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ABSTRACT

Recent symmetry-based methods on variational autoencoders have advanced disen-
tanglement learning and combinatorial generalization, yet the appropriate symmetry
representation for both tasks is under-clarified. We identify that existing methods
struggle with maintaining the consistent symmetries when representing identical
changes of latent factors of variation, and they cause issues in achieving equivari-
ance. We theoretically prove the limitations of three frequently used group settings:
matrix multiplication with General Linear groups, defining group action with set of
vectors and vector addition, and cyclic groups modeled through surjective functions.
To overcome these issues, we introduce a novel method of conformal mapping
of latent vectors into a complex number space, ensuring consistent symmetries
and cyclic semantics. Through empirical validation with ground truth of factors
variation for transparent analysis, this study fills two significant gaps in the litera-
ture: 1) the inductive bias to enhance disentanglement learning and combinatorial
generalization simultaneously, and 2) well-represented symmetries ensure signif-
icantly high disentanglement performance without a trade-off in reconstruction
error, compared to current unsupervised methods. Additionally, we introduce less
guidance-dependent validation results, extending our findings to more practical use.
Our research highlights the significant impact of verifying consistent symmetry
and suggests required future research for advancing combinatorial generalization
and disentanglement learning.

1 INTRODUCTION

Combinatorial Generalization (Montero et al., 2021) and disentanglement learning (Bengio et al.,
2013) have been studied for a common objective of constructing inductive bias for latent factors
of variation, mainly discussed on variational autoencoders (VAEs) in Montero et al. (2022; 2021);
Schott et al. (2022) and Kingma & Welling (2013); Chen et al. (2018); Kim & Mnih (2018); Keller
& Welling (2021a); Jeong & Song (2019); Keller & Welling (2021b); Shao et al. (2020; 2022),
respectively with dimension-wise disentangled representation (Wang et al., 2023). The importance of
incorporating symmetries in latent vectors, grounded in group theory, has been highlighted in Higgins
et al. (2018; 2022); Huh et al. (2023). Moreover, the development of symmetry-based methods has
significantly enhanced performance, as demonstrated in Zhu et al. (2021); Yang et al. (2021); Keurti
et al. (2023); Tonnaer et al. (2022b); Jung et al. (2024); Hwang et al. (2023).

These studies have primarily focused on incorporating diverse symmetries into models. For example,
in disentanglement learning, the Lie group-based works (Zhu et al., 2021; Jung et al., 2024; Keurti
et al., 2023) represent the group as a matrix exponential that acts on the set of latent vectors with
matrix multiplication. Another approach implements symmetries with the pre-defined groups such as
SO(n), SE(n), and O(n) (Winter et al., 2022). Other branches based on cyclic group representations
employ a mapping function that projects real number vectors onto a unit circle using a surjective
function (Yang et al., 2021; Tonnaer et al., 2022b; Cha & Thiyagalingam, 2023). In combinatorial
generalization, MAGANet (Hwang et al., 2023) derives symmetry representations through vector
subtraction. However, these works often overlook the critical task of verifying their equivariance,
which is essential for capturing all symmetries in latent space. In particular, the equivariance, which
manifests as consistent symmetries, is insufficiently induced for identical change of latent factors
of the variation that implies the same semantic change, as empirically demonstrated in Hwang et al.
(2023).
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In this regard, we address limitations in representing the consistent symmetries for the same variations.
First, we identify and prove the limitations caused by three conditions of group settings: 1) the use
of the General Linear group with matrix exponential for matrix multiplication, 2) vector addition is
used to define a group action for cyclic semantics, and 3) surjective mapping from latent vector to
unit circle. Subsequently, we propose conformal mapping of latent vectors to discretized and cyclic
representations that guarantee consistent transformations for all pairs of adjacent points. To guarantee
consistency among the mapped representations, we arrange them on a shared, fixed grid (codebook),
selecting their nearest codes and performing translations from the canonical point. In the final step,
the two points on the grid corresponding to two samples are adjusted to maintain symmetry for the
given latent factors of variation in the data.

