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ABSTRACT

Large language models and vision-language models score high on many medi-
cal QA benchmarks; however, real-world clinical reasoning remains challenging
because cases often involve multiple images and require cross-view fusion. We
present MedThinkVQA, a benchmark that asks models to think with multiple
images: read each image, merge evidence across views, and pick a diagnosis
with stepwise supervision. We make three parts explicit: multi-image questions,
expert-annotated stepwise supervision, and beyond-accuracy evaluation. Only
MedThinkVQA combines all these parts in one expert-annotated benchmark. The
dataset has 8,481 cases in total, with 751 test cases, and on average 6.51 images per
case; it is expert-annotated and, at this level, larger and more image-dense than prior
work (earlier maxima ≤ 1.43 images per case). On the test set, GPT-5 achieves
57.39% accuracy, approximately 15 percentage points below the strongest result on
the most challenging prior benchmark of a similar kind, while other strong models
are lower (Qwen2.5-VL-32B: 39.54%, MedGemma-27B: 37.55%, InternVL3.5-
38B: 43.14%). Giving expert findings and summaries brings clear gains, but using
models’ self-generated ones brings small or negative gains. Step-level evaluation
shows where models stumble: errors center on image reading and cross-view
integration in both decisive and non-decisive steps (> 70%); when a step is deci-
sive for the final choice, reasoning slips become more common (32.26%), while
scenario and pure-knowledge slips are relatively rare (< 10%). These patterns
isolate and quantify the core obstacle: extracting and integrating cross-image
evidence, rather than language-only inference. Code and example data are available
at https://anonymous.4open.science/r/ICLR_DEMO-D35E/.

1 INTRODUCTION

Medical QA has advanced fast with large language models (LLMs) and vision-language models
(VLMs). Scores on exam-style datasets are high, and many tasks now appear to be saturated (Jin et al.,
2021; Pal et al., 2022; Jin et al., 2019). But the everyday diagnosis is not a single question and answer.
As shown in Fig. 1 (left), clinicians review the clinical scenario and interpret several images, then
proceed through the steps (e.g., Differential Diagnosis) before a diagnostic determination. Therefore,
we need a benchmark that tests and evaluates the process on multi-image cases.

MedThinkVQA sets a clear three-step think-with-images (TwI) flow (Fig. 1, middle): models first
read individual images (per-image findings), then fuse evidence across views into a case-level imaging
summary, and finally perform differential-diagnosis reasoning to select a diagnosis. Beyond this
diagnostic core, MedThinkVQA also includes a Medical Education Case Discussion task, where
models produce teaching-style explanations that mirror how clinicians communicate and share
knowledge in practice. Answer accuracy alone cannot reveal where this process breaks down, so
MedThinkVQA supports beyond-accuracy evaluation that considers both the intermediate imaging
and reasoning stages and the educational value of case discussions, enabling a diagnosing-style view
that localizes failures in image reading, cross-view fusion, and clinical reasoning (see Fig. 1 and
Sections 3, 4).

Table 1 places MedThinkVQA among recent multimodal medical QA datasets (Hu et al., 2024;
Ye et al., 2024; Zuo et al., 2025). Our cases are expert-annotated and include clinical scenarios,
per-image findings, case imaging summaries, and teaching notes. There are 8,481 cases, with 751 for
testing, and an average of 6.51 images per case. Prior expert-level benchmarks use far fewer images
per case (max ≤1.43). Therefore, our setup emphasizes cross-view fusion, rather than single-view
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Step1: per-image 
radiological annotations

Clinical Scenarios: One male patient aged 
72 years complained of one-week chest pain 
and three-day exertional dyspnoea. There was 
no past history of cardiovascular, respiratory, 
or gastrointestinal disease …

Figure 1: Chest X-ray (PA 
view) demonstrating situs 
inversus totalis,…
Figure 2/3/4

Chest X-ray demonstrated 
dextrocardia with gastric 
bubble on the right and thereby 
suggested situs inversus totalis. 
ECG demonstrated …

A. Situs inversus totalis with dextrocardia
B. Dextrocardia without situs inversus
C. Kartagener syndrome
D. Technical rotation artefact on imaging
E. Congenital cardiac malformation with positional abnormality

Step3: differential diagnosis reasoning

The images show a clean mirror-image layout: 
the heart apex points right, the aortic arch 
tracks on the right, and on abdominal CT, the 
stomach/spleen are right-sided while the liver 
is left-sided: classic situs inversus totalis with 
dextrocardia. 

Isolated dextrocardia (B) would keep normal 
abdominal situs, which we do not see. Based on ALL provided images together with the 

textual context, select the single best diagnosis 
from the options.

Medical thinking with images (TwI)

Kartagener syndrome (C) needs ……

Rotation artifact (D) cannot ……

A congenital malformation with positional 
abnormality (E) usually gives mixed/ambiguous 
organ positions, not this symmetric mirror 
pattern. Hence only (A) Situs inversus totalis with 
dextrocardia fits all findings.

Medical 
Agent

Background:
Situs describes the position of the thoracic and abdominal organs. 
Situs solitus [1] ……
Clinical Perspective:
Patients with situs inversus totalis are frequently asymptomatic. 
However …
Imaging Perspective:
Initial chest radiography suggested dextrocardia with situs 
inversus. ECG findings further supported this. CT thorax and 
abdomen [5] …
Clinical Significance:
Recognition of situs inversus totalis is vital in clinical and 
emergency settings to prevent misdiagnosis [10], especially in …
Outcome:
No acute cardiac or respiratory pathology was identified in our 
case. The patient

Take Home Message / Teaching Points:
1. Situs inversus totalis is often discovered incidentally.
2. Awareness of such anatomical variants is essential for 

accurate diagnosis and treatment planning.
3. Imaging plays a pivotal role in confirming the diagnosis and 

excluding associated anomalies.
4. Patients should be informed about their condition, especially 

in preparation for emergencies or interventions.

Medical Education Case Discussion

Step2: case-level integrated imaging findings

MedTwI Error Analysis

Education Value AnalysisCase Discussion Eval

Diagnosing-Style Evaluation
MedTwI Eval

Step1 and Step2: 
  - ROUGE/RadCliQ
Step3: step by step
  - Clinical Correct ? 
  - Clinical Critical ?
  - Error Analysis →

B+C+I+C+O+T
1. Section by section eval
2. Each section annotate
    sent.-level correctness

1. Disease Definition 2. Clinical 
Manifestation 3. Imaging Findings 4. 
Diagnostic Reasoning 5. Transferable 
Learning → Each scored 0–2

  - Clinical Scenario Understanding

  - Image Perceptual Error
  - Lack of Medical Knowledge
  - Reasoning Process Error

Figure 1: Medical Thinking with Images (TwI): task and diagnosing-style evaluation. Left: a
sample case with a clinical scenario, multi-view images (e.g., radiograph + CT), and a five-option
single-best-answer diagnosis. Middle: TwI’s three supervised steps: (1) Per-Image Findings (detect
and name key radiological signs for each image, expert-annotated, brief statements); (2) Case-level
Integrated Imaging Summary (synthesize cross-view evidence into a single case summary); (3)
Differential-Diagnosis (DDx) reasoning (align the summary with candidate diagnoses, rule out
distractors with image-grounded arguments, and pick the most consistent answer). Right: Beyond-
accuracy evaluation. Steps 1–2 use automatic metrics (ROUGE / RadCliQ), while Step 3 and the
Medical Education Case Discussion are assessed with structured human- and LLM-judge rubrics that
check clinical correctness and educational value, localizing failures in image reading, cross-view
fusion, and teaching quality (see Section 4).

recognition. We further design MedThinkVQA so that questions depend on imaging evidence rather
than textual shortcuts; Section 3 details the ICD–10 coverage, rare-disease cases, and the filtering and
option policies used to control distractors, leakage, and surface biases.

On our test split, GPT-5 achieves the highest 57.39% accuracy, while other strong models are lower
(Qwen2.5-VL-72B: 49.18%, MedGemma-27B: 42.02%, InternVL3.5-38B: 43.14%); this is ∼ 15
percentage points below the strongest result on the hardest prior benchmark of a similar kind and
∼ 20 points below clinicians on the same 96-case subset (77.10%), highlighting substantial headroom
on MedThinkVQA. Giving expert findings and summaries raises accuracy, whereas replacing them
with models’ self-generated ones gives only small gains or even hurts performance. The expert audit
further shows that 88.05% of images are judged supportive for the final diagnosis, that test cases
typically involve around two distinct imaging modalities per case (mean modalities_count ≈ 2.13),
and that 28.2% of test cases are longitudinal follow-up studies, so models must aggregate many
informative views across both modality and time rather than relying on a single key image. The
bottleneck is reading each image well and fusing evidence across images in the think-with-images
steps, which our step-level analysis supports: across 202 labeled steps, 44 carry non-empty error
tags; among these error-bearing steps, 77.27% reflect image-understanding issues and 22.73% reflect
reasoning, with medical knowledge (9.09%) and scenario setup (4.55%) much rarer; within error-
bearing Critical steps, the share of reasoning rises to 32.26% while image understanding remains
high at 70.97% (scenario and knowledge near 6–10%).

Contributions. (1) A benchmark for multi-image diagnostic reasoning with expert supervision at
three steps. (2) A beyond-accuracy evaluation suite with automatic intermediate metrics, error-type
tagging, and education-value scoring; we release scoring scripts and formats. (3) A large and image-
dense expert-annotated corpus (8,481 cases; 6.51 images per case) that, to our knowledge, is the
only one that checks all columns in Table 1. (4) Evidence that cross-image evidence extraction and
integration is the current medical VLMs bottleneck.
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Benchmark # Case
Expert

Annotation
Clinical

Scenarios
# Img

per Case
Multi-Mod

Imaging
Longitud
Studies

Think-with-Images
Intermediate Signals

Beyond-ACC
Evaluation

VQA-Rad Lau et al. 451 ✗ ✗ 0.45 ✗ ✗ ✗ ✗
VQA-Med Ben Abacha et al. 500 ✗ ✗ 1.00 ✗ ✗ ✗ ✗
Path-VQA He et al. 6,719 ✗ ✗ 0.13 ✗ ✗ ✗ ✗
SLAKE-En Liu et al. 1,061 ✗ ✗ 0.09 ✗ ✗ ✗ ✗
PMC-VQA Zhang et al. 33,430 ✗ ✗ 0.87 ✗ ✗ ✗ ✗
OmniMedVQA Hu et al. 127,995 ✗ ✗ 0.92 ✗ ✗ ✗ ✗
GMAI-MMBench Ye et al. 21,281 ✗ ✗ 1.00 ✗ ✗ ✗ ✗
GEMeX Liu et al. 1,605,575 ✗ ✗ 1.00 ✗ ✗ ✓ ✓
Medical-Diff-VQA Hu et al. 700,703 ✗ ✗ 1.23 ✗ ✓ ✗ ✗
MedFrameQA Yu et al. 2,851 ✗ ✗ 3.24 ✗ ✗ ✓ ✗
ICG-CXR Ma et al. 11,439 ✗ ✗ 2.00 ✗ ✓ ✗ ✗
MedRAX1 Fallahpour et al. 2,500 ✗ ✗ 1.85 ✗ ✗ ✗ ✗
GEMeX-ThinkVG Liu et al. 206,071 ✗ ✗ 1.00 ✗ ✗ ✓ ✓

MMMU (H & M) Yue et al. 1,752 ✓ ✗ 1.14 ✗ ✗ ✗ ✗
MMMU-Pro (H & M) Yue et al. 346 ✓ ✗ 1.25 ✗ ✗ ✗ ✗
S-Chain Le-Duc et al. 12,000 ✓ ✗ 1.00 ✗ ✗ ✓ ✓
MedXpertQA MM Zuo et al. 2,000 ✓ ✓ 1.43 ✗ ✗ ✗ ✗

MedThinkVQA 8,481 ✓ ✓ 6.51 ✓ ✓ ✓ ✓

Table 1: Comparisons with multimodal medical QA benchmarks. #Case/#Img/Expert Annotation.
MedThinkVQA is expert-annotated, averages 6.51 images per case (prior maxima ≤ 1.43; ≥ 4.5×
more), and is the largest corpus at the expert-annotation level; a checkmark in the Expert Annotation
column indicates that items are curated and labeled by clinicians rather than automatically generated.
Clinical Scenarios. Prior work lacks broad, fine-grained coverage of real diagnostic scenarios; only
MedThinkVQA and MedXpertQA-MM include scenario labels. Multi-Modal Imaging / Longitudinal
Studies. We mark Multi-Modal Imaging when at least some questions require joint interpretation of
images from multiple distinct medical imaging modalities for the same case (e.g., radiograph+CT),
and Longitudinal Studies when questions are built from follow-up imaging of the same patient
at different time points (e.g., baseline vs follow-up studies). Think-with-Images Intermediate
Signals. This merged column indicates whether a benchmark provides intermediate supervision
for think-with-images reasoning, including per-image findings, a case-level imaging summary,
and a case discussion (teaching note). Beyond-ACC Evaluation. Leveraging these signals, only
MedThinkVQA supports fine-grained, end-to-end assessment of think-with-images reasoning and
teaching discussions: stepwise checks, error-type tags, education-value scoring, and automatic
intermediate metrics, rather than accuracy alone.

2 RELATED WORK

Early MedVQA corpora set task forms but had small scale or shallow reasoning (Ben Abacha et al.,
2019; Lau et al., 2018; Liu et al., 2021; He et al., 2020; Zhang et al., 2023). Later unified benchmarks
grew breadth across modalities and specialties (Hu et al., 2024; Ye et al., 2024). General expert-level
suites also add a Health/Medicine subset and try to reduce shortcuts (Yue et al., 2024a;b). But most
questions are single-image or short-context, and many use automatic labels. Many datasets are built
from image captions, so labels do not encode diagnostic reasoning or multi-image context. They
also lack the detailed clinical information that real cases need. Coverage of medical image types is
still limited compared to practice. Within chest radiography and longitudinal imaging, large-scale
corpora such as GEMeX (Liu et al., 2025a), Medical-Diff-VQA (MIMIC-Diff-VQA) (Hu et al., 2023),
ICG-CXR (Ma et al., 2025), and the multi-image MedFrameQA benchmark (Yu et al., 2025) expand
data scale and introduce explainable, difference-aware, counterfactual, or explicitly multi-image
settings. However, their QAs and rationales are largely produced by rule-based or GPT-style pipelines
rather than per-item expert traces, most items remain single-view or image-pair based, and they do not
provide the per-image findings, case-level imaging summaries, or teaching notes needed for stepwise
diagnostic supervision. So evaluation stays answer-centric and lacks stepwise diagnostic supervision,
as reflected in the upper rows of our comparison.

MedXpertQA raises difficulty and realism and has a multimodal track with images and histories (Zuo
et al., 2025). It also provides scenario labels. But it does not release expert per-image findings or a
case-level imaging summary, and it does not annotate option-wise eliminations. Items also use far
fewer images per case (max ≤ 1.43), so cross-view fusion is not stressed. We fill these gaps with
expert step labels (per-image findings and a case summary), with option-wise eliminations, and with
a reproducible beyond-accuracy suite (step metrics, error types, and education scoring).

Eurorad-based studies often prompt models with textual descriptions from case reports (Kim et al.,
2025). This probes language use, but it does not test reading raw images. Text-only prompting
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cannot test multi-image fusion or image dependence. In parallel, agent-style evaluation on chest
X-rays (MedRAX/ChestAgentBench) orchestrates segmentation, grounding, report-generation, and
classification tools on Eurorad-derived multiple-choice cases, but the released benchmark exposes
only questions and images without the underlying expert step traces, complementing rather than
replacing multi-image diagnostic supervision (Fallahpour et al., 2025). So our setting requires direct
multi-image reading and option-wise, evidence-grounded elimination.

Work on reasoning supervision trains or audits how models explain answers (Gai et al., 2025; Liu
et al., 2024a; Wang et al., 2025b; Fan et al., 2025). Prior efforts include chain-of-thought generation,
visually grounded reasoning, and cycle consistency. Recent corpora such as GEMeX-ThinkVG (Liu
et al., 2025b) and S-Chain (Le-Duc et al., 2025) further introduce step-by-step rationales with explicit
visual grounding and localization metrics (e.g., answer–reason scores, A-score, mIoU), moving
beyond answer-only evaluation while still focusing mainly on single-image cases without clinical
scenarios or multi-view, case-level synthesis. These help transparency and stability. But most corpora
do not release expert, item-specific diagnostic traces tied to options. Without option-aligned traces,
contrastive fidelity checks and step-level rubrics are hard to standardize. We release expert per-image
findings and a case-level summary, and we pair them with option-wise eliminations. This enables
contrastive fidelity checks, step-level scoring, and education-oriented evaluation with human and
LLM judges. Teaching discussions are also a standard product of medical education, yet benchmarks
rarely evaluate this skill.

