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Abstract

Sequential recommendation (SR) aims to predict items that users may be interested
in based on their historical behavior sequences. We revisit SR from a novel
information-theoretic perspective and find that conventional sequential modeling
methods fail to adequately capture the randomness and unpredictability of user
behavior. Inspired by fuzzy information processing theory, this paper introduces
the DDSR model, which uses fuzzy sets of interaction sequences to overcome
the limitations and better capture the evolution of users’ real interests. Formally
based on diffusion transition processes in discrete state spaces, which is unlike
common diffusion models such as DDPM that operate in continuous domains. It is
better suited for discrete data, using structured transitions instead of arbitrary noise
introduction to avoid information loss. Additionally, to address the inefficiency
of matrix transformations due to the vast discrete space, we use semantic labels
derived from quantization or RQ-VAE to replace item IDs, enhancing efficiency
and improving cold start issues. Testing on three public benchmark datasets
shows that DDSR outperforms existing state-of-the-art methods in various settings,
demonstrating its potential and effectiveness in handling SR tasks.

1 Introduction
For a long time, sequential recommendation (SR) has been attracting increasing attention due to its
excellent performance and significant commercial value (Chen et al. [2020], Qiu et al. [2021], Yin
et al. [2024]). Unlike traditional collaborative filtering or certain graph-based methods (Wang et al.
[2019]), SR systems emphasize the inherent dynamic behaviors of users rather than relying solely on
structured data (Chen et al. [2022], Ma et al. [2020], Cen et al. [2020]). This approach enhances the
accuracy of personalized recommendations, allowing for more precise tracking of changes in user
interests and needs. Typical deep learning-based SR models, such as those utilizing CNN, RNN, and
Transformer architectures (Tang and Wang [2018], Hidasi et al. [2015], Kang and McAuley [2018b]),
have achieved remarkable success in modeling user historical interaction data.

However, these methods are formalized models based on a narrow information theory assumption
(Shannon [1948]), which only acknowledges determinism (Rosas et al. [2020]). They assume that all
phenomena strictly adhere to mechanical laws and that the states of motion of objects at different
times can be uniquely determined. In reality, however, user behavior is characterized by randomness
and unpredictability. They might change their mind about buying a down jacket due to a sudden
warm-up, or they might impulsively buy desserts due to a breakup. As illustrated on the left in
Figure 1, a user’s interest at any given moment might be focused on ’some items’ with blurred
boundaries, only converging finally when the user makes a selection.

Although increasing the sample size is an effective strategy to address the above issue, in reality,
the data in recommendation systems is usually quite sparse (He and McAuley [2016]), limiting the
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Figure 1: Illustration of DDSR constructing fuzzy sets and incorporating semantic IDs to enhance sequential
recommendations. In real-world scenarios, a user’s final choice often reflects their immediate interests (left
subfigure). We reconstruct the true evolution of interests by constructing fuzzy sets for each item in the interaction
sequence (middle subfigure). The right subfigure provides an overview of the process of generating semantic
IDs for recommendations based on item-related descriptions.

practicality of this strategy. Inspired by the theory of fuzzy information processing (Tanaka et al.
[1976], Tanaka and Sommer [1977]), we believe that making the absolute membership relations
in traditional sets more flexible is another effective way to solve the problem. In other words, it is
not necessary to strictly limit the modeling of user interests to the items they have interacted with.
Therefore, we propose using a diffusion model (Ho et al. [2020]) for fuzzy modeling of user interests,
which enhances the model’s performance by introducing perturbations during the training process.

We have noticed existing work that introduces diffusion models into SR (Xie et al. [2024]), such as
DiffuRec (Li et al. [2023b]) and DreamRec (Yang et al. [2023]), which focus on Gaussian diffusion
processes operating within a continuous state space. They add Gaussian noise to the embedded
representations of candidate items for recommendation through a forward diffusion process until the
noise reaches a pure state (standard normal distribution). Subsequently, they iteratively sample from
this noise using a reverse denoising process guided by historical interaction information to recover
meaningful representations and recommend items most similar to these representations.

However, unlike our desire to fuzzily model interaction sequences, the aforementioned methods
follow the form of diffusion models in the image domain and operate on candidate items. They
introduce the crucial sequence information merely as conditional information, without leveraging the
diffusion model’s performance on it. On the other hand, these methods relax discrete interaction data
into a continuous space and introduce noise, which may lead to distortion or loss of meaning in the
original discrete space, as the addition of noise could push data points away from any meaningful
discrete state. Therefore, we hope that state transitions occur under discrete conditions for the
entire interaction sequence, which is discrete diffusion. Based on this, we have proposed our DDSR
(Discrect Diffusion Sequential Recommendation model), which uses a directed graph to model
sequential recommendation. In this model, all interaction items are viewed as nodes, and transitions
between items are treated as directed edges. Discrete diffusion is used to enable structured transitions
of nodes, with the resulting new sets treated as fuzzy sets, as shown in the middle of Figure 1. By
designing the transition matrix, we can achieve uniform transitions or importance-based transitions
for the nodes, ensuring controllability. In Section 3.3, we theoretically demonstrate the reliability
and effectiveness of modeling on these generated fuzzy sets, based on the principles of information
diffusion. During the inference stage, we refer to the sampling formula for discrete diffusion but start
from the historical interaction sequence rather than from noise, iteratively generating refined results.

Furthermore, we have found that the excessive number of items involved in the recommendation
problem leads to a high-dimensional transition matrix, resulting in inefficient diffusion transitions.
Additionally, item IDs themselves do not contain any prior information, which poses a challenge
in determining beneficial transition directions. To address this issue, we have further introduced
semantic tags to replace meaningless item IDs, using quantization techniques and VQ-VAE to derive
these tags from semantic information, thus reducing the size of the discrete space. We will provide
specific details on how this can be achieved in 4.1, and a vivid illustration of this is given on the right
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side of Figure 1. Simultaneously, the introduction of semantic information has enhanced the model’s
generalization capability and effectively solved the cold start problem. We conducted extensive
experiments on three public benchmark datasets, comparing DDSR with several state-of-the-art
methods. The results demonstrate that DDSR significantly outperforms baseline methods in various
settings and effectively handles cold-start recommendations.

2 Related Work

2.1 Sequence Recommendation

SR suggests potential subsequent items based on users’ historical interaction records (Chen et al.
[2022], Shen et al. [2024]). Early research primarily relied on Markov chains and matrix factorization
techniques for recommendation (He et al. [2016]). However, with the development of deep learning,
efforts such as GRU4Rec (Hidasi et al. [2015]), Caser (Tang and Wang [2018]), and others have
focused on designing neural network models to capture sequential dependencies in user behavior
sequences. The introduction of the Transformer architecture (Vaswani et al. [2017]) in SASRec
(Kang and McAuley [2018b]) pioneered SR and quickly became the mainstream method in the field.
Additionally, BERT4Rec (Sun et al. [2019]) utilizes bidirectional encoders to capture bidirectional
dependencies in sequences, using a masked language model to predict the user’s next action.

Recent studies have shown that high-quality high-dimensional embeddings are crucial for obtaining
accurate recommendation results (Hou et al. [2022]). To this end, researchers are striving to leverage
the rich attribute information of items to improve data representation. For example, TransFM (Pasricha
and McAuley [2018]) introduces arbitrary real-valued features through factorization machines, while
S3-Rec (Zhou et al. [2020]) designs four self-supervised learning tasks as pre-training objectives to
learn context-aware data representations with attribute awareness. Furthermore, researchers like Hou
et al. [2022], Zhao [2022], Harte et al. [2023] further utilize pre-trained language models to process
item description texts, obtaining universal item representations with rich semantic information to
enhance the performance. VQ-Rec (Hou et al. [2023]) and TIGER (Rajput et al. [2024]) further
employ quantization techniques (Jacob et al. [2018]) and RQ-VAE (Lee et al. [2022]) to obtain
tokenized semantic IDs for recommendations, replacing semantic embeddings.