Through empirical analysis of the consistent symmetries for the ground truths of latent factors of
variation in the given data, we aim to answer two important questions that have not yet been clarified
in the literature. Firstly, this study queries whether the inductive bias associated with combinatorial
generalization and disentanglement learning enhances each performance simultaneously. Secondly,
it examines the efficacy of inductive biases achieved through refined symmetry expressions in
disentanglement learning. These studies highlight the impact of correctly expressing symmetries as
an inductive bias, suggesting a necessary direction for this field. In addition, we also explore the
potential of these approaches under more practical conditions, reducing the reliance on ground truth.

Our main contributions are:

1. identifying the difficulty of representing consistent symmetries for the identical change of
latent factors of variation in current disentanglement learning and combinatorial generaliza-
tion,

2. proposing an expression method using conformal mapping to a space that guarantees
consistency of general symmetries and even for cyclic semantics,

3. providing a learning method for inducing equivariance while maintaining the consistent
symmetries,

4. empirically validating that disentangled representations and combinatorial generalization
are improved simultaneously, and investigating achievable disentanglement learning perfor-
mance without a trade-off of reconstruction error through learning appropriate symmetry
representation.

2 PROBLEMS OF GROUP SETTINGS IN UTILIZING CONSISTENT SYMMETRIES

2.1 WHAT IS THE CONSISTENT SYMMETRY?

Figure 1: Example of cyclic seman-
tics of the dataset.

Cyclic Semantics of Dataset Space We define the
group GF = GF1 × GF2 × · · · × GFk

and the la-
tent factor F = F1 × F2 × · · · × Fk as a GF -
set. Motivated by Yang et al. (2021); Tonnaer et al.
(2022a), we assume that each GFi

is a cyclic group
GFi

= {e, gFi
, g2Fi

, . . . , gnFi
} as shown in Fig. 1 e.g., gFi

∈
{change the shape, move right 1 step, move up 1 step, etc.}.
Also, we assume that there is an isomorphism between
latent factor and dataset space Ω : F → X . We then define
that dataset X consists of cyclic semantics when dataset
X is generated from the cyclic latent factors (F ) through
isomorphism Ω. We define the identical change of latent factors of variation (gFi

), represented by a
group element, as the transformations between samples are the same as shown in Fig. 2 (middle side).

Disentangled Representation on Latent Vector Space As defined, the disentangled representa-
tions with group theory (Higgins et al., 2018), we follow the definition, where equivariant function
qϕ is defined as qϕ : X → Z , group Gz = Gz1 ×Gz2 × · · · ×Gzn , Gz-set as a set of latent vectors
z = z1×z2× · · ·×zn, Gzj = {e, gzj , g2zj , . . . , g

n
zj}, and Z is a latent vector space. Differently, we

consider that Gzi only affects a single dimension of latent vector zi for dimension-wise disentangled
representation Wang et al. (2023).
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Figure 2: Overview of our process to guide the motivation and expectation. The left side shows
inconsistent symmetries, and the right side represents the ideal case of consistent symmetries. As
shown in Hwang et al. (2023), the identical change of latent factors of variation gFj

is represented
in diverse representations (g(1)→(2)

zj , g
(2)→(3)
zj , . . . , g

(i)→(i+1)
zj ) when latent factors are mapped into

latent vector space as shown in left side, where g
(i)→(i+1)
zj is a symmetry between zi

j and zi+1
j .

Consistent and Inconsistent Symmetry
Definition 2.1. As we define the factor set Fj = {F 0

j , F
1
j , . . . , F

k
j } and group

GFj = {e, gFj , g
2
Fj
, . . . , gkFj

} act on Fj such that F i+1
j = gFj ◦ F i

j . The factor space F ,
which includes Fj , is mapped to a latent space Z via a composite function qϕ ◦ Ω : F → Z , as
used in neural networks. The group action on the factor space qϕ ◦ Ω(F i+1

j ) = qϕ ◦ Ω(gFj ◦ F i
j ) is

translated to zi+1
j = g

(i)→(i+1)
zj ◦ zi

j on the latent space. We define g
(i)
zj as a consistent symmetry if

g
(i)→(i+1)
zj remains identical for all i, and a inconsistent symmetry otherwise.