3 MEDTHINKVQA

3.1 SOURCE CORPUS

MedThinkVQA is adapted from Eurorad, a peer-reviewed online database of radiology teaching
cases curated by the European Society of Radiology (eur). The corpus covers major subspecialties
(neuro, musculoskeletal, thoracic, abdominal, pediatric, etc.) and common imaging modalities (X-ray,
CT, MRI, ultrasound, etc.). Each case includes: (i) a brief clinical history; (ii) a multi-image set
(average 6.51 images per case); (iii) radiologist-annotated, per-image hints; (iv) a case-level Integrated
Imaging Summary section; (v) an Expert Reasoning & Teaching Note that interprets the findings,
highlights key diagnostic reasoning, and links to clinical relevance;(vi) the final diagnosis; and (vii) a
differential-diagnosis list.

Figure 2: Distribution of radiology imaging main categories

Cases are contributed by radiologists
and researchers worldwide, typically
based on real clinical examinations.
Submissions are reviewed by the Eu-
rorad Editorial Board (radiology ex-
perts) before publication to ensure au-
thenticity and educational value (eur).
We collected 8,481 cases and curated
them into MedThinkVQA. After post-
processing, we formed a held-out test
set with 751 cases and a training set
with 7,730 cases.These cases span 13
aggregated imaging modalities in the
test split and typically involve around
two distinct modalities per case; de-
tailed modality statistics are provided in Appendix J. For concreteness, detailed field-to-annotation
examples and six representative Eurorad case studies are provided in Appendix C. Details of the
MCQ transformation and option policy are provided in Section 3.3. .

Eurorad materials use CC BY-NC-SA 4.0; MedThinkVQA follows the same license and is for
research and education only, with attribution and ShareAlike, and no commercial use. We worked
with Eurorad and use the materials with permission. Cases are de-identified to the best of our
knowledge; we did not collect new personal data; IRB review was not required; we remove items
if residual identifiers are suspected. The benchmark is not a clinical device and must not be used
for diagnosis, treatment, or triage. To lower leakage risk, we release collection and filtering scripts,
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run de-duplication, and drop items that text-only models can solve; we also keep a path to refresh
held-out items.1

3.2 DATASET COVERAGE
Overall

Samples 751
Images 6090
Per-sample

Imgs/sample 8.11
Cap. length 2444.0
Find. length 857.7
Disc. length 2543.9
Option Length

Avg. 27.9
Num. Density

Macro avg. 0.0164
Other

Pos. correct 2.88
Mean mod. cnt 2.13
All mod. types 13
Longit. share (%) 28.2

Table 2: Test stats
(Cap/Find/Disc. = cap-
tion, findings, discussion;
Pos. correct = avg. po-
sition of correct option;
Mean mod. cnt = mean
# of imaging modali-
ties; see Appendix J for
modality statistics and
K for longitudinal-study
statistics.

Task framing. We characterize dataset coverage along two orthogo-
nal axes: (i) a disease axis using ICD–10 chapters, and (ii) a radiol-
ogy/medical imaging axis grouped by anatomy and subspecialty. The
ICD–10 taxonomy contains 22 chapters. Using GPT-5 to map case labels
to ICD–10, our held-out test set covers 20/22 chapters and additionally
includes 85 rare-disease cases aligned with Orphanet, providing coverage
of long-tail conditions.2

To assess breadth from an imaging perspective, we aggregated the full
dataset by radiology subspecialties (anatomy & subspecialty). Figure 3
shows the distribution. The cases are not concentrated in a single region
but span across all major clinical domains. The largest share comes from
abdominal imaging (22.0%), followed by neuroradiology (16.0%) and
musculoskeletal (14.3%). Mid-sized categories include chest (9.6%),
paediatric (8.0%), and urogenital imaging (7.5%), while cardiovascu-
lar (6.7%) and head & neck (5.7%) also make substantive contribu-
tions. Smaller but non-negligible proportions are represented in breast
and interventional radiology, with hybrid imaging appearing only rarely
(<0.1%). From a temporal-structure perspective, roughly one quarter
of MedThinkVQA cases are longitudinal follow-up studies (multiple
time points for the same patient), so temporal disease evolution is ex-
plicitly represented; detailed longitudinal statistics are summarized in
Appendix K.

3.3 MCQ CONVERSION AND OPTION POLICY

Each case is presented as a five-choice single-best-answer MCQ: Given the clinical history and
associated radiology images, select the most likely diagnosis from the options. The ground-truth
label is the case’s final diagnosis. While only the clinical history and images are provided as input
context for the QA task, we also retain other curated textual fields (expert caption, Integrated Imaging
Summary, and Expert Reasoning & Teaching Note) in the dataset files for potential future use. If
the source differential diagnosis list has ≥ 5 candidates, we prune to five using a confusion-aware
ranking (keep the correct answer plus four distractors that models most often confuse with the truth).
If the list has < 5 candidates, we augment with LLM-generated distractors that meet the above rules;
duplicates or contradictions are rejected.

TRAINING SET (LLM-AUGMENTED OPTIONS & RATIONALES)

When the differential diagnosis list provides fewer than five plausible options, we expand to five using
a GPT-5 prompt adapted from Zuo et al. (2025) (full prompt in Appendix D). GPT-5 receives the case
context (clinical history, imaging details, and current options) and proposes additional distractors with
short teaching notes that explain: (i) why the distractor might seem reasonable, and (ii) what specific
clue rules it out. The resulting training set provides five options per case, each with a teaching note.

TEST SET (EXPERT-FAITHFUL, CONFUSION-PRESERVING, IMAGE-DEPENDENT)

We design the test split to stay as close as possible to expert reasoning and image-based decision
making:

1For full details on licensing, permissions, privacy, safety, and leakage mitigation, see Ethical Statement.
2The two chapters not present in the test set are Mental and behavioural disorders (F01–F99) and External

causes of morbidity and mortality (V01–Y98), which rarely appear as imaging-target diagnoses. A complete
breakdown of ICD–10 chapters and subcategories is reported in the Appendix O.
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(1) Expert differential diagnosis as starting point. We first use cases where the expert differential
list has ≥ 5 entries. The final diagnosis serves as the key, and the differential entries form the
distractor pool. This ensures all candidate options come directly from experts and filters 2061 data.

(2) Leakage Detection. To ensure the rigor of the dataset, we conducted leakage detection on each
clinical history to verify whether it directly revealed the correct diagnosis. Specifically, we examined
whether (i) the diagnosis label itself (exact name or ICD-standard term) appeared in the text, (ii)
synonyms, abbreviations, or eponyms were explicitly present, or (iii) uncertain mentions of the
label or its variants occurred (e.g., “?X,” “rule out X,” “suspected X,” “possible X”). The detailed
prompt used for this detection is provided in Appendix F. In total, 35 leaked cases were identified
and removed from the dataset.

(3) Confusion-aware pruning. Moreover, if there are more than five distractors, we check which
wrong answers preliminary VLM (GPT-4o) models picked mistakenly. We keep these frequently
confused distractors when possible, and sample the rest at random. Only deletions are made; the
original Expert Reasoning & Teaching Note is lightly edited (via GPT-5 mini) to remove references
to deleted options (Appendix E). No new medical content is introduced.

(4) Remove text-solvable cases. To ensure that images are necessary, we test each provisional item
with three text-only models—Llama-3.3-70B, Qwen-3-32B, and MedGemma-27B-text. Items that all
models answer correctly in all 3 runs are removed. This step keeps only problems where imaging is
essential or greatly significant. This process removes ∼ 611 cases.

(5) Surface Bias Mitigation We observed a surface bias in option length: in 57% of cases the
correct answer was the longest choice, far above the uniform expectation of 20%. This likely arises
because correct diagnoses are phrased more specifically to a patient, while distractors are shorter and
more generic. However, models achieved 5–10 points higher accuracy on such items, suggesting
exploitation of this heuristic rather than genuine reasoning. To prevent shortcut learning, we randomly
pruned items until the distribution was balanced (≈20%), removing 664 cases.

3.4 MEDICAL EDUCATION CASE DISCUSSION

In clinical practice, difficult or representative cases are often written up as teaching notes and shared
with trainees and colleagues, and Eurorad “Discussion” sections already play this role. The human-
expert study in Section 4.4 and Tables 3, 4 further shows that even experienced clinicians find a
subset of MedThinkVQA cases very difficult, motivating our Medical Education Case Discussion
task, where models are asked to generate structured teaching content rather than only predict a single
diagnosis. To make this evaluation well-defined, we focus on cases whose discussions follow a
clear five-section template—Background, Clinical Perspective, Imaging Perspective, Outcome, and
Take-Home Messages—yielding a subset of test cases that strictly conforms to this structure and
supports section-by-section comparison.

4 EXPERIMENTAL SETUP

4.1 MODEL BASELINE

We establish baselines using a diverse set of vision–language models (VLMs) to ensure fair and
representative evaluation. The selection spans both Inference-Time Scaled Large Multimodal Models
(e.g., GPT-5 family with nano/mini/full variants) and Vanilla Large Multimodal Models, which include
open-weight generalist and medical-tuned families such as Qwen2-VL, Qwen2.5-VL, MedGemma,
Phi, and InternVL at different parameter scales (4B–38B).

4.2 AUTOMATIC EVALUATION

Intermediate imaging metrics For the per-image findings and the case-level integrated imaging
summary (Steps 1–2 in Fig. 1), we follow recent radiology–report evaluation work (Yu et al., 2023;
Ostmeier et al., 2024) and compute ROUGE as a lexical-overlap baseline together with RadCliQ,
which correlates more strongly with radiologist preferences. We apply these metrics to compare
model outputs against the expert-written findings and summaries, providing automatic, fine-grained
signals for how well models capture clinically salient details.
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Stepwise Reasoning Evaluation We split each model explanation into atomic steps with GPT-5-
MINI, then used GPT-5 as an LLM judge to label, per step: factual correctness, whether it is critical
to the final diagnosis, and an error type when incorrect. When a step is incorrect, the judge assigns one
of four error types: clinical-scenario misunderstanding, missing or misread image evidence (Image
Understanding Err), medical knowledge error, or flawed reasoning; this taxonomy is reused for
both automatic and human evaluations. Overall, most failures stem from image misinterpretation /
information extraction, especially on critical steps (69.23%). When answers are wrong, Reasoning
Err and Medical Knowledge Err become more prominent alongside the image errors (details in
Appendix H and Appendix M).

Case Discussion Evaluation We implemented a comprehensive automatic evaluation framework to
assess the quality of generated case discussions using GPT-5 as evaluators. Each generated discussion
contained multiple subsections including background, clinical perspective, imaging perspective,
outcome, and take-home messages. Our evaluation employed a two-stage approach: first, we
conducted sentence-level factual correctness assessment by splitting each subsection into individual
sentences and tasking a prompted LLM (GPT-5) to judge the correctness of each sentence based
on the provided case context, imaging findings, differential diagnosis list, image captions, and
medical images. The evaluator was instructed to mark sentences as true if explicitly supported or
reasonably inferable from the context, and false only if clearly contradictory or incorrect. Second,
we performed quality assessment using an expert-curated rubric that scored discussions on five key
criteria: disease overview, clinical pathophysiology, imaging analysis, reasoning and differentials,
and transferable learning, with each criterion rated on a 0-2 scale. The LLM evaluator provided
both numerical scores and brief justifications for each rubric criterion, focusing on medical accuracy,
completeness, educational value, and integration of clinical and imaging perspectives. For the
automatic evaluation, we randomly sampled 20 case discussions from our dataset for GPT-5 to
evaluate using this framework.

4.3 HUMAN EVALUATION

Stepwise Reasoning Evaluation Two medical experts evaluated 50 cases (202 steps) for step
factuality and error types. In total, 44 steps contained errors (21.78%), with Image Understanding
Err dominant (77.27%), followed by Reasoning Err, supporting the automatic evaluation conclusion
that image misinterpretation is the primary source of mistakes. Inter-rater agreement was high:
Cohen’s κ = 0.82 between the two experts, and human–LLM-judge agreement ranging from
κ = 0.70 to κ = 0.84, confirming the reliability of the automatic judge.

4.4 EXPERTS PERFORMANCE AND DATA QUALITY ANNOTATION

Model / Expert Correct Incorrect ACC (%)

Human experts 74 22 77.10
Gemini-2.5-pro 54 42 55.67
GPT-5 53 43 55.21
Claude 4.0 47 49 48.96
Lingshu-32B 42 54 43.75

Table 3: Human expert baseline vs. VLMs on the
same 96-case subset.

Annotators and protocol. All annota-
tions were provided by two board-certified
clinicians in active clinical practice.3 We
randomly sampled 96 test cases and ran a
two-round expert study aligned with our
MCQ and stepwise evaluation. In Round 1,
experts saw only the clinical history and
all study images and selected one diagno-
sis out of five options, matching our VLM
setup. In Round 2, they additionally re-
ceived the full reference materials—image
captions, per-image findings, the integrated
imaging summary, the teaching discussion, and the ground-truth answer—and audited each case for
internal consistency, difficulty, and image redundancy (supportive vs. redundant views). The same
96-case subset is used to evaluate VLM baselines for a fair human–model comparison.

Round 1: Diagnostic Performance. Experts answered 74/96 cases correctly (77.10% accuracy).
We also evaluate GPT-5, Claude 4.0, and Lingshu-32B on the same subset with the identical MCQ

3One annotator is a diagnostic radiologist at a tertiary academic hospital in Asia with 7 years of post-
training experience, and the other is an academic surgeon at a U.S. medical school with 5 years of post-training
experience.
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Case group #Cases #Images #Supportive imgs Supportive ratio (%)

All images supportive 65 463 463 100.00
Mixed supportive / redundant 31 315 222 70.48

Overall (96 cases) 96 778 685 88.05

Table 4: Round 2 expert audit: image-level redundancy vs. support. Most cases use all images
as supportive evidence; even in mixed cases, the majority of views remain supportive rather than
redundant.

protocol (Table 3). GPT-5 is the strongest VLM baseline but still trails human experts by about 21.9
percentage points (77.10% vs. 55.21%), and its accuracy on this subset is within 2 percentage points
of its full-test performance, suggesting that the expert-study subset is representative of the overall
benchmark.

Round 2: Data Quality and Image Redundancy. In the audit phase, experts marked 2/96 cases
(2.1%) as possibly inconsistent and 18/96 (18.8%) as very difficult, indicating that the benchmark
largely reflects coherent teaching cases while retaining a non-trivial proportion of challenging items.
For image redundancy, experts judged whether each view provided supportive evidence toward
the final diagnosis. In 65/96 cases (463 images), all views were deemed supportive (100%). The
remaining 31/96 cases contained 315 images, of which 222 (70.48%) were judged supportive.
Overall, 685/778 images were rated as supportive (88.05%), with the rest considered redundant for
determining the final diagnosis.

The expert study shows that experienced clinicians still clearly outperform state-of-the-art VLMs
on MedThinkVQA, that the curated items are overwhelmingly consistent with only a small fraction
flagged as potentially problematic, and that most cases require aggregating evidence from many
supportive views. As shown in Fig. 5, when image_ratio = 0 the task reduces to choosing one
diagnosis out of five options with a random success probability of 20%, and accuracy then rises
steadily as a larger proportion of case images is revealed across all models; together with the expert
audit in Table 4, where 88% of images are rated supportive, this monotonic gain suggests that
additional views are rarely pure redundancy and usually contribute useful diagnostic information,
even though overall performance still remains well below human experts. At the same time, the
realistic minority of redundant / non-supportive images means models must both integrate multiple
supportive views and learn to down-weight redundant ones, mirroring how radiologists select and
prioritize key views before forming a diagnosis.

Case Discussion Evaluation To validate our automatic evaluation framework, we conducted human
evaluation using two medical experts who independently assessed radiology case discussions. Each
evaluator was presented with one case discussion randomly selected and generated by three different
models, ensuring blinded assessment without knowledge of the generating model. Following the
same two-stage methodology as the automatic evaluation, the human evaluators first performed
sentence-level factual correctness evaluation and then the evaluators applied the expert-curated rubric
to provide quality scores. This human evaluation served as the gold standard for assessing the
reliability and validity of our automated evaluation approach.

