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Abstract

We introduce a doubly hierarchical generative representation for strand-based
hair geometry that progresses from coarse, low-pass filtered guide hair to densely
populated hair strands rich in high-frequency details. We employ the Discrete
Cosine Transform (DCT) to separate low-frequency structural curves from high-
frequency curliness and noise, avoiding the Gibbs’ oscillation issues associated
with the standard Fourier transform in open curves. Unlike the guide hair sampled
from the scalp UV map grids which may lose capturing details of the hairstyle in
existing methods, our method samples optimal sparse guide strands by utilizing
k-medoids clustering centres from low-pass filtered dense strands, which more
accurately retain the hairstyle’s inherent characteristics. The proposed variational
autoencoder-based generation network, with an architecture inspired by geometric
deep learning and implicit neural representations, facilitates flexible, off-the-grid
guide strand modelling and enables the completion of dense strands in any quantity
and density, drawing on principles from implicit neural representations. Empirical
evaluations confirm the capacity of the model to generate convincing guide hair
and dense strands, complete with nuanced high-frequency details.1

1 Introduction

The quest for realistic virtual humans is a cornerstone of modern computer graphics, with high-
quality 3D hair strand generation being one of its most intricate challenges. Our work focuses on
the generation of strand hair with machine learning algorithms, which alleviates the labor-intensive
process inherent in crafting digital hairstyles—a task that requires meticulous attention to detail and
consumes a disproportionate amount of time and artistic resources. In addition, it strives to establish
a generative prior, a foundational blueprint that not only streamlines the creation process but also
enhances the reconstruction capabilities essential for virtual human applications.

Hair exhibits a wide spectrum of morphological details, from the subtlest of low-frequency principle
directions and waves to the complexity of high-frequency curls, as described by the physics of elastic
rods and Kirchhoff’s theories [4, 22] on the dynamics of twisting filaments. These high-frequency
elements often include curly helical structures [3, 15] as well as extraneous noise that can detract
from accurately modeling the hair’s principal growth direction. To counteract this, we advocate for a
frequency decomposition approach to extract the principal direction as a low-frequency signal. This
technique is vital in distilling the essence of the hair’s natural trajectory, ensuring that the core path
of growth is clearly defined and free from the visual clutter of high-frequency noise. Such a focus on
low-frequency signals is not only important but also highly effective in generating hair models that

∗Correspondence: yunluchenxyz@gmail.com.
1All data processing and use of models were conducted at CMU.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



(a) Oracle guide strands in artist grooming (b) Guide curves from scalp UV grid sampling

(c) Guide curves from frequency decomposition and optimal sampling (ours)

Figure 1: (a) The oracle guide curves from a grooming project in Blender [8] for principle hair
growing directions. (b) Existing works simply sample guide curves from dense strands regularly
on a UV grid of the scalp, which may contain unnecessary signals of high-frequency noise for
neighbouring dense strands. (c) We model guide curves by frequency decomposition and k-medoids
clustering for optimal sampling a subset of smooth guide hair strands, which are utilized in training
our hierarchical hair generation model.

are true to the natural flow and inherent physical properties of hair, providing a robust basis for more
nuanced and detailed simulations.

The complexity of hair data has led to the adoption of coarse guide strands as a foundational step
in many hair modelling methods, reflecting the guide hair-based artist grooming in Fig. 1(a). These
existing methods [32, 40, 48, 41], however, simplify the guide hair extraction to downsampling a
lower grid resolution of the 2D UV map of the head scalp, as in Fig. 1(b), which comes with some
notable drawbacks. Firstly, simply extracting the full spectrum of each guide strand can be burdened
by high-frequency details and noise irrelevant to adjacent strands, while the oracle guide strands
are usually smooth curves for the hair’s principle growing direction. Secondly, sampling from UV
map grids can sometimes miss intricate hairstyle details and may produce guide strands that are less
representative, as illustrated in Fig. 3. In addition, the grid sampling often results in a suboptimal
density with less hair on the top of the head scalp but more hair on the side, since the UV mapping
from a head scalp to the Euclidean E2 space is not area-preserving.

In response to these challenges, we introduce a novel doubly hierarchical representation of strand
hair geometry, by introducing frequency decomposition and optimal sampling to extract guide hair,
as illustrated in Fig. 1(c). This approach aligns more closely with contemporary computer graphics
tools designed to craft artistically groomed hairstyles. From the perspective of learning, our design to
first learn low-frequency components followed by high-frequency ones adheres to the well-known
frequency principle or spectral bias [28] of generalisation in neural networks. Additionally, optimal
sampling ensures consistency within the coarse-to-fine learning pipeline. By refining the guide curves
this way, we aim to capture the essential form and structure of hairstyles more effectively, paving the
way for more accurate and visually pleasing hair modelling.

We develop neural models to process our novel and sophisticated hierarchical representation of strand
hair geometry, which encompasses a variety of data forms. To accommodate the flexible off-the-grid
modelling of guide strands, our neural model architecture for generation of guide strands adapts
permutation-equivariant geometric deep learning models [27, 45] that do not rely on a fixed feature
grid within a Euclidean domain, with specific modifications tailored to the hair strand problem.
Additionally, our densification model, designed to synthesize densely populated strands from sparse
guides, draws inspiration from the continuous and resolution-free implicit neural representations [24]
and graph message passing [13] techniques. This approach enables the model to effectively handle
fine strands with varying numbers and densities.

To encapsulate our methodology and the contributions of our work:
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• Our approach involves constructing a hierarchical generative model for hair strands that begins with
the formation of coarse guide curves through low-pass filtering and culminates in the generation
of dense hair strands that incorporate intricate high-frequency details.

• We utilize the Discrete Cosine Transform (DCT) to obtain the coarse and low-pass filtered guide
curves. This technique effectively distinguishes the fundamental shape of the hair from the more
complex aspects of curliness and noise, thereby circumventing the Gibbs’ oscillation problem that
often plagues the standard Fourier transform when applied to open curves.

