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Abstract

Graph Neural Networks (GNNs) have been widely used to learn node representations and
with outstanding performance on various tasks such as node classification. However, noise,
which inevitably exists in real-world graph data, would considerably degrade the performance
of GNNs revealed by recent studies. In this work, we propose a novel and robust method,
Bayesian Robust Graph Contrastive Learning (BRGCL), which trains a GNN encoder to
learn robust node representations. The BRGCL encoder is a completely unsupervised
encoder. Two steps are iteratively executed at each epoch of training the BRGCL encoder:
(1) estimating the confident nodes and computing the robust cluster prototypes of the
node representations through a novel Bayesian nonparametric method; (2) prototypical
contrastive learning between the node representations and the robust cluster prototypes.
Experiments on public benchmarks demonstrate the superior performance of BRGCL and
the robustness of the learned node representations. The code of BRGCL is available at
https://anonymous.4open.science/r/BRGCL-code-2FD9/.

1 Introduction

Graph Neural Networks (GNNs) have become popular tools for node representation learning in recent
years (Kipf & Welling, 2017; Bruna et al., 2014; Hamilton et al., 2017; Xu et al., 2019). Most prevailing GNNs
(Kipf & Welling, 2017; Zhu & Koniusz, 2021) leverage the graph structure and obtain the representation
of nodes in a graph by utilizing the features of their connected nodes. Benefiting from such propagation
mechanism, node representations obtained by GNN encoders have demonstrated superior performance on
various downstream tasks such as semi-supervised node classification and node clustering.

Although GNNs have achieved great success in node representation learning, current GNN approaches do not
consider the noise in the input graph. However, noise inherently exists in the graph data for many real-world
applications. Such noise may be present in node attributes or node labels, which forms two types of noise,
attribute noise and label noise. Recent works, such as (Patrini et al., 2017), have evidenced that noisy inputs
hurt the generalization capability of neural networks. Moreover, noise in a subset of the graph data can easily
propagate through the graph topology to corrupt the remaining nodes in the graph data. Nodes that are
corrupted by noise or falsely labeled would adversely affect the representation learning of themselves and
their neighbors.

While manual data cleaning and labeling could be remedies to the consequence of noise, they are expensive
processes and difficult to scale, thus not able to handle the almost infinite amount of noisy data online.
Therefore, it is crucial to design a robust GNN encoder that could make use of noisy training data while
circumventing the adverse effect of noise. In this paper, we propose a novel and robust method termed
Bayesian Robust Graph Contrastive Learning (BRGCL) to improve the robustness of node representations
for GNNs. Our key observation is that there exist a subset of nodes which are confident in their class/cluster
labels. Usually, such confident nodes are far away from the class/cluster boundaries, so these confident
nodes are trustworthy, and noise in these nodes would not degrade the value of these nodes in training a
GNN encoder. To infer such confident nodes, we propose a novel algorithm named Bayesian nonparametric
Estimation of Confidence (BEC). Since the BRGCL encoder is completely unsupervised, it first infers pseudo
labels of all the nodes with a Bayesian nonparametric method only based on the input node attributes,
without knowing the ground truth labels or the ground truth class number in the training data. Then, BEC
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is used to estimate the confident nodes based on the pseudo labels and the graph structure. The robust
prototypes, as the cluster centers of the confident nodes, are computed and used to train the BRGCL encoder
with a loss function for prototypical contrastive learning. The confident nodes are updated during each epoch
of the training of the BRGCL encoder, so the robust prototypes are also updated accordingly.

1.1 Contributions

Our contributions are as follows.

First, we propose Bayesian Robust Graph Contrastive Learning (BRGCL), where a fully unsupervised
encoder is trained on noisy graph data. The fully unsupervised BRGCL encoder is trained only on the input
node attributes without ground truth labels and even the ground truth class number in the training data.
BRGCL leverages confident nodes, which are estimated by a novel algorithm termed Bayesian nonparametric
Estimation of Confidence (BEC), to harvest noisy graph data without being compromised by the noise.
Experimental results on popular graph datasets evidence the advantage of BRGCL over competing GNN
methods for node classification and node clustering on noisy graph data. The significance of the improvement
of BRGCL is evidenced by p-values of t-test.

Second, our study reveals the importance of confident nodes in training GNN encoders on noisy graph data,
which opens the door for future research in this direction. The visualization results in Section 5.6 show that
the confident nodes estimated by BEC are usually far away from the class/cluster boundaries, and so are the
robust prototypes. As a result, the BRGCL encoder trained with such robust prototypes is not vulnerable to
noise, and it even outperforms GNNs trained with ground truth labels.

2 Related Works

2.1 Graph Neural Networks

Graph neural networks (GNNs) have become popular tools for node representation learning. They have
shown superior performance in various graph learning tasks, such as node classification, node clustering,
and graph classification. Given the difference in the convolution domain, current GNNs fall into two classes.
The first class features spectral convolution (Bruna et al., 2014; Kipf & Welling, 2017), and the second class
(Hamilton et al., 2017; Velickovic et al., 2018; Xu et al., 2019) generates node representations by sampling
and propagating features from their neighborhood. GNNs such as ChebNet (Bruna et al., 2014) perform
convolution on the graph Fourier transforms termed spectral convolution. Graph Convolutional Network
(GCN) (Kipf & Welling, 2017) further simplifies the spectral convolution (Bruna et al., 2014) by its first-order
approximation. GNNs such as GraphSAGE (Hamilton et al., 2017) propose to learn a function that generates
node representations by sampling and propagating features from a node’s connected neighborhood to itself.
Various designs of the propagation function have been proposed. For instance, Graph Attention Network
(GAT) (Velickovic et al., 2018) proposes to learn masked self-attention layers that enable nodes to attend
over their neighborhoods’ features. Different from GNNs based on spectral convolution, such methods could
be trained on mini-batches (Hamilton et al., 2017; Xu et al., 2019), so they are more scalable to large graphs.

However, as pointed out by (Dai et al., 2021), the performance of GNNs can be easily degraded by noisy
training data (NT et al., 2019). Moreover, the adverse effects of noise in a subset of nodes can be exaggerated
by being propagated to the remaining nodes through the graph structure, exacerbating the negative impact
of noise.

To learn node representation without node labels, contrastive learning has recently been applied to the
training of GNNs. Most proposed graph contrastive learning methods create multiple views of the unlabeled
input graph and maximize agreement between the node representations of these views. Deep Graph
Infomax (DGI)(Velickovic et al., 2019) contrasts high-level graph representations by maximizing their mutual
information. Following that, InfoGraph(Sun et al., 2020) obtains representations for entire graphs by
contrasting graph-level representations with substructure-level representations. Other methods, such as
MVGRL (Hassani & Ahmadi, 2020), GCC (Qiu et al., 2020), and GRACE (Zhu et al., 2020), contrast
augmented views of the graph generated by various techniques, such as graph diffusion, subgraph sampling,
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edge dropping, and feature masking. MERIT (Jin et al., 2021) performs contrastive learning across augmented
views generated by siamese networks. SUGRL (Mo et al., 2022) proposes a multiplet loss to learn the
complementary information between the structural information and neighbor information via contrastive
learning. Unlike previous methods, we propose using contrastive learning to train GNN encoders that are
robust to noise existing in the labels and attributes of nodes.

2.2 Existing Methods Handing Noisy Data

Previous works (Zhang et al., 2021) have shown that deep neural networks usually generalize badly when
trained on input with noise. Existing literature on robust learning with noisy inputs mostly focuses on image
or text domain. Such robust learning methods fall into two categories. The first category (Patrini et al., 2017;
Goldberger & Ben-Reuven, 2017) mitigates the effects of noisy inputs by correcting the computation of loss
function, known as loss corruption. The second category aims to select clean samples from noisy inputs for
the training (Malach & Shalev-Shwartz, 2017; Jiang et al., 2018; Yu et al., 2019; Li et al., 2020; Han et al.,
2018), known as sample selection. For example, (Goldberger & Ben-Reuven, 2017) corrects the predicted
probabilities with a corruption matrix computed on a clean set of inputs. On the other hand, recent sample
selection methods usually select a subset of training data to perform robust learning. Among the existing loss
correction and sample selection methods, Co-teaching (Han et al., 2018) is promising, which trains two deep
neural networks and performs sample selection in a training batch by comparing predictions from the two
networks. However, such sample selection strategy does not generalize well in the graph domain (Dai et al.,
2021) due to the extraordinarily small size of labeled nodes. More details are to be introduced in Section 4.2.
Self-Training (Li et al., 2018) finds nodes with the most confident pseudo labels, and it augments the labeled
training data by incorporating confident nodes with their pseudo labels into the existing training data. In
addition to the above two categories of robust learning methods, recent studies (Kang et al., 2020; Zhong
et al., 2021; Wang et al., 2021) show that decoupling the feature representation learning and the training of
the classifier can also improve the robustness of the learned feature representation.