5 RESULTS AND DISCUSSION

5.1 BASELINE RESULTS

Table shows representative model accuracy on the held-out test set; detailed experimental settings are
omitted by design. We group results into Inference-Time Scaled Large Multimodal Models and Vanilla
Large Multimodal Models (all others). Strong VLMs/VLLMs remain far from expert performance,
indicating MedThinkVQA’s difficulty. As shown in Fig. 6, when models rely on images alone
(Baseline), accuracies are MedGemma-27B: 37.5, GPT-5-nano: 39.5, GPT-5-mini: 49.4, GPT-5:
57.4. Once textual hints are added, accuracy rises sharply, showing that the main bottleneck lies in
image understanding and radiological reasoning, rather than in language reasoning.
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5.2 IMAGE REASONING CAPABILITIES

Expert imaging summaries sharply boost accuracy. Across all models, providing expert-
written text extracted from images leads to large gains on MedThinkVQA (Fig. 6). Feeding the
Integrated Imaging Summary (expert) raises accuracy by +30.8, +30.3, +23.6, and
+18.8 points for MedGemma-27B, GPT-5-nano, GPT-5-mini, and GPT-5, respectively, corresponding
to 1.82×, 1.77×, 1.48×, and 1.33× their baselines. Once this diagnosis-oriented summary is avail-
able, adding an Image Hint (expert) provides only modest extra gains (+0.8–3.9 points),
and the summary consistently outperforms the hint alone by +2–8 points. These patterns indicate
that structured findings matter more than caption-like descriptions: the summary encodes laterality,
location, pattern, and extent in a way that gives the language model highly discriminative cues for
the final diagnosis. The inverse relation between baseline strength and relative improvement further
suggests that, once visual evidence is verbalized, language inference is largely adequate and the main
bottleneck is still extracting and structuring pixel-level radiological evidence.

Figure 3: Baseline model accuracy Google Deep-
Mind & Google Health AI (2025); Sellergren et al.
(2025); Wang et al. (2024b); Bai et al. (2025);
Abouelenin et al. (2025); OpenAI (2025a;b); Wang
et al. (2025a); Gemini Team (2025); Anthropic
(2024b; 2025); Xu et al. (2025); Chen et al. (2024).
Note: Expert scores are computed on a randomly
sampled subset of 96 test items; GPT-5 accuracy
on this subset differs from its full-test accuracy by
less than 2%.

Self-generated text is fragile and often
hurts. When models first write their own
Hint/Summary and then condition on it, the
effects are much smaller and frequently nega-
tive. MedGemma-27B and GPT-5-mini gener-
ally lose 1–5 points relative to baseline; GPT-
5 shows mixed results (around −4 to +0.5
points); only GPT-5-nano obtains modest gains
of roughly +1–4 points. Tab. 6 explains why:
Image→Caption/Findings generations achieve
low ROUGE-L (≈ 0.13–0.16) and imperfect
RadCliQ-v1 scores, meaning that self-produced
descriptions often miss laterality, precise loca-
tions, or key patterns and may introduce subtle
inaccuracies. In addition, noisy text increases
sequence length and can dilute attention over
multi-view inputs, and current VLMs may over-
trust erroneous text when image–text ground-
ing is weak. Together, these factors make self-
generated hints a brittle scaffold for reasoning,
whereas concise, expert-authored imaging sum-
maries reliably unlock the underlying language
capabilities of the models.

Performance on multimodal and longitudinal subsets. As shown in Fig. 7, model behavior on
cases with ≥ 3 imaging modalities and on longitudinal follow-up cases does not uniformly mirror the
overall ranking. For highly multimodal cases, performance changes are mixed: some models (e.g.,
LINGSHU-32B, INTERNVL3_5-38B-HF, HUATUOGPT-VISION-7B) show modest gains over their
overall accuracy, while others incur small drops, suggesting that richer modality combinations are
helpful only when the model can correctly identify and fuse complementary information across views.
By contrast, longitudinal follow-up cases systematically reduce accuracy for most models, often by
several percentage points, indicating that current VLMs struggle to reason over temporal trajectories
and may implicitly treat serial studies as an unordered set of images, ignoring cues such as interval
change, new lesions, and post-treatment evolution. We provide qualitative GPT-5 error analyses
for both settings in Appendix C.4.3 (multimodal hydatid disease) and Appendix C.4.2 (longitudinal
cystic pulmonary tuberculosis), which illustrate how the model over-focuses on a subset of modalities
or a single time point and consequently fails to recover the correct diagnosis.

MedThinkVQA mainly tests image reasoning, with expert summaries yielding large gains. Beyond
diagnosing an image-fusion bottleneck—models still struggle to read and integrate many views even
when language reasoning is strong—We suggest three main directions. First, process-supervised SFT
and distillation can use our per-image findings, integrated summaries, and option-wise eliminations
as step labels, extending chain-of-thought and SFT ideas from general medical MedVQA rationales
to multi-image radiology Zhang et al. (2024); Gai et al. (2024). Second, data-centric and alignment
methods can push the model onto the right views: medical-image augmentation plus generative
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counterfactual editing and semi-human radiology QA expansion Kebaili et al. (2023); Shoer &
Kementchedjhieva (2025); Wang et al. (2024a), combined with preference-based objectives such as
DPO and with reinforcement learning that assigns process-level rewards to image-faithful chains
and penalizes shortcut solutions Rafailov et al. (2023); Liu et al. (2024b); DeepSeek-AI et al. (2025).
Third, test-time “thinking” strategies like Tree-of-Thoughts and frontier multimodal thinking models
(Gemini 2.5 Pro, Claude 3.5 Sonnet) motivate architectures that can encode many images while
letting the language backbone retrieve only the visual tokens it needs at each step Yao et al. (2023);
Kavukcuoglu (2025); Anthropic (2024a), reinforcing the need for stronger visual encoders, better
image–text grounding, and concise, structured hints.

5.3 MEDICAL EDUCATION CASE DISCUSSION

Error type All error steps (N=1509) Critical error steps (N=182)

Image Understanding Err 959 (63.55%) 126 (69.23%)
Reasoning Err 583 (38.63%) 71 (39.01%)
Medical Knowledge Err 362 (23.99%) 60 (32.97%)
Clinical Scenario Err 191 (12.66%) 22 (12.09%)

Table 5: LLM-judge error-type coverage. Note: categories are multi-
label; percentages are step-level coverage over error steps and may
sum to >100%. Full per-split (answer-correct vs. wrong) breakdowns
are in the Appendix.

The generated case discus-
sions demonstrated high fac-
tual accuracy across all tested
models, with overall cor-
rectness rates ranging from
92.81% to 99.22% shown in
Tab. 14. The GPT-5 se-
ries consistently achieved the
highest factual correctness,
while the Clinical Perspec-
tive subsection scored highest
across all models (97.89-100%). The Outcome subsection showed some performance differences,
with MedGemma-27B achieving 85.71% compared to other models’ which scored above 95%. The
rubric-based evaluation revealed GPT-5 achieving the highest overall score of 9.9/10. MedGemma-
27B scored 7.05/10, showing particular weakness in clinical pathophysiology (1.15/2) and reasoning
differentials (1.1/2), while all models demonstrated consistent strength in disease overview and
imaging findings (Tab. 15).

5.4 DATA CONTAMINATION ANALYSIS

ROUGE-L (↑) RadCliQ-v1 (↑)

Model Caption Findings Caption Findings

gpt-5-nano 0.1435 0.1585 0.8080 0.6781
gpt-5-mini 0.1510 0.1636 0.8317 0.6931
GPT-5 0.1534 0.16272 0.8341 0.6818
medgemma-27b-it 0.1336 0.1621 0.7810 0.7192

Table 6: Scores of VLMs for Image→Caption and Image→Findings
across two metrics (ROUGE-L and RadCliQ).

We assess potential test
leakage with a strict, sliding-
window variant of MELD
(Memorization Effects Lev-
enshtein Detector), which
measures the character-
level overlap between each
model’s generated answer
and its input question on the
MEDTHINKVQA test set.
Across seven representative
LLM/VLMs (Qwen3-32B, Med-Gemma-27B-it, Med-Gemma-27B-text-it, GPT-4.1-nano, GPT-
4.1-mini, Qwen2.5-VL-72B-Instruct, Llama-3.3-70B-Instruct), MELD similarities cluster around
∼20–24% with narrow IQRs, and no item reaches the commonly used high-risk threshold of ≥ 50%.
Distributions are similar for text-only and vision-language models, indicating no family-specific
effect. Taken together, we find no evidence of severe contamination; details and boxplots appear in
Appendix N.

6 CONCLUSION

MedThinkVQA establishes the first large-scale benchmark for multimodal diagnostic reasoning in
radiology, combining authentic multi-image cases with expert-authored reasoning traces. We hope it
will serve as a rigorous testbed to advance models that can not only answer correctly but also reason
like radiologists, ultimately driving progress toward trustworthy clinical AI.
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REPRODUCIBILITY STATEMENT

We provide full details to ensure reproducibility. Dataset sources and splits are in Section 3; im-
plementation details and training practices are in Section 3; Hyperparameters for SFT are listed in
Appendix B; We attached various prompts for data construction, LLM Judge in Appendix H; We also
include an anonymized code repository link in Abstract.

ETHICAL STATEMENT

Data source, licensing, and legal compliance. All cases are adapted from Eurorad, a peer-reviewed
educational database maintained by the European Society of Radiology. Eurorad materials are
licensed under Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license.
MedThinkVQA follows the same license. Released data are for research and education only;
commercial use is prohibited. Derivative datasets must preserve attribution, non-commercial use, and
ShareAlike terms.

Human subjects and privacy. Eurorad cases are intended for education and are de-identified to
the best of our knowledge. We did not collect new personal data and did not recruit patients or lay
participants; IRB review was not required. We reviewed materials for residual identifiers and removed
items when concerns arose.

Evaluation reliability. We combine automatic scripts, expert review, and LLM-judges. On step-
level labels, human–human agreement is Cohen’s κ = 0.822833, human1–LLM-judge agreement
is κ = 0.838357, and human2–LLM-judge agreement is κ = 0.701566. These results support the
stability of our automated judging, but LLM-judges do not replace expert oversight.

Bias and fairness. Educational repositories can encode geographic, demographic, and practice-style
biases. Rare conditions and certain protocols are unevenly represented. Models trained or tuned on
this benchmark may inherit such biases. We encourage stratified analyses and external validation
before any deployment.

Safety and misuse. Models evaluated here are research artifacts. They must not be used for diagnosis,
treatment, triage, or other high-stakes tasks without added clinical validation, regulatory clearance,
and domain oversight. Generated discussions may sound authoritative yet still be incomplete or
wrong. Any downstream use requires human supervision, documented fail-safes, and monitoring.

Transparency, reproducibility, and environment. We document data construction, metrics, and
judging protocols. We release code, scoring scripts, and example data, subject to third-party licenses.
No hidden reward models, private test sets, or special samplers were used. We report hardware and
runtime where relevant and encourage efficient evaluation to limit environmental impact.

Conflicts of interest and ethics compliance. All authors have read and will adhere to the ICLR
Code of Ethics for submission, reviewing, and discussion. Any sponsorships or competing interests
will be disclosed in the author checklist.

Data leakage assessment and mitigation. As discussed in Section 5.4, we conducted internal checks
for leakage and found no obvious overlap between our test items and publicly released training
artifacts that we were aware of. We remove text-only solvable items, strip explicit textual shortcuts,
and stress cross-image fusion. Still, the risk of leakage cannot be ruled out. To reduce risk further, we
will (i) release the full data collection and processing code for public audit, and (ii) maintain a rolling
test set covering the most recent 6–12 months of newly curated cases, with periodic updates and
refreshed scores for reported models. We will also publish de-duplication scripts (exact/near-duplicate
filters on images and texts) and document all split procedures.

Limitations Our beyond-accuracy evaluation currently relies on a commercial LLM (GPT-5) as
the primary judge for stepwise reasoning and case discussions. While we partially mitigate this by
reporting human–LLM agreement (Cohen’s κ ≈ 0.70–0.84 with two clinicians) and by keeping
experts in the loop, the approach still inherits model- and prompt-dependence: neither the GPT-5 API
nor any particular snapshot is guaranteed to remain available, and future model updates could change
judgments in subtle ways even under identical prompts and data. This limits strict replicability of
some scores and means that our automatic annotations should be interpreted as calibrated but not
definitive surrogates for expert review. We also experimented with open-weight judges, including
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Qwen2.5-VL-72B, but in our setting these models underperformed GPT-5 as evaluators and showed
less stable alignment with human experts, even after small-scale distillation on a subset of GPT-
5-labeled steps. At present, they do not provide a sufficiently reliable drop-in replacement for the
commercial judge. Developing robust, fully open-source evaluation pipelines—e.g., ensembles of
open-weight VLM/LLM judges calibrated with human audits and process-level supervision—is an
important direction for future work.

Others. MedThinkVQA is a research benchmark, not a clinical tool. Expert-authored traces are
pedagogical; they may overlook interpersonal nuances, local workflows, and institutional contexts.
The multiple-choice setting enables standardized scoring; it also simplifies real diagnostic work and
stops before treatment planning and longitudinal follow-up. Coverage is broad but not complete across
body regions, patient groups, vendors, devices, and acquisition protocols. Although cases span many
conditions, some specialties (e.g., pediatrics, psychiatry) and rare diseases remain underrepresented.
All cases originate from a single educational repository, so distribution shifts across hospitals,
populations, and imaging pipelines are likely. The dataset is currently English-only; multilingual
generalization has not been tested. Annotations, while expert-written, can still contain noise or
stylistic variation. Our LLM-as-Judge components improve scalability, but they can be prompt-
sensitive and may reflect judge-model biases; we therefore report human agreement and keep experts
informed. Finally, we evaluate stepwise reasoning for differential diagnosis; reference-free evaluation
of clinical reasoning without ground-truth steps is left for future work.
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A LLM USAGE

In accordance with the ICLR 2026 policies on LLM usage, we disclose how LLMs were used in
this work. LLMs were employed to assist with grammar polishing, wording improvements, and
drafting text during paper preparation. All technical content, proofs, experiments, and analyses were
conceived, implemented, and validated by the authors. Authors remain fully responsible for the
correctness of the claims and results.

No LLMs were used to generate research ideas, write code for experiments, or produce results. No
confidential information was shared with LLMs, and no prompt injections or other inappropriate uses
were involved.

This disclosure aligns with the ICLR Code of Ethics: contributions of tools are acknowledged, while
accountability and verification rest entirely with the human authors.

B SUPERVISED FINE-TUNING

Training setup. We fine-tuned InternVL3.5-1B, InternVL3.5-2B, InternVL3.5-4B,
MedGemma-4B-IT, Qwen2.5-VL-3B-Instruct, and Qwen2.5-VL-7B-Instruct on
MedThinkVQA using QLoRA (Quantized Low-Rank Adaptation). All models adopted a LoRA rank
of 8, α = 16, and a dropout rate of 0.05. We trained for 2 epochs with a per-device batch size of
1 and 8 gradient accumulation steps (effective batch size 8), using AdamW with a learning rate of
2× 10−4, cosine learning-rate scheduling, and a warmup ratio of 0.03. The dataset was split 90/10
into training and validation sets. These choices were kept fixed across models to enable a controlled
comparison of fine-tuning gains.

SFT results. Supervised fine-tuning yields substantial accuracy improvements over the zero-
shot or instruction-tuned baselines. As summarized in Tab. 13, the GPT-5 series provides a
strong reference point with GPT-5 achieving 57.39% accuracy. After SFT, several smaller open-
source models become competitive with or even surpass this level: Qwen2.5-VL-7B-Instruct
improves from 31.95% to 61.89%, outperforming GPT-5; InternVL3.5-4B (60.96%)
and Qwen2.5-VL-3B-Instruct (60.03%) reach accuracies comparable to GPT-5; and
MedGemma-4B-IT improves from 36.35% to 56.57%. Taken together, these gains indicate that the
MedThinkVQA training split provides high-quality, well-structured supervision that substantially
enhances medical reasoning, enabling compact vision–language models to close most of the gap to
much larger inference-time–scaled systems.
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Figure 4: model accuracy across three processed datasets. TSQ refers to Text-Solvable Questions.
The TSQ acc corresponds to model performance on the 611 text-solvable cases, where all three
models achieved accuracies above 89%. In contrast, the w/o TSQ results are computed on the final
test set after removing these text-solvable cases, showing a substantial drop in accuracy.

Figure 5: Accuracy on the test set as a function of the proportion of case images visible to the model
(image_ratio). When no images are provided (image_ratio = 0), performance is close to the random
baseline of 20% (dashed line); as the visible image proportion increases, accuracy consistently
improves across models.
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Figure 6: Accuracy on MedThinkVQA when augmenting images with text. We compare Image
Hint (caption-like) and Integrated Imaging Summary (diagnosis-oriented findings), each
provided either by an expert or generated by the model itself (self). Both combines the two.