• The guide hair strands are sampled using k-medoids clustering centres from the dense hair data.
This novel method is proven to be theoretically optimal in preserving the original hairstyle’s
features compared to the conventional practice of sampling from a regular 2D grid on a UV map.

• We adapt the family of non-Euclidean geometric deep learning models and develop a permutation-
equivariant architecture for learning on hair strands, instead of 2D CNNs, for more flexible
modelling of off-the-grid guide strands.

• We propose a novel neural mechanism for learning strand interpolation. Inspired by implicit neural
representations and graph message passing, our method handles modelling any amount of dense
strands at any sampling density, and enables end-to-end joint training with guide strands.

1.1 Related Work

Recent learning algorithms for strand hair focuses on capture and reconstruction from single [33,
43, 47] or multiple views [23, 32, 40], often relying on intermediate representations of volumetric
occupancies [33, 46, 43, 40] or orientation fields from image gradient cues [33, 46, 40, 47, 43]. These
approaches mostly have a focus on optimising strand growth or connecting segments, while learning
applies to other intermediate representations (e.g. orientation field) but not directly on strands, thus
not requiring hierarchical strand representation with abstraction.

Our work focuses on building a generative model directly on human hairstyles in the form of a
set of strands, which has been an established representation in industry [2],[10], [38], owing to its
compatibility with physics-based applications. Consequently, strands have emerged as a favoured
representation in numerous computer vision, machine learning, and graphics projects. The most
related works to our approach for strand hair generation are recent methods of GroomGen [48] and
HAAR [41], both relying on off-the-shelf VAE codec representations of strands [32] mapped on
the Euclidean domain of discretized UV map, optionally followed by a coarse-to-fine pipeline in
accordance with different UV grid resolutions [48]. The early work from Wang et al. [42] focused
on a slightly different task of exemplar-based synthesis of strand hair, which requires a base strand
hairstyle or a combination of two for the global shape and synthesizes local textural details.

In contrast to existing strand hair generation methods [48, 41] that rely on hair representations
from prior work [32], we introduce a novel doubly hierarchical hair representation and associated
neural models. Our approach begins by extracting guide hairs from flexible root locations to achieve
an optimal set of strands that faithfully preserve the original hairstyle through a non-Euclidean
representation. Subsequently, we apply frequency decomposition using the Discrete Cosine Transform
(DCT) to achieve a compact representation,eliminating the need for training off-the-shelf codecs and
enabling end-to-end optimization. Compared to grid UV maps combined with strand codecs and 2D
CNNs, our method is more flexible, sophisticated, and exhibits superior performance. Additionally,
our grooming generation technique allows sampling of an arbitrary number of dense strands from
any location, without being constrained by UV grid resolution.

2 Extracting the Hierarchy from Strand Hairstyles

A human’s hair can be seen as a set of strands H = {li}Ni=1, where each strand is a 3D curve
l(t) : [0, 1] 7→ R3. In practice, strand l is usually available as a polyline with discretely sampled
control points in a sequence of n 3D points: l = [l(0), l(1), . . . , l(n− 1)] ∈ Rn×3 sampled from the
continuous curve. The roots of the curves are attached to the head scalp M: l(0) ∈ M. In this work
we consider all the hairstyles are aligned to the same human head scalp geometry.

We aim at a hierarchical modeling of human hairstyles due to the high complexity of the human
hair data. Inspired by the guide strand-based modelling in artist strand hair creation, we propose to
smoothen the strands with frequency decomposition and optimally sample coarse guide hair strands.
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Figure 2: Comparing frequency-based smoothing of an exemplar curly strand. Smoothing from the
DFT biases towards closed curves and suffers from Gibbs’ oscillations [12] for hair strands as open
curves. In contrast, The DCT has a strong energy compaction property and more flexible boundary
conditions, facilitating encoding open curves with fewer harmonics.

2.1 Frequency decomposition of strands as open curves

Human hair exhibits a spectrum of morphologies, ranging from straightness to inherent curvature
of planar waves or 3D helices from a confluence of the strand’s physical attributes, such as mass,
length, and tensile elasticity [22]. For undulating and helical strands, the predominant axis of growth
can be conceptualized as a smooth, low-frequency trajectory, whereas the detailed twists and noise
are considered high-frequency features. Artists creating hairstyles typically start by making smooth,
basic guide strands and then add detailed waves, curls, and slight randomness [2, 8]. Notwithstanding,
contemporary learning-based algorithms for guide strand modelling have largely overlooked this
intrinsic frequency paradigm.

In our approach, we separate hair strands into low- and high-frequency components, aligning with
traditional artist-driven hair modelling techniques that utilize smooth guide strands. Initially, we
model the smoothed, low-frequency base of the strand, then we enhance it with high-frequency waves,
curls, and localized noise. This method not only adheres to the spectral bias principle [28] but also
streamlines the learning process.

The Discrete Fourier transform (DFT) is a widely applied method for frequency decomposition. How-
ever, the DFT assumes strong periodicity of the signal, thus suffers from the Gibbs’ phenomenon [12]
with significant oscillations when processing on open curves whose start points and endpoints do not
coincide with each other [11, 9], as depicted in Fig. 2.

Therefore, we adopt the Discrete Cosine Transform (DCT) [1], a Fourier-related transform that
is analogous to the Discrete Fourier Transform (DFT) but employs only real-valued cosine basis
components. The DCT is extensively utilized in image, video, and audio signal compression [30]
due to its superior energy compaction properties, which allow for more efficient representation of
signals with fewer coefficients. Additionally, the DCT offers more flexible boundary conditions
that mitigate wrap-around effects, thereby reducing artifacts such as those associated with the Gibbs
phenomenon. These advantages make the DCT particularly well-suited for encoding open curves
using fewer harmonics. Formally, we apply the DCT to transfer the hair curve l(t) with t = 1, . . . , n

into frequency domain l̃(τ) by

DCT(l(t)) : l̃X(τ) = (
2

n
)

1
2

n−1∑
t=0

w(t) lX(t) cos [
π

2n
(2t+ 1)τ ], where w(t) =

{
1√
2

if τ = 0,
1 otherwise.

