Under review as a conference paper at ICLR 2026

UNDERSTANDING AND STEERING THE COGNITIVE BE-
HAVIORS OF REASONING MODELS AT TEST-TIME

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) often rely on long chain-of-thought (CoT) rea-
soning to solve complex tasks. While effective, these trajectories are frequently
inefficient—leading to high latency from excessive token generation, or unstable
reasoning that alternates between underthinking (shallow, inconsistent steps) and
overthinking (repetitive, verbose reasoning). In this work, we study the structure
of reasoning trajectories and uncover specialized attention heads that correlate
with distinct cognitive behaviors such as verification and backtracking. By lightly
intervening on these heads at inference time, we can steer the model away from
inefficient modes. Building on this insight, we propose CREST—a training-free
method for Cognitive REasoning Steering at Test-time. CREST has two compo-
nents: (1) an offline calibration step that identifies cognitive heads and derives
head-specific steering vectors, and (2) an inference-time procedure that rotates
hidden representations to suppress components along those vectors. CREST adap-
tively suppresses unproductive reasoning behaviors, yielding both higher accuracy
and lower computational cost. Across diverse reasoning benchmarks and models,
CREST improves accuracy by up to 17.5% while reducing token usage by 37.6%,
offering a simple and effective pathway to faster, more reliable LLM reasoning.
Code will be made public upon acceptance.

1 INTRODUCTION

Recent advances in Reinforcement Learning (RL)-based training (Shao et al.|[2024)) have substantially
improved the reasoning capabilities of large language models (LLMs), enabling the emergence of
“aha” moments and allowing them to excel in complex tasks such as coding (Jiang et al., [2024)),
mathematical theorem proving (Shao et al., |2024; |Xin et al., [2024), and planning (Huang et al.,
2024} |[Valmeekam et al.| 2023). This capability is largely enabled by extended Chain-of-Thought
(CoT) reasoning processes. While effective, the reasoning trajectories generated by LLMs are
often suboptimal. From an efficiency perspective, long CoT processes consume significantly more
tokens than standard responses, leading to increased latency, especially problematic for on-device
applications. In terms of performance, recent studies have shown that LLMs often struggle with
overthinking (Chen et al.,|2024)), generating unnecessarily verbose explanations for simple problems,
and underthinking (Wang et al., [2025)), where they halt reasoning prematurely before fully exploring
complex solutions. Surprisingly, some work even suggests that effective reasoning can emerge
without any explicit thinking process (Ma et al., [2025a)).

To guide and enhance the reasoning process, prior work has primarily focused on directly controlling
response length (Muennighoff et al., 2025} [Luo et al., [2025a; Ma et al., 2025b; |Sun et al., 2025} Yang
et al.} |2025c). However, there has been limited exploration of the internal cognitive mechanisms
that underlie and drive these reasoning behaviors. Drawing inspiration from cognitive psychology,
where deliberate processes such as planning, verification, and backtracking, often associated with
System 2 thinking, are known to enhance human problem-solving, we posit that analogous cognitive
behaviors can be identified and, importantly, steered within LLMs. In particular, we hypothesize that
certain components of the model, such as attention heads, specialize in tracking and modulating these
distinct reasoning patterns.

In this work, we categorize reasoning processes into two types: linear reasoning (i.e., step-by-step
problem solving) and non-linear reasoning (e.g., backtracking, verification, and other divergent

Under review as a conference paper at ICLR 2026

behaviors (Gandhi et al.,|2025))). To understand how these behaviors are represented in the activation
space, we label individual reasoning steps accordingly and train a simple linear classifier to distinguish
between them based on hidden activations. Using linear probes, we identify a small subset of attention
heads, referred to as cognitive heads, whose activations are highly predictive of reasoning type. By
intervening on these heads during inference, we can steer the model’s cognitive trajectory without
additional training, reducing redundant steps or encouraging deeper reasoning as needed.

Based on these findings, we introduce CREST (Cognitive REasoning Steering at Test-time), a
training-free framework for dynamically adjusting reasoning behaviors during inference. CREST
operates by first performing a simple offline calibration to identify cognitive heads and compute
steering vectors from representative reasoning examples. Then, during test-time, it uses activation
interventions based on these vectors to adaptively guide the model’s reasoning trajectory, suppressing
inefficient cognitive modes and encouraging effective reasoning behavior. Importantly, CREST is
compatible with a wide range of pre-trained LLMs and does not require any task-specific retraining
or gradient updates, making it highly scalable and practical for real-world applications. And the
test-time steering incurs negligible overhead, achieving matching throughput while reducing token
consumption, thereby leading to an overall end-to-end efficiency gain.

In summary, our key contributions are as follows: (i) Cognitive Head Discovery: We provide
empirical evidence for the existence of cognitive attention heads that correlate with specific reasoning
behaviors, offering new interpretability into how cognitive patterns are represented within a model’s
hidden states. (ii) Test-Time Behavioral Steering: We propose a plug-and-play activation interven-
tion technique that enables test-time steering of reasoning behaviors without additional training. (iii)
Comprehensive Evaluation: We validate our method across a diverse reasoning benchmarks, includ-
ing MATHS500, AMC23, AIME, LiveCodeBench, GPQA-D and Calender Planning, demonstrating
that CREST not only enhances reasoning accuracy (up to 17.50%, R1-1.5B on AMC23) but also
substantially reduces token usage (up to 37.60%, R1-1.5B on AMC23).

2 RELATED WORKS

We organized prior research into three categories and move more related works in Appendix

Reasoning Models. Early chain-of-thought (CoT) prompting (Wei et al.,[2022) and self-consistency
decoding (Wang et al.| 2022) demonstrated that sampling diverse reasoning paths and selecting
the majority answer improves accuracy. Structured search frameworks extend this idea: Tree-of-
Thought (Yaol 2023)), Graph-of-Thought (Besta et al.,2024)), and Forest-of-Thought (Bi et al., [2024).
Recent “thinking” model releases include OpenAl’s o-series (Jaech et al.,[2024), Anthropic’s Claude-
3.7-Sonnet-Thinking (Anthropicl 2025), and Google’s Gemini-2.5-Flash (Google, [2025), alongside
competitive open-source models such as DeepSeek-R1 (Guo et al.||2025)), Phi-4-Reasoning (Abdin
et al.;|2025), and Qwen3 (Team), 2025b). These advances enhance models’ reasoning abilities and
create new possibilities for in-depth analysis of their internal mechanisms.

Cognitive Behaviors in LLMs. Recent work defines cognitive behaviors as recurring patterns
in reasoning traces—such as verification, backtracking, or sub-goal planning—that correlate with
accuracy (Gandhi et al., [2025). These mirror human problem-solving heuristics (Newell & Simon),
1972; |Gick & Holyoakl [1980; [Koriat, 2012; Toth & Campbelll [2022)) and motivate methods that
explicitly instill similar behaviors in LLMs (Wei, 2022} |Wang et al., [2022; |Yao, [2023). Our work
extends this line by identifying internal attention heads linked to such behaviors.

Improving Test-Time Reasoning. Inference-time methods enhance reasoning without retraining.
Notable approaches include: (i) adaptive compute control, which dynamically allocates tokens (Han
et al., [2025} |Xiao et al., 2025), and (ii) direct trace manipulation, which edits or compresses chains-
of-thought (Xu et al.} 2025b; |Cui et al., 2025). More recently, activation editing methods steer hidden
representations directly (Turner et al., 2024} Zou et al.| |2025; |Huang et al., [2025). Our approach,
CREST, advances this strand by identifying cognitive attention heads and demonstrating targeted
head-level interventions that improve efficiency while providing new interpretability insights.

3 DISSECTING AND MODULATING COGNITIVE PATTERNS IN REASONING

In this section, we examine how reasoning models exhibit and internalize cognitive behaviors,
with a particular focus on non-linear thinking patterns such as verification, subgoal formation, and

Under review as a conference paper at ICLR 2026

backtracking. We begin in Section [3.1] by identifying and categorizing these behaviors at the level
of individual reasoning steps. Section [3.2] then investigates how such behaviors are reflected in
the internal activations of attention heads, revealing a subset, namely, cognitive heads that reliably
encode non-linear reasoning. Finally, in Section [3.3] we demonstrate that these heads can be directly
manipulated at test time to steer the model’s reasoning trajectory, offering a mechanism for fine-
grained control over complex reasoning without retraining.

3.1 COGNITIVE BEHAVIORS IN REASONING MODELS

Ol-like LLMs solve problems through extended chain-of-thought reasoning, often exhibiting non-
linear patterns that diverge from traditional step-by-step reasoning. These non-linear trajectories (e.g.,
backtracking, verification, subgoal setting and backward chaining) closely mirror human cognitive
behaviors and enhance the model’s ability to tackle complex problem-solving tasks (Gandhi et al.,
[2025)). To analyze cognitive behaviors, we segment the reasoning process, which is typically bounded
by the <think> and </think> markers tokens into discrete reasoning steps, each delimited by the
token sequence “\n\n”. We then categorize each reasoning step into one of two types using keyword
matching: Non-linear Reasoning, if the reasoning step contains any keyword from a predefined set
(e.g., {Wait, Alternatively }; full list in Appendix , it is labeled as non-linear; otherwise, it is
classified as a Linear Reasoning step. We denote a single reasoning step, composed of multiple
tokens, as S, and use S' and S™ to represent linear and non-linear reasoning steps, respectively.