Figure 7: Comparison of accuracy for each model on the full test set (Overall), on cases with ≥ 3
imaging modalities, and on longitudinal follow-up cases. Accuracy on highly multimodal cases
fluctuates around the overall level across models, whereas accuracy on longitudinal cases decreases
for most models.
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Figure 8: MELD data leakage test results on LLMs and VLMs for EuroRadQA. Boxplots show the
distribution of similarity (%) between generated text and question text.

C EXAMPLE MAPPING FROM EURORAD FIELDS TO MEDTHINKVQA
ANNOTATIONS

To make the supervision signals in MedThinkVQA concrete, this section uses a single Eurorad case
from the test split, “Ureteropelvic junction laceration following blunt trauma”, whose processed
JSON is stored at cases/general/case_219/case.json. We list the main JSON fields and
show how they correspond to the supervision concepts used in the main text.

Clinical scenario.

• JSON field: CLINICAL_HISTORY (string).
• Content: brief free-text description of the presenting complaint and relevant history (for

case 219, an elderly patient with cardiovascular comorbidities presenting with right-sided
thoraco-abdominal trauma and microscopic haematuria).

• Main-text concept: this field is used verbatim as the Clinical Scenario shown to models
before any images or answer options (Fig. 1, left).

Per-image hints (Image Hint / per-image findings).

• JSON field: img (list). Each element is a dictionary with keys img_id, img_path,
img_alt (short legend), and img_alt2 (full descriptive caption).

• Content structure (case 219):
– Images 1–3: prior multidetector CT study 8 months earlier, showing bilateral peripelvic

renal cysts with otherwise normal renal morphology.
– Images 4–5: current CT for abdominal trauma, with right perirenal and fascial fluid

and dependent hyperattenuation in the renal pelvis compatible with acute blood.
– Image 6: arterial-phase CT and MIP reconstructions, without contrast extravasation,

again emphasising hyperattenuation in the renal pelvis and a peripelvic cyst.
– Images 7–8: delayed excretory-phase images, showing medial perirenal extraluminal

opacified urine and normal parenchymal/collecting-system opacification.
– Images 9–10: delayed images showing extraluminal opacified urine arising from a

focal breach at the ureteropelvic junction and an opacified proximal ureter.
• Main-text concept: img_alt2 provides the expert per-image hint used in Step 1 (Im-

age Hint / per-image findings). In the TwI setting, models are asked to produce concise
radiological finding sentences that are consistent with these captions.

Case-level Integrated Imaging Summary.

• JSON field: IMAGING_FINDINGS (string).
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• Content: a case-level narrative integrating all imaging examinations (prior CT, current
CT, delayed acquisitions), key abnormalities (peripelvic cysts, perirenal fluid, extraluminal
opacified urine from a UPJ breach), and absence of other traumatic lesions, plus immediate
management (e.g., ureteral stenting).

• Main-text concept: this field is the expert reference for the Integrated Imaging Summary
(Step 2 in Fig. 1); models must fuse per-image findings into a single summary that matches
this cross-view evidence.

Differential diagnosis and MCQ construction.

• JSON field: DIF_DIAGNOSIS_LIST (string with comma-separated diagnoses).
• Content (case 219, simplified): contains the target diagnosis “Ureteropelvic junction lacera-

tion following blunt trauma” and related entities such as “Ureteropelvic avulsion”, “Renal
parenchymal laceration with calyceal disruption”, “Urinoma”, “Perinephric haematoma”,
and “Subcapsular haematoma”.

• Additional JSON fields used for the MCQ:
– options: dictionary mapping option letters ("A"–"E") to diagnosis strings.
– correct_answer: the correct option letter (e.g., "C").
– correct_answer_text: the correct diagnosis string (e.g., “Ureteropelvic junction

laceration following blunt trauma.”).
• Main-text concept: these fields instantiate the five-option single-best-answer MCQ used

in Step 3 (Differential-Diagnosis Reasoning); models compare their Integrated Imaging
Summary to the options and must select correct_answer_text.

Medical Education Case Discussion.

• JSON field: DISCUSSION (string).
• Content: long-form teaching text covering epidemiology (e.g., rarity of UPJ injuries),

mechanisms, imaging pitfalls, management strategies, and prognosis.
• Main-text concept: this field is the expert reference for the Medical Education Case Discus-

sion task, where models generate a structured explanation (Background, Clinical Perspective,
Imaging Perspective, Clinical Significance, Outcome, Take-Home Notes) that is graded
against DISCUSSION for clinical correctness and educational value.

Overall, this case illustrates how raw Eurorad sections and figure captions are mapped onto the
Clinical Scenario, Image Hint, Integrated Imaging Summary, Differential Diagnosis, and Medical
Education Case Discussion supervision signals defined in the main text and implemented as JSON
fields in MedThinkVQA.
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C.1 MULTIMODAL CASE STUDY: PRIMARY CARCINOMA OF THE RECTOVAGINAL SEPTUM

This MedThinkVQA case is a 61-year-old woman with pelvic pain and inguinal lymphadenopathy,
ultimately diagnosed with primary carcinoma of the rectovaginal septum. In the JSON, all four
modalities (Endoscopy, CT, MRI, Histology / pathology) share the same CLINICAL_HISTORY,
IMAGING_FINDINGS, DISCUSSION, and each image is referenced by its img_id and stored
under images/cases/modality/{img_id}.jpg with img_alt and img_alt2 captions.

Endoscopy. The endoscopic modality contains a single sigmoidoscopy frame (img_id =
l9iMrGt3) that documents both focal bulging of the sigmoid wall and a 3 cm vegetative rectal
lesion; these findings are encoded in the corresponding img_alt and img_alt2 fields.

Figure 9: Endoscopy image for this case (img_id = l9iMrGt3).

CT. The CT modality consists of two axial contrast-enhanced CT images (3uIJtKe-,
pfx97TC8) that show a heterogeneous mass in the pouch of Douglas, invasion of adjacent structures,
and inguinal lymphadenopathy; the excretory-phase scan with rectal contrast further clarifies rectal
wall involvement.

3uIJtKe-. Axial contrast-
enhanced CT with pelvic mass
and enlarged left inguinal nodes.

pfx97TC8. Excretory-phase CT
with rectal contrast, better defin-
ing rectal wall involvement.

Figure 10: CT images (img_id = 3uIJtKe-, pfx97TC8) stored under
images/cases/modality/.

MRI. The MRI modality includes five T2-weighted images (O5kEGVZq, IAV1h4UN, FjWYFzXB,
F0KIjEeq, U14cWn_5) that jointly characterise mass location (rectovaginal septum), extension to
cervix and myometrium, intimate contact with the rectal wall, nodal disease, and preservation of the
right ovary and inner cervical stromal layer.
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O5kEGVZq. Sagittal T2: mass
in pouch of Douglas extending to
cervix and myometrium.

IAV1h4UN. Preserved low-signal
inner cervical stroma.

FjWYFzXB. Mass inseparable
from the anterior rectal wall.

F0KIjEeq. Multiple enlarged
pelvic and abdominal lymph
nodes.

U14cWn_5. Coronal T2: normal
right ovary separately identified
from the mass.

Figure 11: MRI images (img_id = O5kEGVZq, IAV1h4UN, FjWYFzXB, F0KIjEeq,
U14cWn_5) with uniform image size and aligned top edges.

Histology / pathology. The histology / pathology modality contains a single composite slide
(3xrCMRPY) showing solid tumour growth with marked atypia and immunostaining for CAM5.2,
CK7, and WT1, all encoded in the img_alt2 description.

Figure 12: Histology / pathology image for this case (img_id = 3xrCMRPY).

Multimodal reasoning signal. In the dataset, this case is formatted as a five-option diagnostic
MCQ with ground-truth label primary carcinoma of the rectovaginal septum. Endoscopy and CT
highlight an extraluminal pelvic mass with rectal involvement; MRI localises the tumour to the
rectovaginal septum and shows preserved cervix and ovaries with nodal spread; histology confirms
a Müllerian-type carcinoma. A model must integrate all four modalities together with the shared
textual fields in the JSON to distinguish this entity from rectal, cervical, and ovarian primaries.
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C.2 LONGITUDINAL CASE STUDY: CYSTIC PULMONARY TUBERCULOSIS

This MedThinkVQA case is a nine-year-old boy with severe cystic pulmonary tuberculosis,
followed radiologically over almost a year. In the JSON, the shared CLINICAL_HISTORY,
IMAGING_FINDINGS, and DISCUSSION fields are linked to chest radiographs and CT scans
at multiple time points. Below, we group images by clinical time point to illustrate longitudinal
disease evolution.

Baseline imaging at admission. Baseline chest radiographs (posteroanterior and lateral views)
show a bilateral diffuse micronodular acinar infiltrate. A same-day chest CT (lung and mediastinal
windows) reveals a diffuse micronodular pattern with random distribution throughout both lungs,
suggestive of an inflammatory or infectious process.

PA view. Baseline chest
radiograph with diffuse mi-
cronodular infiltrates.

Lateral view. Baseline
chest radiograph confirm-
ing bilateral involvement.

CT, lung window. Dif-
fuse micronodular pattern
in both lungs.

CT, lung window.
Randomly distributed
nodules throughout the
parenchyma.

CT, mediastinal window.
No large focal mass; dif-
fuse micronodular disease.

Figure 13: Baseline chest radiographs and CT at admission, all displayed with a uniform relative
size.

Early course with pneumothoraces. During the ICU stay, the patient develops spontaneous
pneumothoraces requiring chest drainage. Serial radiographs show persistent diffuse micronodular
infiltrates with evolving unilateral and bilateral pneumothoraces and multiple chest tubes in place.

Development of confluent cystic disease. A subsequent contrast-enhanced CT demonstrates
extensive confluent cystic lesions predominantly in the upper lobes and posterior regions, consistent
with cystic pulmonary tuberculosis and explaining the recurrent pneumothoraces.

Persistent cysts and larger pneumothoraces. A further CT shows similar cystic disease but larger
bilateral pneumothoraces, pneumomediastinum, and multiple chest drains in place, underscoring the
mechanical complications of cystic tuberculosis.

Pre-discharge CT. Before discharge, CT still shows cystic lesions and residual pneumothorax, but
with improved overall ventilation. The patient tolerates these sequelae after chest tube removal and
can leave the hospital.

Late follow-up. At eight months after discharge, follow-up CT shows near-complete resolution of
the cystic and nodular lesions, with only subtle residual cysts and fibrotic sequelae.
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Chest radiograph. Right
pneumothorax with chest
tube in situ.

Chest radiograph. Persis-
tent diffuse micronodular
opacities.

Chest radiograph. Bilat-
eral lung involvement with
scattered nodules.

Chest radiograph. Multi-
ple thoracic drains for re-
current pneumothoraces.

Chest radiograph. Per-
sistent residual pneumoth-
orax.

Chest radiograph.
Diffuse cystic–nodular
changes on a background
of severe disease.

Figure 14: Serial chest radiographs during ICU stay, showing pneumothoraces and multiple chest
drains.

CT, lung window. Multi-
ple cystic lesions in both
upper lobes.

CT, lung window. Coa-
lescent cysts forming large
air-filled spaces.

CT, lung window. Cys-
tic lesions with surround-
ing ground-glass opacities.

CT, coronal view. Upper-
lobe predominance of cys-
tic disease.

CT, lung window. Poste-
rior lung involvement with
confluent cysts.

CT, mediastinal window.
Multiple large cystic
spaces without solid mass.

Figure 15: CT during peak disease severity, with confluent cystic lesions and diffuse parenchymal
involvement.

Longitudinal reasoning signal. In MedThinkVQA, this case is encoded as a five-option diagnostic
MCQ with the correct answer cystic pulmonary tuberculosis. A model must integrate longitudinal
information across all time points—progression from micronodular infiltrates to confluent cystic dis-
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CT, lung window. Large
right pneumothorax on a
cystic background.

CT, lung window. Ex-
tensive bilateral cystic
changes.

CT, coronal view. Bilat-
eral pneumothoraces with
upper-lobe cysts.

CT, mediastinal window.
Pneumomediastinum and
thoracic drains.

CT, lung window. Persis-
tent cystic lesions despite
drainage.

Figure 16: CT with larger pneumothoraces and pneumomediastinum, on a background of cystic
pulmonary tuberculosis.

CT, lung window. Resid-
ual cystic changes with im-
proved aeration.

CT, lung window. De-
creased extent of parenchy-
mal disease.

CT, coronal view. Tra-
cheostomy in place with
residual cysts.

Figure 17: Pre-discharge CT: persistent cystic lesions but improved clinical tolerance and removal of
chest drains.

ease, recurrent pneumothoraces requiring multiple drains, and eventual radiologic recovery—together
with the clinical text to distinguish this entity from other cystic lung diseases (e.g., Pneumocystis
jirovecii pneumonia, Langerhans cell histiocytosis, Birt–Hogg–Dubé syndrome). The unified, uni-
formly sized image panels highlight how temporal evolution in a single patient can be represented as
a structured longitudinal multimodal item in our dataset.
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CT, lung window. Marked
improvement with near-
normal parenchyma.

CT, lung window. Few
residual discrete cysts.

CT, coronal view. Almost
complete radiologic recov-
ery.

Figure 18: Late follow-up CT eight months after discharge, demonstrating almost complete recovery
with limited sequelae.

C.3 GPT-5 CORRECT CASE STUDY: HIBERNOMA OF THE CHEST WALL

A 28-year-old woman underwent a conventional chest examination for suspected pneumonia, which
incidentally revealed a right paraspinal chest-wall mass. Radiography showed a paraspinal opacity
with scoliosis and rib deformities. CT demonstrated a solid, non-mineralised paravertebral lesion with
fatty components slightly denser than subcutaneous fat and prominent internal serpiginous vessels.
MRI confirmed predominantly fatty signal intensity that was slightly less bright than subcutaneous
fat, with incomplete fat suppression, streaky soft-tissue components and slow, inhomogeneous
enhancement after contrast—features typical of a hypervascular brown-fat tumour (hibernoma).
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Chest radiograph.
Right paraspinal mass
with scoliosis and rib
deformities.

CT, coronal view. Fatty
mass slightly denser than
subcutaneous fat.

CT, axial view. Solid le-
sion with internal serpig-
inous enhancing vessels.

MRI T1-weighted. Pre-
dominantly fatty high
signal, not as bright as
subcutaneous fat.

MRI T2 with fat sup-
pression. Incomplete fat
suppression with hetero-
geneous appearance.

MRI T1 post-contrast.
Slow, inhomogeneous
enhancement of soft-
tissue components.

MRI T1-weighted.
Fatty tissue with streaky
muscle-like strands.

MRI T1 post-contrast.
Prominent internal ves-
sels with flow voids and
enhancement.

Figure 19: Imaging from a paraspinal chest-wall mass later diagnosed as hibernoma: chest radiograph,
contrast-enhanced CT, and multiparametric MRI (T1, T2 with fat suppression, and post-contrast). All
images are stored in the dataset as individual files associated with this case.

GPT-5 answer. For the five-option question (Atypical lipomatous tumour; Clear cell sarcoma of
the soft tissues; Hibernoma of the chest wall; Liposarcoma; Resolving haematoma), GPT-5 selected
Hibernoma of the chest wall and produced the following explanation:

Young woman with a paraspinal chest-wall mass showing predominantly fatty density with
prominent internal serpiginous vessels on CT and marked, heterogeneous enhancement on
MRI. The lesion is slightly less T1-hyperintense than subcutaneous fat and demonstrates
avid enhancement with flow voids—features characteristic of a hypervascular brown-fat
tumor (hibernoma). Atypical lipomatous tumor / well-differentiated liposarcoma and other
liposarcomas typically occur in older patients, are less vascular and show thick septa or
nodular non-fatty components rather than prominent intralesional vessels. Clear cell sarcoma
lacks macroscopic fat and classically arises in distal extremities. A resolving hematoma
would not show this degree of internal vascularity or persistent avid enhancement. Thus,
hibernoma of the chest wall is most likely.