2.2 DIFFICULTY OF CONSISTENT SYMMETRY FOR DISENTANGLED REPRESENTATION

The purpose of disentanglement learning with symmetries (gz ∈ Gz) is to change a single dimension
value of latent vectors as symmetries act on the latent vectors. However, there is a lack of sufficient
theoretical discourse on which symmetries are suitable for disentangled representations. In this
section, we show the difficulty of previous works for consistent symmetry such that 1) only the
identity element represents consistent symmetries for cyclic semantics of the dataset with disentangled
representations (cases 1 and 2), and 2) symmetry information is not preserved (case 3).

Case 1: A Limitation of GL(n) General Linear group GL(n), used in prior works (Kuzina et al.,
2022; Miyato et al., 2022; Marchetti et al., 2023a), is limited in representing the consistent symmetries
for disentangled representation. We first show the property of disentangled representation with matrix
exponential. Then we show the limitation of GL(n).
Proposition 2.2. Let the symmetry group Gz (GL′(n)) is defined as a subgroup of the General
Linear group that implemented with matrix exponential, where GL′(n) = {eM |M ∈ Rn×n}, gk is
an element of GL′(n), and g =

∏
k g

k. Then egz = eIgz + v′.

Theorem 2.3. (Limit of GL′(n)) According to Proposition 2.2, only the identity matrix (g = I)
represents the cyclic semantics of the dataset with consistent symmetries, where g ∈ GL′(n).

Theorem 2.4. (Limit of GL(n)) If H ⊂ GL(n), then only the identity matrix of GL(n) represents
the cyclic semantics of the dataset with consistent symmetries, where H = {h|h = I +Mk}, mk is
a column vector of Mk, mj = 0⃗ and j ∈ {1, 2, . . . , n}\{k}.

Therefore, the limitation of GL(n) is that only the I represents the consistent symmetry with
disentangled representation according to the Theorem 2.3, and 2.4. It implies that if g ̸= I , then g
can not represent the consistent symmetry. More details are in Appendix A.1.

Case 2: A Limitation of Using Vector Addition Another setting that causes problems in main-
taining consistent symmetries for cyclic semantics using vector addition is utilized to define a group
action between two latent vectors for an equivariant model, as used in Balabin et al. (2024)
Corollary 2.5. If the group action is defined as α(g,zi) = g + zi, then only zero vector represent
the consistent symmetry for cyclic semantics with disentangled representation, where z ∈ Rn.

3
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According to the Theorem 2.5, it also shows a limitation in that only the identity element 0⃗ represents
the consistent symmetry. More details of the proof are in Appendix A.2.

Case 3: A Limitation of Surjective Function The last setting is a surjective function that maps
latent vectors to the unit circle (Yang et al., 2021; Tonnaer et al., 2022b; Cha & Thiyagalingam, 2023),
causing undifferentiated symmetries under more general latent factors of variation and losing part of
the dataset’s symmetry information.

Corollary 2.6. By the equivariant and surjective function b : Z → Y , the capacity of Z and Y is
|Z| ≥ |Y| then Γ′ is an endomorphism because |GZ | ≥ |GY |. On the other hand, isomorphism
identically maps the two spaces (|GZ | = |GY |).

Therefore, if b is surjective and not injective, then there exists at least one case where Γ′(gi) = Γ′(gj).
It implies that loss of symmetry structure occurs with a surjective function. More details of the proof
are in Appendix A.3.

3 CONFORMAL MAPPING FOR CONSISTENT SYMMETRIES (CMCS)

Figure 3: The overall architecture of our proposed method comprises four distinct components: 1)
conformal mapping of latent vectors to angle space, 2) point selection of fixed grid for consistent
symmetry, 3) defining the step size between two inputs through three methods, and 4) a loss function
that satisfies the group action α(g, θ) = g + θ.

3.1 CONFORMAL MAPPING: CYCLIC SEMANTIC AND ISOMORPHISM

We first define the latent vector space as a G-set of a cyclic group to ensure the consistent symmetries
because a single cyclic group element can represent all elements, as demonstrated in Higgins
et al. (2018). To address the issues discussed in Section 2, we implement one of the conformal
mappings (Kreyszig et al., 2011) that maps real numbers to complex numbers.

