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Abstract

Structural brain graphs illuminate individual differences and neurological traits but are
underutilized due to limited data from the challenges of MRI acquisition and prepro-
cessing. We introduce Graph Augmentation via Sampling and Permutation (GRASP),
a method that synthesizes brain graphs by sampling edge values from consistent posi-
tions across multiple adjacency matrices within the same class—assuming topological con-
sistency. Unlike deep learning techniques, GRASP relies on straightforward manipula-
tions of adjacency matrices, which reduces computational demands and simplifies imple-
mentation. In this paper, we examine the proof of concept of this augmentation tech-
nique on a gender classification task using structural connectomes. We demonstrate en-
hanced brain graph classification and confirm that within-class adjacency consistency can
generate graph variants without complex modeling. The code is publicly available at:
https://github.com/heliasah/GRASP-Code
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1. Introduction

Structural connectivity analysis examines anatomical connections between brain regions us-
ing Magnetic Resonance Imaging (MRI) (Clayden, 2013). Graph-based methods represent
these connections by modeling brain regions as nodes and structural pathways as edges.
These models are used to study brain characteristics, including phenotypes such as gender
(Kim et al., 2021). For example, (Nebli and Rekik, 2020) modeled brain connectomes as
graphs, where nodes represent brain regions and edges encode morphological similarity, then
used machine learning to identify gender-specific connections.
Graph-based methods model brain connectivity with high accuracy, but are prone to overfit-
ting when training data is limited (Zhou et al., 2020). This limitation is acute in analyzing
brain graphs, where data is acquired via MRI, which requires intensive preprocessing, such
as motion correction, alignment, and tissue segmentation. To mitigate this issue, graph aug-
mentation techniques have been introduced, broadly categorized into (I) edge perturbation
(e.g., adding, removing, or rewiring edges) (Rong et al., 2020) and (II) node masking (i.e.,
removing nodes and features) (Feng et al., 2020). Although these methods improve model
performance in graph learning tasks, they modify the underlying graph topology by altering
node and edge structures. In connectome analysis, such alterations are problematic, as con-
nectivity patterns encode structural attributes. For example, strong connectivity between
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the entorhinal cortex and the caudal anterior cingulate cortex has been linked to gender
differences (Nebli and Rekik, 2020). Therefore, modifying nodes or edges risks distorting
information and might lead to inaccurate diagnosis.
Recent studies, e.g., (Bessadok et al., 2021), have proposed topology-aware approaches like
TopoGAN, which preserves connectivity through generative adversarial networks for graph
augmentation. However, high training costs and model complexity remain challenges.
In this paper, we assume that new connectivity matrices can be generated by permuting
values at corresponding positions across multiple adjacency matrices without disrupting
brain graph structure. Based on this, we propose Graph Augmentation via Sampling and
Permutation (GRASP), a graph augmentation technique that aims to improve model per-
formance while preserving brain graph topology. Unlike deep learning-based augmentations,
our approach is suitable for resource-constrained environments.

2. Methods

Graph Representation: We model the brain as a weighted directed graph G = (V,E),
where V denotes the set of vertices (nodes) and E denotes the set of edges (connections
between nodes). Each edge e ∈ E is assigned a weight by w : E → R, representing the
strength of the connections. For a given graph G, the corresponding adjacency matrix
A ∈ Rn×n is defined, where n = |V | is the number of nodes in the graph. The entry aij
represents the weight of the edge from node i to node j, and is given by:

A = [aij ] where aij =

{
w(eij), if eij ∈ E, i, j ∈ V

0, if eij /∈ E, i, j ∈ V.
(1)

Assumption 1: Given a population of brain connectivity matrices P = {A(1), A(2), . . . , A(m)},
where each A(k) ∈ Rd×d represents a graph with d nodes, we define an augmented connec-

tivity matrix A(aug) ∈ Rd×d by sampling each entry A
(aug)
i,j independently from the cor-

responding entries {(Ak)i,j}nk=1. The resulting matrix A(aug) is assumed to preserve the
overall topological characteristics of the population P .