NRGNN(Dai et al., 2021) proposes a novel graph neural network model for semi-supervised node classification
on sparsely and noisily labeled graphs. It introduces a graph edge predictor to predict missing links for
connecting unlabeled nodes with labeled nodes, and a pseudo label miner to expand the label set. RTGNN
(Qian et al., 2023) also aims to train a robust GNN classifier with scarce and noisy node labels. It first classifies
labeled nodes into clean and noisy ones and adopts reinforcement supervision to correct noisy labels. It also
generates pseudo labels to provide extra training signals. During the training of the node classifier, RTGNN
also introduces a consistency regularization term to prevent overfitting to noise. To improve the robustness
of the node classifier on the dynamic graph, GraphSS (Zhuang & Hasan, 2022) proposes to generalize noisy
supervision as a kind of self-supervised learning method, which regards the noisy labels, including both
manual-annotated labels and auto-generated labels, as one kind of self-information for each node. They show
that the robustness of the node classifier can be improved by utilizing such self-information in self-supervised
learning. In addition, some recent works (Dai et al., 2022) seek to train robust node classifiers with noisy
graphs. To learn robust GNNs on noisy graphs with limited labeled nodes, RS-GNN (Dai et al., 2022) adopts
the edges in the noisy graph as supervision to obtain a denoised and densified graph to facilitate the message
passing for predictions of unlabeled nodes.

2.3 Prototypical Learning

By introducing the means of embedded samples within data clusters as prototypes, prototypical learning has
been recently applied to the learning of neural network methods. Based on the usage of the prototypes in
the learning regime, current prototypical learning methods can be classified into two categories. Methods
in the first category aim to learn prototype-based classifiers with limited labeled data. For instance, to
handle the issue of limited supervision for new categories in few-shot learning, prototypical network (Snell
et al., 2017) learns the prototypes of new classes in the embedding space, where the classification is done
by calculating the distance between the test image and prototypes of each class. Such a prototype-based
classification framework is further proven to be more robust for zero-shot learning (Allen et al., 2019; Xu
et al., 2020) and out-of-distribution learning (Arik & Pfister, 2020) as well. The other category of prototypical
learning methods aims to encode semantic structures into the embedding space. PCL (Li et al., 2021a)
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Figure 1: Illustration of the BRGCL encoder. BPL stands for the Bayesian nonparametric Prototype Learning
to be introduced in Section 4.2, a Bayesian nonparametric algorithm for estimating the pseudo labels of nodes.
In the illustration of confident nodes, nodes which are more confident in their pseudo labels are marked in
more red, and less confident nodes are marked in more blue.

first introduces prototypes as latent variables in contrastive learning to encode the semantic structure of
data explicitly. An EM algorithm is designed to perform representation learning and clustering iteratively.
Next, HCSC (Guo et al., 2022) argues that semantic structures in an image dataset are hierarchical in
nature, as a result, they propose to learn a set of hierarchical prototypes in contrastive learning instead
of representing each class with a single prototype. Following that, GraphLoG (Xu et al., 2021) introduces
prototype learning in self-supervised graph-level representation learning to learn the global semantics of graph
structure. Similar to HCSC, GraphLoG also learns a set of hierarchical prototypes in the representation
space for graph classification.

In contrast with existing prototype learning methods, our work proposes to learn clean and robust prototypes
from the confident nodes, and the prototypical loss encourages the learned node features to be aligned with
the robust prototypes.

3 Problem Setup

3.1 Notations

An attributed graph consisting of N nodes is formally represented by G = (V, E , X), where V = {v1, v2, . . . , vN }
and E ⊆ V × V denote the set of nodes and edges respectively. X ∈ RN×D are the node attributes, and
the attributes of each node is in Rd. Let A ∈ {0, 1}N×N be the adjacency matrix of graph G, with Aij = 1
if and only if (vi, vj) ∈ E . Ã = A + I denotes the adjacency matrix for a graph with self-loops added. D̃
denotes the diagonal degree matrix of Ã. Let VL and VU denote the set of labeled nodes and unlabeled nodes
respectively. Throughout this paper, we use ∥ · ∥2 to denote the Euclidean norm of a vector and [n] to denote
all the natural numbers between 1 and n inclusively.

3.2 Graph Convolution Network (GCN)

To learn the node representations from the attributes X ∈ RN×d and the graph structure A, one simple
yet effective neural network model is Graph Convolution Network (GCN). GCN is originally proposed for
semi-supervised node classification, which comprises two graph convolution layers. In our work, we use GCN
as the encoder to obtain node representation H ∈ RN×M , where the i-th row of H is the node representation
of vi. The GCN encoder has two layers which can be formulated as

H = σ(Âσ(ÂXW(0))W(1)), (1)
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where Â = D̃−1/2ÃD̃−1/2 is the normalized graph Laplacian, W(0), W(1) ∈ Rd×m are the weight matrices
with hidden dimension m, and σ is the activation function of ReLU.

3.3 Problem Description

Noise usually exists in the input node attributes or labels of real-world graphs, which degrades the quality of
the node representations obtained by common GCL encoders and adversely affects the performance of the
classifier trained on such representations. We aim to obtain node representations robust to noise in two cases,
where noise is present in either the labels of VL or in the input node attributes X. That is, we consider either
noisy label or noisy input node attributes.

The goal of BRGCL is to learn a node representation H = g(X, A), such that the node representations
{hi}N

i=1 are robust to noise in the above two cases, where g(·) is the BRGCL encoder in (1). To evaluate the
performance of the robust node representations by BRGCL, the node representations {hi}N

i=1 are used for
the following two tasks.

(1) Semi-supervised node classification, where a classifier is trained on VL and the class labels of VL, and
then the classifier predicts the labels of the unlabeled nodes VU .

(2) Node clustering, where K-means clustering is performed on the node representations {hi}N
i=1 to obtain

node clusters.

4 Bayesian Robust Graph Contrastive Learning

We propose Bayesian Robust Graph Contrastive Learning (BRGCL) in this section to improve the robustness
of node representations. First, we review the preliminaries of graph contrastive learning. Next, we propose
a new Bayesian nonparametric Estimation of Confidence (BEC) algorithm to estimate robust nodes and
prototypes. Then we show details of node classification and node clustering. At last, we propose a decoupled
training pipeline of BRGCL for semi-supervised node classification. Figure 1 illustrates the overall framework
of BRGCL.

4.1 Preliminary of Graph Contrastive Learning

The general node representation learning aims to train an encoder g(·), which is a two-layer Graph Convolution
Neural Network (GCN) (Kipf & Welling, 2017), to generate discriminative node representations. In our work,
we adopt contrastive learning to train the BRGCL encoder g(·). To perform contrastive learning, two different
views, denoted by G1 = (X1, A1) and G2 = (X2, A2), are generated by node dropping, edge perturbation,
and attribute masking. The representations of the two generated views are denoted as H1 = g(X1, A1) and
H2 = g(X2, A2), with h1

i and h2
i being the i-th row of H1 and H2 respectively. It is preferred that the

mutual information between H1 and H2 is maximized. For computational efficiency its lower bound is usually
used as the objective for contrastive learning. We use InfoNCE (Li et al., 2021a) as our node-wise contrastive
loss, that is,

Lnode =
N∑

i=1
− log s(h1

i , h2
i )

s(h1
i , h2

i ) +
∑N

j=1 s(h1
i , h2

j )
, (2)

where s(h1
i , h2

i ) = |⟨h1
i ,h2

i ⟩|
∥h1

i
∥2∥h2

i
∥2

is the cosine similarity between two node representations h1
i and h2

i .

In addition to the node-wise contrastive learning, we also adopt prototypical contrastive learning (Li et al.,
2021a) to capture semantic information in the node representations, which can be interpreted as maximizing
the mutual information between node representation and a set of estimated cluster prototypes {c1, ..., cK}.
Here K is the number of cluster prototypes. The loss function for prototypical contrastive learning is

Lproto = − 1
N

N∑
i=1

log exp(hi · ck/τ)∑K
k=1 exp(hi · ck/τ)

(3)
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BRGCL aims to improve the robustness of node representations by prototypical contrastive learning. Our key
observation is that there exists a subset of nodes that are confident about their class/cluster labels because
they are far away from the class/cluster boundaries. We propose an effective method to infer such confident
nodes. Because the BRGCL encoder is completely unsupervised, it does not have access to the ground truth
label or ground truth class/cluster number. Therefore, our algorithm for selection of confident nodes is
based on a Bayesian non-parameter styled inference, and the algorithm is termed Bayesian nonparametric
Estimation of Confidence (BEC) to be introduced next.