3.2 IDENTIFYING ATTENTION HEADS OF COGNITIVE BEHAVIORS

Analyzing cognitive behaviors during reasoning is inherently challenging, as for the same behavior,
such as verification, can manifest differently across the token space, depending on the sample’s
context and the underlying reasoning pattern. Intuitively, these behaviors often involve long-range
token interactions, where the model retrieves and re-evaluates previous reasoning steps. Meanwhile,
recent studies (Olsson et al., 2022} [EThage et al.,[2021}; [Wu et al.} [2024)) have shown that attention
heads frequently perform distinct and interpretable functions, such as tracking, factual retrieval, and
position alignment. This points toward a modular architecture in which specific heads may specialize
in different cognitive sub-tasks. Motivated by this insight, we conduct a preliminary study and
identify attention heads that are strongly correlated with cognitive behaviors during reasoning.

Linear v.s. Non-Linear Random

Layer Index
Layer Index

50 50
20 25 0 N 10 5

0 H 10

Head Ind:x Head Ind:x
Figure 1: Visualization of probing accuracy for DeepSeek-R1-Distill-Qwen-1.5B. (Left) Accuracy on linear
and non-linear reasoning steps, with high-accuracy regions (i.e., larger than 85%) highlighted in gold boxes.
(Right) Accuracy measured across randomly sampled tokens. See Setup in Section[3.2]

Setup. We begin by randomly sampling 500 training examples from the MATH-500
benchmark (Lightman et all [2023) and running end-to-end inference with the
DeepSeek-R1-Distill-Qwen-1.5B model. Crucially, we define a ‘“step” as the contiguous
chunk of reasoning text between two occurrences of the special delimiter token \n\n.

1. Segment. For every prompt, split the chain-of-thought at the delimiter \n\n, producing k
segments {s1, S2, . .., Sk }. Because the delimiter is kept, \n\n is the final token of each segment,
so every sp (with £ = 1,. .. k) represents one discrete thinking step.

2. Embed each step. Re-run inference on the chain-of-thought {s1, sa, ..., s; } as one single prefill
and capture the hidden state at the segment-terminating \n\n token. Treat this vector as a compact
summary of the preceding tokens, and extract the post-attention activations

af €eRY, i=1...H, j=1...L, M

Under review as a conference paper at ICLR 2026

where 7 indexes heads and j layers. Thus, agg represents the contextual embedding of the delimiter
token (\n\n) at the end of segment sy,.
3. Label & probe. Mark each step as linear (y;, = 0) or non-linear (ys,, = 1). For every head

(i,7) fit a linear probe #*7 = argming E {f (Ysw U(GTa?g))} , where ¢ is the sigmoid and f is
mean-squared error loss function. See the training details in Appendix.

The resulting probes pinpoint heads whose activations best distinguish linear from non-linear reason-
ing and supply the foundation for the calibration and steering stages that follow.

Across multiple prompts. For each prompt ¢, segmentation yields &, steps S(©) = {sgé), , S kz)}

Collectively these form the global set S = |J;_, S¥), whose size is [S| = 3,_, k. Every S (4) €S
is embedded, labeled, and probed exactly as described above, so all downstream analyses operate on
the full collection of), k; reasoning segments.We define a ’('y, for prompt £.

Results. The classification accuracy is shown in Figure[I} with additional results across different
models and datasets provided in Appendix[C.I] As a sanity check, we repeat the probing procedure
on randomly sampled tokens, shown in the right part of FigurdI] where the classification accuracy
remains near chance level—indicating no distinguishable signal. In contrast, the left subfigure
reveals that certain attention heads achieve significantly higher accuracy. We refer to these as
Cognitive Heads, while the remaining are treated as standard heads. Notably, cognitive heads are
more prevalent in deeper layers, which is aligned with the expectation that deeper layers capture
higher-level semantic features and shallow layers encode token-level features (Ethayarajhl 2019; [Liu
et al.,[2019). Some cognitive heads also emerge in middle layers, suggesting a distributed emergence
of cognitive functionality across the model.

3.3 MANIPULATING COGNITIVE BEHAVIORS VIA ACTIVATION INTERVENTION

We then investigate whether nonlinear chains of thought can be modu-
lated at test time by directly editing the activations of the most “cognitive”
attention heads, following the methodology of (Sun et al.| [2025).

MLP
Prototype construction. With the definition in Setup. For a prompt,
0])) »
we have Ny = |S I]I[y o = 1] non-linear thoughts. With v;” =
‘S()l _ defined li . : l s J
N Dot a” (,{) [ysﬁf) = 1] defined as non-linear average activation
for ¢-th prompt we form a head-specific vector capturing the average H || H H:
pattern of nonlinear reasoning:
1 n o n
=—> Nyvy/ with N=> N,)
N Figure 2: Tlustration of cog-
=1 =1 gure 2: Illustration of cog
. nitive reasoning steering at
Thus, v*7 represents the mean activation across all non-linear steps. test-time.

Online intervention. As shown in Figure [2| we pause after each reasoning step (i.e., after gen-
erating \n\n), select the top 7% of attention heads (ranked by the classification-accuracy metric
in equation [3), and modify their activations via

iﬂ?,j — xi,j _ avi’j 3)
Here, « is a tunable scalar controlling intervention strength: o > 0 attenuates nonlinear behavior,

while o < 0 amplifies it. Notably, x%J corresponds to the post-attention state at inference, whereas
v"J summarizes activation at \n\n positions.

As shown in Figure [3] we pause the reasoning process at Step 9, during which all previous steps
followed a linear reasoning trajectory. In the original process, the subsequent step initiates a non-
linear reasoning pattern—specifically, a backward chaining behavior (Gandhi et al.| [2025)—starting
with the word “alternatively.” However, after applying activation intervention to suppress non-linear
reasoning, the model continues along a linear trajectory and still arrives at the correct final answer.
Conversely, we pause the model at Step 10—after it completes a non-linear segment and resumes
linear reasoning. In this case, we enhance the non-linear component via activation intervention,
causing the model to continue along a non-linear path instead.

Under review as a conference paper at ICLR 2026

Quesﬁon: Convert the point (0, 3) in rectangular coordinates to polar coordinates. Enter your answer in the form (7, 6), where 7 > 0and 0 < 6 <2

Okay, so I have this problem where I need to convert the rectangular
coordinates (0, 3) to polar coordinates.
I remember that when x is zero, and y is positive, 0 is 7/2. Similarly,
when x is zero and y is negative, 0 is 37/2. So, in this case, since y is
positive, 0 is /2.

Alternatively, sometimes when dealing with arctangent, if x is]
zero, we have to consider the angle. So, arctan(y/x) where x is
zero would be undefined, but in this case, since x is zero and y is
positive, the angle is m/2.

Final Answer The polar coordinates are | (3 . </think>

Reduce Non-Linear Reasoning

So, putting it all together, the polar coordinates for the point (0, 3) are
(3,m/2). 1. Calculated r: V(0% + 3%) = 3. That seems correct.

But hold on, let me double-check. Sometimes, depending on the
quadrant, but in this case, since X is 0 and y is positive, it's on the
positive y-axis, which is the boundary between the first and
second quadrants. But in this case, it's just the positive y-axis. So,

2. Determined 0: Since x is 0 and y is positive, 0 is 7/2. Correct.
1 think that's right. So, I'm confident that (0, 3) in rectangular
coordinates is (3, n/2) in polar coordinates.

Final Answer The polar coordinates are | (3, %) . </think>

the angle is definitely n/2.

Wait, another thought: when I use arctan(y/x), ...

Final Answer The polar coordinates are | (3, g) . </think>

Figure 3: A detailed example illustrating how intervening in the original reasoning by enhancing or suppressing
non-linear reasoning, alters the reasoning trajectory. Results are obtained using DeepSeek-R1-Distill-Qwen-1.5B.

Please zoom in for clearer visualization.

While all versions of the reasoning process ultimately
produce the correct final answer, they differ significantly
in trajectory length: the original process takes 17 steps,
the reduced non-linear path takes only 12 steps, and the
enhanced non-linear path extends to 45 steps, implying
potential redundancy in current reasoning processes. To
further quantify the effects of the intervention, we collect
statistical results from the intervention process. Using
100 samples from the MATHS500 test set, we observe that
the DeepSeek-R1-Distill-Qwen-1.5B model takes an av-
erage of 22.83 steps to complete the reasoning process.
When varying the intervention strength, the number of

DeepSeek-R1-Distill-Qwen-1.5B

w
by

3 Cognitive Heads
[Normal Heads

W
S

o
G

Non-Linear Thinking Steps
o8

5

%3

05 0 05 1 15 2
Manipulating Strength

Figure 4: Statistical analysis of the number of
reasoning steps under varying levels of inter-

vention strength « in equation@

non-linear reasoning steps adjusts accordingly. In con-

trast, when applying the same manipulation to non-cognitive (i.e., normal) heads—specifically, the
bottom 7% of attention heads with the lowest classification accuracy—the number of reasoning steps
remains largely unchanged across different intervention strengths, as shown in Figure[d These results
support the existence of cognitive attention heads and demonstrate the feasibility of manipulating
cognitive behaviors during reasoning.