2.2 Discrete Diffusion Models

Diffusion models, inspired by non-equilibrium thermodynamics, have been introduced and demon-
strated significant results in fields such as computer vision, sequence modeling, and audio processing
(Dhariwal and Nichol [2021], Rasul et al. [2021], Ho et al. [2022]). Most diffusion models are based
on the Denoising Diffusion Probabilistic Model (DDPM) proposed by Ho et al. [2020], as well as the
score-based generative models (SGMs) proposed by Song et al. [2020], targeting continuous data
domains. We provide detailed descriptions of DDPM and SGMa in Appendix D to facilitate compar-
isons with the discrete diffusion approach we employ. Diffusion models in discrete state space are
first described in Sohl-Dickstein et al. [2015] and later applied to text and image domains in D3PMs
(Austin et al. [2021]). VQ-Diffusion (Gu et al. [2022]) utilizes them to eliminate unidirectional bias
in text-to-image generation.

3 Discrete Diffusion Process of DDSR

In this section, we present the problem definition (Section 3.1) and illustrate how item sequences
undergo discrete diffusion to obtain the corresponding fuzzy sets (Section 3.2). Finally, the effective-
ness of this fuzzy modeling is theoretically demonstrated (Section 3.3). Please note that the actual
diffusion and inference in DDSR occur at the semantic ID level, but this chapter discusses items.

3.1 Problem Statement

Let U be the set of users and V be the set of discrete items in the dataset, |U| and |V| represent
the number of elements in their respective sets. For each user u ∈ U , v1:n−1 = [v1, v2, . . . , vn−1]
represents his historical interaction sequence sorted by timestamp. The goal of the model is to predict
the next item vn that the user is most likely to interact with. To facilitate better discrete diffusion and
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for the convenience of subsequent theoretical derivations, we model each user’s interaction sequence
as a directed graph Gu. In this graph, each item represented by a semantic ID is regarded as a node,
while transitions between items are viewed as directed edges. Specifically, an edge exists from vi to
vj if and only if vj is the next item interacted with by the user after vi.

3.2 Node Diffusion Transition

A typical diffusion model transforms data x0 ∼ q(x0) into a sequence of gradually noisier latent
variables x1:T = x1, x2, ..., xT via forward process q(x1:T |x0) =

∏T
t=1 q(xt|xt−1). In diffusion

models within continuous state spaces, the forward distribution is typically set with q(xt|xt−1) =
N
(
xt|

√
1− βtxt−1, βtI

)
as a hyperparameter controlling the level of noise added at each step. As

the number of time steps T approaches infinity, xT converges to a standard Gaussian distribution.
Beyond the limitations mentioned above, information loss due to diffusion into pure noise is another
reason for unstable training and inadequate alignment of continuous diffusion with SR.

Continuous diffusion always operates on embeddings, while in diffusion models within discrete state
spaces, categories are directly transformed. Transition matrices [Qt]ij = q(xt = j|xt−1 = i) are
used to describe the probability of single-step diffusion transitions, where i and j represent categories
within the domain. Denoting the one-hot version of x with the row vector x (bold), then the one-step
transition probabilities can be expressed as:

q(xt|xt−1) = Cat(xt;p = xt−1Qt), (1)

where Cat(x; p) is the categorical distribution corresponding to the one-hot row vector x with
probabilities given by the row vector p, and xt−1Qt is understood as a row vector-matrix product.
Starting from x0, we obtain the following t-step marginal and posterior at time t− 1:

q(xt|x0) = Cat
(
xt;p = x0Qt

)
, with Qt = Q1Q2 . . .Qt, (2)

We take the set V as the domain in SR. Each vi in the interaction sequence is represented as a one-hot
encoding x0

i . Using the transition form defined by 2 enables transitions to other nodes, denoted as xt
i,

in the domain with a certain probability at any time step t. Unlike continuous diffusion, which only
allows noise addition, discrete diffusion models offer the advantage of controlling the data blurring
process by selecting the transition matrix. Here, we present two strategies to select transition matrices,
i.e. Uniform transition and Importance transition.

Uniform transition. Similar to the study by Hoogeboom et al. [2021], the natural idea is to maintain
nodes with a certain probability βt ∈ (0, 1) unchanged. In contrast, in other cases, nodes are randomly
transformed into any other node in the domain with equal probability (1− βt)/(|V| − 1). That is

[Qt]ij =

{
(1− βt)/(|V| − 1) if i ̸= j

βt if i = j
. (3)

Uniform transfer can be regarded as a special case of linear information allocation, thus theoretically
affected by the size of the discrete space. It can compute the cumulative product Q̄t in closed form.

Importance transition. For data with certain prior knowledge, we propose transitioning between
more similar nodes rather than uniformly transitioning to any other state, thus defining the matrix:

[Qt]ij =


exp(−d2

ij/2σ
2)∑

vk∈V exp(−d2
ik/2σ

2)
if i ̸= j

1−
∑|V|−1

k=0,k ̸=i[Qt]ik if i = j

. (4)

Here, dij represents the distance between item vi and vj , calculated using the square of the Euclidean
distance. The parameter σ2 denotes the variance of the diffusion process. Consequently, the transition
probabilities cannot be solved in closed form; instead, they can only be updated alongside the
embeddings in the model. The importance transfer matrix adheres to the Gaussian information

diffusion function f(x) = 1
σ
√
2π

e−
x2

2σ2 . Therefore, it remains unaffected by the number of discrete
points but necessitates the sample point distribution to closely resemble a Gaussian distribution.
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This modeling approach appears to align more closely with our intuition, as a user’s interests at a
given moment often form a cluster of similar nodes (items). Only upon the user’s final selection of an
item does the ‘neighborhood’ converge to a single data point. This point represents the representative
of the interest cluster and the ambiguity in information naturally dissipates. In recommendation
tasks, we can only access the user’s final choice at each moment, without knowledge of the interest
cluster, reflecting incomplete knowledge. Regardless of the transition method employed, the key lies
in transitioning the sample space from incomplete to complete, as detailed in the subsequent section.

3.3 Completeness and Reliability

Here, we aim to demonstrate that the discrete diffusion spaces generated by the two methods in
Section 3.2 are completions of the original space, and the models constructed on these fuzzy sets are
solvable and effective. We first provide the formal definition of a complete sample space.

Definition 1. Let W denote the sample space. For any sample W ∈ W , if W is complete, i.e.,
unbiased estimates can be obtained through certain mathematical processing, then W is called a
complete sample space; otherwise, it is called an incomplete sample space.

In SR, W is a user’s behavior sequence; W is all possible combinations of these behavior sequences;
the domain V is all items in the dataset. Datasets in SR systems do not form a complete sample space,
as they often consist of incomplete interaction data and potential selection biases. The principle
of information diffusion ensures that when the given sample is incomplete, there exist reasonable
diffusion functions that can improve non-diffusion estimates. Below we define information diffusion.

Definition 2. An information diffusion about a set W is defined by a mapping µ : W × V → [0, 1],
satisfying the following conditions:

(1) ∀wj ∈ W , if vj is the observed value of wj , then µ(wj , vj) = supv∈V µ(wj , v).
(2) ∀wj ∈ W , µ(wj , v) decreases as ∥vj − v∥ increases.
(3) ∀w ∈ W ,

∑
ν µ(w, v)dv = 1.