4.2 Bayesian nonparametric Estimation of Confidence (BEC)

The key idea of Bayesian nonparametric Estimation of Confidence (BEC) is to estimate robust nodes by
the confidence of nodes in their labels. Intuitively, nodes more confident in their labels are less likely to be
adversely affected by noise. Because BRGCL is unsupervised, pseudo labels are used as the labels for such
estimation.

We propose Bayesian nonparametric Prototype Learning (BPL) to infer the pseudo labels of nodes. BPL,
as a Bayesian nonparametric algorithm, infers the pseudo labels by the Dirichlet Process Mixture Model
(DPMM) under the assumption that the distribution of the node representations is a potentially infinite
mixture of Gaussians. We assume each prototype corresponds to a Gaussian component. Let p(h) =∑K

c=1 πkN (h | ck, Σk) be the density of the distribution for the node representations, where K is the number
of Gaussian components, {πk}K

k=1 are the mixing coefficients, and {cc}K
k=1 and {Σc}K

k=1 are the means and
covariances respectively. The data generation process can be described as a generative model in which
a component is selected based on the probability πk, followed by the generation of an observation from
the Gaussian associated with the selected component. Let Dir(K, π0) be a Dirichlet prior on the mixing
coefficients for some π0. Assuming that the covariances of all the Gaussian components are constrained to σI,
and the means are sampled from some prior distribution G0, the DPMM can be described by the following
model in (Kulis & Jordan, 2012):

c1, ..., ck ∼ G0, π ∼ Dir(K, π0), z1, ..., zn ∼ Discrete(π), x1, ..., xn ∼ N (czi
, σI), (4)

with K → ∞. Following (Kulis & Jordan, 2012), Gibbs sampling can be used to iteratively sample the pseudo
labels for each node representation given the means of all the Gaussian components, and sample the means of
the Gaussian components given the pseudo labels of all the node representations. Such a process is almost
equivalent to K-means when σ, the variance of the Gaussians, goes to 0. We consider the case that σ → 0
in BPL, and the almost zero variance eliminates the need to estimate the variance σ, making the inference
efficient.

Let K̃ denote the number of inferred prototypes at the current iteration of the Gibbs sampling process, the
pseudo label zi is then calculated by

zi = arg min
k

{dik} , i ∈ [N ],

dik =
{

∥hi − ck∥2
2 k ∈ [K̃],

ξ k = K̃ + 1,

(5)

where the Euclidean distance {dik} is used to determine the pseudo label of the node representation hi. ξ is
the margin to initialize a new prototype. In practice, we choose the value of ξ by performing cross-validation
on each dataset.

After obtaining the pseudo labels of all the nodes by BPL with K being the inferred number of prototypes,
we estimate the confidence of the nodes based on their pseudo labels and the graph structure. We first select
the nodes confident in their labels, referred to as the confident nodes, by considering the label information
from the neighborhood of each node specified by the adjacency matrix. Let zi denote the one-hot pseudo
label of node vi estimated by BPL. Label propagation (Zhang & Chen, 2018) is then applied based on the
adjacency matrix to get a soft pseudo label for each node. Let Z ∈ RN×K be the matrix of pseudo labels
with zi being the i-th row of Z. The label propagation runs the following update for T steps,

Z(t) = (1 − α)ÃZ(t−1) + αZ t = 1, ..., T − 1, (6)

6



Under review as submission to TMLR

where Z(0) = Z, T is the number of propagation steps and α is the teleport probability, which are set to the
suggested values in (Zhang & Chen, 2018). Let Z̃ = Z(T ) be the soft labels obtained by the label propagation
with z̃i being the i-th row of Z̃. Following (Han et al., 2018), we use the cross-entropy between zi and z̃i,
denoted by ϕ(zi, z̃i), to identify the confident nodes. Intuitively, smaller cross-entropy ϕ(zi, z̃i) of a node vi

indicates that the pseudo label zi is more consistent with the pseudo label suggested by the neighbors of
node vi, so that node vi is more confident about its pseudo label zi. As a result, we can define the confidence
score of a node vi on its pseudo label zi by αi = 1 − ϕ(zi, z̃i). We then obtain the set of confident nodes
assigned to the k-th cluster as

Tk = {hi | αi = 1 − ϕ(zi, z̃i) > 1 − γ, zi = k, i ∈ [N ]}, (7)

where γ is a threshold for the selection of confident nodes. (7) indicates that the nodes with confidence scores
greater than 1 − γ are selected as the confidence nodes for each cluster. Figure 2 illustrates the normalized
confidence scores of all the nodes for different levels of noise present in the input node attributes, and the
normalized confidence score is defined in Section 5.6 which scales all the confidence scores into [0, 1]. The
confident nodes with larger normalized confidence scores, which are marked in more red, are far away from
cluster boundaries, so that noise on these nodes is more unlikely to affect their classification/clustering labels.
These confident nodes are the robust nodes leveraged by BRGCL to fight against noise.

The threshold γ is dynamically set by

γ = 1 − γ0 min
{

1,
t

tmax

}
, (8)

where t is the current epoch number and tmax is a preset number of training epochs. γ0 is an annealing
factor, which is decided by cross-validation for each dataset in practice. Previous methods such as (Li
et al., 2021a) estimate each prototype as the mean of node representations assigned to that prototype. We
propose to estimate each prototype only using the confident nodes assigned to that prototype for enhanced
robustness. To this end, after acquiring the confident nodes {Tk}K

k=1, the robust prototypes are updated
by ck = 1

|Tk|
∑

hi∈Tk
hi for each k ∈ [K]. With the updated robust prototypes {ck}K

k=1 in the prototypical
contrastive learning loss Lproto in (3), we train the encoder g(·) with the following overall loss function,

Lrep = Lnode + Lproto. (9)

In Co-teaching (Han et al., 2018), a threshold similar to (8) is used to select a ratio of data for training.
However, due to the limited size of training data in graph domain, training with only a subset of nodes
usually leads to degraded performance. For example, with 5% of nodes labeled on the Cora dataset, only 1%
of all the nodes will be used for training if the threshold is set to 20% by Co-teaching. In contrast, BEC
selects confident nodes by a dynamic threshold on the confidence scores of the nodes. The selected confident
nodes are only used to obtain the robust prototypes, and BRGCL is trained with such robust prototypes to
obtain robust representations for all the nodes of the graph. It is also worthwhile to mention that training
BRGCL with the loss function Lrep does not require any information about the ground truth labels. The
training algorithm for the BRGCL encoder is described in Algorithm 1. It is noted that the confident nodes
and the robust prototypes are estimated at each epoch by BEC.

4.3 Decoupled Training

The typical pipeline for semi-supervised node classification is to jointly train the classifier and the encoder.
However, the noise in the training data would degrade the performance of the classifier. To alleviate this issue,
we decouple the representation learning for the nodes from the classification of nodes to mitigate the effect of
noise, which consists of two steps. In the first step, the BRGCL encoder g(·) is trained by Algorithm 1 to
obtain the node representation H. We then build a node classifier f(·) as a two-layer MLP followed by a
softmax function. In the second step, the classifier f(·) is trained by minimizing the cross-entropy loss on the
labeled nodes, Lcls = 1

|VL|
∑

vi∈VL
H(ỹi, f(hi)), where H is the cross-entropy function and ỹi is the ground

truth class label for node vi. In Section 5.5, we show the advantage of such decoupled learning pipeline over
the conventional joint training of the encoder and the classifier.
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Algorithm 1 Training algorithm of BRGCL encoder
Input: The input attribute matrix X, adjacency matrix A, learning rate η, and the training epochs tmax.
Output: The parameter of BRGCL encoder g.

1: Initialize the parameter W = (W(0), W(1)) of BRGCL encoder g
2: for t← 1 to tmax do
3: Calculate node representations by H = g(X, A)
4: Generate augmented views G1 = (X1, A1) and G2 = (X2, A2)
5: Calculate node representations of augmented views by H1 = g(X1, A1) and H2 = g(X2, A2)
6: Obtain the pseudo labels Z of all the nodes and the number of inferred prototypes K by BPL
7: Obtain the soft labels Z̃ of all the nodes by label propagation described in (6)
8: Update the confidence threshold γ by (8)
9: Estimate the confident nodes {Tk}K

k=1 by (7)
10: Update the robust prototypes by ck = 1

|Tk|

∑
hi∈Tk

hi for all k ∈ [K]
11: Update the parameter W of the BRGCL encoder g by W←W− η∇WLrep with Lrep described in (9)
12: end for
13: return The BRGCL encoder g

5 Experiments

In this section, we evaluate the performance of BRGCL on five public benchmarks. For semi-supervised node
classification, the performance of BRGCL is evaluated with noisy labels or noisy input node attributes. For
node clustering, only noisy input node attributes are considered because there are no ground truth labels
given for the clustering purposes.