4 CREST: COGNITIVE REASONING STEERING AT TEST-TIME

As observed in the previous section, the model is able to arrive at the correct final answer with fewer
non-linear reasoning steps, suggesting the presence of redundant reasoning that hinders end-to-end
efficiency. Motivated by these insights, we propose a training-free strategy to adaptively adjust
the reasoning process during inference. Our framework consists of two main processes: an offline
calibration stage, along with a test-time steering stage.

4.1 OFFLINE CALIBRATION

We perform the following two steps to process the head vectors for controlling the reasoning process.
It is worth noting that this offline calibration stage is a one-shot procedure, requiring only negligible
cost compared to LLM training and incurring no additional latency during subsequent inference.

4.1.1 IDENTIFYING COGNITIVE HEADS.

We begin by locating the cognitive attention heads that matter most for reasoning, details as follows:

1. Calibration dataset and Probing. As describe in Setup of Section[3.2] we draw some training
samples, embed each step, labeled, and probe to every attention head and rank them by accuracy.

Under review as a conference paper at ICLR 2026

2. Selection. Keep the top 10% of heads. For each retained head (4, j), we pre-compute v* as
defined in[3.3] the average hidden state across the non-linear reasoning steps.

4.1.2 ALIGNING HEAD-SPECIFIC VECTORS VIA LOW-RANK PROJECTION.

Since the head vector %s derived from a specific calibra- DeepSeck-R1-Qwen-1.5B, Layer 28
tion dataset and identified through keyword matching L 10
to capture non-linear reasoning steps, it inevitably car- 208

. =

ries noise within the activation space. As a result, the 5 p—r —

head-specific vector becomes entangled with irrelevant 5 0.6 — Head2 Head 8

2 === Head 3 Head 9

components and can be expressed as £ 04 — e

.. .. i 502 Head5 === Head 11

TR — ’U7rlé7ason + vn’giseﬂ o Head 6 === Head 12

i . . 0 250 500 750 1000 1250 1500
where v%J denotes the true non-linear reasoning Principal Component Index

reason -+
direction, and v, . represents spurious components. Figure 5: Cumulative Eigenvalues of the co-
This concern is further supported by recent findings variance matrix of head vectors in the last layer

that length-aware activation directions can also be of DeepSeek-R1-Qwen-1.5B. The PCA matrix

noisy (Huang et al.’ 2025) A here is of dimension d X d. Notably, the
top 100 principal components already capture

To address this, we analyze the covariance structure of nearly all of the variance, indicating that the

the collected activations. Specifically, given a set of effective dimensionality of the head activations

activations {a’7}, we concatenate activations from all is much lower than the raw space.

steps into a single matrix: A%/ = [a;g] € RN, We

compute the empirical covariance matrix and perform its eigen-decomposition as follows:

N
Sid _ %Z(Ai’j — AW (AW~ A Tinii = RNk (Q1) T)
k=1

where A%7 is the average activation across IV samples. We then visualize the distribution of cumulative
eigenvalues, as shown in Figure 3

We observe that the signal-to-noise ratio of the raw head vector is low, with the critical information
concentrated in a low-rank subspace. To remove such redundancy, we perform a low-rank projection
to constrain the head vector into an informative subspace. However, if each head is assigned its own
subspace, the resulting representations may lose comparability across heads, as the shared space is
replaced by distinct, head-specific subspaces. Therefore, we adopt a shared subspace to filter out the
noise components of head vectors. Instead of computing the head-specific covariance matrix X%, we

aggregate the activations of all heads within a layer, A7 = [ZNh aly } € RN where Ny, is the

=1 ""sk
number of heads in layer j and NV is the number of samples. We then compute the eigenspace Q’
from the covariance of A7, and project each head vector v*7 onto the top-n eigenvectors to obtain the
aligned representation:

0 = QI n] QU n]Tvi’j
4.2 TEST-TIME STEERING

During decoding, immediately after each reasoning step, we rotate the representation of the last
token to enforce orthogonality with the pre-computed steering direction, while preserving the original
activation magnitude:
- || o o
§h = — (2" — ((2™7) T)t 5)
||x17.7 — ((1’7”])T’U7”])’UZ’J|| ((())) ’

where 2% denotes the original representation and v%7 is the steering direction. We use /5 norm here.

The main motivation behind this design is to eliminate the dependence on hyperparameters. Previous
steering methods require tuning the steering strength for each model (Huang et al., |2025; |Chen
et al., 2025)), which limits their practical applicability due to the need for careful hyperparameter
adjustment. In contrast, by preserving the activation norm, we avoid the need for such tuning.

Under review as a conference paper at ICLR 2026

Moreover, activation outliers are a well-known issue in LLMs, often leading to highly unstable
activation magnitudes (Sun et al., [2024; Nrusimha et al., |2024). Our norm-preserving strategy
mitigates this problem by preventing large norm fluctuations during inference, thereby making the
steering process more stable.

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Models & Datasets. We conduct experiments on widely used reasoning models of different scales,
including DeepSeek-R1-Distill-Qwen-1.5B/7B/32B (R1-1.5B/7B/32B) (Guo et al., [2025), Qwen3-
4B/30B (Yang et al., 2025a), and GPT-OSS-20B (Agarwal et al.l [2025). Evaluation is performed
across a diverse set of reasoning benchmarks: MATHS500 (Hendrycks et al.,|2021; [HuggingFaceH4,
2024), LiveCodeBench (Jain et al.| 2024), AIME (Patel et al.| |2024) (120 problems from the
2022-2025 American Invitational Mathematics Examination), AMC23 (math ai, 2023), GPQA-
D (Rein et al., [2024)), and Calendar Planning (Zheng et al., 2024)).

Baselines. We compare CREST against training-free methods and include four competitive baselines
from diverse perspectives: (i) Thought Switching Penalty (TIP) (Wang et al., 2025)), which suppresses
the logits of specific tokens (e.g., “Alternatively,” “Wait”) to reduce unnecessary shifts in reasoning
trajectories; (ii) SEAL (Chen et al.| [2025)), which performs task arithmetic in the latent space to down-
regulate internal representations associated with such tokens; (iii) Dynasor (Fu et al.,[2024)), which
reduces token cost by performing early exit based on a consistency criterion during decoding; and (iv)
Soft-Thinking (Zhang et al.l 2025)), which enables latent-space reasoning with an entropy-based
early-exit strategy. In addition, we include the original full model as a baseline (Vanilla).

Hyperparameters. In CREST, the only hyperparameter is the number of attention heads to steer.
To avoid task-specific tuning, we conduct a preliminary ablation study in Section[5.3.1|and fix this
setting for each model across all tasks. During decoding, we use the default settings: temperature =
0.6, top-p = 0.95, and a maximum generation length of 32,768 tokens.

5.2 TOKEN-EFFICIENT REASONING WITH SUPERIOR PERFORMANCE

Table 1: Comparison results against other baselines across various tasks. Note that CREST employs consistent
head vectors and a fixed number of steered heads for all tasks, avoiding task-specific hyperparameter tuning.

Model Methods MATHS00 AIME25 AIME22-24 AMC23
Pass@1 (1) #Tokens (}) | Pass@1 (1) #Tokens (}) | Pass@1 (1) #Tokens (}) | Pass@1 (1) #Tokens ({)
‘ Vanilla ‘ 84.00 5497 ‘ 20.00 15974 ‘ 17.80 17034 ‘ 72.50 8951
TIP 83.40 4414 20.00 14200 24.40 14157 72.50 8069
RI-1.58B SEAL 81.60 4150 16.70 17153 22.20 14207 67.50 8202
I Dynasor 89.00 3267 28.00 12412 24.12 15337 70.00 7782
Soft-Thinking 66.80 9401 23.30 14843 12.20 18418 55.00 13160
CREST 84.80 4106 30.00 11101 20.00 13388 90.00 5584
% Gain from Vanilla 0.8% 25.3% 10.0% 30.5% 2.2% 21.4% 17.5% 37.6%
| Vanilla | 9160 4020 | 4333 12139 | 4440 13709 | 87.50 5912
TIP 92.40 3173 33.30 11225 44.40 11112 90.00 5532
RI-7B SEAL 91.20 3335 36.70 11692 42.22 12448 87.50 4784
B Dynasor 92.00 3619 41.00 9360 45.10 10314 75.00 7809
Soft-Thinking 90.00 4095 33.30 11370 35.60 12551 80.00 5859
CREST 92.40 2661 43.33 8083 44.40 9488 92.50 3937
% Gain from Vanilla 0.8% 33.8% 0.0% 33.4% 0.0% 30.8% 5.0% 33.4%

Superior Performance against Other Baselines. To begin, we demonstrate that CREST can reduce
the token cost while achieving superior performance. As shown in Table|l} on R1-1.5B, CREST
consistently improves over the vanilla baseline. For instance, on AMC23, CREST attains 90.%
Pass@1 while lowering the average token cost from 8951 to 5584, a substantial 37.6% reduction. The
trend persists at larger model scales. With R1-7B, CREST achieves 92.4% accuracy on MATHS500
with only 2661 tokens, representing a 34% cost reduction compared to vanilla, while exceeding other
competitive baselines such as TIP and Dynasor. Overall, these results highlight the strength of
CREST in jointly optimizing accuracy and efficiency. Unlike prior baselines, which often trade one
for the other, CREST consistently demonstrates gains across both metrics, validating its generality.