(1)

The corresponding inverse DCT is the inverse function iDCT = DCT−1. lX and l̃X denote the signal
component on the X-axis coordinate in spatial and frequency spaces respectively. The same process
also applies to Y- and Z-axes.

Due to the even symmetry of the cosine function, the DCT is equivalent to the DFT operating on the
symmetrically extended signal sequence of twice the length, while the sine components are cancelled
out. The periodicity extension of the signal no longer introduces strong discontinuity, which facilitates
modelling open curves, as corroborated by Fig. 6. We refer to the literature for details [30, 9].
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Figure 3: Comparison of guide hair curves extracted by k-medoids (left) and grid-sampling (right)
from reference hairstyles (middle), both with an equal count of curves. It is evident that grid-sampling
can omit crucial hairstyle details. In contrast, the off-the-grid optimal guide curve subset derived
from our k-medoids method more accurately captures the essence and details of the original hairstyle.

2.2 Optimal sampling of coarse guide hair by k-medoids clustering

Learning-based approaches to strand-based hair modelling typically adopt a coarse-to-fine strategy,
necessitating the generation of a set of coarse guide strands due to the computational demands of
processing dense strands. This concept aligns with the traditional artist-driven hair creation workflow.
Conventional methods predominantly employ a strategy of sampling guide strands by extracting those
emanating from scalp locations situated at the grid centres of an unwrapped UV map of the scalp
manifold. However, this regular grid sampling approach is suboptimal, often failing to capture certain
strand clusters critical for detailing the hairstyle, as illustrated in Fig. 3. In contrast, we introduce a
methodology for extracting a sparse subset of k off-the-grid strands from the comprehensive dense
hair strand set HL = {lL}, with lL denoting low-pass filtered strand curves from the first ñL DCT
components as predominant growing directions, resulting in the optimal set G∗

k that more accurately
mirrors the characteristics of the dense strands.
Definition 1 (Optimal sampling guide hair curves). Given a set of dense low-pass filtered hair
curves HL, the optimal sampling of coarse guide curve set G∗

k of cardinality k is the subset of
HL which has the minimum possible bidirectional chamfer distance from HL. Formally, G∗

k =
argminGk⊂HL; |Gk|=k chamfer(HL,Gk)

Our investigation reveals that the k-medoids clustering method [16] delivers an optimal approach for
identifying the optimal strand subset. k-medoids is a classical partitioning technique that organises
data points into clusters with the aim of minimising the distance between the points within a cluster
and a specific point within the same cluster, known as the medoid, which serves as the cluster’s
nucleus. Unlike the popular k-means algorithm which allows the cluster’s centroid to be a virtual
average of the data points, k-medoids selects actual data points as the medoids, enhancing the
interpretability of the cluster centers. Formally, the objective of k-medoids is to partition the set
HL into a collection of disjoint clusters S = {S1, . . . ,Sk}, each with its corresponding medoids
U = {u1, . . . , uk} in such a way that the aggregate of dissimilarities to all elements within each
cluster is minimised, as defined by the following objective:

min
S

k∑
i=1

∑
lL∈Si

d(lL, ui), where ui = argmin
lL∈Si

∑
l′L∈Si

d(lL, l′L), (2)

and d(·, ·) is a dissimilarity measurement. This objective leads to the following observation:
Theorem 1. The medoid set U = {u1, . . . , uk} from the k-medoids clustering of H is the optimal

sampled hair curve set G∗
k , if aggregated squared Euclidean distance d(l, l′) =

1

n
∥l − l′∥22 :=

1

n

∑n−1
t=0 ∥l(t)− l′(t)∥22 for two individual curves is used as the divergence function for k-medoids.

Theorem 1 establishes that the optimal strategy for sampling a specified number of guide strands
from an original set of densely packed hair strands is to apply k-medoids clustering to the dense

5



strand set and select the resulting medoids as the guide strands. This resultant set of guide strands,
termed the representative guide curve set in Definition 1, possesses the smallest possible Chamfer
distance to the original dense strand set compared to any alternative sampling method employing the
same number of strands.

Note that our hierarchical hair representation does not cluster dense strands as in [42] using the
k-medoids method. Instead, we use only the resulting medoids to sample guide strands. This ensures
optimal guide strand sampling by leveraging the derived medoid set. The reason we avoid using
explicit clusters to represent dense hair is that the interaction between dense and sparse guide strands
is better captured through sampling and interpolation. Each dense strand is influenced by multiple
nearby guide strands rather than just one from a single cluster. Consequently, our guide strand
representation and interpolation mechanism provide a more sophisticated and accurate approach than
the cluster-based model in [42], resulting in a more nuanced depiction of hair structure.

2.3 Processing dense hair strands into hierarchy

We introduce the data structure of our doubly hierarchical hair data abstraction before it can be pro-
cessed by neural models. We extract the low-frequency structure disentangled from high-frequency
details for each strand as the principle growing directions, followed by optimally selecting a represen-
tative coarse subset of guide strands from the low-pass filtered dense hair data.

For each strand l, we map the root point on the scalp manifold l(0) ∈ M to its UV coordinate on the
UV mapping of the scalp as r ∈ MUV ⊂ R2. We translate all strands to centralize the root points at
the origin of the 3D space, and achieve the low-pass filtered curve with the first ñL components in
the DCT. We apply the DCT on the derivative l̇(t) = l(t+ 1)− l(t) instead of the original sequence
of coordinates to ensure the same root position. To condense the signal, the reconstructed curve lLi in
the spatial domain is resampled to a reduced resolution of 2 · ñL by fitting a cubic spline, adhering to
the Nyquist sampling theorem [35] for precise discretisation. For high-frequency details, we maintain
the signal in the form of DCT coefficients, denoted as l̃H ∈ R(ñH−ñL)×3 A cut-off frequency ñH is
strategically selected to ensure compactness and exclusion of signal components exceeding ñH as
high-order noise. Practically, we set ñL = 8 and ñH = 40. Next, we employ k-medoids to identify
the indices of the optimal coarse guides for each hairstyle, maintaining a consistent k = 512.