Why this reasoning is correct. GPT-5’s explanation closely matches the expert interpretation of
this case. It correctly recognises a fatty but not quite normal fat signal pattern (slightly denser than
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subcutaneous fat on CT, slightly less T1-bright on MRI, incomplete fat suppression) and emphasises
the key hallmark of hibernoma: a hypervascular intramuscular lesion with prominent serpiginous
internal vessels and slow, inhomogeneous enhancement rather than a homogeneous pure-fat mass.
It then uses these imaging cues, plus the patient’s young age and paraspinal chest-wall location, to
rule out the main differentials: atypical lipomatous tumour and other liposarcomas (typically less
vascular, in older patients, with thick septa and nodular non-fatty components), clear cell sarcoma (no
macroscopic fat, usually distal extremities), and resolving haematoma (lacking persistent vascular
flow voids and avid enhancement). This stepwise, modality-aware reasoning is consistent with the
teaching point for hibernoma and leads to the correct diagnosis for this MedThinkVQA item.
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C.4 GPT-5 ERROR CASE STUDY

C.4.1 GPT-5 ERROR CASE STUDY: COMBINED WILKIE, NUTCRACKER, AND MAY–THURNER
SYNDROMES

A 26-year-old woman with a three-year history of weight loss and postprandial abdominal discom-
fort, prior anorexia nervosa, and known pelvic congestion syndrome underwent contrast-enhanced
abdominal CT. Imaging demonstrated: (i) compression of the third portion of the duodenum between
the superior mesenteric artery (SMA) and aorta with reduced aortomesenteric angle and distance
(Wilkie / SMA syndrome), (ii) compression of the left renal vein between the aorta and SMA with
the classic “beak sign,” proximal left renal vein dilatation and engorged left ovarian and pelvic veins
(Nutcracker syndrome), and (iii) compression of the left common iliac vein by the right common
iliac artery against the lumbar spine (May–Thurner syndrome), together with gastric and proximal
duodenal dilatation.

Sagittal CT. Third
portion of the duodenum
compressed between
aorta and SMA.

Aortomesenteric angle.
Markedly reduced SMA–
aorta angle.

Aortomesenteric
distance. Narrowed
aortomesenteric distance
with duodenal compres-
sion.

LRV beak sign. Abrupt
narrowing of the left re-
nal vein between aorta
and SMA.

LRV dilatation. Proxi-
mal enlargement of the
left renal vein.

Beak geometry. An-
gulated, tapered appear-
ance of the compressed
left renal vein.

Pelvic veins. Tortu-
ous left ovarian vein
and dilated pelvic ve-
nous plexus.

May–Thurner. Com-
pression of the left
common iliac vein by
the right common iliac
artery.

Global effect. Dilata-
tion of stomach and
proximal duodenum
from outflow obstruc-
tion.

Figure 20: Nine CT slices from a single case demonstrating three concurrent vascular compression
syndromes: Wilkie (SMA) syndrome, Nutcracker syndrome with pelvic venous congestion, and
May–Thurner syndrome. All images are stored as separate files but belong to one MedThinkVQA
item.
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GPT-5 answer (incorrect). For the five-option question (iliac vein compression by an occult pelvic
mass; hereditary megaduodenum; scleroderma with duodenal involvement; superior mesenteric artery
syndrome; Nutcracker syndrome and May–Thurner syndrome), GPT-5 selected superior mesenteric
artery syndrome and produced the following explanation:

CT demonstrates a markedly reduced aortomesenteric angle (≈ 18◦) and aortomesenteric
distance (∼ 2mm), which are diagnostic measurements for compression of the third portion
of the duodenum by the SMA, that is, superior mesenteric artery (SMA) syndrome. The
clinical context of a young woman with significant weight loss and anorexia nervosa,
plus postprandial abdominal discomfort, is classic for SMA syndrome due to loss of the
mesenteric fat pad. While other vascular compression findings may be present, the imaging
and symptoms most directly support SMA syndrome as the primary diagnosis.

Why GPT-5 is wrong: failure of multi-image reasoning. Although this explanation is internally
coherent for an isolated Wilkie / SMA syndrome, it systematically ignores the additional information
carried by the other six images. Three CT slices do quantify the reduced aortomesenteric angle and
distance and show duodenal compression, but the remaining views encode two further, independent
haemodynamic abnormalities:

• Several slices through the renal hilum show an abrupt, “beak”-shaped narrowing of the left
renal vein between the aorta and SMA with proximal dilatation and engorged ovarian and
pelvic veins, which is classic for Nutcracker syndrome with pelvic congestion.

• A slice at the iliac bifurcation demonstrates focal compression of the left common iliac vein
by the right common iliac artery against the spine, characteristic of May–Thurner syndrome.

The ground-truth label for this MedThinkVQA item reflects the combination of vascular compression
syndromes documented in the full nine-image set, not just SMA syndrome. However, GPT-5
effectively behaves as if it were solving a single-image task: it focuses on the most salient slice
showing SMA–duodenum compression, maps this to the textbook pattern of superior mesenteric
artery syndrome, and then dismisses the rest with the remark that other compression findings “may
be present.”

This behaviour illustrates a central limitation of current multimodal LLMs on genuinely multi-
image cases. Instead of integrating heterogeneous evidence across different anatomical levels and
mechanisms (duodenal obstruction, renal venous outflow obstruction, iliac venous compression), the
model implicitly treats the images as redundant views of one problem and optimises for a single,
locally consistent story. In other words, GPT-5 correctly explains one mechanism, but it fails at joint,
cross-region reasoning over a curated set of complementary images, which is precisely what this
multi-syndrome case is designed to test.
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C.4.2 GPT-5 ERROR CASE STUDY: LONGITUDINAL CYSTIC PULMONARY TUBERCULOSIS

This MedThinkVQA item is a longitudinal case of a previously healthy nine-year-old boy with
cystic pulmonary tuberculosis. The clinical course spans almost eleven months: initial presentation
with fever, cough, dyspnoea and diffuse micronodular infiltrates; multiple bilateral spontaneous
pneumothoraces requiring repeated chest drainage and intensive care; evolution on CT from diffuse
micronodules and ground-glass opacities to extensive thin-walled cystic change with recurrent
pneumothoraces; and, after prolonged anti-tuberculous therapy, near-complete radiologic recovery
with only a few residual cysts and fibrotic sequelae. All time points are encoded as separate images
but linked to a single question whose ground-truth diagnosis is cystic pulmonary tuberculosis.

GPT-5 answer (incorrect). For the five-option question (Pneumocystis jirovecii pneumonia; Lym-
phoid interstitial pneumonia; Langerhans cell histiocytosis; Cystic pulmonary tuberculosis; Birt–
Hogg–Dubé syndrome), GPT-5 chose Pneumocystis jirovecii pneumonia and produced the following
explanation:

The imaging shows an initial diffuse interstitial/ground-glass process (crazy-paving appear-
ance) followed by the development of numerous thin-walled cysts/pneumatoceles throughout
both lungs and recurrent bilateral spontaneous pneumothoraces. This evolution – diffuse
GGO progressing to widespread pneumatoceles with high risk of pneumothorax – is classic
for Pneumocystis jirovecii pneumonia, especially in children with underlying or occult
immunodeficiency. Langerhans cell histiocytosis typically affects young adult smokers with
upper-lobe-predominant, irregular cysts and costophrenic angle sparing; lymphoid interstitial
pneumonia is a chronic disease with lower-lobe cysts and not an acute febrile presentation;
tuberculosis produces cavities rather than numerous thin-walled cysts; Birt–Hogg–Dubé
syndrome presents in adults with basilar subpleural cysts without acute diffuse ground-glass
opacities. Thus, Pneumocystis jirovecii pneumonia best fits the overall picture.

Error analysis: ignoring the longitudinal time axis. GPT-5’s reasoning is internally consistent
for an acute, immunodeficiency-related Pneumocystis pneumonia, but it fails as a longitudinal
interpretation of this case. Several key aspects of the time series are either misread or ignored:

• Disease duration and follow-up. The patient is an immunocompetent nine-year-old boy
followed over almost eleven months, with documented near-complete radiologic recovery
after prolonged anti-tuberculous therapy. This long clinical evolution with structured follow-
up CTs is far more typical of tuberculosis than of uncontrolled Pneumocystis infection,
which in an undiagnosed immunodeficient child would be expected to progress or relapse
rather than steadily resolve.

• Full temporal chain, not a single snapshot. GPT-5 effectively compresses the sequence
“diffuse micronodules/ground-glass→ extensive thin-walled cysts→ gradual resolution”
into a standard short-course template for Pneumocystis pneumonia. It focuses on the middle
phase (GGO with cysts and pneumothoraces) and treats the early and late time points as
redundant, rather than evidence of a slowly evolving, ultimately reversible granulomatous
infection under long-term treatment.

• Misconception about tuberculosis morphology. The explanation assumes that tuberculosis
“produces cavities rather than numerous thin-walled cysts,” implicitly excluding cystic or
pneumothorax-prone forms of TB. However, the discussion explicitly describes cystic
pulmonary tuberculosis as a rare but recognised entity in which diffuse nodules and ground-
glass change can evolve into confluent thin-walled cysts with recurrent pneumothoraces,
followed by gradual radiologic improvement once therapy is effective.

• Underuse of sequential improvement as a diagnostic cue. A core signal in this longitudi-
nal case is the progressive improvement across follow-up CTs: cysts shrink, pneumothoraces
resolve, and only sparse cystic or fibrotic sequelae remain. Such a trajectory is strongly sup-
portive of treated infection (here, tuberculosis) and less compatible with chronic interstitial
or cystic diseases (such as LCH, LIP, Birt–Hogg–Dubé) that typically show persistent or
progressive structural damage.
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C.4.3 GPT-5 ERROR CASE STUDY: MULTIMODAL-HYDATID

This MedThinkVQA item is a multimodal, multi-organ case of disseminated hydatid disease in a
19-year-old man presenting with seizures and low-grade fever. Cranial CT and MRI show a solitary
parietal cystic lesion with mild peripheral enhancement and no diffusion restriction; chest X-ray and
body CT demonstrate multiple, well-defined peripheral pulmonary nodules with water attenuation;
thoracic ultrasound confirms the cystic nature of the lung lesions; and abdominal CT reveals a cystic
hepatic lesion with peripheral calcification. Serology for Echinococcus granulosus confirms the
diagnosis, and the ground-truth label for the item is disseminated hydatid disease.

GPT-5 answer (incorrect). For the five-option question (Disseminated hydatid disease; Lung:
pulmonary septic emboli; Pulmonary metastases; Brain: cystic brain tumour; Brain abscess), GPT-5
selected Brain abscess and produced the following explanation:

The clinical presentation of seizures and febricula along with laboratory findings of leuko-
cytosis and neutrophilia suggests an infectious or inflammatory process. The absence of
respiratory symptoms makes options related to pulmonary pathology less likely as the
primary diagnosis. Given the neurological symptoms, the most plausible diagnosis would
involve the brain. Between options D and E, brain abscess (E) is more likely to present
acutely with seizures and fever, and is often associated with leukocytosis and neutrophilia,
whereas a cystic brain tumor (D) might not typically present with such acute infectious
symptoms. The imaging findings, although not described, would likely show a localized
area of infection in the brain for an abscess, which aligns with the clinical picture provided.

Error analysis: failure to integrate multimodal, multi-organ evidence. GPT-5’s reasoning treats
this case as if it were a purely neuroradiologic vignette: it focuses on seizures, low-grade fever and
inflammatory markers, implicitly assumes the key information is “ring-enhancing brain lesion plus
infection,” and then chooses brain abscess by comparing only options D and E. This single-modality
shortcut neglects almost all of the structured multimodal evidence presented:

• Pulmonary imaging is downgraded to “background”. Chest X-ray and chest CT clearly
show numerous, well-defined, peripheral pulmonary nodules with water attenuation and no
features of suppurative consolidation or infarction. Thoracic ultrasound further confirms that
these nodules are true cysts (anechoic with posterior acoustic enhancement), a pattern much
more typical of hydatid disease than septic emboli or metastases. GPT-5’s statement that
pulmonary options are “less likely” because of absent respiratory symptoms ignores that
hydatid cysts are often asymptomatic in the lungs and that imaging, not symptoms, carries
the main diagnostic weight here.

• Hepatic cyst is completely ignored. Body CT demonstrates a classic hydatid cyst in the
left hepatic lobe with a well-defined cystic lesion and peripheral calcification of the pericyst.
This second non-brain, non-lung organ involvement is a strong clue for systemic parasitic
disease. GPT-5’s explanation does not mention the liver at all, indicating that this modality
and organ channel are effectively dropped from its reasoning.

• Brain MRI is interpreted through a generic “ring-enhancement = abscess” template.
The brain lesion in this case is a solitary, CSF-like cyst with a thin rim, mild peripheral en-
hancement, no diffusion restriction, and only moderate oedema. These features, particularly
the absence of diffusion restriction and the characteristic low-signal rim on T2-weighted
images, are more consistent with a hydatid cyst than with a pyogenic abscess. GPT-5 instead
imagines a typical abscess pattern and even states that the imaging findings “would likely”
show a focal infection, revealing that it is reasoning from a mental template rather than
actually integrating the provided MRI sequences.

• Cross-organ pattern is never assembled. The correct diagnosis requires noticing a triad: (i)
multiple cystic pulmonary lesions, (ii) a calcified hepatic cyst, and (iii) a solitary brain cyst
with hydatid-like MRI characteristics. Taken together, these represent a classic multi-organ,
haematogenously disseminated parasitic infection. GPT-5 never composes this cross-organ,
cross-modality picture; instead, it chooses the most salient single modality (brain MRI/CT)
and maps the entire case to a focal intracranial infection.
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C.5 STEP-LEVEL EVALUATION CASE STUDY: BILATERAL SUBAREOLAR ABSCESSES

C.5.1 ERROR TAXONOMY FOR MODEL RESPONSES

• Reasoning Error (Reasoning Err). The imaging and clinical facts themselves are correctly
stated, but the model misconstructs the causal chain or diagnostic logic, reaches an incorrect
conclusion, selects an inappropriate differential diagnosis, or uses correct facts to support an
incorrect judgment.

• Image Understanding Error (Image Understanding Err). The model misreads or hallu-
cinates objective visual information that is directly apparent on the images (e.g., location,
morphology, signal intensity, enhancement pattern, extent), and the error originates from
image interpretation rather than downstream reasoning.

• Clinical Scenario Error (Clinical Scenario Err). The model misunderstands, misquotes,
or inaccurately restates clinical information provided in the stem (e.g., symptoms, age,
duration, physical findings, laboratory data), or treats information that is not given as if it
were explicitly provided.

• Medical Knowledge Error (Medical Knowledge Err). The model violates general medical
knowledge or textbook-level facts—such as typical manifestations of a lesion, epidemiol-
ogy, key features for differential diagnosis, or common complications—in ways that are
independent of how the specific images or clinical history are read.

Clinical scenario and imaging summary. A 39-year-old woman presented with unilateral, single-
orifice nipple discharge (galactorrhoea) from the right breast and no fever, palpable mass, or skin
inflammatory changes. Initial mammography (craniocaudal and oblique views) and ultrasound of
both breasts were reported as normal. Galactography of the right breast showed an intraductal filling
defect in a canalised nipple duct and raised the suspicion of an intraductal papilloma. Subsequent
contrast-enhanced breast MRI revealed bilateral subareolar fluid-filled cavities without internal
enhancement, with intensely enhancing peripheral capsules and surrounding inflammatory tissue.
A repeat ultrasound, performed after the patient clarified that the discharge was actually bilateral,
showed bilateral subareolar hypoechoic nodules with anechoic centres, consistent with abscesses.
Cytology confirmed bilateral subareolar abscesses.

GPT-5 diagnosis and explanation. The multiple-choice options included galactocele, fat necrosis,
intracystic papillomas, and subareolar abscesses (correct answer: subareolar abscesses). GPT-5
instead chose intracystic papillomas and produced the following free-text explanation:

Unilateral, single-duct nipple discharge suggests a focal intraductal process. Mammography
is essentially negative. Ultrasound shows a dilated retroareolar duct containing an intracystic
solid nodule. MRI demonstrates a small enhancing subareolar intraductal lesion without sur-
rounding inflammatory change. Findings are classic for an intraductal/intracystic papilloma,
not a galactocele (no fat–fluid level), abscess (no pain, erythema or inflammatory changes),
or fat necrosis.

Step-level parsing and expert error annotation. We use GPT-5 to decompose its own explanation
into discrete reasoning steps, then ask a breast imaging expert to judge the factual correctness of each
step and assign an error type when applicable. Error types follow our taxonomy: Clinical Scenario
Err, Image Understanding Err, Reasoning Err, and Medical Knowledge Err as defined in Section ??.

1. Step 1: “Unilateral, single-duct nipple discharge suggests a focal intraductal process.”
Expert factual judgment: Incorrect. Error type: Clinical Scenario Err.
Although the original history was recorded as unilateral, single-orifice discharge, the case
narrative later clarifies that the galactorrhoea is actually bilateral. GPT-5 treats the initial,
incomplete history as definitive and over-anchors on a classic teaching pattern for intraductal
papilloma, misrepresenting the true clinical scenario.

2. Step 2: “Mammography is essentially negative.”
Expert factual judgment: Correct. Error type: None.
The report states that mammography did not show any pathological findings, so this step
accurately reflects the imaging description.
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3. Step 3: “Ultrasound shows a dilated retroareolar duct containing an intracystic solid nodule.”
Expert factual judgment: Incorrect. Error type: Image Understanding Err.
In reality, the initial ultrasound was normal, and the follow-up ultrasound showed bilateral
subareolar hypoechoic nodules with anechoic centres (abscesses), not a duct with an intra-
cystic solid nodule. GPT-5 hallucinates a very specific retroareolar papilloma pattern directly
from the images, so the primary error is misreading the imaging rather than subsequent
reasoning.