Consistent Improvements Across Model Sizes and Architectures. As shown in Table [2} we
further evaluate CREST across a wide range of model sizes, from 1.5B to 32B, and across different

Under review as a conference paper at ICLR 2026

architectures, including Qwen-2, Qwen-3, and GPT-OSS. In each subfigure, the token reduction
ratio is visualized with horizontal arrows, while the accuracy improvements are indicated by vertical
arrows. The results demonstrate that CREST consistently benefits diverse model families. In some
cases, the token reduction ratio reaches as high as 30.8% (R1-7B on AIME22-24), while the accuracy
improvement peaks at 6.7% (GPT-OSS-20B on AIME25). These findings provide strong evidence of
the generalization ability of CREST across both model scales and architectures.

Table 2: CREST demonstrates generalization across diverse model architectures, from dense models (R1-1.5B,
R1-7B, R1-32B) to mixture-of-experts models (GPT-OSS-20B, Qwen3-30B). Arrows indicate the transition
from Vanilla — CREST, and ATok denotes the percentage reduction in average tokens (context length).

Model AIME2025 AIME22-24
Acc (V=C) AAce Tokens (V—=C) AToken | Acc (V—=C) AAcc Tokens (V—C) AToken
R1-1.5B 17.0 — 20.3 13.3% 15,986 — 12,393 | 22.5% | 18.0 -202 122% 17,052 — 13,407 |21.4%
R1-7B 43.5 — 435 10.0% 12,114 — 8,058 | 33.4% | 440 — 440 710.0% 13,692 -+ 9471 | 30.8%
R1-32B 57.7 — 61.0 13.3% 12,747 — 10,274 | 19.4% | 640 — 640 10.0% 11,465 — 9,730 | 15.1%

GPT-OSS-20B | 50.0 — 56.7 167% 22,930 = 17,665 | 22.4% | 60.0 — 620 12.0% 22,207 —20,455 |7.9%
Qwen3-30B | 73.30 =+ 73.33 10.03% 15,936 — 14,568 | 8.6% | 78.0 —78.0 10.0% 15292 — 13973 |8.6%

Table 3: Comparison results against other baselines across various tasks. Note that CREST employs consistent
head vectors and a fixed number of steered heads for all tasks, avoiding task-specific hyperparameter tuning.

Model Methods AIME22-25 (Math) LiveCodeBench (Code) GPQA-D (Common-Sense) | Calendar Planning (Plan)
Pass@1 (1) #Tokens (}) | Pass@1 (1) #Tokens (|) | Pass@1 (1) #Tokens (|) | Pass@1 (1) #Tokens (])
Vanilla 62.18 11823 56.29 10830 3232 7600 77.10 3145
R1-32B CREST 63.00 9903 59.28 9541 40.91 6627 78.70 2507
% Gain_| 1.3% 16.2% 5.3% 119% | 26.6% 12.8% | 2.1% 20.3%
Vanilla 77.49 15456 66.47 15307 70.20 7013 66.20 5869
Qwen3-30B CREST 77.50 14135 73.05 15317 70.20 6592 68.10 5767
% Gain | 0.01% 8.5% 9.9% 0.07% | 0.0% 6.0% \ 2.9% 1.7%

Strong Generalization Across Diverse Task Domains. We further evaluate CREST across multiple
task domains, including mathematical reasoning (AIME22-25, comprising all 120 problems from
2022-2025), code generation (LiveCodeBench), common-sense reasoning (GPQA-D), and planning
(Calendar Planning), as reported in Table [3| Despite being calibrated only on MATH500, CREST
generalizes effectively to both in-domain and out-of-domain tasks. Within the math domain, it
maintains strong transfer, achieving 63.% accuracy on AIME22-25 while reducing token cost from
11,823 to 9,903. Beyond math, CREST delivers consistent improvements: on LiveCodeBench,
accuracy increases from 56.3% to 59.3% with fewer tokens; on GPQA-D, accuracy rises substantially
from 32.3% to 40.9% while tokens drop from 7,600 to 6,627; and on Calendar Planning, performance
improves from 77.1% to 78.7% with notable cost reduction (3,145 — 2,507). Similar patterns hold
for larger architectures like Qwen3-30B, where CREST boosts LiveCodeBench accuracy from 66.5%
to 73.1% while also reducing tokens.

Analysis. The performance gains of CREST can be largely attributed to the intrinsic redundancy in
chain-of-thought reasoning, consistent with recent findings that LLMs can often achieve competitive
or even superior performance without explicit reasoning when combined with parallel test-time
techniques such as majority voting (Ma et al., [2025a)), and that pruning or token-budget-aware
strategies applied to reasoning traces do not necessarily harm accuracy (Xia et al., 2025} |Luo et al.,
2025a). By intervening at the activation level, CREST effectively mitigates this redundancy, achieving
a win—win in both efficiency and accuracy.

5.3 FURTHER INVESTIGATION
5.3.1 ABLATION STUDY ON THE NUMBER OF STEERED HEADS

When implementing CREST, a natural design question concerns the number of attention heads to
steer. To investigate this, we conduct ablation studies on R1-1.5B and R1-7B on the AIME22-24 task.

Overall, we find that steering approximately the top 38% of attention heads delivers the strongest
performance, balancing both accuracy and token reduction. Figure[6]illustrates the ablation study
on the number of attention heads used for intervention. In this analysis, we rank heads by linear
probing accuracy and evaluate the top subsets on the AIME22-24 benchmark. The results indicate
that steering 38% of all attention heads provides the best balance, yielding improvements in both
accuracy and token efficiency.

Under review as a conference paper at ICLR 2026

R1-1.5B, AIME22-24 (Accuracy) R1-1.5B, AIME22-24 (Length) RI-7B, AIME22-24 (Accuracy) RI-7B, AIME22-24 (Length)
_ o

_ S 16 50 b

s o} IS o}

= : 5 45 <

g gn g Z 101

8 201 F g4]
£ 124 3
= 35 4 E o

410 19 38 50 60 70 80 90 100 410 19 38 50 60 70 80 90 100 2 4 8 162126303439435060 2 4 8 162126303439435060
Head Ratio (%) Head Ratio (%) Head Ratio (%) Head Ratio (%)

Figure 6: Ablation results on the number of attention heads used for intervention. Darker colors indicate a
larger proportion of heads being steered.

Moreover, we observe that the proportion of steerable heads is relatively stable across different
models: both R1-1.5B and R1-7B achieve their best performance at similar attention head ratios. This
consistency further confirms the robustness of our approach and highlights its ease of hyperparameter
tuning. Consequently, we adopt this ‘gold ratio’ as the default setting in our experiments, thereby
avoiding task-specific tuning that could risk information leakage from the test set.

R1-1.5B, MATH500 R1-1.5B, AIME22-24 R1-7B, MATH500 R1-7B, AIME22-24
J1iald 8 1
125 — = Ours P80: 4885 1259 = = Ours P80: 18372 150 — = Ours P80: 3218 — = Ours P80: 15880
Vanilla P80: 7199 10.04 Vanilla P80: 27260 Vanilla P80: 4915 64 Vanilla P80: 21922
3 1007 ‘ Ours K Ours 31004 1} Ours 3 Ours
g‘ 75 Vanilla g‘ 7.5 Vanilla g Vanilla g 4 Vanilla
% 50 i % 50 Y 504 Y
21
254 ‘ i 2.5
s 3 4
0 - T T T 0.0 T T T 0 T T T 0 T T T
0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000 0 10000 20000 30000
Response Length Response Length Response Length Response Length

Figure 7: Histogram of Response Lengths. Each subfigure displays the empirical histogram together with a
probability density estimate obtained via a Gaussian kernel. The dashed vertical line marks the length threshold
covering the top 80% of samples; the corresponding length value is reported in the legend.

5.3.2 RESPONSE LENGTH DISTRIBUTION

In Section[5.2] we primarily compared different methods based on the average token cost across the
full test set. To gain deeper insights into efficiency improvements, we further analyze the distribution
of response lengths. Figure[7] presents histograms comparing our method with vanilla inference. Each
subfigure shows both the distribution and the token cost for the top 8% of samples. The results reveal
that CREST shifts the distribution leftward, highlighting more pronounced token reductions in terms
of both the average and the top-8% subset.

We also observe that, under both CREST and vanilla inference, a small number of failure cases reach
the maximum generation limit of 32k tokens. Upon closer inspection, these failures typically involve
repetitive outputs. This suggests that CREST could be further enhanced by incorporating early-exit
strategies to mitigate repetition. We will explore in the future work.

6 CONCLUSION

In this paper, we investigate one of the core capabilities of large language models: reasoning. We
conduct a series of empirical studies to better understand the reasoning processes of LLMs and
categorize extended chain-of-thought reasoning into two types: linear, step-by-step reasoning and
cognitive-style non-linear reasoning. Our findings reveal that certain attention heads are correlated
with non-linear cognitive reasoning patterns and can be influenced through activation intervention.
Based on these insights, we propose CREST, a training-free approach for steering the reasoning
trajectory at test time. Through extensive experiments, we demonstrate that CREST improves both
reasoning accuracy and inference efficiency without requiring additional training. Moreover, our
method is broadly compatible with a wide range of pre-trained LLMs, highlighting its practical
potential for enhancing reasoning models in real-world applications.