The diffusion estimates obtained using uniform transition and importance transition, as defined
in Section 3.2, clearly adhere to Definition 2. To illustrate that the space resulting from discrete
state transitions provides more information than the original state space, it is necessary to further
demonstrate that this space serves as a completion of the original space. In other words, the new
metric space is complete, with the original metric space serving as its dense subspace. This will be
more precisely discussed in the following theorem.

Theorem 3.1. After information diffusion, the subsequent space must be an entirely separable metric
space. Any model constructed in this space will assuredly possess a solution.

Proof in Appendix A. According to Theorem 3.1, since the space after information diffusion is
equidistant isomorphism with the original space, it can be used to replace the sample space with
insufficient information in SR to establish a model. On this complete space, predictive models are
solvable, demonstrating that modeling on fuzzy sets is a reasonable and effective approach.

4 Learning and Inference of DDSR

4.1 Obtaining Semantic IDs

As mentioned in Section 3, the indices i and j in the transition matrix [Qt]ij represent categories
in the discrete space, making Qt a two-dimensional matrix with dimensions equal to the size of the
discrete space. However, in recommendation tasks, the number of items involved can reach tens of
thousands, posing a significant challenge in terms of computational resources if we were to use all
item IDs as the discrete state space. Inspired by VQ-Rec and the recently proposed Tiger model
by Google, we attempt to train recommendation models using semantic IDs instead of item IDs. A
semantic ID is a codebook of length m. Assuming we set the size of the codebook to K, the entire
codebook can represent Km categories. Though we set each code from a different codebook, the
state space only needs m ∗ K nodes to store them. Additionally, the use of semantic IDs further
introduces semantic information, addressing the scarcity of information inherent in recommendations,
while also allowing the model to extend to unseen items, thus enabling cold-start recommendations.
We provide the specific method for obtaining semantic IDs in the Appendix B.
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Algorithm 1 Training of DDSR.

Input: historical interaction sequence v1:n−1 = c1:n−1;1:m; target item vn = cn;1:m; transition
matrix Qt; Approximator fθ(·).

Output: well-trained Approximator fθ(·).
While not converged do:

1: Sample Diffusion Time: t ∼ [0, 1, . . . , T ];
2: Calculate t-step transition probability: Qt = Q1Q2 · · ·Qt;
3: Convert cn;1:m to one-hot encoding x0

n;1:m;
4: Obtain the discrete state xt

n;1:m after t steps by Equation 2, thereby obtaining the ’fuzzy set’
ct1:n−1;1:m;

5: Modeling c2;n;1:m based on ’fuzzy sets’ through Equation 5;
6: Take gradient descent step on ∇LCE (ĉ2:n;1:m, c2:n;1:m).

Algorithm 2 Inference of DDSR.

Input: historical sequence c1:n−1;1:m; well-trained Approximator fθ(·); sampling step T .
Output: predicted target item vn.

1: Let xT = c1:n−1;1:m;
2: Let t = T ;
3: while t > 0 do
4: Use the trained fθ(·) to obtain predictions x̃0 with xt and t as inputs;
5: Substitute x̃0 into equation 7 to obtain the distribution of t− 1 step;
6: end while
7: ṽn = x0[−1; 1 : m];
8: if the same code project exists: vn = ṽn;
9: else: vn is the project in the space closest to ṽn.

4.2 Model Training

After introducing the Semantic ID, we convert the historical interaction sequence v1:n−1 into sequence
(c1,1, . . . , c1,m; c2,1, . . . , c2,m; . . . ; cn−1,1, . . . , cn−1,m), abbreviated as c1:n−1;1:m. We convert them
into one-hot encodings (x0

1,1, . . . ,x
0
1,m; . . . ;x0

n−1,1, . . . ,x
0
n−1,m), which is considered as the initial

state for discrete diffusion. Then we perform discrete diffusion through the state transition formula
defined in 2 (for more details, see Section 3.2) to obtain the discrete state after t steps xt

i,j , for any
i ∈ {1, . . . , n − 1} and j ∈ {1, . . . ,m}. Accordingly, the labels changes from ci,j to cti,j . Then
(ct1,1, . . . , c

t
1,m; . . . ; ctn−1,1, . . . , c

t
n−1,m) forms a "fuzzy set" of c1:n−1;1:m, denoted as ct1:n−1;1:m,

which can also be viewed as the state xt of the diffusion transition at step t.

Considering the suitability of the Transformer for sequence-to-sequence tasks, along with its well-
demonstrated effectiveness in modeling sequential dependencies, we use it with an embedding layer
as Approximator fθ(·) to predict c2:n;1:m with ct1:n−1;1:m as input. This approach differs from the
common practice in diffusion models, which often focus on modeling noise. It aligns more closely
with typical SR tasks that use v1:n−1 to predict v2:n, that is, the distribution p̃θ(x̃0|xt). We have
adopted sinusoidal time step embeddings, which are added after the embedding layer, allowing the
model to capture information about the time steps. This process can be represented by:

ĉ2:n;1:m = fθ(c
t
1:n−1;1:m, t). (5)

Generally, the loss function of diffusion models is designed based on KL divergence, or it can be
simplified to mean-squared error. However, guided by the theory of information diffusion, we choose
to use a cross-entropy loss function, which is more suitable for recommendation tasks, to optimize
our model without being constrained by the aforementioned methods.
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Table 1: Detailed descriptions and statistics of datasets. ’Avg. length’ represents the average length of item
sequences, while ’Avg. num’ indicates the average number of words in item text.

Datasets Users Items Interactions Avg.length Avg.num

Scientific 8442 4385 59 427 7.04 182.87
Office 87 436 25 986 684 837 7.84 193.22
Online Retail 16 520 3469 519 906 26.90 27.80

4.3 Model Inference

In the inference phase, we aim to emulate the reverse process of the diffusion model, iteratively
producing refined recommendation results. According to Bayes’ theorem, we have

q(xt−1|xt,x0) =
q(xt|xt−1,x0)q(xt−1|x0)

q(xt|x0)
= Cat

(
xt−1;p =

xtQ
⊤
t ⊙ x0Qt−1

x0Qtx
⊤
t

)
, (6)

where ⊙ represents the Hadamard product. Following the approach of Ho et al. [2020] and Hooge-
boom et al. [2021], we employ the trained model fθ(·) as described in Section 4.2 to derive the
distribution p̃θ(x̃0|xt). Combining it with q(xt−1|xt,x0), we obtain the following parameterized
expression:

pθ(xt−1|xt) =
∑
x̃0

q(xt−1,xt|x̃0)p̃θ(x̃0|xt). (7)

For the historical interactions v1:n−1, we use c1:n−1;1:m as xT , and starting from t = T , we iteratively
execute Equation 7 until t = 0. This parameterization also allows us to perform inference for k
steps at a time by predicting pθ(xt−k|xt) =

∑
q(xt−k,xt|x̃0)p̃θ(x̃0|xt), leading to efficiency

improvements. After obtaining x0, we take its last component, which is a semantic ID of length m. If
the corresponding item exists, we directly select that item; otherwise, we search for the item closest
to it in the embedding space as the final recommendation result. The training and inference phase of
DDSR are demonstrated in Algorithm 1 and Algorithm 2.

5 Experiment
5.1 Experiment Settings
Datasets. We employ three real-world datasets to evaluate the performance of our DDSR model.
Following some works on text-based recommendation (Li et al. [2023a], Hou et al. [2022]), these
datasets include two specific subcategories from the Amazon Reviews dataset (Scientific and Office),
and a cross-platform dataset known as Online Retail, which operates from the UK. Following the
method of Hou et al. [2022], we filter out users and items with fewer than five interactions. Subse-
quently, interaction behaviors within each sub-dataset are grouped by user and sorted chronologically.
For the Amazon sub-datasets, product descriptions are formed by concatenating fields such as title,
category, and brand, while for the Online Retail dataset, the description field is used. The product
texts are truncated to 512 characters. Please refer to Table 1 for detailed descriptions of these datasets.