5.1 Datasets

We evaluate BRGCL on five public benchmarks that are widely used for node representation learning, namely
Cora, Citeseer, PubMed (Sen et al., 2008), Coauthor CS (Hamilton et al., 2017), ogbn-arxiv (Hu et al.,
2020), Reddit (Hamilton et al., 2017), and AMiner-CS (Feng et al., 2020). Cora, Citeseer and PubMed
are three most widely used citation networks. Coauthor CS is a co-authorship graph. The ogan-arxiv is a
directed citation graph. The Reddit dataset is from Reddit posts whose node labels indicate the communities.
AMiner-CS is extracted from the AMiner Citation Graph. We summarize the statistics of the datasets in
Table 1. For all the experiments, we follow the default partition of training, validation, and test sets on each
benchmark.

Table 1: The statistics of the datasets.
Dataset Nodes Edges Features Classes

Cora 2,708 5,429 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3

Coauthor CS 18,333 81,894 6,805 15
ogbn-arxiv 169,343 1,166,243 128 40

Reddit 232,965 11,606,919 602 41
AMiner-CS 593,486 6,217,004 100 18

5.2 Experimental Settings

Due to the fact that most public benchmark graph datasets do not come with corrupted labels or attribute
noise, we manually inject noise into public datasets to evaluate our algorithm. We follow the commonly used
label noise generation methods from the existing work (Han et al., 2020) to inject label noise. We generate
noisy labels over all the classes according to a noise transition matrix QC×C , where Qij is the probability
of nodes from class i being flipped to class j and K is the ground truth class number. We consider two
types of noise: (1) symmetric, where nodes from each class can be flipped to other classes with a uniform
random probability such that Qij = Qji; (2) asymmetric, where mislabeling only occurs between similar

8



Under review as submission to TMLR

classes. The percentage of nodes with flipped labels is defined as the label noise level in our experiments.
To evaluate the performance of our method with attribute noise, we randomly shuffle a certain percentage
of input attributes for each node following (Ding et al., 2022). The percentage of the shuffled attributes is
defined as the attribute noise level in our experiments.

Compared Methods. We compare BRGCL against semi-supervised node representation learning methods,
including GCN (Kipf & Welling, 2017), GCE (Zhang & Sabuncu, 2018), S2GC (Zhu & Koniusz, 2021),
UnionNet (Li et al., 2021b), NRGNN (Dai et al., 2021), RTGNN (Qian et al., 2023), and GRAND+ (Feng
et al., 2022b). We also compare BRGCL against the state-of-the-art GCL methods, including GraphCL (You
et al., 2020), MVGRL (Hassani & Ahmadi, 2020), MERIT (Jin et al., 2021), and SUGRL (Mo et al., 2022).
In addition, we compare BRGCL against three state-of-the-art robust contrastive learning methods, including
ARIEL (Feng et al., 2022a), Jo-SRC (Yao et al., 2021), and Sel-CL (Li et al., 2022). Jo-SRC and Sel-CL were
proposed for selecting clean samples for image data. Since their sample selection methods are general and
not limited to the image domain, we adopt these two baselines in our experiments.

ARIEL (Feng et al., 2022a). ARIEL is a method proposed to improve the robustness of graph contrastive
learning. Instead of adopting conventional graph data augmentation methods, ARIEL proposes to take the
adversarial view generated by projected gradient descent attack as a new form of data augmentation. It also
introduces an information regularization term to stabilize the training of InfoNCE loss for graph contrastive
learning. In our experiments about ARIEL, we use the same GCN encoder as BRGCL to learn the node
representations.

Jo-SRC (Yao et al., 2021). Jo-SRC is a robust contrastive learning method proposed for image classification.
It selects clean samples for training by adopting the Jensen-Shannon divergence to measure the likelihood of
each sample being clean. Because this method is a general selection strategy on the representation space, it
can be adapted to selecting clean samples in the representation space of nodes in GCL. It also introduces a
consistency regularization term to the contrastive loss to improve the robustness. To get a competitive and
robust GCL baseline, we apply the sample selection strategy and the consistency regularization proposed by
Jo-SRC to the state-of-the-art GCL methods MVGRL, MERIT, and SUGRL. We add the regularization term
in Jo-SRC to the graph contrastive loss. The GCL encoders are trained only on the clean samples selected by
Jo-SRC. We only report the best results for comparison, which are achieved by applying Jo-SRC to MERIT.

Sel-CL (Li et al., 2022). Sel-CL is a supervised contrastive learning proposed to learn robust pre-trained
representations for image classification. It proposes to select confident contrastive pairs in the contrastive
learning frameworks. Sel-CL first selects confident examples by measuring the agreement between learned
representations and labels generated by label propagation with the cross-entropy loss. Next, Sel-CL selects
contrastive pairs from those with selected confident examples in them. This method is also a general sample
selection strategy on a learned representation space. As a result, we adapt Sel-CL to the node representation
space to select confident pairs for GCL. In this process, they only select contrastive pairs whose representation
similarity is higher than a dynamic threshold. In our experiments, we also adopt the confident contrastive
pair selection strategy to the state-of-the-art GCL methods MVGRL, MERIT, and SUGRL. With the same
GCL framework, GCL encoders are trained only on the confident pairs selected by Sel-CL. We only report
the best results for comparison, which are achieved by applying Sel-CL to MERIT.

The training settings for different baselines are categorized into two setups, unsupervised setup and
supervised setup. In the unsupervised setup, the training of the encoder does not use the ground truth
label information. The node representations obtained by the encoder are then used for the downstream
tasks, which are node classification and node clustering. In the supervised setup, the training of the encoder
uses the ground truth label information. Our proposed BRGCL follows the unsupervised setup in all our
experiments, and every baseline follows its corresponding setup by its nature. The implementation details
about BRGCL are deferred to Section A of the appendix.

5.3 Evaluation Results

Semi-supervised Node Classification with Label Noise. We compare BRGCL against competing
methods for semi-supervised node classification on input with two types of label noise. To show the robustness
of BRGCL against label noise, we perform the experiments on graphs injected with different levels of label
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Table 2: Performance comparison for node classification on PubMed, ogbn-arxiv, Cora, Citeseer, and Coauthor
CS, with asymmetric label noise, symmetric label noise, and attribute noise. The baselines marked with *
have their encoders trained with ground truth label information.

Noise Level
0 40 60 80Dataset Methods
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

PubMed

GCN * 0.790±0.007 0.584±0.022 0.574±0.012 0.595±0.012 0.405±0.025 0.386±0.011 0.488±0.013 0.305±0.022 0.295±0.013 0.423±0.013
S2GC * 0.799±0.005 0.585±0.023 0.589±0.013 0.610±0.009 0.421±0.030 0.401±0.014 0.497±0.012 0.310±0.039 0.290±0.019 0.431±0.010
GCE 0.792±0.009 0.589±0.018 0.581±0.011 0.590±0.014 0.430±0.012 0.399±0.012 0.491±0.010 0.311±0.021 0.301±0.011 0.424±0.012

UnionNET 0.793±0.008 0.603±0.020 0.620±0.012 0.592±0.012 0.445±0.022 0.424±0.013 0.489±0.015 0.313±0.025 0.327±0.015 0.435±0.009
NRGNN 0.797±0.008 0.602±0.022 0.618±0.013 0.603±0.008 0.443±0.012 0.434±0.012 0.499±0.009 0.330±0.023 0.325±0.013 0.433±0.011
SUGRL 0.819±0.005 0.603±0.013 0.615±0.013 0.615±0.010 0.445±0.011 0.441±0.011 0.501±0.007 0.321±0.009 0.321±0.009 0.446±0.010
MVGRL 0.794±0.003 0.599±0.012 0.613±0.012 0.606±0.008 0.441±0.013 0.433±0.013 0.496±0.010 0.322±0.012 0.312±0.012 0.438±0.010
MERIT 0.801±0.004 0.593±0.011 0.612±0.011 0.613±0.011 0.447±0.012 0.443±0.012 0.497±0.009 0.328±0.011 0.323±0.011 0.445±0.009
Sel-Cl 0.799±0.005 0.605±0.014 0.625±0.012 0.614±0.012 0.455±0.014 0.449±0.010 0.502±0.008 0.334±0.021 0.332±0.014 0.456±0.014
ARIEL 0.800±0.003 0.610±0.013 0.622±0.010 0.615±0.011 0.453±0.012 0.453±0.012 0.502±0.014 0.331±0.014 0.336±0.018 0.457±0.013
Jo-SRC 0.801±0.005 0.613±0.010 0.624±0.013 0.617±0.013 0.453±0.008 0.455±0.013 0.504±0.013 0.330±0.015 0.334±0.018 0.459±0.018
RTGNN 0.797±0.004 0.610±0.008 0.622±0.010 0.614±0.012 0.455±0.010 0.455±0.011 0.501±0.011 0.335±0.013 0.338±0.017 0.452±0.013