Under review as a conference paper at ICLR 2026

7 REPRODUCIBILITY STATEMENT

We provide detailed descriptions of the experimental settings, including datasets, model architectures,
generation hyperparameters, and evaluation protocols, in the main text. All datasets are publicly
accessible, and the code for this work will be released publicly upon acceptance.

REFERENCES

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, Piero Kauffmann, Yash
Lara, Caio César Teodoro Mendes, Arindam Mitra, Besmira Nushi, Dimitris Papailiopoulos,
Olli Saarikivi, Shital Shah, Vaishnavi Shrivastava, Vibhav Vineet, Yue Wu, Safoora Yousefi, and
Guogqing Zheng. Phi-4-reasoning technical report, 2025. URL https://arxiv.org/abs/
2504.21318.

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-o0ss-120b & gpt-0ss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Anthropic. Claude 3.7 sonnet and claude code, February 2025. URL https://www.anthropicl
com/news/claude—3-7-sonnet. Accessed: 2025-03-17.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, et al. Graph of thoughts: Solving
elaborate problems with large language models. In Proc. AAAI, 2024.

Zhenni Bi, Kai Han, Chuanjian Liu, Yehui Tang, and Yunhe Wang. Forest-of-thought: Scaling
test-time compute for enhancing llm reasoning. arXiv preprint arXiv:2412.09078, 2024.

Runjin Chen, Zhenyu Zhang, Junyuan Hong, Souvik Kundu, and Zhangyang Wang. Seal: Steerable
reasoning calibration of large language models for free. arXiv preprint arXiv:2504.07986, 2025.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, et al. Do not think that much for 2+ 3=? on the overthinking of
ol-like llms. arXiv preprint arXiv:2412.21187, 2024.

Yingqian Cui, Pengfei He, Jingying Zeng, Hui Liu, Xianfeng Tang, Zhenwei Dai, Yan Han, Chen
Luo, Jing Huang, Zhen Li, Suhang Wang, Yue Xing, Jiliang Tang, and Qi He. Stepwise perplexity-
guided refinement for efficient chain-of-thought reasoning in large language models. arXiv preprint
arXiv:2502.13260, 2025. doi: 10.48550/arXiv.2502.13260.

Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
models. arXiv preprint arXiv:2505.07686, 2025. doi: 10.48550/arXiv.2505.07686.

Xingyu Dang, Christina Baek, Kaiyue Wen, Zico Kolter, and Aditi Raghunathan. Weight ensembling
improves reasoning in language models. arXiv preprint arXiv:2504.10478, 2025. doi: 10.48550/
arXiv.2504.10478.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, et al. A mathematical framework for transformer
circuits. Transformer Circuits Thread, 1(1):12, 2021.

Kawin Ethayarajh. How contextual are contextualized word representations? comparing the geometry
of bert, elmo, and gpt-2 embeddings. arXiv preprint arXiv:1909.00512, 2019.

Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
reinforcement learning, 2025. URL https://arxiv.org/abs/2504.05185.

Yichao Fu, Junda Chen, Siqi Zhu, Zheyu Fu, Zhongdongming Dai, Aurick Qiao, and Hao Zhang.
Efficiently serving 1lm reasoning programs with certaindex. arXiv preprint arXiv:2412.20993,
2024.

10

https://arxiv.org/abs/2504.21318
https://arxiv.org/abs/2504.21318
https://www.anthropic.com/news/claude-3-7-sonnet
https://www.anthropic.com/news/claude-3-7-sonnet
https://arxiv.org/abs/2504.05185

Under review as a conference paper at ICLR 2026

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh, Nathan Lile, and Noah D Goodman. Cognitive
behaviors that enable self-improving reasoners, or, four habits of highly effective stars. arXiv
preprint arXiv:2503.01307, 2025.

Mary L. Gick and Keith J. Holyoak. Analogical problem solving. Cognitive Psychology, 12:306-355,
1980. doi: 10.1016/0010-0285(80)90013-4.

Anmol Goel, Yaxi Hu, Iryna Gurevych, and Amartya Sanyal. Differentially private steering for large
language model alignment, 2025. URL https://arxiv.org/abs/2501.18532,

Google. Gemini flash thinking, February 2025. URL https://deepmind.google/
technologies/gemini/flash/. Accessed: 2025-05-11.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang, Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
rstar-math: Small llms can master math reasoning with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-rl: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware 1lm reasoning, 2025. URL https://arxiv.org/abs/2412.18547,

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Xu Huang, Weiwen Liu, Xiaolong Chen, Xingmei Wang, Hao Wang, Defu Lian, Yasheng Wang,
Ruiming Tang, and Enhong Chen. Understanding the planning of 1lm agents: A survey. arXiv
preprint arXiv:2402.02716, 2024.

Yao Huang, Huanran Chen, Shouwei Ruan, Yichi Zhang, Xingxing Wei, and Yinpeng Dong. Mitigat-
ing overthinking in large reasoning models via manifold steering. arXiv preprint arXiv:2505.22411,
2025.

HuggingFaceH4. MATH-500: A 500-problem subset of the math dataset. Thttps://
huggingface.co/datasets/HuggingFaceH4/MATH-500, 2024. Accessed: 2025-05-
13.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv preprint
arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation. arXiv preprint arXiv:2406.00515, 2024.

Asher Koriat. Subjective confidence in one’s knowledge and decision performance. Consciousness
and Cognition, 21:1599-1616, 2012.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Nelson F Liu, Matt Gardner, Yonatan Belinkov, Matthew E Peters, and Noah A Smith. Linguistic

knowledge and transferability of contextual representations. arXiv preprint arXiv:1903.08855,
2019.

11

https://arxiv.org/abs/2501.18532
https://deepmind.google/technologies/gemini/flash/
https://deepmind.google/technologies/gemini/flash/
https://arxiv.org/abs/2412.18547
https://huggingface.co/datasets/HuggingFaceH4/MATH-500
https://huggingface.co/datasets/HuggingFaceH4/MATH-500

Under review as a conference paper at ICLR 2026

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning.
arXiv preprint arXiv:2501.12570, 2025a.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naigiang Tan, Xiaochun Cao,
and Dacheng Tao. Ol-pruner: Length-harmonizing fine-tuning for ol-like reasoning pruning,
2025b. URL https://arxiv.org/abs/2501.12570.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs, Sewon Min, and Matei Zaharia. Reasoning
models can be effective without thinking. arXiv preprint arXiv:2504.09858, 2025a.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning. arXiv preprint arXiv:2502.09601, 2025b.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning, 2025c. URL |https://arxiv.org/abs/2502,
09601.

math ai. Amc23 dataset. https://huggingface.co/datasets/math-ai/amc23, 2023.
Hugging Face, American Mathematics Competition 2023 benchmark.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and Tatsunori Hashimoto. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

Allen Newell and Herbert A. Simon. Human Problem Solving. Prentice Hall, 1972.

Aniruddha Nrusimha, Mayank Mishra, Naigang Wang, Dan Alistarh, Rameswar Panda, and Yoon
Kim. Mitigating the impact of outlier channels for language model quantization with activation
regularization. arXiv preprint arXiv:2404.03605, 2024.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

OpenAl. Learning to reason with 1llms, September 2024. URL https://openai.com/index/
learning-to-reason-with-11ms/L OpenAl research blog post.

Bhrij Patel, Souradip Chakraborty, Wesley A Suttle, Mengdi Wang, Amrit Singh Bedi, and Di-
nesh Manocha. Aime: Ai system optimization via multiple llm evaluators. arXiv preprint
arXiv:2410.03131, 2024.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpga: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Charlie Victor Snell, Jachoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute
optimally can be more effective than scaling parameters for reasoning. In The Thirteenth Inter-
national Conference on Learning Representations, 2025. URL https://openreview.net/
forum?id=4FWAwZtd2nl.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, et al. Stop overthinking: A survey on efficient
reasoning for large language models. arXiv preprint arXiv:2503.16419, 2025.

Chung-En Sun, Ge Yan, and Tsui-Wei Weng. Thinkedit: Interpretable weight editing to mitigate
overly short thinking in reasoning models. arXiv preprint arXiv:2503.22048, 2025. doi: 10.48550/
arXiv.2503.22048.

12

https://arxiv.org/abs/2501.12570
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2502.09601
https://huggingface.co/datasets/math-ai/amc23
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n

Under review as a conference paper at ICLR 2026

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Ilya Sutskever. Pre-training as we know it will end. Test of Time Paper Award lec-
ture, 38" Conf. on Neural Information Processing Systems (NeurIPS 2024), December
2024. https://www.reddit.com/r/singularity/comments/lhdrijvg/ilyas_
full_talk_at_neurips_2024_pretraining_as_we/ (accessed 11 May 2025).

Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal
Yona. Confidence improves self-consistency in llms. arXiv preprint arXiv:2502.06233, 2025. doi:
10.48550/arXiv.2502.06233.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement learning with
llms. arXiv preprint arXiv:2501.12599, 2025.

NovaSky Team. Sky-t1: Fully open-source reasoning model with ol-preview performance in 450
budget, 2025a.

Qwen Team. Qwq: Reflect deeply on the boundaries of the unknown, November 2024. URL
https://gwenlm.github.1o/blog/qwg—32b-preview/\

Qwen Team. Qwen3, April 2025b. URL https://gwenlm.github.io/blog/qwen3/.