Baselines. We compare DDSR with eight state-of-the-art SR methods, including two conventional
SR methods, three methods based on semantic information, and three generative SR methods:

1). Conventional Baselines: SASRec (Kang and McAuley [2018a]) utilizes a causal Transformer
architecture with a self-attention mechanism to model user behavior. BERT4REC (Sun et al. [2019])
proposes a bidirectional Transformer with a cloze task predicting the masked target items for SR.

2). Semantic-based Baselines: UniSRec (Hou et al. [2022]) utilizes the associated description
text of items to learn transferable representations across different recommendation scenarios, using
an enhanced mixture-of-experts adaptor to enhance domain fusion and adaptation. VQ-Rec (Hou
et al. [2023]) maps item text to a vector of discrete indices for learning transferable sequential
recommenders. TIGER (Rajput et al. [2024]) trains a Transformer-based sequence-to-sequence
model with semantic IDs obtained from RQ-VAE to enhance its generalization ability.

3). Generative Baselines: ACVAE (Xie et al. [2021]) proposes an adversarial and contrastive
variational autoencoder for SR combining the ideas of CVAE and GAN. DiffuRec (Li et al. [2023b])
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Table 2: Performance of different models. Bold (underline) is used to denote the best (second-best) metric, and
‘*’ indicates significant improvements relative to the best baseline (t-test P<.05). ’R@K’ (’N@K’) is short for
’Recall@K’ (’NDCG@K’). The features of items have been listed, whether ID, text (T), or both (ID+T).

Methods Scientific Office Online Retail

R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50

SASRecT 0.1049 0.0527 0.1754 0.0683 0.1047 0.0714 0.1638 0.0857 0.1461 0.0674 0.3781 0.1186
BERT4RecID 0.0473 0.0258 0.1092 0.0394 0.0798 0.0605 0.1207 0.0717 0.1354 0.0661 0.3517 0.1159
UniSRecT 0.1104 0.0537 0.1890 0.0787 0.1024 0.0621 0.1668 0.0798 0.1274 0.0598 0.3294 0.1054
VQ-RecT 0.1129 0.0577 0.2046 0.0749 0.1090 0.0676 0.1714 0.0845 0.1532 0.0713 0.3975 0.1254
TIGERT 0.1057 0.0597 0.1803 0.0682 0.1056 0.0712 0.1597 0.0868 0.0745 0.0390 0.2216 0.0701
ACVAEID 0.0463 0.0315 0.0906 0.0457 0.0549 0.0397 0.1003 0.0519 0.0884 0.0410 0.1897 0.0648
DiffuRecID 0.1145 0.0594 0.1907 0.0752 0.1056 0.0689 0.1781 0.0832 0.0402 0.0189 0.0849 0.0321
DreamRecID+T 0.0845 0.0421 0.1645 0.0688 0.0954 0.0557 0.1662 0.0694 0.0577 0.0261 0.0997 0.0544
DDSRT 0.1207* 0.0663* 0.2153* 0.0842* 0.1138* 0.0768* 0.1926* 0.0925* 0.1687* 0.0876* 0.4021 0.1322*

Improv. +5.41% +11.61% +5.23% +6.99% +4.40% +8.14% +6.46% +7.93% +10.12% +22.86% +1.16% +5.42%

introduces the diffusion model into the field of SR reconstructing target item representation from
a Transformer backbone with the user’s historical interaction behaviors. DreamRec (Yang et al.
[2024]) uses the historical interaction sequence as conditional guiding information for the diffusion
model to enable personalized recommendations.

Evaluation Settings. Following previous works Hou et al. [2022], Zhao et al. [2022], Zhou et al.
[2020], we evaluate all models using metrics Recall@K and NDCG@K, and report experimental
results for K = 10, 50. We employ the leave-one-out strategy for performance evaluation across all
datasets. Concretely, we consider the last interaction as the test set, the second-to-last interaction as
the validation set, and all preceding interactions as the training set. The ground-truth item of each
sequence is ranked among all the other items while evaluating (Krichene and Rendle [2022]). The
implementation details of DDSR are illustrated in Appendix C.1.

5.2 Overall Performance

In this section, we compare the performance of DDSR with baseline models in terms of Top-K
recommendation accuracy under consistent experimental conditions (same data preprocessing), as
summarized in Table 2. For models that recommend based on item IDs, we provide semantic
information to them by jointly utilizing fixed text embeddings obtained from pre-trained BERT and
the embeddings corresponding to item IDs in the model’s embedding layer, to ensure fairness in the
experimental setup. For all models, the final table records the better of the three methods, using only
ID, only text, or both text and ID.

We observe that text-enhanced SR methods (UniSRec, VQ-Rec, TIGER) tend to benefit from
textual information, leading to improved performance compared to conventional methods in most
cases. Notably, VQ-Rec, employing discrete semantic encoding, generally outperforms UniSRec,
which relies on continuous text embeddings, across various settings. This is despite UniSRec
already using techniques like parameter whitening and MoE-enhanced Adaptor to enhance textual
information. We posit that an excessive emphasis on text similarity can yield suboptimal outcomes,
while the conversion to codes mitigates the coupling between items and semantic information. The
corresponding representations of the codes are relearned in the sequence-to-sequence model, allowing
them to include more sequential structural information. While similarly based on discrete semantic
encoding, the performance of TIGER is not stable. We do not rule out the possibility that there may
be discrepancies between our implementation and the actual model, as it has not been open-sourced.
Furthermore, we attribute the instability to TIGER’s semantic ID length, which is limited to only 4
characters, potentially insufficient for expressing complex information.

In methods grounded in generative models, the performance of DiffuRec and DreamRec, based on
diffusion models, surpasses that of ACVAE, relying on GAN and VAE. This disparity arises from
the inherent advantages of diffusion models over VAE and GAN, as they circumvent the issue of
posterior collapse, wherein the generated hidden representations lack crucial information about user
preferences. Notably, DiffuRec achieves superior performance despite its limited capacity to handle
semantic information, yet it still exhibits recommendation performance comparable to VQ-Rec. This
suggests that diffusion models can yield effective hidden representations of items and users.
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Table 3: Ablation analysis of DDSR. Bold font indicates the best metric.

Variants Scientific Office Online Retail

R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50 R@10 N@10 R@50 N@50

Uniform transition 0.1207 0.0663 0.2153 0.0842 0.1097 0.0752 0.1889 0.0931 0.1517 0.0724 0.3967 0.1273
Importance transition 0.1192 0.0631 0.2110 0.0813 0.1138 0.0768 0.1926 0.0925 0.1687 0.0876 0.4021 0.1322
w/o diffusion 0.1126 0.0563 0.2059 0.0749 0.1076 0.0659 0.1729 0.0851 0.1549 0.0719 0.4003 0.1268
RQ-VAE ID 0.1195 0.0645 0.1987 0.0825 0.1017 0.0609 0.1611 0.0784 0.1081 0.0564 0.2772 0.0853
Random ID 0.0554 0.0307 0.1193 0.0487 0.0548 0.0386 0.0982 0.0501 0.0428 0.0220 0.0863 0.0334

In all three datasets, DDSR achieves significant improvements, demonstrating the effectiveness of our
approach. We attribute this success to two key factors. Firstly, the integration of semantic information
mitigates data sparsity issues, as evidenced by the enhanced performance of semantic-based models
on smaller datasets compared to traditional recommendation methods. Secondly, training on fuzzy
sets generated by discrete diffusion furnishes the model with additional information. This is consistent
with our theoretical analysis in Section 3.3, which posits that the diffused information space constitutes
a completion of the original space, rendering models built on this enriched space effectively solvable.
Moreover, while DiffuRec, relying on a continuous state space diffusion model, exhibits instability
when confronted with larger and more intricate datasets, DDSR maintains a distinct advantage. We
attribute this to DDSR’s retention of the discrete space without transitioning it into a continuous one
and introducing noise, thus circumventing the loss of meaningful information.