4. Step 4: “MRI demonstrates a small enhancing subareolar intraductal lesion without sur-
rounding inflammatory change.”
Expert factual judgment: Incorrect. Error type: Image Understanding Err.
The MRI actually showed bilateral fluid-filled cavities without internal enhancement, sur-
rounded by an intensely enhancing capsule and inflammatory tissue with moderate enhance-
ment. GPT-5 inverts this pattern (solid enhancing nodule, no inflammation), again indicating
a failure to correctly translate the described MRI findings into its intermediate reasoning.

5. Step 5: “These imaging findings are classic for an intraductal/intracystic papilloma.”
Expert factual judgment: Incorrect. Error type: Reasoning Err.
Given the true imaging pattern (bilateral subareolar fluid collections with enhancing capsule
and surrounding inflammation), the correct diagnosis is abscess. Here GPT-5 generalises
from its misread ultrasound/MRI steps and commits a diagnostic reasoning error: it asserts
a papilloma pattern even though the combination of bilateral disease, fluid-filled cavities,
and inflammatory enhancement better matches abscess.

6. Step 6: “The findings are not compatible with a galactocele because there is no fat–fluid
level.”
Expert factual judgment: Correct as stated. Error type: None.
The expert accepts that there is no explicit fat–fluid level described. While the accompanying
textual explanation overstates how definitively this excludes a galactocele, the literal step
(“no fat–fluid level is seen”) is factually consistent with the report, so no image or scenario
error is assigned at the step text level.

7. Step 7: “The findings are not compatible with an abscess because there is no pain, erythema,
or inflammatory changes.”
Expert factual judgment: Incorrect. Error types: Reasoning Err, Clinical Scenario Err,
Medical Knowledge Err.
This step bundles three distinct problems:

• Clinical Scenario Err: It equates the absence of external pain, erythema, or skin
signs with the absence of inflammation, ignoring the MRI description of surrounding
inflammatory tissue and the later clarification of bilateral symptoms.

• Medical Knowledge Err: It assumes that breast abscesses cannot present without
overt systemic or cutaneous signs, which contradicts the broader discussion that non-
puerperal central abscesses can be subtle.

• Reasoning Err: It uses this flawed premise to exclude the true diagnosis (abscess),
despite direct imaging and cytology evidence to the contrary.

8. Step 8: “The findings are not compatible with fat necrosis.”
Expert factual judgment: Correct. Error type: None.
The described lesions are fluid-filled cavities with enhancing capsules and inflammatory
tissue, without oil cysts or internal fat signal; this pattern is more characteristic of abscess
than fat necrosis, so excluding fat necrosis at this step is reasonable.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

D OPTION & DISCUSSION AUGMENTATION PROMPT

To ensure reproducibility, we document the exact prompts used for augmenting Options and expanding
the Discussion in the medical multiple-choice QA setting.

D.1 SYSTEM PROMPT

You are a careful medical QA assistant.

# Prompt for Option Generation

### Task
Given a medical multiple-choice question of the form "Select the single best diagnosis"
based on CLINICAL_HISTORY, several patient images, the current provided options,
the correct answer, and an existing discussion (including reasoning about the current options), please:

1. Generate additional incorrect options so that the total number of answer choices
is exactly 5 (no more, no less).

2. Expand and refine the provided discussion, ensuring it thoroughly explains how
to eliminate all incorrect answers and why the correct answer is most appropriate,
using reasoning grounded in the CLINICAL_HISTORY and images.

### Suggested Approaches
1. Consider Erroneous Perspectives: Add distractors that misinterpret or

overemphasize aspects of the CLINICAL_HISTORY or images.
2. Leverage Common Misconceptions: Create distractors based on common diagnostic

errors or frequently confused conditions.
3. Logical Misdirection: Introduce distractors grounded in logical reasoning

that appear plausible but are ultimately incorrect.

### General Requirements
1. Maintain Consistency: Ensure new options match the original ones in length,

structure, and professional wording.
2. Avoid Oversimplified Distractors.
3. Ensure High Plausibility.
4. Expand Discussion:

- Include reasoning for the newly generated distractors.
- Strengthen explanations for ruling out incorrect answers.
- Deepen justification for selecting the correct answer.

5. Final Output Format:
Return valid JSON with exactly these fields: options (A-E), correct_answer, discussion.

### Important Output Rules
- Keep all *original* options text unchanged; only add new distractors

to reach exactly five total options.
- Do NOT reorder existing options; append only the missing letters

(e.g., add D/E) so that A-E are filled.
- The final correct_answer must correspond to the original correct option’s text.
- No extra commentary outside the JSON body.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

E DISCUSSION PRUNING PROMPT

This section documents the prompts used to prune Discussion paragraphs by removing references to
extra differential diagnoses that are not among the allowed answer options.

E.1 SYSTEM PROMPT

You are a careful clinical editor. Your job is to MINIMALLY edit a medical DISCUSSION.
Goal: remove references to extra differential diagnoses that appear in
DIF_DIAGNOSIS_LIST but are NOT among the five ALLOWED OPTIONS.
Preserve all content related to ALLOWED OPTIONS.
Keep the original clinical reasoning flow, tone, and meaning. Do not add new facts.

Rules:
1) NEVER delete information that relates to any ALLOWED_OPTIONS

(even if an EXTRA item partially overlaps).
2) Remove sentences/clauses whose main role is to introduce, justify, or

list items in EXTRA_TO_REMOVE.
If a sentence mixes allowed and extra diagnoses, keep the allowed part
and delete only the extra part, then fix grammar to remain fluent.

3) Keep general disease definitions, imaging/lab reasoning, and conclusions
that support ALLOWED_OPTIONS.

4) Maintain coherence and clinical correctness; do NOT invent new claims.
5) Output strictly as JSON with one key: discussion_new.
6) If EXTRA_TO_REMOVE is empty, return the original discussion as discussion_new.

E.2 USER PROMPT TEMPLATE

Edit the DISCUSSION by deleting only the parts about the extra differentials.

ALLOWED_OPTIONS (keep anything related to these):
<ALLOWED_OPTIONS_JSON>

DIF_DIAGNOSIS_LIST_CLEAN:
<DIF_DIAGNOSIS_LIST_CLEAN_JSON>

EXTRA_TO_REMOVE (delete content only about these):
<EXTRA_TO_REMOVE_JSON>

DISCUSSION:
‘‘‘text
<DISCUSSION>
Return JSON: {"discussion_new": "..."}
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F PROMPTS FOR DATA LEAKAGE AUDITING

SYSTEM MESSAGE

You are a meticulous clinical QA auditor for multiple-choice diagnosis questions. Your job:
Given ONLY the CLINICAL HISTORY text and the list of candidate diagnosis OPTIONS, decide
whether the history text DIRECTLY REVEALS any option(s).

Definition of DIRECT REVEAL (diagnosis label appears in the text itself, not inferred):
• L3 Explicit label: the exact diagnosis name or ICD/standard label appears, or patterns like

"Diagnosis: X", "biopsy-proven X".
• L2 Explicit synonym/acronym/eponym/foreign-language variant of the diagnosis label appears

(e.g., "MI" for myocardial infarction; "Osler-Weber-Rendu" for HHT).
• L1 Explicit but uncertain mention of the diagnosis label (or its synonym/acronym/eponym):

e.g., "?X", "r/o X", "rule out X", "query X", "suspected X", "possible/probable X",
"consistent with X", "concern for X", "Hx of/known case of X".

NOT a leak: symptoms, signs, risk factors, imaging descriptors, or lab patterns that merely
SUGGEST a diagnosis. Only mark a leak if the diagnosis LABEL itself (or its standard
synonym/acronym/eponym) occurs in the text.

Use the OPTIONS solely as a dictionary of candidate labels and their widely-used
synonyms/acronyms/eponyms to search for DIRECT textual mentions. Do NOT infer diagnoses
from context. Do NOT mark based on reasoning.

For each leaked option, return:
- option_id, option_text
- overall leak_level (max severity across its evidences; L3>L2>L1)
- evidences: verbatim snippet(s) with [start,end) character indices into the EXACT Clinical

history string
- a brief justification

If no option is leaked, set has_leak=false and provide non_leak_reason.

Return ONLY valid JSON following the required schema. No extra prose.

USER MESSAGE (TEMPLATE)

CLINICAL HISTORY (use this exact string when computing char spans):
<<<<HISTORY>>>>
{CLINICAL_HISTORY}
<<<<END_HISTORY>>>>

OPTIONS (candidate diagnoses; DO NOT infer--use only as label dictionary):
A) {option_A_text}
B) {option_B_text}
C) {option_C_text}
D) {option_D_text}
E) {option_E_text}
... (continue as needed, preserving order)

Task: Identify ALL options (if any) that are directly revealed by the HISTORY text
under L1/L2/L3 definitions. Extract verbatim evidence snippet(s) and 0-based [start,end)
char spans into the exact HISTORY string above. If none, set has_leak=false.
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G PROMPTS FOR DISCUSSION GENERATION

SYSTEM PROMPTS

You are a board-certified radiologist. Given clinical history, imaging
findings, a differential diagnosis list, the final diagnosis, and one or
more images (with captions), write a Discussion with five sections:
Background; Clinical Perspective; Imaging Perspective; Outcome; Take Home
Message. Be accurate, concise, and grounded in the provided info.

Return strict JSON with keys exactly:
{

"Background": "...",
"Clinical Perspective": "...",
"Imaging Perspective": "...",
"Outcome": "...",
"Take Home Message": "..."

}

Example of tone/structure (content is just an example; DO NOT copy text):

{
"Background": "May and Thurner described for the first time in 1956
a spur-like formation on the left common iliac vein in 22% of autopsies.
May-Thurner syndrome, also known as Iliac Venous Compression Syndrome
(IVCS), is a condition of venous compression by the overlying artery,
usually the left common iliac vein by the right common iliac artery.",

"Clinical Perspective": "This disease is reported to be more frequent
in women and the main clinical presentation is deep vein thrombosis.
The true prevalence of this condition is unknown, but some autopsies
series reported 22% to 33%. May-Thurner syndrome is a progressive
vascular disease with long-term disabling complications.",

"Imaging Perspective": "Iliac vein compression, with or without
thrombosis, should be treated if symptomatic. The procedure includes
an ascending venogram through the iliac vein to show the stenotic area.
A guidewire is advanced through the lesion and a stent is than placed
over-the-wire.",

"Outcome": "Since 1995 venous stents have been placed into the narrowed
vein area. Stents seem to be beneficial, improving the clinical outcome
and the quality of life of these patients.",

"Take Home Message": "If a patient has discomfort, swelling or deep
venous thrombosis (DVT), in the iliofemoral vein territory, especially
on the left side think about May-Thurner syndrome."

}

H LLM JUDGE PROMPT

H.1 SYSTEM PROMPT

You are an evaluator for radiology case analyses. Judge the correctness of each step
based on the provided context (Clinical history, Captions, Imaging findings, Discussion)
and relevant teaching value/domain knowledge.
Rules:
1) Evaluate whether each step is correct or reasonably supported; reasonable analysis counts as correct.
2) Mark True if the step is explicitly supported, correctly implied, or logically reasonable given the context
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and your teaching value/domain knowledge.
3) Mark False only if the step is clearly wrong, contradictory, or cannot be reasonably inferred from either

the context or standard domain knowledge.
4) Ignore style, redundancy, or reasoning quality--focus only on correctness.
5) Provide exactly one concise 1-2 sentence explanation per step.
6) Return ONLY JSON following the provided schema; one verdict per step, same order.

H.2 USER PROMPT (TEMPLATE)

Task: For each step below, judge if it is supported by the provided context and relevant
teaching value/domain knowledge.

- Title: {{title}}
- Clinical history: {{clinical_history}}
- Imaging findings: {{imaging_findings}}
- Discussion: {{discussion}}
- Captions (all):
{{captions_block}} # e.g., lines like "- {{caption_i}}"; if none, use "(none)"

Steps to judge (in order):
{{steps_block}} # e.g., "1. {{step_1}}\n2. {{step_2}}\n..."

Output strictly as JSON; one verdict per step in the same order, using this schema:
{

"verdicts": [
{

"is_factual": true,
"explanation": "A brief, self-contained justification (1-2 sentences). If true, mention supporting phrase(s) from the context when possible; if false, state the contradiction or ’not supported by the provided context’. (2-300 chars)"

}
// ... one object per step, in order

]
}

H.3 LLM AS JUDGE FOR CASE DISCUSSIONS

You are a board-certified radiologist tasked with evaluating the factual
correctness of radiology case discussions.

Judge the correctness of each sentence from the Discussion section
(Background / Clinical Perspective / Imaging Perspective / Outcome /
Take-Home) based on the provided case context (Clinical history, Imaging
findings, Differential list), the image captions, and the images themselves.

Rules:
1) Mark True if the sentence is explicitly supported, correctly implied,

or logically reasonable given the context and standard domain knowledge.
2) Mark False only if clearly wrong, contradictory, or not reasonably

inferable.
3) Ignore style and redundancy--focus only on correctness.
4) Provide exactly one concise 1-2 sentence explanation per sentence.
5) Return ONLY JSON for the schema below.

Return STRICT JSON with this schema:
{

"sentence_judgments": {
"<sentence_key>": {

"text": "<original sentence>",
"factual": true|false,
"explanation": "<ONE concise 1-2 sentence explanation>"
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}
}

}

H.4 RUBRIC EVALUATION PROMPT

You are a board-certified radiologist tasked with evaluating the quality
of radiology case discussions.

TASK: Evaluate the Discussion section of the provided radiology case
using a standardized rubric.

MATERIALS PROVIDED:
- Clinical history and imaging findings
- Differential diagnosis list
- Medical images with captions
- Discussion section (containing: Background, Clinical perspective,

Imaging perspective, Outcome, Take-Home messages)

EVALUATION INSTRUCTIONS:
1. Read the entire Discussion section carefully
2. Score each of the 5 rubric criteria on a 0-2 scale.
3. For each rubric score, provide a brief 1-2 sentence justification
4. Calculate total score (sum of all 5 rubrics, range 0-10)

FOCUS ON:
- Medical accuracy and evidence-based content
- Completeness of information
- Educational value for radiology trainees
- Clear communication of key concepts
- Integration of clinical and imaging perspectives

OUTPUT FORMAT:
Return ONLY a valid JSON object following the specified schema.
Do not include any additional text or explanations outside the
JSON structure.

Return STRICT JSON with this schema:
{

"rubric_scores": {
"rubric_1_disease_overview": {"score": 0|1|2, "explanation": "<1-2 sentences>"},
"rubric_2_clinical_pathophysiology": {"score": 0|1|2, "explanation": "<1-2 sentences>"},
"rubric_3_imaging": {"score": 0|1|2, "explanation": "<1-2 sentences>"},
"rubric_4_reasoning_differentials": {"score": 0|1|2, "explanation": "<1-2 sentences>"},
"rubric_5_transferable_learning": {"score": 0|1|2, "explanation": "<1-2 sentences>"},
"total": 0-10

}
}
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I ADDITIONAL EVALUATION TABLES FOR TEXT-SOLVABLE CASES1

All results below are evaluated on the same raw test set of 2,159 items . For each model we perform
three independent runs using the same evaluation protocol and report per-run accuracy (Correct/Total),
along with the joint-correct statistic—i.e., the size of the intersection of items answered correctly by
all three runs of the same model. Small variations across runs are expected due to non-determinism
in decoding. Where the third-run line is not available in the input data, we report the provided runs
and the reported joint-correct number as-is.

Table 7: Llama-3.3-70B-Instruct: per-run and joint-correct results on the 2,159-item raw test set.

Run Total Correct Accuracy
Run 1 2,159 1,199 0.555 (55.53%)
Run 2 2,159 1,207 0.559 (55.91%)
Run 3 2,159 1,197 0.554 (55.44%)
Joint-correct 2,159 1,172 0.543 (54.28%)

Mean across 3 runs: 55.63% ± 0.25 (std. dev., in percentage points).

Table 8: medgemma-27b-text-it: per-run and joint-correct results on the 2,159-item raw test set.

Run Total Correct Accuracy
Run 1 2,159 1,236 0.572 (57.25%)
Run 2 2,159 1,212 0.561 (56.14%)
Run 3 2,159 1,213 0.562 (56.18%)
Joint-correct 2,159 975 0.452 (45.16%)

Mean across 3 runs: 56.52% ± 0.63 (std. dev., in percentage points).