Cyclic Group to Represent Cyclic Semantics As we assume that real-world states serve as latent
factors of variation for input samples in Section 2.1, the symmetry group GF = Z/|F1|Z×Z/|F2|Z×
. . .× Z/|Fn|Z, where |Fk| ∈ Z+ represents the number of factors in the datasets. Additionally, the
cyclic group effectively represents the symmetries over the same group action, as the cyclic group
G = {e, g1, g2, . . . , gn−1} consists entirely of integer powers of the group element g. Therefore, if
the model learns a single symmetry element g, it represents the entire symmetry group. Motivated
by Yang et al. (2021), we implement the cyclic group as the nth root of unity.

Group Action and Gc-set As we define the cyclic group as nth root of unity, the cyclic group
Gc = Gc

1×Gc
2×· · ·×Gc

k and Gc
i = {gci |gci = 2π

N k, k ∈ {0, 1, 2, . . . , N −1}}, where N ∈ Z+. We
define the group action α : Θn ×Gc → Θn as α(gc,θ) = gc + θ, where the latent vector θ ∈ Θn,
and Θ = {θ| − π < θ ≤ π}.

Conformal Mapping for Complex Number Space VAE frameworks establish the latent vector
space in the real number space with the Gaussian normal distribution, so the latent vector space is
not a Gc-set as we assume (z ∈ Θn). For the defined Gc-set, we utilize the conformal mapping and
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invertible function f ′ ◦ f : [−∞,∞] → {θ| − π < θ ≤ π}. To map real numbers to the complex
number space, we utilize the conformal mapping function (bijective) f : [−∞,∞] → {cki ∈ C :
|cki | = 1}, defined as follows:

f(zk
i ) = cki =

zk
i − i

zk
i + i

= i
−2zk

i

(zk
i )

2 + 1
+

(zk
i )

2 − 1

(zk
i )

2 + 1
, (1)

where the zk
i is a kth dimension value of zi ∈ Rn. We define a bijective function that maps complex

numbers to the angle space for simplicity f ′ : {cki ∈ C : |cki | = 1} → {θk
i | − π < θk

i ≤ π} as
follows:

θk
i = f ′(cki ) =

{
cos−1(R(cki ))− π, if I(cki ) >= 0

π − cos−1(R(cki )) otherwise
, (2)

where R(cki ) and I(cki ) are real and imaginary parts of cki , respectively.

3.2 POINT SELECTION ON FIXED GRID: FIXED CODEBOOK FOR CONSISTENT SYMMETRIES

The angle space Θ is a continuous space as defined by the bijective function f ′ ◦ f . As we define
a finite cyclic group Gc acts on the latent vector space (Gc-set), we utilize a fixed grid instead of a
learnable grid (Hsu et al., 2023) to fix the unit symmetry ĝci as shown in Fig. 3 fixed grid selection
box, where the interval between two nearest codes is always 2π

Ni
(ĝci = 2π

Ni
). We utilized the finite

scalar quantization (Mentzer et al., 2024) for fixed codebook V ∈ RN as follows:

V = [−π +
2π

N
, · · · ,−π +

2π

N
k, · · · ,−π +

2π

N
(N − 1), π]. (3)

Then we select the nearest neighbor of the latent vector as Hsu et al. (2023): θ′k =
argminV i∈V |V i − θk|, where V i is the ith dimension value of the codebook V . We define
the grid loss Lgrid = ||θ′ − θ||22 to consistently select the gird, where || · ||2 is a L2 norm.

3.3 SYMMETRY GUIDE: HOW TO GUIDE THE STEP (k)?

As we define the cyclic group Gc
i = {gci |gci = 2π

Ni
k, k ∈ {0, 1, 2, . . . , Ni − 1}}, we implement the

step k to guide how much step moves to be θi = gc + θj (defined group action). We propose three
guiding approaches: 1) ground truth, 2) supervised, 3) and semi-supervised methods.

Ground Truth Based Method As shown in Fig. 3, we set the symmetry group elements gc from
the ground truth of samples as follows:

ki→j =

{
lj − li if lj − li ≥ 0

N + lj − li otherwise
, (4)

where ki→j is a step size, gc = 2π
N ki→j , and li and lj are labels of samples xi and xj , respectively.

Supervised Method As shown in Fig. 3, we train the symmetry extractor to predict the labels of
samples (l̂) using cross-entropy loss, defined as Lpred = C.E.(l̂, l). We then define the symmetry
group elements by l̂ instead of the ground truth labels l.