5.3 Ablation Study

We analyze the impact of semantic ID and discrete diffusion on final performance and conduct an
ablation study to compare the results under different settings, as shown in Table 3. The Uniform
transition and importance transition are two discrete diffusion methods provided in Section 3.2,
corresponding to different transition matrices. To control variables, these methods, along with
the non-diffusion case, are all applied using semantic ID obtained through PQ. It can be observed
that on larger datasets, the importance transition has relatively more advantages, and both methods
outperform the non-diffusion scenario.

To control variables and accurately evaluate the performance of IDs, diffusion is applied in the last
two rows of the experiments (the method based on PQ ID with diffusion corresponds to the first
and second rows, so it is not listed again). The PQ ID and RQ-VAE ID in the table corresponds to
the two methods of obtaining semantic identifiers provided in Section 4.1. Random ID represents
using a randomly generated codebook to replace the semantic identifiers, where the random identifier
of item ci is simply ci = (ci,1, . . . , ci,m) with ci,j uniformly sampled from 1, 2, ...,K. Using
Random ID means the model no longer gains semantic information. As observed, PQ ID exhibits
greater stability and outperforms RQ-VAE ID across multiple datasets. Nevertheless, RQ-VAE
ID requires less memory space due to its ability to achieve satisfactory representation with fewer
codebook lengths. Semantic identifiers consistently outperform the Random ID, underscoring the
significance of leveraging content-based semantic information. Indeed, models utilizing Random ID
even underperform compared to SASRec. This can be attributed to SASRec’s approach of setting
independent embeddings for each item, rather than blending unrelated embeddings.

5.4 Further Analysis

Performance Analysis on Cold-Start Items. In this study, we evaluate the efficacy of DDSR in
recommending cold-start items. Generating effective item embeddings without item information
poses a challenge for SR models. To evaluate this, we partition the test data into two groups based
on item popularity. For the Office dataset, the range [0, 5) demarcates long-tail Items, whereas for
the Online Retail dataset, it is [0, 20). All other items are classified as Popular Items. The results
are presented in Figure 2a. Notably, DDSR and VQ-Rec demonstrate substantial improvement over
SASRec, which solely leverages a Transformer, particularly for long-tail Items, also referred to as the
cold-start group. This is attributed to the integration of semantic information, enabling the model to
acquire prior knowledge about items to some extent. Furthermore, DDSR demonstrates even greater
enhancement compared to VQ-Rec in cold-start scenarios. We attribute this to the discrete diffusion
method, which introduces a ‘fuzziness’ effect in the interaction records, facilitating the inclusion of
items with fewer interactions in the training process.
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Figure 2: Impact of Item Popularity and Sampling Step S.

Impact of Sampling Step S. The sampling step S represents the diffusion step number divided by
the number of inference steps executed simultaneously, rounded down to the nearest integer. We
illustrate in Figure 2b the influence of various sampling step settings. The model demonstrates optimal
performance with approximately 50 sampling steps, with a slight increase for more complex datasets,
albeit without significant disparities. Excessive sampling steps prolong the inference time without
commensurate performance improvements, while inadequate steps lead to decreased performance.

Efficiency Analysis. We compared the time complexity and specific running overhead of DDSR with
several other baseline algorithms, and the detailed results can be found in Appendix C.2.

6 Discussion

We proposed the DDSR model for the sequential recommendation, which employed discrete diffusion
to construct fuzzy sets of user interaction sequences. This process was iteratively refined during
inference, utilizing the sampling formula for discrete diffusion to derive the ultimate recommendation
outcomes. Notably, although DDSR had borrowed the form of diffusion and sampling over time
steps from diffusion models, it fundamentally differed from directly using diffusion models. If
we viewed sequential recommendation through the lens of causality, the interaction sequence was
the ‘cause’ and the recommended item was the ‘effect’. Diffusion models typically address the
target, blurring the ‘effect’, whereas DDSR has blurred the ‘cause’, inspired by the theory of fuzzy
information processing. Although dual assurances, both theoretical and experimental results, have
been provided to substantiate the superior performance of DDSR, it is imperative to recognize its
inherent limitations. Despite our efforts to implement efficient computational methods, the nature
of diffusion and sampling processes inevitably results in reduced efficiency and increased time
complexity. Potential refinements, such as approximating the diffusion process and accelerating the
sampling algorithm, could offer effective strategies, which we will explore in future work.

7 Acknowledgments

This work is supported by the National Natural Science Foundation of China (No. U23A20319,
62202443). Hao Wang also thanks the CCF-Tencent Rhino-Bird Open Research Fund
(RAGR20230124).

References
Brian D. O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their

Applications, 12(3):313–326, 1982.

J Austin, DD Johnson, J Ho, et al. Structured denoising diffusion models in discrete state-spaces.
Advances in Neural Information Processing Systems, 34:17981–17993, 2021.

Yukuo Cen, Jianwei Zhang, Xu Zou, Chang Zhou, Hongxia Yang, and Jie Tang. Controllable multi-
interest framework for recommendation. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 2942–2951, 2020.

Tong Chen, Hongzhi Yin, Quoc Viet Hung Nguyen, Wen-Chih Peng, Xue Li, and Xiaofang Zhou.
Sequence-aware factorization machines for temporal predictive analytics. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE), pages 1405–1416. IEEE, 2020.

10



Yongjun Chen, Zhiwei Liu, Jia Li, Julian McAuley, and Caiming Xiong. Intent contrastive learning for
sequential recommendation. In Proceedings of the ACM Web Conference 2022, pages 2172–2182,
2022.

P Dhariwal and A Nichol. Diffusion models beat gans on image synthesis. Advances in Neural
Information Processing Systems, 34:8780–8794, 2021.

Sheng Gu, Dongdong Chen, Jiajun Bao, et al. Vector quantized diffusion model for text-to-image syn-
thesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10696–10706, 2022.

J. Harte, W. Zorgdrager, P. Louridas, et al. Leveraging large language models for sequential rec-
ommendation. In Proceedings of the 17th ACM Conference on Recommender Systems, pages
1096–1102, 2023.

Ruining He and Julian McAuley. Fusing similarity models with markov chains for sparse sequential
recommendation. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages
191–200. IEEE, 2016.

Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. Fast matrix factorization for
online recommendation with implicit feedback. In Proceedings of the 39th International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR ’16, pages
549–558, New York, NY, USA, 2016. Association for Computing Machinery.

Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, et al. Session-based recommendations with
recurrent neural networks. arXiv preprint arXiv:1511.06939, 2015.

J Ho, W Chan, C Saharia, et al. Imagen video: High definition video generation with diffusion
models. arXiv preprint arXiv:2210.02303, 2022.

Jonathan Ho, Ankur Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Emiel Hoogeboom, David Nielsen, Priyank Jaini, and et al. Argmax flows and multinomial diffusion:
Learning categorical distributions. Advances in Neural Information Processing Systems, 34:
12454–12465, 2021.

Y. Hou, S. Mu, W. X. Zhao, et al. Towards universal sequence representation learning for recom-
mender systems. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 585–593, 2022.

Y. Hou, Z. He, J. McAuley, et al. Learning vector-quantized item representation for transferable
sequential recommenders. In Proceedings of the ACM Web Conference 2023, pages 1162–1171,
2023.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

B Jacob, S Kligys, B Chen, et al. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2704–2713, 2018.