GRAND+ 0.837±0.006 0.610±0.011 0.624±0.013 0.617±0.013 0.453±0.008 0.453±0.011 0.503±0.010 0.331±0.014 0.337±0.013 0.458±0.014
BRGCL 0.835±0.007 0.633±0.014 0.640±0.010 0.633±0.011 0.472±0.011 0.477±0.010 0.520±0.011 0.350±0.014 0.355±0.013 0.479±0.011

ogbn-arxiv

GCN * 0.717±0.003 0.401±0.014 0.421±0.014 0.478±0.010 0.336±0.011 0.346±0.021 0.339±0.012 0.286±0.022 0.256±0.010 0.294±0.013
S2GC * 0.712±0.003 0.417±0.017 0.429±0.014 0.492±0.010 0.344±0.016 0.353±0.031 0.343±0.009 0.297±0.023 0.266±0.013 0.284±0.012
GCE 0.720±0.004 0.410±0.018 0.428±0.008 0.480±0.014 0.348±0.019 0.344±0.019 0.342±0.015 0.310±0.014 0.260±0.011 0.275±0.015

UnionNET 0.724±0.006 0.429±0.021 0.449±0.007 0.485±0.012 0.362±0.018 0.367±0.008 0.340±0.009 0.332±0.019 0.269±0.013 0.280±0.012
NRGNN 0.721±0.006 0.449±0.014 0.466±0.009 0.485±0.012 0.371±0.020 0.379±0.008 0.342±0.011 0.330±0.018 0.271±0.018 0.300±0.010
SUGRL 0.693±0.002 0.439±0.010 0.467±0.010 0.480±0.012 0.365±0.013 0.385±0.011 0.341±0.009 0.327±0.011 0.275±0.011 0.295±0.011
MVGRL 0.713±0.002 0.443±0.009 0.461±0.009 0.481±0.008 0.372±0.012 0.382±0.012 0.339±0.009 0.329±0.013 0.274±0.013 0.290±0.012
MERIT 0.717±0.004 0.442±0.009 0.463±0.009 0.483±0.010 0.368±0.011 0.381±0.011 0.341±0.012 0.324±0.012 0.272±0.010 0.304±0.009
Sel-Cl 0.719±0.002 0.447±0.007 0.469±0.007 0.486±0.010 0.375±0.008 0.389±0.025 0.344±0.013 0.331±0.008 0.284±0.019 0.304±0.012
ARIEL 0.717±0.004 0.448±0.013 0.471±0.013 0.482±0.011 0.379±0.014 0.384±0.015 0.342±0.015 0.334±0.014 0.280±0.013 0.300±0.010
Jo-SRC 0.715±0.005 0.445±0.011 0.466±0.009 0.481±0.010 0.377±0.013 0.387±0.013 0.340±0.013 0.333±0.013 0.282±0.018 0.297±0.009
RTGNN 0.718±0.004 0.443±0.012 0.464±0.012 0.484±0.014 0.380±0.011 0.384±0.013 0.340±0.017 0.335±0.011 0.285±0.015 0.301±0.006

GRAND+ 0.725±0.004 0.445±0.008 0.466±0.011 0.481±0.011 0.378±0.010 0.385±0.012 0.344±0.010 0.332±0.010 0.282±0.016 0.303±0.009
BRGCL 0.727±0.005 0.468±0.013 0.487±0.006 0.502±0.010 0.400±0.014 0.407±0.009 0.359±0.011 0.352±0.012 0.303±0.013 0.330±0.012

Cora

GCN * 0.817±0.005 0.547±0.015 0.636±0.007 0.639±0.008 0.405±0.014 0.517±0.010 0.439±0.012 0.265±0.012 0.354±0.014 0.317±0.013
S2GC * 0.831±0.002 0.569±0.007 0.664±0.007 0.661±0.007 0.422±0.010 0.535±0.010 0.454±0.011 0.279±0.014 0.366±0.014 0.320±0.013
GCE 0.819±0.004 0.573±0.011 0.652±0.008 0.650±0.014 0.449±0.011 0.509±0.011 0.445±0.015 0.280±0.013 0.353±0.013 0.325±0.015

UnionNET 0.820±0.006 0.569±0.014 0.664±0.007 0.653±0.012 0.452±0.010 0.541±0.010 0.450±0.009 0.283±0.014 0.370±0.011 0.320±0.012
NRGNN 0.822±0.006 0.571±0.019 0.676±0.007 0.645±0.012 0.470±0.014 0.548±0.014 0.451±0.011 0.282±0.022 0.373±0.012 0.326±0.010
SUGRL 0.834±0.005 0.564±0.011 0.674±0.012 0.675±0.009 0.468±0.011 0.552±0.011 0.452±0.012 0.280±0.012 0.381±0.012 0.338±0.014
MVGRL 0.829±0.007 0.566±0.009 0.672±0.009 0.655±0.011 0.455±0.014 0.545±0.014 0.445±0.012 0.275±0.014 0.379±0.014 0.330±0.014
MERIT 0.831±0.005 0.560±0.008 0.670±0.008 0.671±0.009 0.467±0.013 0.547±0.013 0.450±0.014 0.277±0.013 0.385±0.013 0.335±0.009
Sel-Cl 0.828±0.002 0.570±0.010 0.685±0.012 0.676±0.009 0.472±0.013 0.554±0.014 0.455±0.011 0.282±0.017 0.389±0.013 0.341±0.015
ARIEL 0.829±0.004 0.573±0.013 0.681±0.010 0.675±0.009 0.471±0.012 0.553±0.012 0.455±0.014 0.284±0.014 0.389±0.013 0.343±0.013
Jo-SRC 0.825±0.005 0.571±0.006 0.684±0.013 0.679±0.007 0.473±0.011 0.556±0.008 0.458±0.012 0.285±0.013 0.387±0.018 0.345±0.018
RTGNN 0.828±0.003 0.570±0.010 0.682±0.008 0.678±0.011 0.474±0.011 0.555±0.010 0.457±0.009 0.280±0.011 0.386±0.014 0.342±0.016

GRAND+ 0.853±0.006 0.570±0.009 0.682±0.007 0.678±0.011 0.472±0.010 0.554±0.008 0.456±0.012 0.284±0.015 0.387±0.015 0.345±0.013
BRGCL 0.854±0.006 0.584±0.009 0.704±0.007 0.690±0.010 0.484±0.013 0.577±0.013 0.469±0.013 0.295±0.012 0.407±0.012 0.356±0.011

Citeseer

GCN * 0.703±0.005 0.475±0.023 0.501±0.013 0.529±0.009 0.351±0.014 0.341±0.014 0.372±0.011 0.291±0.022 0.281±0.019 0.290±0.014
S2GC * 0.727±0.005 0.488±0.013 0.528±0.013 0.553±0.008 0.363±0.012 0.367±0.014 0.390±0.013 0.304±0.024 0.284±0.019 0.288±0.011
GCE 0.705±0.004 0.490±0.016 0.512±0.014 0.540±0.014 0.362±0.015 0.352±0.010 0.381±0.009 0.309±0.012 0.285±0.014 0.285±0.011

UnionNET 0.706±0.006 0.499±0.015 0.547±0.014 0.545±0.013 0.379±0.013 0.399±0.013 0.379±0.012 0.322±0.021 0.302±0.013 0.290±0.012
NRGNN 0.710±0.006 0.498±0.015 0.546±0.015 0.538±0.011 0.382±0.016 0.412±0.016 0.377±0.012 0.336±0.021 0.309±0.018 0.284±0.009
SUGRL 0.730±0.005 0.493±0.011 0.541±0.011 0.544±0.010 0.376±0.009 0.421±0.009 0.388±0.009 0.339±0.010 0.305±0.010 0.300±0.009
MVGRL 0.726±0.007 0.491±0.013 0.541±0.013 0.540±0.008 0.379±0.013 0.420±0.013 0.386±0.011 0.341±0.016 0.301±0.016 0.282±0.011
MERIT 0.740±0.007 0.496±0.012 0.536±0.012 0.542±0.010 0.383±0.011 0.425±0.011 0.387±0.008 0.344±0.014 0.301±0.014 0.295±0.009
Sel-Cl 0.725±0.008 0.499±0.012 0.551±0.010 0.549±0.008 0.389±0.011 0.426±0.008 0.391±0.020 0.350±0.018 0.310±0.015 0.300±0.017
ARIEL 0.729±0.007 0.500±0.008 0.550±0.013 0.548±0.008 0.391±0.009 0.427±0.012 0.389±0.014 0.349±0.014 0.307±0.013 0.299±0.013
Jo-SRC 0.730±0.005 0.500±0.013 0.555±0.011 0.551±0.011 0.394±0.013 0.425±0.013 0.393±0.013 0.351±0.013 0.305±0.018 0.303±0.013
RTGNN 0.746±0.008 0.498±0.007 0.556±0.007 0.550±0.012 0.392±0.010 0.424±0.013 0.390±0.014 0.348±0.017 0.308±0.016 0.302±0.011