Augmentation Procedure: The goal of GRASP is to generate new adjacency matrices
by sampling from a set of existing ones. Let {A(1), A(2), . . . , A(m)} be a set of m adjacency
matrices, each of size n × n, corresponding to graphs within the same class label. Each
matrix A(k) encodes the connectivity structure of an individual connectome. As shown in
Fig. 1, to construct the augmented adjacency matrix A(aug) ∈ Rn×n, we initialize an empty
matrix with the same dimensions as the original adjacency matrices. For each element

a
(aug)
ij , we randomly select one of the m available adjacency matrices A(k) from the set

{A(1), A(2), . . . , A(m)}, and assign the corresponding value a
(k)
ij to the augmented matrix.

More formally, for each i, j ∈ {1, 2, . . . , n}, we denote:

a
(aug)
ij = a

(k)
ij where k ∼ Uniform(1,m) (2)
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Figure 1: Illustration of the augmentation process. An empty matrix with the dimensions
of A(k) is initialized, and each element is filled by randomly choosing from one of the m
adjacency matrices

3. Results and Discussion

We assess GRASP by using the generated graphs for gender classification.
Dataset: We used the dataset from (Škoch et al., 2022), which includes 88 subjects (48
females, 40 males) with structural connectomes of 90 brain regions.
Training Details: We trained two-layer models (GCN, GAT, GraphSAGE) and a five-
layer MLP for 100 epochs on Google Colab, using an 80/20 train-test split. The training
set was augmented with 1000 additional adjacency matrices for both male and female brain
graphs via GRASP. Each classifier was trained on both original and augmented data, and
evaluated on the unaugmented test set.

As shown in Table 1, accuracy increased across all models following augmentation, with an
average improvement of 20%. The GCN model exhibited the highest gain at 34%, while
GAT, GraphSAGE, and MLP also showed less improvements. Despite these gains, the
overall increase in accuracy is not substantial. We hypothesize that this limitation arises
from the random edge selection process used during augmentation, which likely disregards
inter-edge dependencies. This is further supported by the performance of the MLP model,
which ignores graph structure yet outperformed both GAT and GCN in terms of accuracy.

Model Accuracy (Original) Accuracy (Augmented)

GCN 0.52 0.70

GAT 0.59 0.64

GraphSage 0.52 0.64

MLP 0.58 0.67

Table 1: Classification accuracies for the original and augmented training sets.

4. Conclusion

In this paper, we presented GRASP which is a graph augmentation technique that con-
structs matrices by sampling positions from random adjacency matrices, overcoming non-
topology-preserving method limitations. It improved connectome gender classification. Fu-
ture work will refine region-aware sampling to better preserve connectivity patterns.

3



Sahebghadam

References

Alaa Bessadok, Mohamed Ali Mahjoub, and Islem Rekik. Brain multigraph prediction using
topology-aware adversarial graph neural network. arXiv preprint arXiv:2105.02565, 2021.
doi: 10.48550/arXiv.2105.02565.

Jonathan D Clayden. Imaging connectivity: Mri and the structural networks of the brain.
Functional Neurology, 28(3):197–203, 2013. doi: 10.11138/FNeur/2013.28.3.197.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang,
Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised
learning on graphs. arXiv preprint arXiv:2005.11079, 2020. doi: 10.48550/arXiv.2005.
11079. URL https://arxiv.org/abs/2005.11079. NeurIPS 2020 Oral. Final version.

Byung-Hoon Kim, Jong Chul Ye, and Jae-Jin Kim. Learning dynamic graph
representation of brain connectome with spatio-temporal attention. In Pro-
ceedings of the 35th Conference on Neural Information Processing Systems
(NeurIPS), 2021. URL https://papers.neurips.cc/paper_files/paper/2021/file/

22785dd2577be2ce28ef79febe80db10-Paper.pdf.

Ahmed Nebli and Islem Rekik. Gender differences in cortical morphological networks. Brain
Imaging and Behavior, 14:1831–1839, 2020. doi: 10.1007/s11682-019-00123-6. URL
https://doi.org/10.1007/s11682-019-00123-6.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards
deep graph convolutional networks on node classification. In International Conference
on Learning Representations (ICLR), 2020. doi: 10.48550/arXiv.1907.10903. URL
https://doi.org/10.48550/arXiv.1907.10903.

Jiajun Zhou, Jie Shen, and Qi Xuan. Data augmentation for graph classification. In Pro-
ceedings of the 29th ACM International Conference on Information Knowledge Man-
agement (CIKM ’20), pages 2341–2344, 2020. doi: 10.1145/3340531.3412086. URL
https://doi.org/10.1145/3340531.3412086.
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