W C Kang and J McAuley. Self-attentive sequential recommendation. In 2018 IEEE International
Conference on Data Mining (ICDM), pages 197–206. IEEE, 2018a.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
International Conference on Data Mining (ICDM), pages 197–206. IEEE, 2018b.

Walid Krichene and Steffen Rendle. On sampled metrics for item recommendation. Commun. ACM,
65(7):75–83, 2022.

D Lee, C Kim, S Kim, et al. Autoregressive image generation using residual quantization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
11523–11532, 2022.

11



J Li, M Wang, J Li, et al. Text is all you need: Learning language representations for sequential
recommendation. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 1258–1267, 2023a.

Z. Li, A. Sun, and C. Li. Diffurec: A diffusion model for sequential recommendation. ACM
Transactions on Information Systems, 42(3):1–28, 2023b.

Jianxin Ma, Chang Zhou, Hongxia Yang, Peng Cui, Xin Wang, and Wenwu Zhu. Disentangled self-
supervision in sequential recommenders. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 483–491, 2020.

Rajiv Pasricha and Julian McAuley. Translation-based factorization machines for sequential recom-
mendation. In Proceedings of the 12th ACM Conference on Recommender Systems, pages 63–71.
ACM, 2018.

Ruihong Qiu, Zi Huang, and Hongzhi Yin. Memory augmented multi-instance contrastive predictive
coding for sequential recommendation. In 2021 IEEE International Conference on Data Mining
(ICDM), pages 519–528. IEEE, 2021.

S. Rajput, N. Mehta, A. Singh, et al. Recommender systems with generative retrieval. Advances in
Neural Information Processing Systems, 36, 2024.

K Rasul, C Seward, I Schuster, et al. Autoregressive denoising diffusion models for multivariate
probabilistic time series forecasting. In International Conference on Machine Learning, pages
8857–8868. PMLR, 2021.

Fernando E Rosas, Pedro A M Mediano, Henrik J Jensen, et al. Reconciling emergences: An
information-theoretic approach to identify causal emergence in multivariate data. PLoS computa-
tional biology, 16(12):e1008289, 2020.

Claude E Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27
(3):379–423, 1948.

Tianyu Shen, Haifeng Wang, Jian Zhang, et al. Exploring user retrieval integration towards large
language models for cross-domain sequential recommendation. arXiv preprint arXiv:2406.03085,
2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, et al. Deep unsupervised learning
using nonequilibrium thermodynamics. In International conference on machine learning, pages
2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, et al. Score-based generative modeling
through stochastic differential equations. arXiv preprint arXiv:2011.13456, 2020.

F. Sun, J. Liu, J. Wu, et al. Bert4rec: Sequential recommendation with bidirectional encoder
representations from transformer. In Proceedings of the 28th ACM international conference on
information and knowledge management, pages 1441–1450, 2019.

H. Tanaka and G. Sommer. On posterior probabilities concerning a fuzzy information. Inst. für
Wirtschaftswissenschaften, RWTH, 1977.

H. Tanaka, T. Okuda, and K. Asai. A formulation of fuzzy decision problems and its application to
an investment problem. Kybernetes, 5(1):25–30, 1976.

Jiaxi Tang and Ke Wang. Personalized top-n sequential recommendation via convolutional sequence
embedding. In Proceedings of the Eleventh ACM International Conference on Web Search and
Data Mining, pages 565–573. ACM, 2018.

Aaron Van Den Oord and Oriol Vinyals. Neural discrete representation learning. Advances in Neural
Information Processing Systems, 30, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, volume 30, 2017.

12



H. Wang, T. Xu, Q. Liu, et al. Mcne: An end-to-end framework for learning multiple conditional
network representations of social network. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1064–1072, 2019.

Wenjia Xie, Ruining Zhou, Hong Wang, et al. Bridging user dynamics: Transforming sequential
recommendations with schrödinger bridge and diffusion models. In Proceedings of the 33rd ACM
International Conference on Information and Knowledge Management, pages 2618–2628, 2024.

Z. Xie, C. Liu, Y. Zhang, et al. Adversarial and contrastive variational autoencoder for sequential
recommendation. In Proceedings of the Web Conference 2021, pages 449–459, 2021.

Z. Yang, J. Wu, Z. Wang, et al. Generate what you prefer: Reshaping sequential recommendation via
guided diffusion. Advances in Neural Information Processing Systems, 36, 2024.

Zhengyi Yang, Jiancan Wu, Zhicai Wang, Xiang Wang, Yancheng Yuan, and Xiangnan He. Generate
what you prefer: Reshaping sequential recommendation via guided diffusion. arXiv preprint
arXiv:2310.20453, 2023.

Mingjia Yin, Hao Wang, Wei Guo, Yong Liu, Suojuan Zhang, Sirui Zhao, Defu Lian, and Enhong
Chen. Dataset regeneration for sequential recommendation. In Proceedings of the 30th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, pages 3954–3965, 2024.

Q. Zhao. Resetbert4rec: A pre-training model integrating time and user historical behavior for
sequential recommendation. In Proceedings of the 45th international ACM SIGIR conference on
research and development in information retrieval, pages 1812–1816, 2022.

W. X. Zhao, Z. Lin, Z. Feng, et al. A revisiting study of appropriate offline evaluation for top-n
recommendation algorithms. ACM Transactions on Information Systems, 41(2):1–41, 2022.

K. Zhou, H. Wang, W. X. Zhao, et al. S3-rec: Self-supervised learning for sequential recommendation
with mutual information maximization. In Proceedings of the 29th ACM International Conference
on Information & Knowledge Management, pages 1893–1902, 2020.

A Proof of the theory

Theorem A.1. The model often has the following form:

f : (U × V, ρ) → (U ′ × V ′, ρ),

which requires the model to be a continuous mapping from the original input-output space (which
can also be the original space). The data distribution on the aggregated model set can be modeled:

f ′ : (D, ρ′) → (U ′ × V ′, ρ),

defined as γ such that f ′ = γ(µ). When the static distribution approximates the dynamic distribution,
µ is the extended static scattering coefficient; otherwise, it is the linear information distribution
coefficient γ, ensuring that the determination of f ′ is unique. Therefore, (D, ρ′) is the completion
space of (U × V, ρ), consisting of the complete set of (U × V, ρ) and its separation.

In summary, the information diffusion space must be the completion space of the original space. Due
to the same dimensionality as the original space, the modeling on the aggregated set is reliable.

Next, consider the model (prediction model or simulation model) built on D(X). In practical
applications, the input-output set is generally constructed in two ways based on the original data:

ei =
xi − xmin

xmax − xmin
,

where ei is the normalized sequence; xi is the original sequence data; xmin is the minimum value
of the original sequence; xmax is the maximum value of the original sequence. It is obvious that
ei ∈ [0, 1], meaning (U × V ) ⊆ [0, 1], and the function boundary on D(X). When evaluating
risk, the original sequence data generates input-output sets, which clearly have bounded intervals
xi ∈ [xmin, xmax], meaning the function boundary on D(X) is also bounded. Therefore, D(X) is
necessarily a subset of the real number set.
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In the prediction model, the attribute function obtained from the aggregated set is:

µy0 =
∑
u

µx0(u)µA1(u, v), u ∈ U, v ∈ V. (6)

Among them, µRi
(u) = µAi

(u)µAi
(v), u ∈ U, v ∈ V . Since the output sequence and the input

sequence are generated by the same {ei}, and µi = xi+1:

Separately substituting into (6), we can obtain:

µx0
· g(x0) =

∑
u

µx0
µAi

µBi
(7)

or
µx0 + g(x0) =

∑
u

µx0µAiµBi .