Semi-Supervised Method We utilize a p ratio of the labels for prediction, while the remaining
labels are predicted using the pseudo-label loss as follows: Lpl =

∑|Fi|
i DKL(p(l

i|x)||p(li)), where
the li is a ith factor of the label and a discrete uniform distribution p(li) ∼ U{1, |Fi|}. We define the
p(li|x) as the distribution of the classifier.

3.4 CONSISTENT SYMMETRY LEARNING: OBJECTIVE FUNCTION

Symmetry Loss (Relative Position) As we define the group action α(gc,θi) and step size k, we
implement the symmetry loss Ls to satisfy θj =

2π
N ki→j + θi:

Ls = ||f ′ ◦ f ◦ qϕ(xj)−
(2π
N

ki→j + f ′ ◦ f ◦ qϕ(xi)
)
||22. (5)

We set the code loss Lcode = Lgrid + Ls.

5
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Canonical Loss (Absolute Position) The defined symmetry gc represents the movement between
two latent vectors (θi and θj). It implies that learning symmetries depends on pairs of observations.
To eliminate this dependency on specific observations, we propose learning absolute transformations
through a learnable canonical point θc to satisfy θi =

2π
N kc→i + θc:

Lc = ||f ′ ◦ f ◦ qϕ(xi)− (
2π

N
kc→i + θc)||1, (6)

where θc is a learnable canonical point θc ∈ Θn, kc→i = li, and || · ||1 is a L1 norm.

Objective Loss Our objective losses are defined as 1) LGT = Lrecont +αLcode + γLc for Ground
Truth model (CMCS-GT), 2) LSup = LGT + βLpred for supervised method (CMCS-SP, and 3)
LSemi−Sup = LSup + λLpl for semi-supervised method (CMCS-semi).

Table 1: Combinatorial generalization performance of dSprites, 3D Shapes, and MPI3D datasets. We
select the best results from the hyper-parameter tunings. The evaluation metric is the reconstruction
error (BCE loss for dSprites, and MSE loss for 3D Shapes and MPI3D).

Method dSprites 3D Shapes MPI3D
R2E R2R R2E R2R R2E R2R

β-VAE 10.85(±0.67) 179.52(±12.15) 16.59(±1.72) 268.59(±76.59) 6.63(±0.65) 8.50(±0.55)
β-TCVAE 10.73(±0.03) 153.75(±7.65) 14.74(±0.14) 221.72(±41.57) 5.60(±0.21) 8.73(±0.36)

VAE-MAGA 11.22(±0.48) 178.39(±11.64) 18.84(±3.32) 213.26(±41.76) 5.43(±0.59) 8.44(±0.44)
CMCS-SP 7.24(±0.94) 135.70(±16.48) 10.23(±0.67) 108.44(±5.82) 2.92(±0.03) 4.16(±0.14)
CMCS-GT 8.56(±0.40) 123.02(±10.84) 9.29(±0.34) 114.89(±11.80) 2.56(±0.19) 5.26(±0.25)

4 EXPERIMENTS

Common Datsets We utilize the dSprites (Matthey et al., 2017), 3D Shapes (Burgess & Kim, 2018),
and MPI3D (Gondal et al., 2019) datasets for combinatorial generalization and disentanglement
learning tasks. More details are in Appendix B.2.

4.1 COMBINATORIAL GENERALIZATION

(a) dSprites (b) 3D Shapes

Figure 4: Reconstruction error on the test set during training.

Settings We excess Recombination-to-Element (R2E) and the Recombination-to-Range (R2R)
tasks. We separate the training and test datasets following previous studies (Montero et al., 2021;
Hwang et al., 2023), with additional details and hyper-parameter tuning provided in Appendix B.3.
We run each model with three seeds ∈ {1, 2, 3}. We assess the reconstruction error, a general
combinatorial generalization metric.

Quantitative Analysis As shown in Table 1, the proposed method CMCS-GT is significantly
improved with all datasets. It implies the given consistent symmetry from the labels impacts to
combinatorial generalization. Also, the supervised method CMCS-SP demonstrates advancements in
all datasets, as shown in Table 1.