This way, we represent each strand as a tuple (r, lL, l̃H), where r is the root point’s UV coordinate, lL

is the low-pass filtered strand curve, and l̃H encapsulates the high-frequency details as DCT harmonics.
Strands within the optimal coarse guide curve set are denoted as (r∗, lL∗) while high-frequency
signals are excluded from guide curves. The learning process for hair generation is structured
hierarchically: it commences with the generation of the guide curve set {(r∗, lL∗)}, progresses to the
densification of strands {(r, lL)}, and culminates with the integration of high-frequency details {l̃H}
when necessary, for hairstyles with heavy curliness or non-smoothness.

3 Learning to Generate Hierarchical Strand Hair

The generative process of our model is depicted in Fig. 4. We employ a variational autoencoder
(VAE) [18, 31] to capture the distribution of hierarchical hair structures. The choice of VAE
is motivated by its straightforwardness and proven effectiveness and efficiency in optimisation
and sampling, while other categories of generative models are left to future exploration. The
objective of a VAE is to learn a generative model pθ(x, z) = pθ(z)pθ(x|z) for data x and latent
variables z. Since the true posterior is intractable, we approximate it using the latent encoder
model qϕ(z|x) and optimise the variational lower bound (ELBO) on the marginal likelihood p(x):
LVAE = Eqϕ(z|x)[log pθ(x|z)]− KL(qϕ(z|x)∥pθ(z)), where the second term is the Kullback-Leibler
divergence, quantifying the difference between the approximate and true posteriors.

3.1 Generation of the optimal coarse guide hair with dual-branch network

The guide VAE for the generation of the optimal guide curve set {(r∗, lL∗)} with a fixed cardinality
k is detailed in Fig. 4(b). The guide curves {(r∗, lL∗)} are conceptualized as a collection of data
points, with the sequence lL∗ transformed to a feature vector hL∗ ∈ RdhL∗ using a 1D convolutional
encoder embedded on the domain of UV coordinates r∗ ∈ [0, 1]2. Our network architecture draws
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Figure 4: Generation pipeline overview: (a) During training, a small batch of dense strands and
extracted guide curves are sampled from the UV map of the scalp to optimise the networks. (b) Guide
curves are generated using a PVCNN VAE that incorporates 2D convolution and PointNet layers. (c)
Dense strands are generated by aggregating features from the convolution grid via bilinear sampling
and from neighboring guide curves through graph convolution, with the densification module being
jointly trained with the guide curve model. (d) High-frequency signals are refined using another
dual-branch VAE, conditioned on the global and local latent features derived from the network
responsible for generating the low-pass filtered principal strand signal.

inspiration from the Point-Voxel CNN (PVCNN) [19], leveraging its demonstrated efficiency and
effectiveness in the domain of point set learning.

The architecture, akin to Point-Voxel CNN (PVCNN), utilizes a dual-branch approach to process
point features: a PointNet branch and a convolution branch. Within the encoder, the point branch
consists of a shared multilayer perceptron (MLP) that operates on all points, employing max pooling
for aggregation as per the PointNet design [27]. The convolution branch, on the other hand, begins
by partitioning the UV space [0, 1]2 into a 2D grid of W × H resolution. This step is analogous
to the "voxelization" in PVCNN but is executed in 2D. Each grid cell is assigned an averaged
feature vector derived from all data points whose root coordinates fall within it, yielding a feature
tensor of dimensions RW×H×dhL∗ . This tensor is then processed by successive downsampling 2D
convolution layers to distill a global feature. To enhance the feature representation in the encoder’s
convolution branch, we incorporate features from the sampled dense strands. These additional
features are not utilized in the PointNet branch to avoid increasing the memory footprint, whereas the
convolution branch feature is constrained to a fixed resolution. The mean and standard deviation for
reparameterizing the VAE latent code z is the aggregated features from both branches.

The decoder’s architecture mirrors that of the encoder. The point feature is bilinearly sampled from the
feature grid at the end of the convolution branch, following the hybrid grid-implicit representations [26,
5]. The interpolated point feature is then reconstructed into the low-passed curve sequence lL∗.

Sampling root positions from generated density map The proposed dual-branch architecture
learns generation of the curve sequence p({lL∗}|{r∗}) given root positions p({r∗}). Our objec-
tive extends to mastering the joint distribution p({r∗, lL∗}), which we approach by decomposing
p({r∗}, {lL∗}) into p({r∗}) · p({lL∗}|{r∗}) as optimising the root coordinates and curve sequence
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jointly presents significant empirical challenges. While the dual-branch network is utilized for
p({lL∗}|{r∗}), learning p({r∗}) could potentially be achieved with a distinct generative network,
such as SetVAE [17]. Nevertheless, we employ a trick to generate a W ×H grid map of root densities
at the convolution branch decoder, achieved by tallying the roots within each grid cell. During
inference, p({r∗}) is derived from this grid density map, before the sequence signal {lL∗}|{r∗}
is generated. Details of the density map sampling are provided in the Appendix D. Although the
density map sampling does not guarantee the exact same original root positions, empirically with a
reasonable resolution of density map, we find that the resulting root positions correctly resemble the
distribution of root points.