Sophie Toth and James I.D. Campbell. Backtracking and cognitive load in solving the tower of hanoi.
Cognitive Psychology, 131:101434, 2022. doi: 10.1016/j.cogpsych.2022.101434.

Alexander Matt Turner, Lisa Thiergart, Gavin Leech, David Udell, Juan J. Vazquez, Ulisse Mini,
and Monte MacDiarmid. Steering language models with activation engineering, 2024. URL
https://arxiv.org/abs/2308.102438\

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. Advances in Neural Information
Processing Systems, 36:75993-76005, 2023.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu Chen, Zhiwei He, Linfeng Song, Dian Yu,
Juntao Li, Zhuosheng Zhang, et al. Thoughts are all over the place: On the underthinking of
ol-like llms. arXiv preprint arXiv:2501.18585, 2025.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=_vViQlMeSB_Jl

Jason etal. Wei. Chain-of-thought prompting elicits reasoning in large language models. arXiv
preprint, arXiv:2201.11903, 2022.

Wenhao Wu, Yizhong Wang, Guangxuan Xiao, Hao Peng, and Yao Fu. Retrieval head mechanistically
explains long-context factuality. arXiv preprint arXiv:2404.15574, 2024.

Yuyang Wu, Yifei Wang, Tianqgi Du, Stefanie Jegelka, and Yisen Wang. When more is less: Un-
derstanding chain-of-thought length in llms, 2025. URL https://arxiv.org/abs/2502,
07266.

Heming Xia, Yongqi Li, Chak Tou Leong, Wenjie Wang, and Wenjie Li. Tokenskip: Controllable
chain-of-thought compression in llms. arXiv preprint arXiv:2502.12067, 2025.

Wenyi Xiao, Leilei Gan, Weilong Dai, Wanggui He, Ziwei Huang, Haoyuan Li, Fangxun Shu, Zhelun
Yu, Peng Zhang, Hao Jiang, and Fei Wu. Fast-slow thinking for large vision-language model
reasoning, 2025. URL https://arxiv.org/abs/2504.18458.

13

https://www.reddit.com/r/singularity/comments/1hdrjvq/ilyas_full_talk_at_neurips_2024_pretraining_as_we/
https://www.reddit.com/r/singularity/comments/1hdrjvq/ilyas_full_talk_at_neurips_2024_pretraining_as_we/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwen3/
https://arxiv.org/abs/2308.10248
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2502.07266
https://arxiv.org/abs/2502.07266
https://arxiv.org/abs/2504.18458

Under review as a conference paper at ICLR 2026

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. Deepseek-prover: Advancing theorem proving in llms through large-scale
synthetic data. arXiv preprint arXiv:2405.14333, 2024.

Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi Li, Da Zheng, Boyuan Chen, Yi Hu, Shijia Kang,
Jiaming Ji, Yingying Zhang, et al. Redstar: Does scaling long-cot data unlock better slow-reasoning
systems? arXiv preprint arXiv:2501.11284, 2025a.

Silei Xu, Wenhao Xie, Lingxiao Zhao, and Pengcheng He. Chain of draft: Thinking faster by writing
less. arXiv preprint arXiv:2502.18600, 2025b. doi: 10.48550/arXiv.2502.18600.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115, 2024.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint arXiv:2505.09388,
2025a.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weiping
Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895, 2025b. doi:
10.48550/arXiv.2504.15895.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Zheng Lin, Li Cao, and Weiping
Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895, 2025c.

Junjie Yang, Ke Lin, and Xing Yu. Think when you need: Self-adaptive chain-of-thought learning,
2025d. URL https://arxiv.org/abs/2504.03234.

Shunyu etal. Yao. Tree of thoughts: Deliberate problem solving with large language models. arXiv
preprint, arXiv:2305.10601, 2023.

Zhen Zhang, Xuehai He, Weixiang Yan, Ao Shen, Chenyang Zhao, Shuohang Wang, Yelong Shen,
and Xin Eric Wang. Soft thinking: Unlocking the reasoning potential of llms in continuous concept
space. arXiv preprint arXiv:2505.15778, 2025.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wau, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero data,
2025. URL https://arxiv.org/abs/2505.03335.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking 1lms on
natural language planning. arXiv preprint arXiv:2406.04520, 2024.

Zifan Zheng, Yezhaohui Wang, Yuxin Huang, Shichao Song, Mingchuan Yang, Bo Tang, Feiyu
Xiong, and Zhiyu Li. Attention heads of large language models. Patterns, 6(2):101176, 2025. doi:
10.1016/j.patter.2025.101176.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, Shashwat Goel, Nathaniel Li, Michael J.
Byun, Zifan Wang, Alex Mallen, Steven Basart, Sanmi Koyejo, Dawn Song, Matt Fredrikson,
J. Zico Kolter, and Dan Hendrycks. Representation engineering: A top-down approach to ai
transparency, 2025. URL |https://arxiv.org/abs/2310.01405.

14

https://arxiv.org/abs/2504.03234
https://arxiv.org/abs/2505.03335
https://arxiv.org/abs/2310.01405

Under review as a conference paper at ICLR 2026

A EXTENDED RELATED WORKS

We organized prior research into three key categories and, to the best of our ability, emphasize the
most recent contributions from the extensive body of work.

Reasoning Models. Early work on chain-of-thought (CoT) prompting Wei et al.| (2022) and
self-consistency decoding [Wang et al.| (2022) showed that sampling diverse reasoning paths at
inference time and selecting the most frequent answer markedly improves accuracy. Structured search
frameworks subsequently generalise this idea: Tree-of-Thought performs look-ahead search over
branching “thought” sequences |Yao| (2023)); Graph-of-Thought re-uses sub-derivations through a
non-linear dependency graph [Besta et al.| (2024); and Forest-of-Thought scales to many sparsely
activated trees under larger compute budgets Bi et al.| (2024). Since then, the field of reasoning
language models has advanced rapidly, driven in large part by innovations in test-time thinking
strategies \OpenAl (2024)); \Snell et al.| (2025)); \Sutskever| (2024). Closed-source providers now
offer dedicated “thinking” variants such as OpenAl’s o-series Jaech et al.| (2024), Anthropic’s
Claude-3.7-Sonnet-Thinking |Anthropic| (2025), and Google’s Gemini-2.5-Flash|Google| (2025). The
open-source community has kept pace with competitive models including DeepSeek-R1|Guo et al.
(2025)), Owen2.5|Yang et al.[(2024), QOWQ [Team| (2024), Phi-4-Reasoning |Abdin et al.|(2025)), and,
most recently, Qwen3 [Team| (2025b), alongside emerging contenders such as R-Star (Guan et al.
(2025)), Kimi-1.5 Team et al.|(2025), Sky|Team| (2025a), and RedStar|Xu et al.|(2025a). These open-
weight models enable in-depth analysis of their underlying reasoning mechanisms, offering a unique
opportunity to “unblack-box” their cognitive processes. In this work, we explore how manipulating
internal components, such as attention heads and hidden states, can influence the model’s reasoning
behavior.

Cognitive Behaviors in LLMs. In|Gandhi et al.|(2025), a cognitive behavior is defined as any readily
identifiable pattern in a model’s chain-of-thought—such as verification (double-checking work),
backtracking (abandoning an unfruitful path), sub-goal setting (planning intermediate steps), or
backward chaining (reasoning from goal to premises)—that appears in the text trace and statistically
correlates with higher task accuracy or more sample-efficient learning. These behaviors mirror
classic findings in human problem solving: means—ends sub-goal analysis Newell & Simon|(1972),
analogical transfer |Gick & Holyoak] (1980), metacognitive error monitoring [Koriat| (2012), and
adaptive backtracking during search [Toth & Campbell (2022). Modern LLM methods explicitly
instate the same heuristics—for example, chain-of-thought prompting|Wei|(2022)) makes the reasoning
trace visible, while self-consistency sampling Wang et al.|(2022) and Tree-of-Thought search|Yao
(2023) operationalize backtracking and sub-goal exploration. By situating LLM “cognitive behaviors”
within this well-studied human framework, we both ground the terminology and reveal gaps where
LLMs still diverges from human cognition, motivating a surge of techniques aimed at “teaching”
models to think like human.

Methods to Improve Zest-Time Reasoning Models. Rather than modifying training regimes—e.g.
self-fine-tuning Muennighoff et al.| (2025) or RL curricula such as Absolute Zero |Zhao et al.
(2025)—we review approaches that act only at inference. Adapting (and extending) the taxon-
omy of |Sui et al.[(2025)), we distinguish four lines of work and situate our own method, CREST,
within the emerging fourth category.

» Light-weight tuning. Small, targeted weight or prompt updates steer models toward brevity without
costly retraining. RL with explicit length penalties (Concise RL) and OI-Pruner shorten chains-
of-thought (CoT) while preserving accuracy |[Fatemi et al.|(2025)); Luo et al.| (2025b). Model-side
tweaks such as ThinkEdit and an elastic CoT “knob” expose conciseness or length on demand Sun
et al.| (2025); Ma et al.| (2025c). Together these studies reveal an inverted-U length—accuracy
curve [Wu et al.|(2025)) that motivates our desire to steer (rather than merely shorten) reasoning
traces.