Stability of Generalization As demonstrated in Fig. 4, the baselines do not positively affect
generalization during training on dSprites and 3D shapes datasets; in most cases, performance

6
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(a) Visualization of generated images of the worst 10 samples of the R2R task. Each 1st and 2nd row of models
shows the group truth samples and the generated results, respectively. The red box indicates the negative results,
which do not contain all the semantics of the ground truth. We utilize randomly selected pivot images as
introduced in Hwang et al. (2023) for the CMCS model.

(b) Visualization of DCI metric of the 3D Shapes dataset (training set). A more sparse matrix implies a better
disentangled representation. The x-axis refers to the index of the latent vector. The y-axis represents the factor
of the dataset, from 1 to 6, corresponding to floor hue, wall hue, object hue, scale, shape, and orientation.

Figure 5: Qualitative results of combinatorial generalization of 3D Shapes dataset.

deteriorates. Conversely, our model positively impacts generalization throughout the training process.
It shows 1) the necessity of inductive bias because injecting inductive bias methods (CMCS-SP,
CMCS-GT, and VAE-MAGA) improve the generalization as shown in Table 1, and 2) the necessity
of consistent symmetries because our method gradually enhances the generalization performance as
shown in Fig. 4.

Qualitative Analysis As illustrated in Fig. 5a, both proposed methods preserve the semantics of
the ground truth while baselines struggle to retain the semantics of unseen samples (ground truth).
Comparing the VAE-MAGA and our models, forcing the consistent symmetries method has a much
greater impact on generalization. Additionally, our models exhibit a disentangled representation
compared to the baselines, as shown in Fig.5b. This implies that a disentangled representation
incorporating the symmetry structure promotes combinatorial generalization. Details of other results
on the dSprites and MPI3D dataset are provided in Appendix C.

Prediciton of Unseen Samples As shown in Fig. 6b and 6c, the distance between the unseen vector
(red) and the expected vector (blue) of the proposed method is smaller than the baseline. This explains
why the CMCS shows a better result of combinatorial generalization, as shown in Fig. 5a. Also, our
model shows the benefit of alignment of factors over the axis. By the definition of a disentangled
representation, previous and our works expect that each dimension of the latent vector represents a
single latent factor of variation. In this perspective, the dashed line in Fig. 6d shows the ideal case
of disentangled representation because the dashed lines of the same color are parallel. From this
perspective, our model shows better alignment because the dashed lines of the Tails are parallel, and
the dashed lines of the Heads are nearly parallel, as shown in Fig. 6f. Conversely, the baseline dashed
lines of both the Heads and the Tails are crossed. These results also show that factors consistently
aligned with the dimension of the latent vector space improve the generalization as shown in Fig. 4,
and 5a.

4.2 DISENTANGLEMENT LEARNING

Settings We set the common hyper-parameters of the proposed method α ∈ {100, 1000}, γ = 1
for supervised and ground truth model, β ∈ {1.0, 2.0} for supervised method, and λ = 1.0, p = 0.5
for semi-supervised method. We run 10 seed variance over each model with seed ∈ {1, 2, . . . , 10}.
More details are in Appendix B.4.
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(a) Dataset selection. (b) PCA of latent vectors (β-TCVAE) (c) PCA of latent vectors (CMCS-SP)

(d) Expected result (e) Axis of Head and Tail (β-TCVAE) (f) Axis of Head and Tail (CMCS-SP)

Figure 6: 1) Fig. 6a shows how the dataset is composed and how we select the observed and unseen
samples of the 3D Shapes dataset. Head and Tail are sets that consist of a combination of latent
factors. 2) Fig. 6d shows the expected result. Each marker, except the blue marker, is a latent vector of
selected samples reduced by PCA (principal component analysis). The black, gray, and red markers
with the same shape consist of [shared one sample of Head 2, different samples of Tail 1], [different
samples of Head 1, shared one sample of Tail 2], and [shared one sample of Head 2, shared one
sample of Tail 2], respectively. The blue marker is an expected vector of the unseen sample by the
assumption that the model ideally outputs the disentangled representation because the same factors
combination is mapped into the same value of vector space as Fig. 6a. 3) Each dashed line is a linear
regression of markers sharing the same color and shape. It refers to the alignment of factors over the
axis. 4) Fig. 6b, and 6c show the distance between unseen and expected vectors (red and blue). We
plot the expected vectors as follows: i) estimate each variance of the axis of Head and Tail samples,
ii) assume the smallest variance of the axis as a dominant axis of Head or Tail, e.g., if the variance of
the x-axis of Tail samples is the smallest, then x- and y-axis refer to Tail and Head axis, respectively.
iii) Then we plot the average of each axis of Head and Tail as an expected latent vector. 5) Fig. 6e,
and 6f show the alignment of Head and Tail over the axis.

