors (e.g., “mass,” “opacity”) without modality-specific features
3154 (CT, MRI, radiography, ultrasound), or fails to distinguish key benign versus malignant signs.
- 3155 • **2 points:** Clearly and accurately describes characteristic findings on one or more relevant modalities
3156 (e.g., morphology, attenuation/signal characteristics, margins, enhancement pattern, diffusion
3157 restriction), and interprets their clinical significance (e.g., stage, aggressiveness, complication risk).

3158 **P.4 RUBRIC 4: DIAGNOSTIC REASONING & DIFFERENTIAL DIAGNOSIS (0–2 POINTS)**

3159 **Focus:** Integrating clinical and imaging data to reach a diagnosis and distinguish differential considerations.

3160

- 3161 • **0 points:** Unable to articulate a diagnostic approach.
- 3162 • **1 point:** Arrives at the correct diagnosis but does not present a coherent, integrated reasoning process,
3163 or does not propose appropriate differential considerations.
- 3164 • **2 points:** Clearly demonstrates how clinical information and imaging findings are synthesized to close
3165 the diagnostic loop, and lists at least two high-priority differential considerations with brief imaging
3166 discriminators (key features that separate each mimic from the index diagnosis).

3167 **P.5 RUBRIC 5: TRANSFERABLE LEARNING & GENERALIZATION (0–2 POINTS)**

3168 **Focus:** Lessons that extend beyond a single case.

3169

- 3170 • **0 points:** Teaching points are confined to this case.
- 3171 • **1 point:** Some generalizability is suggested but remains vague and lacks actionable takeaways.
- 3172 • **2 points:** Clearly summarizes transferable learning points and explains how to avoid misinterpretation
3173 or improve diagnostic accuracy in similar future scenarios.