GRAND+ 0.746±0.004 0.497±0.010 0.553±0.010 0.552±0.011 0.390±0.013 0.422±0.013 0.387±0.013 0.348±0.013 0.309±0.014 0.302±0.012
BRGCL 0.748±0.009 0.510±0.013 0.574±0.013 0.562±0.007 0.403±0.014 0.445±0.014 0.399±0.012 0.359±0.012 0.327±0.014 0.312±0.010

Coauthor-CS

GCN * 0.918±0.001 0.645±0.009 0.656±0.006 0.702±0.010 0.511±0.013 0.501±0.009 0.531±0.010 0.429±0.022 0.389±0.011 0.415±0.013
S2GC * 0.918±0.001 0.657±0.012 0.663±0.006 0.713±0.010 0.516±0.013 0.514±0.009 0.556±0.009 0.437±0.020 0.396±0.010 0.422±0.012
GCE 0.922±0.003 0.662±0.017 0.659±0.007 0.705±0.014 0.515±0.016 0.502±0.007 0.539±0.009 0.443±0.017 0.389±0.012 0.412±0.011

UnionNET 0.918±0.002 0.669±0.023 0.671±0.013 0.706±0.012 0.525±0.011 0.529±0.011 0.540±0.012 0.458±0.015 0.401±0.011 0.420±0.007
NRGNN 0.919±0.002 0.678±0.014 0.689±0.009 0.705±0.012 0.545±0.021 0.556±0.011 0.546±0.011 0.461±0.012 0.410±0.012 0.417±0.007
SUGRL 0.922±0.005 0.675±0.010 0.695±0.010 0.714±0.006 0.550±0.011 0.560±0.011 0.561±0.007 0.449±0.011 0.411±0.011 0.429±0.008
MVGRL 0.913±0.001 0.675±0.008 0.685±0.008 0.706±0.008 0.550±0.014 0.560±0.014 0.561±0.008 0.453±0.013 0.405±0.013 0.412±0.008
MERIT 0.924±0.004 0.679±0.011 0.689±0.008 0.709±0.005 0.552±0.014 0.562±0.014 0.562±0.011 0.452±0.013 0.403±0.013 0.426±0.005
Sel-Cl 0.922±0.008 0.684±0.009 0.694±0.012 0.714±0.010 0.557±0.013 0.568±0.013 0.566±0.010 0.457±0.013 0.412±0.017 0.425±0.009
ARIEL 0.925±0.004 0.682±0.011 0.699±0.009 0.712±0.005 0.555±0.011 0.566±0.011 0.556±0.011 0.454±0.014 0.415±0.019 0.427±0.013
Jo-SRC 0.921±0.005 0.684±0.011 0.695±0.004 0.709±0.007 0.560±0.011 0.566±0.011 0.561±0.009 0.456±0.013 0.410±0.018 0.428±0.010
RTGNN 0.920±0.005 0.678±0.012 0.691±0.009 0.712±0.008 0.559±0.010 0.569±0.011 0.560±0.008 0.455±0.015 0.415±0.015 0.412±0.014

GRAND+ 0.927±0.004 0.682±0.011 0.693±0.006 0.715±0.008 0.554±0.008 0.568±0.013 0.557±0.011 0.455±0.012 0.416±0.013 0.428±0.011
BRGCL 0.929±0.006 0.694±0.013 0.718±0.008 0.733±0.009 0.570±0.014 0.587±0.011 0.585±0.012 0.465±0.012 0.434±0.015 0.444±0.012

noise ranging from 40% to 80% with a step of 20%. The classification follows the widely used semi-supervised
setting (Kipf & Welling, 2017). It is noted that the labels are only used for the training of the classifier. The
BRGCL encoder generates node representations, and the classifier for node classification is trained on these
node representations.

In all the experiments, a two-layer MLP whose hidden dimension is 128 is used as the classifier. Detailed
results on PubMed, ogbn-arxiv, Cora, Citeseer Coauthor CS are shown in Table 2, where we report the means
of the accuracy of 10 runs and the standard deviation. Results on larger datasets, Reddit and AMiner-CS,
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are shown in Table 6 in Section B of the appendix. It is observed from Table 2 and Table 6 that BRGCL
outperforms all the baselines, including the methods using ground truth labels to train their encoders. By
selecting confident nodes and computing robust prototypes using BEC, BRGCL outperforms all the baselines
by an even larger margin with a larger label noise level. To verify the statistical significance of improvements,
we show the p-values of t-test between BRGCL and the second best baseline. The p-values for all datasets
with all noise levels for both symmetric label noise and asymmetric label noise are less than 0.05, suggesting
the statistically significant improvement of BRGCL over baseline methods.

Semi-supervised Node Classification with Attribute Noise. We compare BRGCL with baselines for
noisy input with attribute noise levels ranging from 40% to 80% with a step of 20%. The results on ogbn-arxiv
are also illustrated in Figure 3 in Section B of the appendix. Detailed results on PubMed, ogbn-arxiv, Cora,
Citeseer, and Coauthor CS are shown in Table 2, where we report the means of the accuracy of 10 runs and
the standard deviation. The results clearly show that BRGCL is more robust to attribute noise compared to
all the baselines for different noise levels. To verify the statistical significance of improvements, we show the
p-values of t-test between BRGCL and the second best baseline. The p-values for all the datasets with all the
levels of attribute noise are less than 0.05, suggesting the statistically significant improvement of BRGCL
over the baseline methods.

Node Clustering with Attribute Noise. To further evaluate the robustness of node representation
learned by BRGCL, we perform experiments on node clustering with attribute noise injected. We follow the
same evaluation protocol as that in (Hassani & Ahmadi, 2020). K-means is applied on the learned node
representations to obtain clustering results. We use accuracy (ACC) and normalized mutual information
(NMI) as the performance metrics for clustering. The node clustering results for inputs with 60% attribute
noise are shown in Table 7 in Section B of the appendix. We report the averaged clustering results and
standard deviations over 20 times of execution. It is observed that node representation obtained by BRGCL
is more robust to attribute noise for node clustering. To show the statistical significance of improvements,
we also calculate p-values of the t-test between BRGCL and the second best baseline for each result. It is
observed that BRGCL significantly improves the performance of node clustering as the p-values for ACC and
NMI are less than 0.05 on all datasets.

5.4 Ablation Study on Confident Node Selection

To validate the effectiveness of confident node selection in BEC, we compare BRGCL with an ablation model
which computes each prototype as the average of all the node representations assigned to that prototype
cluster instead of the selected confident nodes. In order to explain the good performance of BRGCL under
high noise levels, we perform the experiments of this ablation study with a noise level of 80 on Cora, Citeseer,
and Pubmed. The results are shown in Table 3. It is observed that BRGCL outperforms the ablation model
without node selection significantly, which demonstrates that the confident node selection largely mitigates
the effects of noise in node classification.

Table 3: Ablation study on confident node selection in BRGCL with a noise level of 80.
Datasets Method Noise

Asymmetric Symmetric Attribute

Cora BRGCL w/o Node Selection 0.277 0.385 0.335
BRGCL 0.295 0.407 0.356

Citeseer BRGCL w/o Node Selection 0.341 0.310 0.303
BRGCL 0.359 0.327 0.312

PubMed BRGCL w/o Node Selection 0.336 0.339 0.461
BRGCL 0.350 0.355 0.479

5.5 Joint Training vs. Decoupled Training, and More Ablation Studies

We study the effectiveness of our decoupled training framework compared with jointly training the encoder
and the classifier. We perform experiments on Cora, Citeseer, and Pubmed. The noise level is set to 80. It is
observed from the results in Table 4 that decoupling the training of the classifier and the encoder is beneficial
for mitigating the effects of label noise.
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Moreover, we compare BRGCL with existing sample selection methods, including Co-teaching (Han et al.,
2018) and Self-Training (Li et al., 2018), for node classification in Section C of the appendix. We further
perform ablation study on the Bayesian nonparametric estimation of the number of prototypes in Section D
of the appendix.