* Adaptive compute control. The model spends tokens only when they help. Token-Budget-Aware
Reasoning predicts a per-question budget|Han et al.| (2025); confidence-based Fast—Slow Thinking
routes easy instances through a cheap path |Xiao et al.| (2025)); early-exit policies such as DEE,
S-GRPO, and self-adaptive CoT learning halt generation when marginal utility drops|Yang et al.
(2025b); |Dat et al.| (2025); | Yang et al.[(2025d). Our results show that CREST can combine with
these token-savers, further reducing budget without extra training.

15

Under review as a conference paper at ICLR 2026

* Direct trace manipulation. These methods edit or reuse the textual CoT itself. SPGR keeps
only perplexity-critical steps |Cui et al.| (2025)); Chain-of-Draft compresses full traces to terse
“draft” thoughts at ~8 % of the tokens Xu et al.| (2025b); confidence-weighted self-consistency
and WiSE-FT ensemble weights cut the number of sampled paths or models needed for robust
answers [Taubenfeld et al.[(2025); Dang et al.|(2025). While these techniques operate in token space,
ours intervenes inside the network, offering an orthogonal lever that can coexist with draft-style
pruning.

Representation-level activation editing. A newer strand steers generation by editing hidden activa-
tions rather than weights or outputs. Early examples include Activation Addition (ActAdd)|Turner
et al.| (2024) and Representation Engineering Zou et al.| (2025), which inject global steering vectors
into the residual stream; PSA adds differential-privacy guarantees to the same idea |Goel et al.
(2025).

CREST advances representation-level activation editing by discovering cognitive attention heads
aligning with concrete reasoning behaviors and showing that head-specific interventions outperform
global vectors. Beyond performance, our cognitive-head analysis provides new interpretability
evidence that bridges recent attention-head studies|Zheng et al.|(2025) with activation-editing control.

B MORE IMPLEMENTATION DETAILS

B.1 KEYWORD LIST FOR CATEGORIZING REASONING STEPS

To categorize thinking steps into linear and non-linear reasoning types, we adopt a keyword-matching
strategy. Specifically, if a step contains any keyword s € S, it is classified as a non-linear reasoning
step; otherwise, it is considered a linear reasoning step. The keyword set S includes:{ Wait, Alter-
natively, Let me verify, another solution, Let me make sure, hold on, think again, think differenly,
another approach, another method}.

B.2 TRAINING DETAILS FOR LINEAR PROBING

To optimize the linear probe, we first randomly sample 1,000 features from both linear and non-linear
thought steps to mitigate class imbalance, as linear steps significantly outnumber non-linear ones.
The dataset is then randomly split into training, validation, and test sets with aratioof 8 : 1 : 1. We
train the linear probe using the Adam optimizer with an initial learning rate of 1 x 103, which is
decayed following a cosine annealing schedule. The final checkpoint is selected based on the highest
validation accuracy.

C MORE EXPERIMENT RESULTS

C.1 PROBING ACCURACY OF REASONING REPRESENTATIONS

We report the probing results of different models in Figure 8] [0] and[T2) where we can observe
that certain attention heads exhibit higher accuracy, i.e., cognitive heads.

C.2 MORE RESULTS OF ACTIVATION INTERVENTION
We present additional examples in Figure[T3] illustrating the reasoning process when the non-linear
reasoning component is either enhanced or reduced. Specifically, enhancing non-linear reasoning

leads the model to generate longer reasoning chains (e.g., 84 steps), while reducing it results in
shorter chains (e.g., 29 steps), compared to the original 31-step output.

D CLARIFICATION OF LLM USAGE

In this work, large language models are employed to refine the writing and to aid in generating code
for figure plotting. All generated outputs are thoroughly validated by the authors prior to use.

16

Under review as a conference paper at ICLR 2026

864
865
866
867
. DeepSeek-R1-Qwen-7B
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883

884 0 5 10 15 20 25

885 Head Index
886

887

888 Figure 8: Visualization of probing accuracy for DeepSeek-R1-Distill-Qwen-7B.
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911 0 10 20 30

912 Head Index
913

914
915 Figure 9: Visualization of probing accuracy for DeepSeek-R1-Distill-Qwen-32B.
916
917

100

90

80

70

Layer Index

60

50

100

50

17

Under review as a conference paper at ICLR 2026

Qwen3-4B-Thinking-2507 100

Layer Index
8
3

]
w
L

w
(=]
L

T T T 50
10 20 30

Head Index

o 4

Figure 10: Visualization of probing accuracy for Qwen3-4B.

Qwen3-30B-A3B-Thinking-2507

0 4 100
10 90
5
80
= 20
Ll
=
o -
2 L 70
— 30 -
. L 60
40
T T T T — 50
0 10 20 30
Head Index

Figure 11: Visualization of probing accuracy for Qwen3-30B.

OpenAl-GPT-OSS-20B

Layer Index

Head Index

Figure 12: Visualization of probing accuracy for GPT-OSS-20B.

18

100

98

96

94

92

90

Under review as a conference paper at ICLR 2026

Quesﬁon: ‘What is the smallest positive perfect cube that can be written as the sum of three consecutive integers?

Alright, so I have this problem: find the smallest positive perfect cube that can be written as the sum of three consecutive integers. Hmm, okay. Let me try to
figure this out step by step. First, I know that a perfect cube is a number that is an integer raised to the power of three. So, numbers like 1, 8, 27, 64, etc., are
perfect cubes. The problem is asking for the smallest one that can be expressed as the sum of three consecutive integers. Okay, let's denote the three
consecutive integers. If I let the first integer be n, then the next two would be 7 + 1 and n + 2. So, the sum of these three numbers is n. + (n.+ 1) + (n + 2)
. Let me compute that sum: n +n + 1 4 n + 2 = 3n + 3. So, the sum simplifies to 3n + 3. Now, we want this sum to be a perfect cube. Let me denote the
perfect cube as k*, where k is a positive integer. So, we have the equation:

3n+3=k

Hmm, okay. So, I need to solve for 72 in terms of k. Let's rearrange the equation:

3n=Fk -3

Since 7 has to be an integer (because we are talking about integers), the numerator k* — 3 must be divisible by 3. Let's see when that happens. Looking at
k* mod 3,1 remember that for any integer k, k> mod 3 isequal tok mod 3.Because: - Ifk =0 mod 3,thenk’ =0 mod 3.
-Ifk=1 mod 3,thenk’ =1 mod 3.

-Ifk=2 mod 3,thenk® =8 =2 mod 3.

So, k* =k mod 3. Therefore, * —3 =k —0 mod 3, since 3 is divisible by 3. Wait, no, 3 mod 3is 0,s0 k* —3 =k mod 3. So, for k* — 3 to be
divisible by 3, k must be congruent to 0 mod 3.

That is, k must be a multiple of 3. So, let me set k = 3m, where m is a positive integer. Substituting back into the equation:

(3m)® -3
3
27m® — 3
n=""_°
3
n=9m®—1

So, n must be equal to 9m® — 1 for some integer m > 1. But since we are looking for the smallest positive perfect cube, we should try the smallest values of
m and see what k becomes, and then compute k? to find the smallest one. Let's start with m = 1: - k = 3(1) = 3

-k =27
-n= 9(1)3 — 1 =8 So, if n = 8, the three consecutive integers are 8, 9, and 10. Let me check their sum: 8 + 9 + 10 = 27, which is indeed 3°. So, 27 is a
perfect cube that can be written as the sum of three consecutive integers. Wait, but hold on a second. Is 27 the smallest such cube? Let me check with m = 0.

Butm = 0 would give k = 0, and k* = 0. But the problem specifies positive integers, 5o 0 is not positive. So, m = 1 is the smallest possible. But just to
make sure, let me check if there's a smaller cube with m being a fraction or something, but since m has to be an integer because k = 3m, m must be at least 1.
So, 27 is the smallest. But wait, hold on again. Is 27 the smallest positive cube that can be expressed as the sum of three consecutive integers? Let me think if
there are any smaller cubes that might fit. Wait, the next smaller cube after 1 is 8, which is 23. Let me see if 8 can be expressed as the sum of three
consecutive integers. Trying to solve 3n + 3 = 8,50 3n = 5,n = 5/3, which is not an integer. So, 8 cannot be expressed as such. Next cube is 1, but 1 is too|
small. Let's see, 3n + 3 = 1, s0 3n = —2, n = —2/3. That's also not an integer. So, 1 is not possible. Then, 8 is the next, but as we saw, that doesn't work.
So, the next cube is 27, which works. So, 27 is the smallest. Wait, but let me think differently. Maybe I made a mistake in assuming &k must be a multiple of 3.
Let me re-examine that step. We had 3n + 3 = k®, so 3(n + 1) = k*. Therefore, 3 divides k*, which implies that 3 divides . So, yes, k must be a multiple
of 3, 50 k = 3m. So, that part is correct. Therefore, the smallest cube is 27. Wait, but hold on, another thought. Maybe I can approach this problem differently.
Let me let the three consecutive integers be — 1, @, and @ + 1. So, their sum is (z — 1) 4+ & + (z + 1) = 3z. So, the sum is 3z. So, 3x is a perfect
cube. Al! So. (his is another way (0 express the same problem. The sum is 3x, and that needs to be a perfect cube. So, 3z = &, so @ = £, So, k% must be