3.2 Densification

To accommodate our innovative off-the-grid guide curve design, we introduce a densification module
inspired by the concept of implicit neural representations [24, 21, 7, 39] This approach enables
the generation of an arbitrary number of fine strands, independent of the scalp UV map’s resolu-
tion, by leveraging hybrid grid [26, 5] and graph [6] representations. Given a randomly sampled
query root position ri ∈ MUV, our goal is to derive fine strand features that align with the guide
curve features within the VAE decoder. Features from the convolution branch ĥL∗

conv,j are bilinearly
sampled from the convolution branch, while for the PointNet branch, the query aggregates point-
wise features ĥL∗

point,j from the query’s neighboring guide curve locations r∗j ∈ Nri , employing a
graph-hybrid implicit representation strategy [6] This method considers guide curves as anchor
points and propagates signals to arbitrary query locations through message-passing graph convo-

lution [13]: ĥL
point,i =

1

|Nri |
∑

j wj(MLP(ri, r∗j − ri, ĥ
L∗
point,j) + ĥL∗

point,j) with a two-layer MLP, and

wj =
1

∥r∗j − ri∥2
/
∑

j′
1

∥r∗j′ − ri∥2
is a decaying weight. The resulted features are passed to the

same 1D convolution decoder in the guide curve VAE model.

Note that the generation of the optimal guide curves and sampled non-guide strands is trained jointly.
This pipeline is designed to be invariant to the sampling density, allowing for the generation of
any desired number of dense strands during inference. This way, learning of densification can be
regarded as in an auto-decoder learning scheme [24] conditioned on the coarse guide strands, and the
information and varieties of dense strands is stored in the latent code and the network.

3.3 Refinement of high-frequency details

Though the majority of hair samples in our dataset can be accurately represented by low-frequency
signals, certain hairstyles exhibit high-frequency structures of curliness and noise. The model for
learning the high-frequency components {l̃H} is a conditioned VAE with the same dual-branch
architecture as the model that generates guide curves, except that the model is conditioned by
concatenating the global latent from the guide model and the local dense strand feature. This way,
we can sample different forms of high-frequency details of noise and curly structures from the same
generated low-frequency components of strands.

4 Experiments

Data Our method is trained on a dataset comprising 658 synthetic strand hairstyles. Detailed
information on the dataset and training procedures is available in the appendix.

Frequency decomposition and guide curve extraction Our evaluation focuses on the design
choices made in modeling the hierarchical structure of hairstyles. As depicted in Fig. 6, we apply
low-pass filtering with a designated cutoff frequency to the strands, either on the original coordinate
sequence l(t) or its derivative l̇(t), the latter being the approach we adopt. In both scenarios, the
Discrete Cosine Transform (DCT) outperforms the Discrete Fourier Transform (DFT) in reconstruct-
ing the signal within the same low-pass frequency band. The derivative form of the signal, being
simpler to model, enhances the performance of both DFT and DCT, with DCT showing superior
effectiveness. Furthermore, in Table 1, we conduct a comparative analysis of the k-medoids method
against baselines for guide curve extraction, namely grid-based sampling, farthest point sampling
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(a) Grid-based + strand codec (b) Grid-based (c) Ours (d) Guide curves (GT) (e) Reference hairstyle

Figure 5: The VAE reconstruction of guide curves, showcasing our method’s enhanced performance
due to informative guide curves and enriched network representation.

Figure 6: Euclidean distance
between low-pass filtered and
original strands.

(a) Generated guide curves (b) Our densification (c) Nearest-neighbour upsample

Figure 7: Dense strands from VAE generated guide curves, with
our model yielding natural-looking hair, in contrast to the nearest
neighbour baseline which displays artifacts.

(FPS), and k-means followed by projection of clustering centres to valid strands on the head scalp.
The k-medoids approach demonstrably achieves a closer approximation to the dense strand set, as
evidenced by the lower bidirectional chamfer distance (CD). These empirical findings align with our
theoretical expectations, underscoring the efficacy of our methodological choices in capturing the
intricate details of hair structure and texture.

Table 1: Evaluation on extracted guide curves (CD
(×10−4) to reference hair).

Grid-sample FPS k-means + projection k-medoids

0.683 0.139 0.116 0.101

Table 2: Evaluating reconstruction of guide curves.

CD (×10−4) to: Grid-based Grid-based Ours+ strand codec

Input sampled strands 1.521 1.597 0.906
GT dense hair 9.090 10.843 8.079

Table 3: Evaluation of densification on VAE recon-
structed guide curves.

Nearest-neighbour Ours

CD (×10−4) to GT dense hair 0.311 0.209

Reconstruction of guide curves with VAE
Our generative hair representation’s efficacy is
assessed using a set of 30 test examples, as de-
tailed in Table 2 and illustrated in Fig. 5. Our
method outperforms traditional grid-based hair
representations, which map strands onto a scalp
UV grid map and process them with purely
2D convolutional layers. The enhanced perfor-
mance can be attributed to the rich represen-
tation derived from guide curves and our off-
the-grid architectural approach. Direct compar-
ison with closely related works such as Groom-
Gen [48] and HAAR [41] is challenging due
to lack of suitable evaluation metrics and the
fact that they are trained on different datasets.
Instead, we benchmark against a conceptually
similar baseline representation: a grid-based Eu-
clidean feature representation on the scalp UV-
map, paired with a pretrained off-the-shelf strand VAE [32], which is the hair representation adopted
by the prior work [41, 48]. This representation, however, falls short in performance. We posit that a
strand codec VAE, originally designed as a generative prior for multiview hair reconstruction, may
not be optimal for hairstyle-level generative tasks. By jointly optimising the strand encoder and
decoder, our model circumvents the error accumulation inherent in the strand VAE approach, leading
to more accurate and realistic hair generation.

Densification Building on the guide reconstruction experiments, we further assess the quality of
densified strands against the reference hair, as quantified in Table 3. Our method outperforms the
baseline approach, which merely duplicates strands from the closest guide curve. Notably, our model
demonstrates the ability to generate high-quality dense strands informed by the generated coarse
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Figure 8: Generating diverse high-frequency details: Our high-frequency conditional VAE adds varied
curliness and noise to hairstyles with guide curves and dense strands in low-frequency, demonstrating
our model’s ability to disentangle low- and high-frequency strand geometry.

Figure 9: Strand-based hairstyles generated using our approach.

guide priors, benefiting from the joint training with the guide curve VAE. As illustrated in Fig. 7, our
model is capable of refining a set of VAE-generated guide curves into dense strands with fine textural
details, in contrast to the nearest neighbour upsampling method, which introduces unnatural artifacts.