Table 9: Qwen3-32B: per-run and joint-correct results on the 2,159-item raw test set.

Run Total Correct Accuracy
Run 1 2,159 1,193 0.553 (55.26%)
Run 2 2,159 1,184 0.548 (54.84%)
Run 3 2,159 1,183 0.548 (54.79%)
Joint-correct 2,159 1,118 0.518 (51.78%)

Mean across 3 runs: 54.96% ± 0.26 (std. dev., in percentage points).
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J MODALITY STATS IN DATASET

We analyze imaging modality statistics of our dataset using the GPT-5.1-mini model. Each case
consists of one or more images and associated textual metadata. For every image, we infer a fine-
grained imaging_technique from the alt-text and, when necessary, from the imaging findings.
These fine-grained techniques are then mapped into a set of aggregated modality groups stored
in imaging_technique_group. At the case level, we define modalities_count as the
number of distinct aggregated modality groups present among all images belonging to a given case.

J.1 AGGREGATED MODALITY CATEGORIES

Across the training split, we obtain 14 aggregated modality groups: X-ray / plain radiograph,
CT, Ultrasound, Other / Unknown, Histology / pathology, MRI, Clinical photo, Mammography,
Fluoroscopy, PET-CT, Nuclear medicine, Angiography, Endoscopy, and PET. The test split covers
the same set of categories except Mammography, i.e., 13 aggregated modalities in total.

J.2 PER-IMAGE MODALITY DISTRIBUTION

Table 10 reports the frequency of each aggregated modality computed over all images in the training
and test splits. The training split contains 49,159 images, while the test split contains 6,090 images.

Table 10: Per-image distribution of aggregated imaging modalities in the training and test splits.
Counts are absolute image counts, and percentages are relative to the total number of images in each
split.

Modality Train images Train (%) Test images Test (%)
X-ray / plain radiograph 3,803 7.74 398 6.54
CT 20,766 42.24 2,510 41.22
Ultrasound 4,092 8.32 505 8.29
Other / Unknown 312 0.63 44 0.72
Histology / pathology 929 1.89 176 2.89
MRI 15,060 30.64 2,156 35.40
Clinical photo 407 0.83 79 1.30
Mammography 393 0.80 0 0.00
Fluoroscopy 1,059 2.15 57 0.94
PET-CT 238 0.48 55 0.90
Nuclear medicine 243 0.49 13 0.21
Angiography 1,623 3.30 56 0.92
Endoscopy 180 0.37 32 0.53
PET 54 0.11 9 0.15
Total 49,159 100.00 6,090 100.00

Overall, CT and MRI dominate both splits, together accounting for approximately 73% of training
images and 76% of test images, followed by Ultrasound and X-ray / plain radiograph. The remaining
modalities (e.g., Angiography, Histology / pathology, Fluoroscopy, PET-CT) appear less frequently
but provide additional multimodal diversity.

J.3 PER-CASE MODALITY DIVERSITY

Beyond per-image counts, we characterize the multimodal diversity of each case using
modalities_count. This quantity measures how many distinct aggregated modality groups are
present in a case’s image set. Table 11 summarizes the distribution of modalities_count for
the training and test splits.

The training split contains 7,729 cases with an average of 1.84 modalities per case, while the test split
contains 751 cases with an average of 2.13 modalities per case. In both splits, most cases involve one
or two modalities, but a non-trivial fraction of cases exhibit higher multimodal diversity.
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Table 11: Distribution of the number of distinct aggregated modalities per case
(modalities_count) in the training and test splits.

# Modalities Train cases Train (%) Test cases Test (%)
1 3,359 43.46 230 30.63
2 2,775 35.90 291 38.75
3 1,178 15.24 152 20.24
4 345 4.46 61 8.12
5 64 0.83 15 2.00
6 5 0.06 2 0.27
7 2 0.03 0 0.00
8 1 0.01 0 0.00

Total 7,729 100.00 751 100.00

In the training split, 79.4% of cases contain at most two modalities. The test split is slightly more
multimodal on average: 69.4% of cases have one or two modalities, and around 30.6% contain three
or more modalities.

J.4 COMMON MODALITY COMBINATIONS AT THE CASE LEVEL

We also examine which combinations of modalities co-occur at the case level. Here, a modality
combination is defined as the set of distinct aggregated modality groups present in a given case. We
report statistics over these sets without regard to the number of images per modality.

For the test split (751 cases), the five most frequent modality combinations are:

• CT alone (128 cases, 17.0%),
• MRI alone (84 cases, 11.2%),
• CT + MRI (84 cases, 11.2%),
• CT + X-ray / plain radiograph (54 cases, 7.2%),
• CT + Ultrasound (41 cases, 5.5%).

For the training split (7,729 cases), the most frequent combinations are:

• CT alone (1,496 cases, 19.4%),
• MRI alone (1,100 cases, 14.2%),
• CT + X-ray / plain radiograph (679 cases, 8.8%),
• CT + MRI (610 cases, 7.9%),
• CT + Ultrasound (372 cases, 4.8%).
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K LONGITUDINAL STUDIES IN MEDTHINKVQA

We additionally track whether each case contains longitudinal follow-up imaging (i.e., multiple time
points for the same patient). In the held-out test set, 212 out of 751 cases are longitudinal (≈ 28.2%).
In the training set, 1,947 out of 7,729 cases are longitudinal (≈ 25.2%). Aggregating across both splits,
MedThinkVQA contains 2,159 longitudinal cases out of 8,480 total cases (≈ 25.5%), indicating that
roughly one quarter of the dataset requires reasoning over temporal disease evolution.

Table 12: Prevalence of longitudinal studies in MedThinkVQA.

Split # Cases # Longitudinal Share (%)

Train 7729 1947 25.2
Test 751 212 28.2

Overall 8480 2159 25.5
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L PROMPTS FOR STEPWISE EXPLANATION EXTRACTION

L.1 SYSTEM PROMPT

You are a meticulous clinical reasoning editor. Convert a given explanation paragraph
into an ordered list of numbered steps that preserves the original meaning and evidence.
Rules:
1) Preserve content: do NOT introduce facts not present in the explanation.
2) Decompose into atomic inferences or observations -- each step one concise sentence

(<= ~30 words).
3) Order steps to reflect the reasoning flow (e.g., findings -> interpretation -> decision).
4) Rewrite references like ’option A/B/C’ into plain statements; avoid option letters.
5) If the explanation contrasts entities (e.g., ’X not Y’), separate them into distinct steps.
6) Use the same language as the explanation text (typically English).
7) If the explanation is very short, return a single clear step.
Return ONLY the JSON that matches the provided schema.

L.2 USER PROMPT (TEMPLATE)

Task: Convert the following explanation into an ordered list of steps.

Context (for referent clarity only - do NOT add facts not present in the explanation):
- Title: {title}
- Clinical history: {clinical_history}
- Imaging findings: {imaging_findings}

Explanation to convert (source of truth):
<<<
{explanation}
>>>

Output strictly as JSON following the schema (no extra text).
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Model Accuracy (%)
InternVL3.5-1B 43.96
InternVL3.5-2B 58.96
InternVL3.5-4B 60.96
MedGemma-4B-it 56.57
Qwen2.5-VL-3B-Instruct 60.03
Qwen2.5-VL-7B-Instruct 61.89

Table 13: Supervised fine-tuning results on the 751-item test set.

Model Background Clinical Imaging Outcome Take-Home Overall
(%) (%) (%) (%) (%) (%)

gpt-5 100.0 100.0 97.81 98.70 100.0 99.08
gpt-5-mini 98.59 98.65 99.10 100.0 100.0 99.22
gpt-5-nano 97.87 98.99 97.39 95.89 98.46 97.76
medgemma-27b-it 89.0 97.89 94.93 85.71 93.65 92.81

Table 14: Sentence-level factual correctness evaluation across discussion subsections

Model Total Disease Clinical Imaging Reasoning Transfer
Overview Pathophys. Different. Learning

gpt-5 9.9 2.0 1.9 2.0 2.0 2.0
gpt-5-mini 9.4 1.95 1.6 2.0 1.85 2.0
gpt-5-nano 8.4 1.7 1.25 2.0 1.45 2.0
medgemma-27b-it 7.05 1.4 1.15 1.85 1.1 1.55

Table 15: Rubric evaluation scores across different models
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Pairwise comparison Cohen’s κ
Expert 1 vs. Expert 2 0.822833
Expert 1 vs. LLM judge 0.838357
Expert 2 vs. LLM judge 0.701566

Table 16: Inter-rater reliability on step factuality (Cohen’s κ). High agreement with Expert 1 and
substantial agreement with Expert 2 support the reliability of the LLM judge.

M LLM JUDGE STATS

GPT-5 was evaluated on the entire test set, whereas the other three models were evaluated on a
random sample of 100 test cases due to cost and time constraints. Error-type coverage is computed
over erroneous steps; since a step may bear multiple error labels, the percentages can exceed 100%.

M.1 GPT-5 (FULL TEST SET WITH 6,425 STEPS )

Correctly answered (is_correct=True).

• Steps (with valid is_factual): 3,903
• Step factual accuracy: 3311/3903 (84.83%)

• Critical steps: 1,264
• Critical-step factual accuracy: 1212/1264 (95.89%)

• Erroneous steps (all): 592
• Error-type coverage (among erroneous steps):

– Reasoning Err: 167/592 (28.21%)
– Image Understanding Err: 374/592 (63.18%)
– Clinical Scenario Err: 53/592 (8.95%)
– Medical Knowledge Err: 91/592 (15.37%)
– Other/Unspecified: 60/592 (10.14%)

• Erroneous critical steps only: 52
• Error-type coverage (among erroneous critical steps):

– Reasoning Err: 14/52 (26.92%)
– Image Understanding Err: 37/52 (71.15%)
– Clinical Scenario Err: 6/52 (11.54%)
– Medical Knowledge Err: 11/52 (21.15%)

Incorrectly answered (is_correct=False).

• Steps (with valid is_factual): 2,522
• Step factual accuracy: 1605/2522 (63.64%)

• Critical steps: 520
• Critical-step factual accuracy: 390/520 (75.00%)

• Erroneous steps (all): 917
• Error-type coverage (among erroneous steps):

– Reasoning Err: 416/917 (45.37%)
– Image Understanding Err: 585/917 (63.79%)
– Clinical Scenario Err: 138/917 (15.05%)
– Medical Knowledge Err: 271/917 (29.55%)
– Other/Unspecified: 9/917 (0.98%)
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• Erroneous critical steps only: 130
• Error-type coverage (among erroneous critical steps):

– Reasoning Err: 57/130 (43.85%)
– Image Understanding Err: 89/130 (68.46%)
– Clinical Scenario Err: 16/130 (12.31%)
– Medical Knowledge Err: 49/130 (37.69%)
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M.2 INTERNVL3_5-14B_100_SAMPLE (100-SAMPLE SUBSET)

Overall. Total number of steps (all samples): 607.

Correctly answered (is_correct=True).

• Steps (with valid is_factual): 247
• Step factual accuracy: 189/247 (76.52%)
• Critical steps: 91
• Critical-step factual accuracy: 88/91 (96.70%)
• Erroneous steps (all): 58
• Error-type coverage (among erroneous steps):

– Reasoning Err: 23/58 (39.66%)
– Image Understanding Err: 29/58 (50.00%)
– Clinical Scenario Err: 9/58 (15.52%)
– Medical Knowledge Err: 24/58 (41.38%)

• Erroneous critical steps only: 3
• Error-type coverage (among erroneous critical steps):

– Reasoning Err: 0/3 (0.00%)
– Image Understanding Err: 3/3 (100.00%)
– Clinical Scenario Err: 0/3 (0.00%)
– Medical Knowledge Err: 0/3 (0.00%)

Incorrectly answered (is_correct=False).

• Steps (with valid is_factual): 360
• Step factual accuracy: 195/360 (54.17%)
• Critical steps: 61
• Critical-step factual accuracy: 52/61 (85.25%)
• Erroneous steps (all): 165
• Error-type coverage (among erroneous steps):

– Reasoning Err: 104/165 (63.03%)
– Image Understanding Err: 84/165 (50.91%)
– Clinical Scenario Err: 33/165 (20.00%)
– Medical Knowledge Err: 81/165 (49.09%)

• Erroneous critical steps only: 9
• Error-type coverage (among erroneous critical steps):

– Reasoning Err: 4/9 (44.44%)
– Image Understanding Err: 6/9 (66.67%)
– Clinical Scenario Err: 2/9 (22.22%)
– Medical Knowledge Err: 2/9 (22.22%)
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M.3 MEDGEMMA27B_100_SAMPLE (100-SAMPLE SUBSET)

Overall. Total number of steps (all samples): 1,074.

Correctly answered (is_correct=True).

• Steps (with valid is_factual): 376
• Step factual accuracy: 285/376 (75.80%)
• Critical steps: 102
• Critical-step factual accuracy: 97/102 (95.10%)
• Erroneous steps (all): 91
• Error-type coverage (among erroneous steps):

– Reasoning Err: 22/91 (24.18%)
– Image Understanding Err: 50/91 (54.95%)
– Clinical Scenario Err: 15/91 (16.48%)
– Medical Knowledge Err: 36/91 (39.56%)

• Erroneous critical steps only: 5
• Error-type coverage (among erroneous critical steps):

– Reasoning Err: 3/5 (60.00%)
– Image Understanding Err: 4/5 (80.00%)
– Clinical Scenario Err: 0/5 (0.00%)
– Medical Knowledge Err: 1/5 (20.00%)

Incorrectly answered (is_correct=False).

• Steps (with valid is_factual): 698
• Step factual accuracy: 383/698 (54.87%)
• Critical steps: 114
• Critical-step factual accuracy: 78/114 (68.42%)
• Erroneous steps (all): 315
• Error-type coverage (among erroneous steps):

– Reasoning Err: 156/315 (49.52%)
– Image Understanding Err: 221/315 (70.16%)
– Clinical Scenario Err: 72/315 (22.86%)
– Medical Knowledge Err: 119/315 (37.78%)

• Erroneous critical steps only: 36
• Error-type coverage (among erroneous critical steps):

– Reasoning Err: 16/36 (44.44%)
– Image Understanding Err: 22/36 (61.11%)
– Clinical Scenario Err: 9/36 (25.00%)
– Medical Knowledge Err: 14/36 (38.89%)
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M.4 QWEN2.5VL-32B_100 (100-SAMPLE SUBSET)

Overall. Total number of steps (all samples): 781.

Correctly answered (is_correct=True).

• Steps (with valid is_factual): 337
• Step factual accuracy: 274/337 (81.31%)
• Critical steps: 103
• Critical-step factual accuracy: 100/103 (97.09%)
• Erroneous steps (all): 63
• Error-type coverage (among erroneous steps):

– Reasoning Err: 22/63 (34.92%)
– Image Understanding Err: 36/63 (57.14%)
– Clinical Scenario Err: 6/63 (9.52%)
– Medical Knowledge Err: 31/63 (49.21%)

• Erroneous critical steps only: 3
• Error-type coverage (among erroneous critical steps):

– Reasoning Err: 0/3 (0.00%)
– Image Understanding Err: 3/3 (100.00%)
– Clinical Scenario Err: 0/3 (0.00%)
– Medical Knowledge Err: 0/3 (0.00%)

Incorrectly answered (is_correct=False).

• Steps (with valid is_factual): 444
• Step factual accuracy: 236/444 (53.15%)
• Critical steps: 67
• Critical-step factual accuracy: 35/67 (52.24%)
• Erroneous steps (all): 208
• Error-type coverage (among erroneous steps):

– Reasoning Err: 130/208 (62.50%)
– Image Understanding Err: 113/208 (54.33%)
– Clinical Scenario Err: 52/208 (25.00%)
– Medical Knowledge Err: 109/208 (52.40%)

• Erroneous critical steps only: 32
• Error-type coverage (among erroneous critical steps):

– Reasoning Err: 21/32 (65.62%)
– Image Understanding Err: 26/32 (81.25%)
– Clinical Scenario Err: 4/32 (12.50%)
– Medical Knowledge Err: 11/32 (34.38%)
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N MELD-BASED DATA CONTAMINATION ANALYSIS (FULL DETAILS)

Detector. We use MELD (Memorization Effects Levenshtein Detector) in a stricter, sliding-window
form. For a model output y and its corresponding question x, we compute normalized Levenshtein
similarity over fixed-width windows on the longer string and take the maximum across windows.
Scores are reported as percentages; higher values indicate longer, more verbatim copying. Following
prior medical-QA practice Tang et al. (2025), samples with similarity ≥ 50% are flagged as high-risk
for contamination.