Rearranging, we get:
µx0 =

∑
u

µx0
µAi

µBi

g(x0)
=
∑
u

G(x0, µx0),

and

µx0
=
∑
u

µx0
µAi

µBi
− g(x0) =

∑
u

[
µx0

µAi
µBi

− g(x0)

n

]
=
∑
u

G(x0, µx0
). (8)

The initial value problem for the differential equation ẏ(t) = f(t, y(t)), y(t0) = y0 can be trans-
formed into an integral equation:

y(t) =

∫
u

f(t, y(t))dt+ y0, t ∈ u; (9)

Since the cumulative sum and substitution integrals can be used in the scatter system, (8) is the
integral equation’s discrete model on D(X).

|G(xi)−G(xj)| =
∣∣G(xi, µxi)−G(xj , µxj )

∣∣ = {∣∣µxi · g(xi)− µxj · g(xj)
∣∣ , X ⊆ N(0, 1)∣∣µxi + g(xi)− µxj + g(xj)
∣∣

(10)

Both cases satisfy:

K = max
x∈U

∆

µxi − µxj

such that |G(xi)−G(xj)| ≤ K |xi − xj | ,

i.e., the function G(X) on D(X) satisfies the Lipschitz condition, thus the attribute function must
have a solution.

Since the attribute function has a solution on D(X), it can be deduced by the "maximum" principle
that the predicted output value must be:

ȳ0 =

(
n∑

i=1

wiv
′
i

)
/

(
n∑

i=1

wi

)
,

where the weights wi = µy0
(v′) = maxv∈V {µy0

(v)} .
Therefore, the information diffusion approximation model is established.

B Model Supplement

We first obtain fixed text embeddings from the relevant descriptions of items (e.g., product de-
scriptions, item titles, or brands) using the pre-trained BERT model. Specifically, for an item
vi with a corresponding description {w1, w2, . . . , wc}, the corresponding embedding vector is
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ei = BERT([[CLS];w1, . . . , wc]) ∈ RdW , where "[; ]" denotes the concatenation operation. Next,
obtaining Semantic IDs from ei can be achieved through the following two methods:

Product Quantization (PQ). Similar to the VQ-Rec approach, we evenly divided ei into m sub-
vectors ei = [ei,1; . . . ; ei,m], each with a dimension of dW /m. Denote ap,j ∈ RdW /m as the j-th
centroid embedding in the codebook corresponding to the p-th sub-vector. For each sub-vector, the
index of the nearest centroid from the corresponding PQ codebook is selected to form its discrete code
ci,p = argminj ∥ei,p − ap,j∥2 ∈ {1, 2, . . . ,K}. The centroids are obtained through the commonly
used Optimized Product Quantization (OPQ) method. Finally, ci = (ci,1, . . . , ci,m) is used as the
semantic ID for item vi.

RQ-VAE. RQ-VAE generate a set of codewords by quantizing the residuals. First, the input ei is
encoded into r0 using encoder E. Next, similar to PQ, the nearest centroid to it in the first codebook,
assumed to be ap,1, is found and its index is taken to form the first discrete code ci,1. The residual is
defined as r1 := r0−ap1,1. The same operation is performed to obtain ci,2 and this process is repeated
m times to obtain the complete Semantic ID. RQ-VAE use loss function L(x) := Lrecon + Lrqvae

jointly trains the encoder, decoder, and the codebook, where Lrecon := ∥ei − êi∥2 is reconstruction
loss, Lrqvae :=

∑m−1
d=0 ∥sg[ri]− api,i∥2 + β∥ri − sg[api,i]∥2. Here êi is the output of the decoder,

and sg is the stop-gradient operation Van Den Oord and Vinyals [2017]. Because the norm of the
residuals decreases progressively, the importance of the codebooks obtained in this manner also
diminishes with each level. Alternatively, it can be said that the encoding at each position has varying
levels of granularity. In our experiments, we found that this approach requires a smaller codebook
size than PQ, but it is slightly less stable.

In fact, once the codebook is established, it remains fixed throughout the subsequent model training
process. Therefore, the quality of the codebook directly affects the training outcomes. With the rapid
development of large language models, considering the use of more advanced pre-training schemes
to replace BERT could be an effective way to enhance performance. However, this is not the focus of
our current research, we leave this topic for future exploration.

C Experimental Supplement

C.1 Implementation Details

All of our experiments were conducted on a single RTX 4090. We implemented our models based on
PyTorch and the popular open-source recommendation library RecBole. We used (m = 32)× (K =
256) as the code representation scheme for PQ IDs and (m = 6)× (K = 256) for RQ-VAE IDs. For
baseline models, to ensure fair comparison, we optimized all methods using the Adam optimizer
and searched for hyperparameters to find the best results. Since we did not find open-source code
for the TIGER model, we attempted to replicate it as faithfully as possible based on its paper;
however, its performance may have been slightly lower in some experiments due to difficulties in
unifying some details. For UniSRec and VQ-Rec, we utilize their code in a form that does not
involve pretraining with the entire dataset, as we aim to evaluate all baselines and DDSR considering
recommendations on a single dataset rather than cross-domain. The batch size was set to 2,048. The
learning rate was adjusted among {0.0001, 0.0002, 0.0003, 0.0005, 0.001}. The model achieving
the highest NDCG@10 result on the validation set was selected for evaluation on the test set. We
employed an early stopping strategy with a patience of 10 epochs.

Regarding diffusion, all models were trained on a diffusion process of 1000 steps, and the time step
embeddings are implemented using cosine embeddings, similar to the work of Li et al. [2023b]. For
the diffusion with uniform transition, we employ the cosine schedule proposed by Hoogeboom et al.
[2021] to set the transition probabilities (1−βt). For the diffusion with importance sampling, we adopt
a linear schedule similar to the one used in Ho et al. [2020], where σ2 increases linearly from 10−4∗K
to 0.02 ∗K. Skip steps in the sampling process were chosen among {100, 50, 35, 28, 23, 20, 17, 15}.
While there have been many works on accelerating sampling in continuous state space diffusion
models, the development in discrete diffusion is still insufficient. Here, we adopted a basic uniform
skip scheme for more efficient and effective sampling, which is one of our next research directions. If
the evaluation steps do not divide 1000 evenly, the last step may be skipped.
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Table 4: Time complexity analysis of various models, ’Comp.’ is an abbreviation for ’Complexity’.

Model SASRec BERT4Rec UniSRec TIGER DiffuRec DDSR

Comp. O(nd2 + dn2) O(nd2 + dn2) O(nd2 + dn2) O(mnd2 + mdn2) O(nd2 + dn2) O(mnd2 + mdn2)

C.2 Efficiency Analysis

We list the time complexities of six baselines in Table 4, where n denotes sequence length, d is the
dimension of the hidden layers, and m is the length of the codebook used when semantic IDs are
utilized. Most of these models are based on the transformer or its variants, hence the time complexity
is O(nd2 + dn2). Only TIGER and our proposed DDSR model are trained using semantic IDs,
making their time complexity m times that of other methods. We plan to make further improvements
in our subsequent work.

In addition, we compared the actual operational costs of the DDSR model with those of UniSRec
and DiffuRec, as shown in Table 5. Although we adopted the method of ’performing inference for
k steps at a time’, which reduced the sampling steps and lowered the evaluation time compared to
DiffuRec, we must acknowledge that DDSR still has certain limitations in terms of operational costs,
necessitating further improvements in future work.