Table 4: Ablation study on joint training for node classification with label and attribute noise.
Datasets Method Noise

Asymmetric Symmetric Attribute

Cora BRGCL w/o Node Selection 0.289 0.400 0.351
BRGCL 0.295 0.407 0.356

Citeseer BRGCL w/o Node Selection 0.352 0.319 0.308
BRGCL 0.359 0.327 0.312

PubMed BRGCL w/o Node Selection 0.343 0.349 0.469
BRGCL 0.350 0.355 0.479
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Figure 2: Visualization of confident nodes with different levels of attribute noise for semi-supervised node
classification on Citeseer.

5.6 Visualization of Confidence Score

We visualize the confident nodes selected by BEC in the embedding space of the learned node representations
in Figure 2. The node representations are visualized by the t-SNE figure. Each mark in t-SNE represents the
representation of a node, and the color of the mark denotes the normalized confidence score of that node.
Given the confidence scores {αi}N

i=1 of all the nodes, let αmin and αmax be the minimum and the maximum
confidence scores, then the normalized confidence score for a node vi is ᾱi = (αi − αmin)/(αmax − αmin) for
i ∈ [N ]. The visualization results are shown for different levels of attribute noise. It can be observed from
Figure 2 that confident nodes, which are redder in Figure 2, are well separated in the embedding space. With
a higher level of attribute noise, the bluer nodes from different clusters blended around the cluster boundaries.
In contrast, the redder nodes are still well separated and far away from the cluster boundaries, which leads to
more robustness and better performance in downstream tasks.

6 Conclusions

In this paper, we propose a novel node representation learning method termed Bayesian Robust Graph
Contrastive Learning (BRGCL) which improves the robustness of node representations by a novel Bayesian
nonparametric algorithm, Bayesian nonparametric Estimation of Confidence (BEC). We evaluate the perfor-
mance of BRGCL with comparison to competing baselines on semi-supervised node classification and node
clustering, where graph data are corrupted with noise in either the labels or the node attributes. Experimental
results demonstrate that BRGCL generates more robust node representations with better performance than
the current state-of-the-art node representation learning methods.
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A Implementation Details

We implement our proposed framework in PyTorch. All the experiments are conducted on a NVIDIA Tesla
A100 GPU. The hidden dimension m of the BRGCL encoder g is fixed to 512. In the node-wise contrastive
loss, we set the number of negative samples to 512 to avoid the out-of-memory issue in large datasets. We
perform a grid search for the learning rate in {1 × 10−5, 5 × 10−5, 1 × 10−4, 5 × 10−4, 1 × 10−3, 5 × 10−3,
1 × 10−2, 5 × 10−2, 1 × 10−1, 5 × 10−1 } on different datasets with different types of noise. The weight decay
is set to 5 × 10−6, and tmax is set to 500. Adam optimizer is used in our training.

Tuning Hyper-Parameters by Cross-Validation. To find the optimal values of the hyper-parameters ξ
in (5) and γ0 in (8), we perform cross-validations on 20% of the training data to decide the value of ξ and γ0.
The value of ξ is selected from {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0, 5}. The value of γ0 is selected from
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The selected values for ξ and γ0 on each dataset are shown in Table 5.

Table 5: Selected hyper-parameters for each dataset.
Dataset Cora Citeseer PubMed Coauthor CS ogbn-arxiv

ξ 0.20 0.15 0.35 0.40 0.25
γ0 0.3 0.5 0.7 0.4 0.4
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Figure 3: Performance comparisons on semi-supervised node classification on ogbn-arxiv with different levels
of attribute noise, symmetric label noise, and asymmetric label noise. The shaded areas around the lines
denote the standard deviation of the classification accuracy.

B More Results about Node Classification and Clustering

We provide additional experimental results for node classification and node clustering in this section. The
results of different methods with respect to different levels of symmetric and asymmetric label noise and
attribute noise on the ogbn-arxiv dataset for node classification are illustrated in Figure 3. The results about
semi-supervised node classification with label noise and attribute noise on two large datasets, Reddit and
AMiner-CS, are shown in Table 6. Moreover, Table 7 shows the results about node clustering with 60%
attribute noise.

Table 6: Performance comparison for node classification with asymmetric label noise, symmetric label noise,
and attribute noise on large scale dataset. The baselines marked with * have their encoders trained with
ground truth label information.

Noise Level
0 40 60 80Dataset Methods
- Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute Asymmetric Symmetric Attribute

Reddit

GCN * 0.917±0.004 0.601±0.015 0.621±0.012 0.678±0.011 0.536±0.010 0.546±0.019 0.539±0.014 0.486±0.024 0.456±0.009 0.494±0.014
S2GC * 0.912±0.002 0.617±0.018 0.629±0.016 0.692±0.008 0.544±0.015 0.553±0.030 0.543±0.010 0.497±0.022 0.466±0.012 0.484±0.011

GCE 0.920±0.005 0.610±0.019 0.628±0.007 0.680±0.013 0.548±0.020 0.544±0.020 0.542±0.014 0.510±0.013 0.460±0.012 0.475±0.014
UnionNET 0.924±0.007 0.629±0.022 0.649±0.006 0.685±0.011 0.562±0.019 0.567±0.009 0.540±0.008 0.532±0.018 0.469±0.014 0.480±0.013
NRGNN 0.936±0.007 0.664±0.015 0.681±0.011 0.700±0.013 0.586±0.019 0.594±0.009 0.557±0.012 0.545±0.017 0.486±0.020 0.515±0.010
SUGRL 0.908±0.003 0.654±0.009 0.682±0.011 0.695±0.012 0.580±0.014 0.600±0.010 0.556±0.008 0.542±0.010 0.490±0.010 0.510±0.011
MVGRL 0.928±0.007 0.658±0.010 0.676±0.008 0.696±0.009 0.587±0.013 0.597±0.011 0.554±0.008 0.544±0.014 0.489±0.015 0.505±0.011
MERIT 0.932±0.003 0.657±0.010 0.678±0.009 0.698±0.009 0.583±0.010 0.596±0.010 0.556±0.011 0.539±0.012 0.487±0.009 0.519±0.008
Sel-Cl 0.931±0.003 0.659±0.008 0.681±0.007 0.698±0.009 0.587±0.009 0.601±0.026 0.556±0.014 0.543±0.009 0.496±0.018 0.516±0.013
ARIEL 0.929±0.003 0.660±0.014 0.683±0.012 0.694±0.010 0.591±0.015 0.596±0.016 0.554±0.016 0.546±0.015 0.492±0.014 0.512±0.009
Jo-SRC 0.927±0.006 0.657±0.010 0.678±0.008 0.693±0.011 0.589±0.014 0.599±0.012 0.552±0.014 0.545±0.014 0.494±0.017 0.509±0.008
RTGNN 0.930±0.003 0.655±0.013 0.676±0.013 0.696±0.015 0.592±0.010 0.596±0.014 0.552±0.018 0.547±0.012 0.497±0.016 0.513±0.007

GRAND+ 0.937±0.005 0.657±0.007 0.678±0.012 0.693±0.012 0.590±0.009 0.597±0.013 0.556±0.012 0.544±0.011 0.494±0.017 0.515±0.010
BRGCL 0.939±0.004 0.680±0.012 0.699±0.007 0.714±0.009 0.612±0.015 0.619±0.010 0.571±0.010 0.564±0.013 0.515±0.012 0.542±0.013

AMiner-CS

GCN * 0.492±0.004 0.385±0.023 0.386±0.013 0.419±0.009 0.307±0.014 0.337±0.014 0.327±0.011 0.259±0.014 0.272±0.013 0.288±0.023
S2GC * 0.502±0.002 0.396±0.013 0.418±0.013 0.443±0.008 0.320±0.012 0.346±0.014 0.342±0.013 0.270±0.012 0.281±0.012 0.293±0.013