Creating varied high-frequency details in hair Our methodology extends to generating diverse
high-frequency details for each hairstyle, building upon the foundation of guide curves and dense
strands in low-frequency created by our model. By employing a high-frequency conditional VAE,
we introduce a variety of high-frequency details, such as curliness and noise, into the hair strands.
This process is vividly illustrated in Fig. 8, which showcases the capability of our approach to
effectively disentangle and separately model the components of hair strand signals in both low- and
high-frequency domains. This disentanglement allows for the nuanced recreation of hair textures,
enhancing the realism and diversity of the generated hairstyles.

Additional results Some outcomes of our hair generation pipeline are showcased in Fig. 9. Addi-
tional experiments and ablation results are conducted and reported in the appendix.

5 Conclusion

We propose a doubly hierarchical generative representation for strand that captures the full spectrum
of hair details from low-frequency shapes to dense and fine details. By leveraging frequency decom-
position and optimal sampling, our model surpasses traditional grid representations in preserving the
authenticity of hairstyles. Our model design ensures the generation of flexible hair strands in any
amount and density that are both diverse and realistic, free from the constraints of grid-based systems.
Future work could explore the integration of dynamic hair behaviors and the adaptation of our model
to generate a wider variety of hair types, further enhancing the realism and applicability of virtual
hair in diverse digital environments.
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A Border Impacts

Advancements in hair generation technology, such as our work, can enrich virtual realism and
inclusivity, benefiting industries like gaming and entertainment. However, they also raise concerns
about the potential misuse in Deepfakes and the reinforcement of unrealistic beauty standards.
Balancing these innovations with ethical considerations is essential to ensure their positive impact.

B Proof of Theorem 1

Assume that from the k-medoids algorithm, we obtain the set of medoids U = {u1, . . . , uk} with
each ui from the set of dense hair strands H. Then, from Eq. (2), U achieves minimum sum of cluster
element-to-medoid distance

∑k
i=1

∑
lL∈Si

d(lL, ui).

Next, from the algorithm implementation, each element lL in H is closest (or equally close) to the
medoid of its own cluster than that of any other cluster, so U is the subset of H with cardinality k that
achieves minimum

∑k
i=1

∑
lL:minui∈U d(lL,ui)

d(lL, ui) =
∑

lL∈H minui∈U d(lL, ui) which is the
minimum sum of each dense strand lL with its nearest medoid u. After taking the average (divided by
a constant |H|), 1

H
∑

lL∈H minui∈U d(lL, ui) is in the form of a **unidirectional chamfer distance**
from H to U . So U achieves the minimum unidirectional chamfer distance from H, from all possible
subset of H with cardinality k.

Then we show that in the reverse direction, the unidirectional chamfer distance from U to H,
1
|U|

∑
ui∈U minlL∈H d(lL, ui), is constantly 0. This is easy to infer because U is a subset of H, and

each ui can find the same element from H that is closest to itself with distance 0. Aggregating
both directions, we conclude that U , from all possible subset of H with cardinality k, achieves the
minimum (bidirectional) chamfer distance between U and H, i.e., U is the optimally sampled subset
of H with cardinality k according to Definition 1.

C Additional Experiments

Ablation on designing choices We report ablation results to verify the design choices in our
approach in Tables 4 and 5.

In Table 4, we assess the VAE reconstruction efficacy with various methodological alternatives.
Opting for randomly sampled guides over k-medoids derived ones compromises representativeness,
adversely affecting performance. Utilizing frequency space coefficients to represent principal low-
pass curves also leads to increased error, justifying our choice to revert low-pass filtered signals to the
spatial domain. Our integrated training approach for both strand and hairstyle levels proves superior
to employing a pretrained strand VAE codec, as utilized in other studies.

We also explored substituting graph aggregation with the nearest guide’s PointNet branch feature for
each dense strand’s query root position, which negatively impacted the upsampled strands’ accuracy.

For the high-frequency model, we benchmarked against using a pretrained strand codec for reconstruct-
ing each strand’s high-frequency signal. The mean average error in reconstructing high-frequency
coefficients suggests that an end-to-end optimisation of strand features is more effective than relying
on a pretrained codec.

Ablation on the frequency threshold for the low-pass filtered hair curves we expect frequency
decomposition helps the representation quality in the neural network model as inspired by the spectral
bias principle [28]. We show the additional ablation experiments on varying frequency threshold in
reconstructing straight and curly hair strands with both low- and high-frequency details in Table 6,
with hair strands reconstructed by aggregating results from both our low- and high-frequency models.
We observe that the frequency threshold in the range from 8 to 12 is optimal, and empirically we use
8 which is more efficient. When the frequency threshold is too low, the low-filtered signal does not
capture enough information of the principle growing direction. And when the frequency threshold is
too high, high-frequency structure cannot be encoded more efficiently by DCT coefficients, and the
increased computation cost hinders optimisation. Our representation makes use of both spatial and
spectral domain with correct setup of frequency threshold.
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Table 4: Ablation on VAE reconstruction of low-freq. guide curves and densification (CD ×104 ↓).

guide-to-GT guide guide-to-GT dense dense-to-GT dense

Ours 0.906 8.079 0.209

Randomly sampled strands as guide 0.997 8.220 0.213
lL → l̃L (frequency space) 1.152 8.304 0.226

With off-the-shelf strand codec 0.966 8.117 0.216

W/o graph aggregation in densification 0.913 8.102 0.214

Table 5: Ablation on high-freq. reconstruction (MAE ↓).