Table 5: Comparison of Actual Operational Costs.
Datasets Model GPU memory (GB) Training Time (s/epoch) Evaluation Time (s/epoch)

Scientific
UniSRec 8.32 3.51 0.67
DiffuRec 14.94 4.97 17.52
DDSR 12.41 6.76 11.38

Office
UniSRec 8.29 9.96 1.13
DiffuRec 14.85 25.81 127.41
DDSR 12.48 36.19 69.10

Online Retail
UniSRec 9.96 52.19 3.70
DiffuRec 15.97 65.22 103.44
DDSR 13.47 83.51 60.11

D Diffusion Models in Continuous State Space

D.1 DDPM

Diffusion models comprise a forward diffusion process and a backward denoising process. We begin
with the widely recognized denoising diffusion probabilistic model (DDPM) Ho et al. [2020]. We
start by defining our data distribution x0 ∼ q(x0) and a Markovian noising process q which gradually
adds noise to the data x0 to produce noised samples xT .In particular, each step of the noising process
adds Gaussian noise according to a variance schedule given by βt:

q(xt | xt−1) := N (xt;
√

1− βtxt−1, βtI)

Furthermore, q(xt | x0) can be expressed as a Gaussian distribution. With αt := 1 − βt and
ᾱt :=

∏t
s=0 αs, q(xt | x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I) =

√
ᾱtx0 +

√
1− ᾱtϵ, where ϵ ∼ N (0, I).

Here, 1− ᾱt indicates the variance of the noise at an arbitrary timestep, and this can be used to define
the noise schedule instead of βt.

Using Bayes theorem, one finds that the posterior q(xt−1|xt, x0) is also a Gaussian with mean
µ̃t(xt, x0) and variance β̃t defined as follows:

µ̃t(xt, x0) :=

√
αt−1βt

1− αt
x0 +

√
αt(1− αt−1)

1− αt
xt (8)

β̃t :=
1− αt−1

1− αt
βt (9)
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q(xt−1|xt, x0) = N (xt−1; µ̃t(xt, x0), β̃tI) (10)

If we wish to sample from the data distribution q(x0), we can first sample from q(xT ) and then sample
reverse steps q(xt−1|xt) until we reach x0. Under reasonable settings for βt and T , the distribution
q(xT ) is nearly an isotropic Gaussian distribution, so sampling xT is trivial. All that is left is to
approximate q(xt−1|xt) using a neural network, since it cannot be computed exactly when the data
distribution is unknown. To this end, Sohl-Dickstein et al. [56] note that q(xt−1|xt) approaches a
diagonal Gaussian distribution as T → ∞ and correspondingly βt → 0, so it is sufficient to train a
neural network to predict a mean µθ and a diagonal covariance matrix Σθ:

pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (11)

To train this model such that pθ(x0) learns the true data distribution q(x0), we can optimize the
following variational lower-bound Lvlb for pθ(x0):

Lvlb := L0 + L1 + . . .+ LT−1 + LT (12)

L0 := − log pθ(x0|x1) (13)

Lt−1 := DKL(q(xt−1|xt, x0)∥pθ(xt−1|xt)) (14)

LT := DKL(q(xT |x0)∥p(xT )) (15)

While the above objective is well-justified, Ho et al. [25] found that a different objective produces
better samples in practice. In particular, they do not directly parameterize µθ(xt, t) as a neural
network, but instead train a model ϵθ(xt, t) to predict ϵ from Equation 17. This simplified objective
is defined as follows:

Lsimple := Et∼[1,T ],x0∼q(x0),ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥22

]
(16)

During sampling, we can use substitution to derive µθ(xt) from ϵθ(xt, t):

µθ(xt) =
1

√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt, t)

)
(17)

Note that Lsimple does not provide any learning signal for Σθ(xt, t). Ho et al. [25] find that instead of
learning Σθ(xt, t), they can fix it to a constant, choosing either βt or β̃t. These values correspond to
learning noise and the reverse process variance respectively.

D.2 Score-Based Generative Model

In this section, we introduce a Score-Based Generative Model (SGMs) Song et al. [2020], specifically
a diffusion model represented in the form of Stochastic Differential Equations (SDEs). SGMs model
the forward diffusion process using the stochastic differential equation:

dxt = f(xt, t)dt+ g(t)dw,x0 ∼ p0 = ptarget, (18)

where t ∈ [0, T ], and w signifies Brownian motion, ptarget represents target distribution. The function
f(·, t) : Rd → Rdis a vector-valued function called the drift coefficient of x(t), and g(·) : R → R is
a scalar function known as the diffusion coefficient of x(t). The functions f and g determine the type
of prior distribution pprior to which the forward process will diffuse, and they are typically designed
to make the prior distribution a Gaussian distribution. As a remarkable result from Anderson [1982],
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the reverse of the diffusion process is also a diffusion process, given by the following reverse-time
SDE:

dxt = [f(xt, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄, (19)
xT ∼ pT ≈ pprior,

where w̄ is a standard Wiener process in reverse time. The term ∇x log pt(x), which represents the
score function of the marginal density pt, is the only unknown term in this reverse process. SGMs
learns its approximate target sθ(x(t), t) through denoising score matching (DSM) Hyvärinen and
Dayan [2005], with sθ referred to as the denoising model:

θ∗ = argmin
θ

Et∼U(0,T )Ex(0)Ex(t)|x(0)[
∥sθ(x(t), t)−∇x log p0t(x|x(0))∥2

]
. (20)

Here, λ(t) is a positive weighting coefficient, t ∼ U(0, T ). The joint distribution p0t(x|x(0)) is the
conditional transition distribution from x(0) to x(t), which is determined by the pre-defined forward
SDE. To summarize, SGMs first utilize the diffusion process defined in Equation(18) to obtain the
distribution xt at intermediate time steps. Then, they minimize the loss defined in Equation(20) to
train the denoising model sθ and sample iteratively using the formula defined in Equation(19) to
obtain the final result.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the primary contributions of the
paper, including the background, challenges, motivation, overall framework, and experimen-
tal validation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper provides a detailed explanation of the problem background in the
methods section and validates the hypothesis through multiple runs on various datasets
with different characteristics in the experimental section. Additionally, the limitations are
thoroughly discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper presents all theoretical results with clearly stated assumptions and
complete proofs, which are either included in the main text or supplemented by detailed
proofs in the appendix, ensuring both clarity and rigor.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides detailed descriptions of the experimental setup, including
dataset specifications, parameter settings, and evaluation metrics, ensuring that the main
results can be reproduced even without direct access to the code and data.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper includes links to openly accessible data and code repositories that
cover the necessary commands and environment setup to reproduce the main experimental
results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper thoroughly describes all relevant experimental details in a dedicated
"Experiment Setting" section, including data splits, hyperparameters, and optimization
methods, ensuring clarity and reproducibility of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
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Justification: The paper appropriately reports statistical significance using t-tests with a
significance threshold of p < 0.05, ensuring transparency and rigor in the experimental
analysis.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper thoroughly details the computer resources required for each experi-
ment, including the type of compute workers, memory specifications, and execution times,
enabling reproducibility and understanding of the computational demands of the study.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research ensures that ethical considerations are addressed and integrated
into the study’s design and execution, and the authors ensure anonymity is preserved.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper addresses both potential positive and negative societal impacts of
the research, highlighting potential misuses and discussing mitigation strategies, thereby
ensuring a comprehensive consideration of broader societal implications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not involve the release of data or models that pose a high risk
for misuse, thus no safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [Yes]
Justification: The paper properly credits the creators of all utilized assets, explicitly adhering
to licenses and terms of use by including citations, version details, and relevant licensing
information.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code repositories will provide comprehensive documentation for all newly
introduced assets, including details about their creation, usage, and limitations, ensuring
that other researchers can effectively utilize these resources.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects, so
this information is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

24

paperswithcode.com/datasets


15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
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Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects, so
IRB approval or equivalent is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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