divisible by 3, which again implies that k is divisible by 3, so k = 3m, leading to = 9m?. Therefore, = must be 9m"3, and the three consecutive integers are
9m3 — 1,9m?, and 9m? + 1. So, the smallest such cube is when m = 1, s0 @ = 9 x 1% = 9. Therefore, the three consecutive integers are 8, 9, 10, and their
sum is 27, which is 3. So, same result. Therefore, 27 is indeed the smallest positive perfect cube that can be expressed as the sum of three consecutive
integers. Wait, but just to make sure, let me check m = 1 gives us 27, which is correct. Let me try m = 2: ¢ = 9 x 8 = 72. So, the integers are 71, 72, 73.
Their sum is 216, which is 6. So, 216 is another cube, but it's larger than 27, so 27 is still the smallest. Alternatively, if I set m = 0, z = 0, but that's not
positive. So, yeah, 27 is the smallest. Wait, but hold on. Let me think if I can have a smaller cube, maybe 0, but no, the question specifies positive
integers, so 0 isn't positive. So, 27 is the smallest. Wait, but hold on. Let me double-check my initial approach. When I started, I considered the sum as
3n+ 3, and set that equal to k®. Then, I concluded that k must be a multiple of 3, so k = 3m. Then, n = 9m® — 1. So, form = 1, n = 8, and the sum is 27,
which is correct. Is there a way to have a smaller cube? Let me see. Wait, suppose I didn't assume k is a multiple of 3, but just let & be any integer. So, for the
equation 3n + 3 = kP, can k be something else? Wait, earlier I thought that since 3n + 3 is a multiple of 3, k* must be a multiple of 3, which implies k is a
multiple of 3. So, that seems necessary. So, no, k can't be anything else. Therefore, the smallest k is 3, giving k* = 27, which is the smallest
possible. Alternatively, if I didn't do that substitution, can I get a smaller cube? Let me suppose that & is not a multiple of 3, but that 3n + 3 = k* must still
hold. Let's see if there's a case where k is not divisible by 3, but k? is divisible by 3. But, actually, k* is divisible by 3 only if k is divisible by 3. Because 3 is
prime, so if a prime divides a cube, it must divide the base. So, yes, k must be divisible by 3. Therefore, k& must be a multiple of 3, so the smallest & is 3,
leading to k* = 27. Wait, but just to make sure, let me think about other representations. Alternatively, let me think of the sum of three consecutive integers. If]
1 take three consecutive integers, the sum is 3 times the middle number. So, the sum is 3 times the middle term. So, 3 times some integer is a perfect
cube. Therefore, 3n = k*, so n = k* /3. For n to be integer, k* must be divisible by 3, so k must be divisible by 3. Thus, the smallest k is 3, givingn = 9, so
the numbers are 8, 9, 10, sum 27. So, same result. Final Answer The smallest positive perfect cube is \boxed {27}. </think>

Original Reasoning Process: 31 steps
Alright, so I have this problem: find the smallest positive perfect cube that can be written as the sum of three consecutive integers. Hmm, okay. Let me try to
figure this out step by step. First, I know that a perfect cube is a number that is an integer raised to the power of three. So, numbers like 1, 8, 27, 64, etc., are
perfect cubes. The problem is asking for the smallest one that can be expre: as the sum of three consecutive integers. Let me denote the three consecutive
integers. If I let the middle integer be n, then the three integers would be n — 1, n, and n + 1. So, their sum would be (n — 1) + n + (n + 1). Let me compute
that sum: (n — 1) 4+ n + (n + 1). Combining like terms, that's n — 1+ n +n + 1. The -1 and +1 cancel out, so we have 3n. Wait, so the sum of three
consecutive integers is just three times the middle integer. That's interesting. So, the sum is 3n. But the problem says the sum has to be a perfect cube. So, 3n
must be a perfect cube. Let me write that as 3n = k®, where k is some positive integer. So, n = ‘—; Since n has to be an integer, k* must be divisible by 3.
Therefore, k must be a multiple of 3, right? Because if 3 divides k*, then 3 must divide k. So, let me write k as 31, where m is a positive integer. Then,

k* = (3m)*® = 27m?. Plugging this back into the equation for n, we get n = 273;’“ = 9m?®. So, n = 9m®. That means the three consecutive integers are
9m?® — 1,9m?, and 9m® + 1. Now, the sum of these three numbers is 27m?, which is a perfect cube. So, for each positive integer m, we can get a perfect cube
as the sum. But the question asks for the smallest positive perfect cube. So, I need to find the smallest m such that 27m? is positive. Well, m is a positive
integer, so the smallest m is 1. Plugging m = 1 into 27m?, we get 27 x 1> = 27. So, 27 is the smallest positive perfect cube that can be written as the sum of
three consecutive integers. Wait, let me check if that's correct. If m = 1, then the three consecutive integers are 9(1)* — 1 = 8,9(1)* = 9, and 9(1)* + 1 = 10
. So, adding them together: 8 + 9 + 10 = 27. Yep, that works. But just to make sure I didn't make a mistake earlier, let me think again. So, if the sum is 3n, and
3n must be a perfect cube, then n must be a multiple of 3 because 3 divides into it. So, n is 3m, which leads to the sum being 27m?®. So, yeah, 27 is the smallest
one. Is there a smaller perfect cube that can be written as the sum of three consecutive integers? Well, the perfect cubes are 1, 8, 27, 64, etc. Let's see if 1 can be
written as such a sum. If 3n = 1, then n = 1/3, which isn't an integer, so that doesn't work. Next is 8. So, 3n = 8, n = 8/3, which is not an integer cither. Then, 27.
As I found earlier, 27 can be written as 8 + 9 + 10. So, 27 works. Therefore, 27 is indeed the smallest. Wait, but hold on, could 1 be considered? But 1 is too
small because 3n = 1 would require n to be 1/3, which is not an integer. So, 1 is out. 8 is also too small because 3n = 8 would need n = 8/3, which is not an
integer. So, 8 is also out. So, the next one is 27. Therefore, 27 is the smallest.

STEP:17##### Alternatively, maybe I can think of it differently. Suppose the three consecutive integers are a, a + 1, a + 2. Their sum is 3a + 3 = 3(a + 1).
So, 3(a + 1) must be a perfect cube. Therefore, @ + 1 must be a perfect cube divided by 3. So, a -+ 1 = k® /3. So, k* must be divisible by 3, so k must be a
multiple of 3, as before. ... Final Answer The smallest positive perfect cube that can be written as the sum of three consecutive integers is \boxed {27}. </think>,

Reduce Non-Linear ReasoningL 29 steps

Alright, so I have this problem: find the smallest positive perfect cube that can be written as the sum of three consecutive integers. Hmm, okay. Let me try to

figure this out step by step. First, I know that a perfect cube is a number that is an integer raised to the power of three. So, numbers like 1, 8, 27, 64, etc., are

perfect cubes. The problem is asking for the smallest one that can be expressed as the sum of three consecutive integers. Let me denote the three consecutive
integers. If I let the middle integer be n, then the three integers would be n — 1, n, and n + 1. So, their sum would be (n — 1) +n + (n + 1). Let me compute
that sum: (n — 1) 4 n + (n + 1). Combining like terms, that's 7 — 1 +n +n + 1. The -1 and +1 cancel out, so we have 3n. So, the sum of three consecutive

integers is 3n. Now, the problem states that this sum is a perfect cube. So, 3n must be a perfect cube. Let me write that as an equation: 3n = k*, where k is

some positive integer. So, n = % Since n must be an integer (because we're dealing with integers), k* must be divisible by 3. That means k itself must be

divisible by 3, because 3 is a prime number. So, let me let k = 3m, where m is an integer. Substituting back into n, we get n = @ = % = 9m3. So,

n = 9m®. Therefore, the three consecutive integers aren — 1 = 9m® — 1, n = 9m?, and n + 1 = 9m® + 1. Now, let's compute the sum again:

(9m® — 1) + 9m® + (9m® + 1) = 27m®. Wait, that's interesting. The sum i lgma, which is (3m)®, confirming that it is indeed a perfect cube. But hold on,
the problem is asking for the smallest positive perfect cube. So, I need to ﬁn(i smallest k such that k* = 3n, with n being an integer. From the earlier step,
k = 3m, so the smallest positive k is 3, because m has to be a positive integer as well. Let me check that. If m = 1, then k = 3, so k* = 27. Then
n =9m® = 9(1)® = 9. So, the three consecutive integers are 8, 9, 10. Let's add them up: 8 +9 + 10 = 27. Perfect, that works.

... Final Answer The smallest positive perfect cube that can be written as the sum of three consecutive integers is \boxed {27}. </think>

	Introduction
	Related Works
	Dissecting and Modulating Cognitive Patterns in Reasoning
	Cognitive Behaviors in Reasoning Models
	Identifying Attention Heads of Cognitive Behaviors
	Manipulating Cognitive Behaviors via Activation Intervention

	CREST: Cognitive REasoning Steering at Test-time
	Offline Calibration
	Identifying cognitive heads.
	Aligning head-specific vectors via low-rank projection.

	Test-time Steering

	Experiments
	Implementation Details
	Token-Efficient Reasoning with Superior Performance
	Further Investigation
	Ablation Study on the Number of Steered Heads
	Response Length Distribution

	Conclusion
	Reproducibility Statement
	Extended Related Works
	More Implementation Details
	Keyword List for Categorizing Reasoning Steps
	Training Details for Linear Probing

	More Experiment Results
	Probing Accuracy of Reasoning Representations
	More Results of Activation Intervention

	Clarification of LLM Usage