MAE ↓
Ours 0.137

With off-the-shelf strand codec (freq. space) 0.145

Table 6: Ablation on varying frequency threshold (VAE reconstruction)

Frequency threshold 4 6 8 10 12 16 20 32 64 100

CD (×10−4) 1.494 1.122 1.010 1.014 1.009 1.024 1.188 1.432 1.865 1.849

Subjective evaluation we conduct user study with human evaluation to compare our method
with the unconditional model of HAAR [41], which is the only open-source generative model for
strand hair at the time of the rebuttal period of NeurIPS 2024. We randomly generate 30 hairstyles
using our method without selection, and 30 from HAAR, in total 60 examples, randomly shuffled
before presented to the users. Each user will give a score 1-10 to each hairstyle on how realistic
the generated hairstyle looks. We provide examples and instructions on the Google form in Fig. 10.
Users participate in the experiments voluntarily, and each user takes 5 to 10 minutes to finish the
experiment. We collected 54 valid responses. The resulting average scores are in Table 7. suggesting
the advantage of our generation over HAAR. We also show results in different hairstyles categories,
For short hair, both methods perform good. Our method perform significantly better on long hair and
especially curly hair, due to our sophisticated representation design, e.g. frequency decomposition,
the learned neural interpolation, end-to-end training that facilitate optimisation.

Figure 10: Screenshots of instructions on the Google form, with an example of generated hairstyle
(1/60) in the middle. We rendered hair in the same color and not from black, brown or blonde to
avoid racial bias.

Table 7: User assessment of hair generation quality. Subjective rating of scores from 1 to 10

HAAR ours

All hairstyles 6.106 ± 0.254 6.933 ± 0.237

Short non-curly 7.133 ± 0.287 7.378 ± 0.254
Long non-curly 5.811 ± 0.372 6.456 ± 0.328

Curly 4.933 ± 0.424 6.656 ± 0.347
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D Implementation Details

Our method is implemented with PyTorch [25]. All experiments are conducted on a single Nvidia
RTX A4500 GPU. We use AdamW [20] with a learning rate of 3× 10−4 for 100k iterations for both
low-frequency and high-frequency models, with an exponential learning rate decay to 3× 10−6 at
the end of training. The batch size is 32.

During training, we apply random horizontal flipping and online scale augmentation in a range of
[0.95, 1.1]. To prevent optimisation of the network from overfitting, in training we oversample 1024
guide curves in data preprocessing and further subsample 512 of them in training, while half of
the guide set can still capture the characteristics of the hairstyle. We also sample another batch of
512 non-guide strands in each hairstyle in training to enrich the convolution branch representation.
During evaluation we are able to generate arbitrary number of strands but we limit the number to
10000 for visualizations in the paper to match the dataset. The downsampling and upsampling of
strands is achieved by fitting cubic splines with corresponding numbers of control points.

We use the visualization tool provided by the code repository in [36] for our work. We use the code
from [34] to extract k-medoids.

The 1D convolution encoder and decoder The 1D conv encoder applied on each low-frequency
curve lL ∈ RñL×3 consists of two downsampling blocks to map the input sequence resolution from
16 to 8 and 8 to 4. Each downsampling block consists of four 1D conv layers with kernel size 3,
and every third conv layer of each block applies a stride of 2 for downsampling. In between every
two conv layers we add a residual skip connection [14] and if downsampling is involved then the
skip connection is replaced by a 1D conv of kernel size 1 with a stride of 2. The dimension of the
latent feature is 16. After the sequence length becomes 4 we flatten the sequence data to a vector
from 4× 16 to 64. Then we attach two fully connected layers to map each layers to map the latent
dimension to 32. The 1D conv decoder is in a reversed architecture of the encoder except that the
upsampling conv layer is in a depth-to-space design [37].

The 2D convolution and PointNet branches After each strand sequence is transformed into a
vector code, the 2D conv branch encoder aggregates them to a grid of W ×H = 64× 64 resolution,
and downsampled to 2× 2 after five downsampling blocks. The downsampling blocks are similar to
those in 1D but with 3 × 3 kernels. And the latent dimension in downsampling blocks are 32, 64,
128, and 256. The 2× 2× 256 tensor is then flatterned to a 1024-dim latent vector.

The PointNet branch encoder contains four residual blocks, and each are with two fully connected
layers with residual connections. At the beginning of each block we concatenate the roots’ coordinates
in UV and 3D spaces. At the end of each block we apply a max pooling aggregation and concatenated
to the feature of each point cloud, as the input to the next layer, until reaching the end of the fourth
block where the max-pooled feature is the global feature from the PointNet branch. The latent
dimensions in these blocks are 32,32,64, and 128.

We concatenate the 1024-dim feature from the conv branch and the 128-dim feature, and map them
to mean and standard deviation vectors of 1024-dim to reparameterize the latent code of the VAE.
The decoder is the reserves of the encoder and similarly the depth-to-space upsampling design [37]
in adapted in 2D convs.

In between each two adjacent linear or convolution layers throughout the model, we use Swish
activation [29] and Group Normalization [44] which divides latent channels into 8 groups.

Densification model The two-layer MLP in the message-passing graph convolution has latent
dimension of 32 The number of neighbouring guide features used in the graph aggregation is 8.

High-frequency VAE The architecture is mostly the same as the guide curve VAE except that
some layers need to change the input dimension after the guide VAE latent code is concatenated. In
addition, the sequence length of l̃H is 32 in the frequency space so there are one more downsampling
block in the 1D conv encoder and one more upsampling block in the 1D decoder.

Loss functions The Variational Autoencoder (VAE) framework employs the Evidence Lower Bound
(ELBO) which comprises two principal components: the KL divergence term and the reconstruction
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term. For our low-frequency guide curve model, the reconstruction term is quantified using the mean
squared error (MSE) L2 loss on the signal, supplemented by an additional L2 loss on the signal’s
derivative. Furthermore, a specific term is dedicated to optimising the reconstruction of the density
map, as detailed in Section 3. In the densification process, we introduce a set of losses for the original
signal, its derivative, and the density map associated with dense strands. These losses are integrated
with a discounting weight of 0.1 to balance their contribution. For the high-frequency model, we
incorporate a KL divergence term for the high-frequency latent variable, alongside an L1 loss for the
accurate reconstruction of the Discrete Cosine Transform (DCT) harmonics.