GCE 0.513±0.005 0.408±0.016 0.401±0.014 0.430±0.014 0.318±0.015 0.338±0.010 0.336±0.009 0.266±0.015 0.276±0.012 0.290±0.016
UnionNET 0.517±0.007 0.416±0.015 0.435±0.014 0.435±0.013 0.335±0.013 0.348±0.013 0.334±0.012 0.265±0.013 0.285±0.015 0.295±0.015
NRGNN 0.516±0.007 0.407±0.015 0.435±0.015 0.428±0.011 0.339±0.016 0.361±0.016 0.333±0.012 0.274±0.016 0.299±0.012 0.302±0.015
SUGRL 0.523±0.003 0.413±0.011 0.430±0.011 0.433±0.010 0.333±0.009 0.371±0.009 0.343±0.009 0.272±0.009 0.294±0.013 0.300±0.011
MVGRL 0.525±0.007 0.411±0.013 0.430±0.013 0.429±0.008 0.336±0.013 0.369±0.013 0.341±0.011 0.285±0.013 0.304±0.013 0.311±0.013
MERIT 0.525±0.003 0.415±0.012 0.425±0.012 0.431±0.010 0.340±0.011 0.373±0.011 0.342±0.008 0.290±0.011 0.310±0.013 0.305±0.012
Sel-Cl 0.520±0.003 0.408±0.012 0.440±0.010 0.438±0.008 0.346±0.011 0.376±0.008 0.346±0.020 0.292±0.011 0.309±0.014 0.303±0.012
ARIEL 0.513±0.003 0.419±0.008 0.439±0.013 0.437±0.008 0.348±0.009 0.377±0.012 0.345±0.014 0.294±0.009 0.316±0.011 0.301±0.008
Jo-SRC 0.511±0.006 0.419±0.013 0.444±0.011 0.440±0.011 0.351±0.013 0.375±0.013 0.349±0.013 0.290±0.013 0.315±0.015 0.300±0.014
RTGNN 0.516±0.003 0.417±0.007 0.445±0.007 0.439±0.012 0.349±0.010 0.373±0.013 0.346±0.014 0.288±0.010 0.320±0.014 0.311±0.021

GRAND+ 0.540±0.005 0.413±0.010 0.438±0.010 0.442±0.011 0.347±0.013 0.371±0.013 0.343±0.013 0.280±0.010 0.313±0.015 0.305±0.013
BRGCL 0.533±0.004 0.428±0.012 0.457±0.007 0.455±0.009 0.362±0.015 0.389±0.010 0.360±0.010 0.309±0.011 0.336±0.014 0.322±0.015

C Comparisons to Existing Sample Selection Methods

In this subsection, we compare BRGCL against existing sample selection methods, including Co-teaching (Han
et al., 2018) and Self-Training (Li et al., 2018) for node classification with symmetric label noise. Co-teaching
maintains two networks to select clean samples for each other. Self-Training finds nodes with the most
confident pseudo labels, and it augments the labeled training data by incorporating confident nodes with
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Table 7: Node clustering performance comparison on benchmark datasets with 60% input attribute noise.
The p-values of the t-test between BRGCL and the second best baseline are listed in the last row of the table.

Methods Cora Citeseer PubMed Coauthor CS ogbn-arxiv
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

Supervised
GCN 57.4±0.61 44.7±0.57 57.1±0.65 35.4±0.34 56.9±0.99 28.3±0.46 52.8±0.74 52.6±0.95 43.7±1.19 49.6±0.84
S2GC 58.4±0.72 47.3±0.79 58.3±0.82 35.1±0.65 57.4±0.89 28.3±0.31 53.6±0.99 54.0±1.09 45.2±0.97 50.2±0.70

NRGNN 61.1±0.73 47.8±0.93 57.8±0.77 36.2±0.71 57.1±1.03 29.1±0.59 53.3±0.87 54.1±1.02 44.1±1.04 50.1±0.85
Unsupervised

K-means 39.9±0.94 26.9±0.88 44.8±0.59 26.8±1.76 49.0±1.45 29.3±1.49 25.4±1.76 14.6±1.86 24.3±1.76 27.9±1.86
GAE 49.1±0.95 36.9±0.67 33.2±0.64 16.4±1.36 56.6±0.87 26.1±0.65 39.6±1.25 38.9±1.40 34.5±1.14 36.4±1.32

ARVGA 53.8±1.01 39.0±0.59 45.2±0.82 24.2±0.78 57.2±0.69 27.0±0.46 49.8±0.65 48.3±1.13 40.2±0.77 44.3±1.03
GALA 63.3±0.78 50.0±0.68 59.4±0.80 35.8±0.88 57.1±0.79 29.1±0.17 52.5±1.03 53.8±0.98 45.2±0.97 50.5±0.79

GraphCL 61.2±0.96 49.1±0.79 58.3±0.88 34.9±1.02 57.3±0.89 29.1±0.49 53.2±0.88 54.2±1.14 43.9±0.97 49.3±1.03
MVGRL 62.5±0.79 50.5±0.63 59.2±0.79 35.7±0.76 57.6±0.70 29.6±0.55 54.1±0.87 55.2±1.02 45.1±0.89 50.2±0.95
MERIT 63.0±0.87 51.1±0.75 59.2±0.69 36.1±0.45 57.9±0.80 30.2±0.42 54.8±0.87 56.4±0.79 45.4±0.78 51.0±0.81
BRGCL 63.8±0.69 51.9±0.81 60.3±0.79 37.1±0.63 58.8±0.59 30.9±0.85 56.1±0.64 58.2±0.96 46.5±0.86 52.2±0.91
p-value 0.0014 0.0021 0.0231 0.0030 0.0401 0.0154 0.0075 0.0102 0.0112 0.0144

their pseudo labels into the existing training data. The results are shown in Table 8. It can be observed that
BRGCL greatly outperforms these two competing sample selection methods.

Table 8: Performance comparison against Co-teaching (Han et al., 2018) and Self-training (Li et al., 2018) on
node classification with different levels of symmetric label noise.

Dataset Methods Noise Level
40 50 60 70 80

Cora Self-training 0.664±0.012 0.584±0.007 0.532±0.013 0.459±0.011 0.368±0.012
Co-teaching 0.668±0.011 0.593±0.011 0.527±0.010 0.465±0.010 0.367±0.017

BRGCL 0.704±0.007 0.622±0.009 0.577±0.013 0.500±0.014 0.407±0.012
Citeseer Self-training 0.541±0.014 0.465±0.013 0.397±0.013 0.347±0.016 0.301±0.022

Co-teaching 0.522±0.018 0.461±0.011 0.383±0.011 0.338±0.014 0.299±0.020
BRGCL 0.574±0.013 0.496±0.011 0.445±0.014 0.368±0.013 0.327±0.014

PubMed Self-training 0.597±0.019 0.507±0.011 0.419±0.021 0.380±0.020 0.345±0.023
Co-teaching 0.584±0.013 0.499±0.015 0.403±0.014 0.371±0.011 0.342±0.022

BRGCL 0.640±0.010 0.530±0.010 0.477±0.010 0.399±0.012 0.355±0.013
Coauthor CS Self-training 0.672±0.010 0.614±0.012 0.542±0.013 0.462±0.015 0.397±0.015

Co-teaching 0.666±0.012 0.610±0.011 0.529±0.015 0.451±0.013 0.404±0.019
BRGCL 0.718±0.008 0.638±0.009 0.587±0.011 0.480±0.011 0.434±0.015

ogbn-arxiv Self-training 0.462±0.012 0.413±0.014 0.368±0.018 0.328±0.014 0.276±0.020
Co-teaching 0.437±0.024 0.406±0.011 0.359±0.016 0.322±0.012 0.282±0.025

BRGCL 0.487±0.006 0.432±0.009 0.407±0.009 0.344±0.012 0.303±0.013

Table 9: Ablation study on the Bayesian nonparametric estimation of the number of prototypes.
Datasets #Prototypes Noise

Asymmetric Symmetric Attribute

Cora 5 0.284 0.390 0.349
7 (Ground Truth Class Number) 0.288 0.399 0.350

10 0.289 0.403 0.352
13 (Estimated by BRGCL) 0.295 0.407 0.356

15 0.293 0.402 0.354

Citeseer 5 0.354 0.325 0.309
6 (Ground Truth Class Number) 0.355 0.324 0.310

9 (Estimated by BRGCL) 0.359 0.327 0.312
10 0.358 0.327 0.310
15 0.353 0.321 0.308

PubMed 3 (Ground Truth Class Number) 0.342 0.349 0.470
5 0.343 0.352 0.471
10 0.348 0.354 0.476

11 (Estimated by BRGCL) 0.350 0.355 0.479
15 0.349 0.354 0.478
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D Ablation Study on the Bayesian Nonparametric Estimation of the Number of
Prototypes

To validate the effectiveness of using the Bayesian nonparametric method to infer the number of cluster
prototypes in BEC, we compare BRGCL with ablation models that manually set the number of cluster
prototypes. We perform the experiments on Cora, Citeseer, and Pubmed with a noise level of 80. Herein, we
compare the Bayesian nonparametric method with methods that manually set the number of prototypes to 5,
10, and 15, as well as the ground truth number of classes in each dataset. It is observed from Table 9 that
estimating the number of prototypes by the Bayesian nonparametric method in BEC usually achieves the
best performance on each dataset. The results show that the Bayesian nonparametric method can find a
suitable number of prototypes for robustness to noise.
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