Protocol. We run the exact inference setup used in our main experiments on the MEDTHINKVQA
test set and apply MELD between each generated answer and its input question. We evaluate seven
models spanning both LLMs and VLMs: Qwen3-32B, Med-Gemma-27B-it, Med-Gemma-27B-text-it,
GPT-4.1-nano, GPT-4.1-mini, Qwen2.5-VL-72B-Instruct, and Llama-3.3-70B-Instruct.

Results. Appendix Figure 8 plots the full distributions. Across all models, medians lie near
∼20–24% with tight interquartile ranges, and the upper tails are short. Importantly, we do not observe
any case with MELD similarity ≥ 50%; the largest outliers remain below that threshold. Text-only
LLMs and VLMs exhibit highly similar distributions, suggesting that the presence of images does
not drive overlap behavior.

Context vs. prior benchmarks. MedAgentsBench Tang et al. (2025) reports broader spreads
and heavier right tails (with many outliers above 50%) on several widely used QA datasets (e.g.,
MMLU, MedQA, MedMCQA). In contrast, MEDTHINKVQA shows uniformly low overlap and no
high-similarity spikes, indicating a substantially lower contamination risk.

Limitations. MELD is a surface-form detector; heavy paraphrasing or template-level memorization
may evade detection. Our analysis should therefore be viewed as strong negative evidence for
verbatim leakage rather than a proof of absence of all forms of contamination.
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N.1 MELD AND OUR WINDOWED VARIANT

We first restate the original MELD procedure (Algorithm 1), and then present our implementation
(Algorithm 2), which adds (i) a fixed-denominator Levenshtein ratio with respect to |q2|, (ii) a length-
|q2| sliding window over the model’s continuation restricted to its early prefix, and (iii) length-aware
bucketing and generation caps for efficient parallel decoding.

Algorithm 1: MELD (original reproduction)
Data: Generative model g; dataset D of question–answer pairs; tokenizer T ; threshold

Y ∈ [0, 1].
Result: Z: percentage (or average strength) of completions with overlap above Y .

1 Initialize an empty list L
2 foreach (q, a) ∈ D do
3 Split q into two halves: q1 and q2
4 Tokenize: t1 ← T (q1) and t2 ← T (q2)
5 Set sampling temperature to 0 and pass q1 as context to g
6 Let k ← |t2| and generate a continuation x consisting of k tokens from g
7 Compute the (paper-style) Levenshtein-based overlap ratio

ℓ =
int

(
round

(
2.0×M

|q| × 100
))

100
,

where |q| is the total number of characters in both strings and M is the number of matches.
8 if ℓ > Y then
9 append ℓ to L

10 Z ← mean(L)
11 return Z

Algorithm 2: MELD (ours, concise): windowed Levenshtein with length-aware batching
Data: Model g; dataset D; tokenizer T ; threshold Y ; cap multiplier c≥1; min gen tokens m;

batch size B.
Result: Z (near-exact rate), ℓ̄ (mean similarity).

1 Build items. For each r∈D: form text q←build(r); if empty, continue. Tokenize ids←T (q);
split at h=max(1, ⌊|ids|/2⌋); set q1=T−1(ids[: h]), q2=T−1(ids[h :]), k= |ids| − h. Collect
tuples (q1, q2, k, |q2|).

2 Bucket. Group tuples into batches of size ≤ B with similar k (length-aware).
3 foreach batch b do
4 G← max

(
m, c ·maxi∈b ki

)
; set decoding (temp = 0, top-p = 1, max tokens = G)

5 Generate in parallel xi ← g(q1,i) for all i ∈ b
6 foreach item i in b do
7 L← |q2,i|,
8 region← first cL characters of xi

9 ρi ← max
0≤j≤|region|−L

(
1− Lev(region[j:j+L], q2,i)

L

)
;

10 si ← 1[ρi ≥ Y ]

11 Z ← 1
n

∑
i si; ℓ̄← 1

n

∑
i ρi;

12 return Z, ℓ̄
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O DISEASE CATEGORY BREAK DOWN

Test set size: n = 751 (n = 680 common + n = 71 rare).
Rare cases: n = 71 (~9.5% of total). Rare cases are a cross-category tag and are not double-counted
in the chapter breakdown below.

SUBCATEGORY DETAIL (WITHIN EACH ICD-10 CHAPTER)

1. Certain infectious and parasitic diseases (n = 35; 4.7% of total)

• 1.1 A00–A09 Intestinal infectious diseases — 4

• 1.2 A15–A19 Tuberculosis — 13

• 1.3 A20–A28 Certain zoonotic bacterial diseases — 2

• 1.4 A50–A64 Infections with a predominantly sexual mode of transmission — 2

• 1.5 B15–B19 Viral hepatitis — 1

• 1.6 B20 Human immunodeficiency virus [HIV] disease — 2

• 1.7 B65–B83 Helminthiases — 11

2. Neoplasms (n = 241; 32.1% of total)

• 2.1 C00–C14 Malignant neoplasms of lip, oral cavity and pharynx — 2

• 2.2 C15–C26 Malignant neoplasms of digestive organs — 11

• 2.3 C30–C39 Malignant neoplasms of respiratory and intrathoracic organs — 10

• 2.4 C40–C41 Malignant neoplasms of bone and articular cartilage — 6

• 2.5 C45–C49 Malignant neoplasms of mesothelial and soft tissue — 13

• 2.6 C50 Malignant neoplasms of breast — 1

• 2.7 C51–C58 Malignant neoplasms of female genital organs — 9

• 2.8 C60–C63 Malignant neoplasms of male genital organs — 3

• 2.9 C64–C68 Malignant neoplasms of urinary tract — 4

• 2.10 C69–C72 Malignant neoplasms of eye, brain and other parts of CNS — 10

• 2.11 C73–C75 Malignant neoplasms of thyroid and other endocrine glands — 3

• 2.12 C76–C80 Malignant neoplasms of ill-defined, other secondary and unspecified sites —
17

• 2.13 C7A Malignant neuroendocrine tumors — 5

• 2.14 C81–C96 Malignant neoplasms of lymphoid, hematopoietic and related tissue — 20

• 2.15 D00–D09 In situ neoplasms — 1

• 2.16 D10–D36 Benign neoplasms (except benign neuroendocrine tumors) — 98

• 2.17 D37–D48 Neoplasms of uncertain behavior, polycythemia vera and MDS — 22

• 2.18 D49 Neoplasms of unspecified behavior — 6

3. Diseases of the blood and blood-forming organs and certain disorders involving the immune
mechanism (n = 14; 1.9% of total)

• 3.1 D55–D59 Hemolytic anemias — 1

• 3.2 D70–D77 Other disorders of blood and blood-forming organs — 6

• 3.3 D80–D89 Certain disorders involving the immune mechanism — 7
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4. Endocrine, nutritional and metabolic diseases (n = 12; 1.6% of total)

• 4.1 E00–E07 Disorders of thyroid gland — 1
• 4.2 E20–E35 Disorders of other endocrine glands — 4
• 4.3 E70–E88 Metabolic disorders — 7

5. Diseases of the nervous system (n = 16; 2.1% of total)

• 5.1 G00–G09 Inflammatory diseases of the central nervous system — 3
• 5.2 G20–G26 Extrapyramidal and movement disorders — 1
• 5.3 G30–G32 Other degenerative diseases of the nervous system — 2
• 5.4 G35–G37 Demyelinating diseases of the CNS — 2
• 5.5 G50–G59 Nerve, nerve root and plexus disorders — 3
• 5.6 G70–G73 Diseases of myoneural junction and muscle — 2
• 5.7 G89–G99 Other disorders of the nervous system — 3

6. Diseases of the eye and adnexa (n = 2; 0.3% of total)

• 6.1 H00–H05 Disorders of eyelid, lacrimal system and orbit — 1
• 6.2 H25–H28 Disorders of lens — 1

7. Diseases of the circulatory system (n = 32; 4.3% of total)

• 7.1 I20–I25 Ischemic heart diseases — 2
• 7.2 I26–I28 Pulmonary heart disease and diseases of pulmonary circulation — 1
• 7.3 I30–I5A Other forms of heart disease — 3
• 7.4 I60–I69 Cerebrovascular diseases — 5
• 7.5 I70–I79 Diseases of arteries, arterioles and capillaries — 12
• 7.6 I80–I89 Diseases of veins, lymphatic vessels and lymph nodes, NEC — 9

8. Diseases of the respiratory system (n = 27; 3.6% of total)

• 8.1 J00–J06 Acute upper respiratory infections — 1
• 8.2 J09–J18 Influenza and pneumonia — 5
• 8.3 J30–J39 Other diseases of upper respiratory tract — 4
• 8.4 J40–J47 Chronic lower respiratory diseases — 3
• 8.5 J60–J70 Lung diseases due to external agents — 1
• 8.6 J80–J84 Other respiratory diseases principally affecting the interstitium — 6
• 8.7 J90–J94 Other diseases of the pleura — 3
• 8.8 J96–J99 Other diseases of the respiratory system — 4

9. Diseases of the digestive system (n = 81; 10.8% of total)

• 9.1 K00–K14 Diseases of oral cavity and salivary glands — 4
• 9.2 K20–K31 Diseases of esophagus, stomach and duodenum — 10
• 9.3 K35–K38 Diseases of appendix — 4
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• 9.4 K40–K46 Hernia — 5

• 9.5 K50–K52 Noninfective enteritis and colitis — 2

• 9.6 K55–K64 Other diseases of intestines — 20

• 9.7 K65–K68 Diseases of peritoneum and retroperitoneum — 8

• 9.8 K70–K77 Diseases of liver (note: viral hepatitis→ Chapter 1, B15–B19) — 8

• 9.9 K80–K87 Disorders of gallbladder, biliary tract and pancreas — 20

10. Diseases of the skin and subcutaneous tissue (n = 2; 0.3% of total)

• 10.1 L60–L75 Disorders of skin appendages — 2

11. Diseases of the musculoskeletal system and connective tissue (n = 43; 5.7% of total)

• 11.1 M05–M14 Inflammatory polyarthropathies — 7

• 11.2 M20–M25 Other joint disorders — 6

• 11.3 M30–M36 Systemic connective tissue disorders — 3

• 11.4 M45–M49 Spondylopathies — 1

• 11.5 M50–M54 Other dorsopathies — 2

• 11.6 M60–M63 Disorders of muscles — 1

• 11.7 M65–M67 Disorders of synovium and tendon — 5

• 11.8 M70–M79 Other soft tissue disorders — 5

• 11.9 M80–M85 Disorders of bone density and structure — 3

• 11.10 M86–M90 Other osteopathies — 9

• 11.11 M91–M94 Chondropathies — 1

12. Diseases of the genitourinary system (n = 40; 5.3% of total)

• 12.1 N10–N16 Renal tubulo-interstitial diseases — 6

• 12.2 N25–N29 Other disorders of kidney and ureter — 6

• 12.3 N30–N39 Other diseases of the urinary system — 4

• 12.4 N40–N53 Diseases of male genital organs — 6

• 12.5 N60–N65 Disorders of breast — 2

• 12.6 N70–N77 Inflammatory diseases of female pelvic organs — 4

• 12.7 N80–N98 Noninflammatory disorders of female genital tract — 11

• 12.8 N99 Intraoperative and postprocedural complications and disorders of genitourinary
system, NEC — 1

13. Pregnancy, childbirth and the puerperium (n = 5; 0.7% of total)

• 13.1 O00–O08 Pregnancy with abortive outcome — 3

• 13.2 O30–O48 Maternal care related to the fetus and amniotic cavity and possible delivery
problems — 1

• 13.3 O94–O9A Other obstetric conditions, NEC — 1

14. Congenital malformations, deformations and chromosomal abnormalities (n = 82; 10.9% of
total)
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• 14.1 Q00–Q07 Congenital malformations of the nervous system — 7

• 14.2 Q10–Q18 Congenital malformations of eye, ear, face and neck — 1

• 14.3 Q20–Q28 Congenital malformations of the circulatory system — 20

• 14.4 Q30–Q34 Congenital malformations of the respiratory system — 10

• 14.5 Q38–Q45 Other congenital malformations of the digestive system — 13

• 14.6 Q50–Q56 Congenital malformations of genital organs — 4

• 14.7 Q60–Q64 Congenital malformations of the urinary system — 10

• 14.8 Q65–Q79 Congenital malformations and deformations of the musculoskeletal system —
11

• 14.9 Q80–Q89 Other congenital malformations — 6

15. Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified
(n = 5; 0.7% of total)

• 15.1 R40–R46 Symptoms and signs involving cognition, perception, emotional state and
behavior — 1

• 15.2 R50–R69 General symptoms and signs — 1

• 15.3 R90–R94 Abnormal findings on diagnostic imaging and in function studies, without
diagnosis — 3

16. Injury, poisoning and certain other consequences of external causes (n = 37; 4.9% of total)

• 16.1 S00–S09 Injuries to the head — 2

• 16.2 S20–S29 Injuries to the thorax — 3

• 16.3 S30–S39 Injuries to the abdomen, lower back, lumbar spine, pelvis and external genitals
— 7

• 16.4 S40–S49 Injuries to the shoulder and upper arm — 2

• 16.5 S80–S89 Injuries to the knee and lower leg — 1

• 16.6 T15–T19 Effects of foreign body entering through natural orifice — 3

• 16.7 T51–T65 Toxic effects of substances chiefly nonmedicinal as to source — 1

• 16.8 T80–T88 Complications of surgical and medical care, NEC — 18

17. Factors influencing health status and contact with health services (n = 4; 0.5% of total)

• 17.1 Z00–Z13 Persons encountering health services for examinations — 2

• 17.2 Z77–Z99 Family/personal history and certain other factors influencing health status —
2

18. Codes for special purposes (n = 2; 0.3% of total)

• 18.1 U00–U49 Provisional assignment of new diseases of uncertain etiology or emergency
use (incl. U07.x) — 2

Note: Subcategory counts within each chapter sum to the chapter total for the common set (n = 680).
Rare-tagged cases (n = 71) are reported separately and are not included in the subcategory lines.
Abbreviations: NEC = not elsewhere classified.
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P RUBRIC FOR DISCUSSION EVALUATION

P.1 RUBRIC 1: DISEASE OVERVIEW & CORE DEFINITION (0–2 POINTS)

Focus: Understanding of the disease’s fundamental attributes, including: nomenclature, classification, and
etiology.

• 0 points: Unable to identify or define the disease.

• 1 point: States the disease name, but classification or core etiology is vague or inaccurate.

• 2 points: Accurately states the standard medical name, clearly defines its essential nature, and
identifies principal etiologies or key risk factors.

P.2 RUBRIC 2: CLINICAL PRESENTATION & PATHOPHYSIOLOGY (0–2 POINTS)

Focus: How the disease manifests and its underlying mechanisms.

• 0 points: Unable to describe any clinical features.

• 1 point: Describes some common symptoms/signs but cannot explain the underlying pathophysiology,
or omits critical features.

• 2 points: Systematically outlines the typical clinical presentation and clearly explains the core
pathophysiologic mechanisms.

P.3 RUBRIC 3: KEY IMAGING FINDINGS & INTERPRETATION (0–2 POINTS)

Focus: Recognition, description, and interpretation of disease-specific imaging features across modalities.

• 0 points: Unable to describe any imaging characteristics.

• 1 point: Provides only generic descriptors (e.g., “mass,” “opacity”) without modality-specific features
(CT, MRI, radiography, ultrasound), or fails to distinguish key benign versus malignant signs.

• 2 points: Clearly and accurately describes characteristic findings on one or more relevant modal-
ities (e.g., morphology, attenuation/signal characteristics, margins, enhancement pattern, diffusion
restriction), and interprets their clinical significance (e.g., stage, aggressiveness, complication risk).

P.4 RUBRIC 4: DIAGNOSTIC REASONING & DIFFERENTIAL DIAGNOSIS (0–2 POINTS)

Focus: Integrating clinical and imaging data to reach a diagnosis and distinguish differential considerations.

• 0 points: Unable to articulate a diagnostic approach.

• 1 point: Arrives at the correct diagnosis but does not present a coherent, integrated reasoning process,
or does not propose appropriate differential considerations.

• 2 points: Clearly demonstrates how clinical information and imaging findings are synthesized to close
the diagnostic loop, and lists at least two high-priority differential considerations with brief imaging
discriminators (key features that separate each mimic from the index diagnosis).

P.5 RUBRIC 5: TRANSFERABLE LEARNING & GENERALIZATION (0–2 POINTS)

Focus: Lessons that extend beyond a single case.

• 0 points: Teaching points are confined to this case.

• 1 point: Some generalizability is suggested but remains vague and lacks actionable takeaways.

• 2 points: Clearly summarizes transferable learning points and explains how to avoid misinterpretation
or improve diagnostic accuracy in similar future scenarios.
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