Density map sampling At the end of the conv branch in the dual-branch decoder, we output a
density map, same to the spatial resolution of the convolution feature map. The density map is trained
to optimise towards the ground truth probability values of a root points falling in each of the grid,
for each training example. In training, we use oracle root points from the encoder and optimise
the density map and strands simultaneously. During inference, we can sample root points from the
probability maps when the oracle root points from the encoder are unknown, before generating strand
details. Each sampled root points is assigned with a random 2D UV coordinate within the small
square grid it comes from. In practice, we output two density maps from the convolution branch
decoder, one for guide and one for dense strands.

Although the density map sampling does not guarantee the exact same original root positions,
empirically with a reasonable resolution of density map, we find that the resulting root positions
correctly resemble the distribution of root points. Our evaluation are all based on set chamfer
measurements, thus not requiring strand-to-strand correspondence for evaluation.

Evaluation of upsampling and the nearest neighbour baseline For both our learning-based
upsampling and nearest neighbour upsampling, we first need to sample a collection of root points
for the dense strands on the head scalp UV map. In the usual pipeline of VAE generation and
reconstruction, this is achieved by sampling from the learned density map. Specifically in the
experimental evaluation here, we use oracle roots from the ground truth to ensure fair and direct
comparisons. In the nearest neighbour upsampling, for each sampled root of the dense strand, we
identify one guide strand whose root is the nearest to the sampled root. Then we make the dense
strand at this root is the same as the nearest guide strand, i.e., we copy this guide strand and translate
it to the sampled root.

Evaluation metric We use aggregated squared Euclidean distance d(l, l′) =
1

n
∥l − l′∥22 :=

1

n

∑n−1
t=0 ∥l(t)− l′(t)∥22 to evaluate distance of two individual strand curves, and the bidirectional

chamfer distance based on the individual strand metric to evaluate distance of two hairstyles as sets
of strands: 1

|H|
∑

l∈H minl′∈H′ d(l, l′) + 1
|H′|

∑
l′∈H′ minl∈H d(l′, l).

E Data

The source of synthetic hairstyle data is twofolds. We use 343 synthetic hairstyles that originate
from mesh hair cards [15], thus consisting of smooth strands with straight and wavy structures in low
frequencies without high-frequency details. In addition, we collected and crafted 26 base particle
hair projects using Blender [8] in the form of genuine 3D strands. The 343 hair mesh converted hair
and the 26 base strand hair are used for training the low-pass signals in the guide curve VAE and the
densification model. For high-frequency signals, the 26 base particle hair are further augmented into
315 examples by operating with the frequency and the magnitude of curliness, and adding random
high-frequency noise in Blender. These augmented data are used to train conditional VAE model for
high-frequency signal completion, while those from the mesh hair cards are precisely enough to be
represented with the first eight DCT harmonics.

F Limitations

The quality of generated hair is constrained by the scarcity of high-quality, strand-based hair datasets.
Even with heavy data augmentation as proposed in [48, 41] for local visual features, the variability
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of the rough geometry of the principal growth directions indicated by the guide curves is limited.
Therefore, acquiring a diverse collection of high-quality strand hair examples is crucial for learning a
robust generative latent manifold that generates more creative hairstyles.

A widespread limitation of the task of strand hair generation is lack of suitable evaluation metrics.
quantitative evaluation of hair generation is hard, because currently there is no such a measurement to
evaluate the generation quality of strand hair. Evaluation of image generation can take domain-specific
PSNR, SSIM measures, as well as FID and LPIPS that require a pretrained semantic encoder (eg.
VGGNet). Unfortunately, strand hair has neither these domain-specific measures nor a VGGNet-like
semantic encoder for strands to use FID and LPIPS measurements.

Another challenge is the efficiency of our proposed method. As it is a geometric deep learning
model that handles sets of permutation-equivariant elements, it does not match the runtime efficiency
of purely convolutional architectures. For instance, generating guide strands with a batch size of
32 requires 0.7 seconds, whereas a pure 2D convolutional baseline performs inference in just 0.09
seconds. The complete generation process, including densification and high-frequency detail addition,
takes about 12 seconds. Despite being less efficient, the generation time remains within a practical
range for real-world applications.

Some occasional failure cases include messy isolated flying strands and penetration into head meshes.
as in Fig. 11.

Figure 11: Failure examples.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims and contributions.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims made in the

paper.
• The abstract and/or introduction should clearly state the claims made, including the contribu-

tions made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the supplementary material.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that the

paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]
Justification: Proofs are included for the proposed theorem.
Guidelines:
• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear

in the supplemental material, the authors are encouraged to provide a short proof sketch to
provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the details in the appendix to reproduce the experiments. However,
release of the code and data will be subject to assessment by the internal legal department.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code and
data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions to
provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to
reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe the
architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should either be
a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [No]
Justification: Release of the code will be subject to assessment by the internal legal department.
Data will not be released due to the license issues.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code,
unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Details are provided in the appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is hard for multiple runs due to limited computation resources and time-consuming
training. Other evaluations like DFT vs DCT is not probabilistic.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of
errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: We report computing resources in the appendix.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research does not violate the NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: We include discussion on broader impacts in the appendix.
Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to par-
ticular applications, let alone deployments. However, if there is a direct path to any negative
applications, the authors should point it out. For example, it is legitimate to point out that
an improvement in the quality of generative models could be used to generate deepfakes for
disinformation. On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere
to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [Yes]
Justification: We cited the code and assets we use.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Release of the code and data will be subject to assessment by the internal legal
department.
Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
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Answer: [Yes]
Justification: The full text of instructions and screenshots are in the appendix.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Including this information in the supplemental material is fine, but if the main contribution of

the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [Yes]
Justification: In the newly introduced user study experiments in the rebuttal period, users participate
in the experiments voluntarily. Each user takes 5 to 10 minutes to finish the experiment. Users are
from different nations in Europe, North America, and Asia.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with human

subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent) may be

required for any human subjects research. If you obtained IRB approval, you should clearly
state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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