Disentanglement Learning Performance Ground Truth model (CMCS-GT) presents an achievable
upper bound in nearly all metrics for the models as shown in Table 2. The supervised method (CMCS-
SP)shows results that either approximate or surpass the performance indicated by CMCS-GT, where
the DCI score of dSprites and 3D Shapes datasets are higher than CMCS-GT’s. The semi-supervised
method, using only 50% of the labels, demonstrats performance close to that of the supervised method
in some metrics and comparable to that of Ada-GVAE.

Table 2: Disentanglement performance on dSprites, 3D Shapes, and the MPI3D dataset. (Unsup:
unsupervised method, Semi-sup: Semi-supervised, Sup: supervised, GT: Ground-Truth, CMCS: our
method). Bold text indicates a higher value than the other baseline models.

type Method
dSprites 3D Shapes MPI3D

beta-VAE FVM MIG DCI beta-VAE FVM MIG DCI beta-VAE FVM MIG DCI

Unsup

β-VAE 78.40(±9.03) 64.84(±11.40) 14.52(±9.33) 22.37(±11.80) 90.33(±7.42) 72.63(±19.55) 40.49(±23.31) 54.32(±16.45) 57.60(±7.93) 40.86(±3.92) 4.91(±1.43) 22.29(±1.42)
β-TCVAE 81.80(±11.91) 70.16(±12.41) 19.03(±9.40) 30.89(±8.96) 88.20(±7.91) 74.45(±14.68) 43.17(±28.28) 59.71(±14.79) 55.40(±9.52) 40.80(±2.60) 5.23(±1.96) 21.47(±2.35)

Factor-VAE 87.20(±7.50) 76.80(±7.50) 24.98(±12.03) 33.38(±12.27) 90.00(±7.87) 80.85(±13.62) 62.42(±26.94) 73.77(±14.08) 54.00(±7.18) 39.64(±3.81) 4.34(±0.69) 21.24(±2.04)
CLG-VAE 88.40(±5.80) 82.21(±5.73) 20.89(±7.40) 29.96(±7.05) 86.20(±5.61) 77.36(±7.99) 50.39(±12.37) 59.25(±11.21) 46.40(±7.35) 37.31(±2.27) 20.77(±5.70) 24.26(±2.73)

Semi-sup Ada-GVAE 83.60(±2.61) 83.67(±2.97) 21.34(±5.35) 47.26(±1.89) 72.75(±6.50) 59.81(±6.14) 24.77(±7.48) 64.57(±4.04) 64.89(±7.22) 46.10(±3.19) 22.48(±8.14) 41.30(±7.00)
CMCS-semi 87.00(±7.07) 84.50(±1.41) 31.95(±2.40) 39.36(±1.49) 95.00(±7.07) 88.81(±13.17) 57.94(±16.52) 72.14(±3.23) 67.50(±12.68) 81.59(±3.80) 61.07(±4.81) 78.15(±0.57)

Sup CMCS-SP 91.40(±4.99) 93.74(±1.82) 51.02(±2.42) 64.69(±1.55) 100.00(±0.00) 100.00(±0.00) 96.95(±0.18) 99.99(±0.01) 86.40(±8.63) 99.96(±0.08) 62.78(±6.95) 88.06(±1.66)
GT CMCS-GT 95.80(±4.57) 99.26(±1.12) 51.81(±2.97) 63.26(±2.73) 100.00(±0.00) 100.00(±0.00) 96.57(±0.80) 99.94(±0.18) 76.80(±9.66) 99.03(±0.98) 65.17(±8.11) 81.12(±1.03)

Disentanglement vs. Reconstruction Most disentangled representation learning models face
a trade-off between reconstruction error and disentanglement metrics (Kingma & Welling, 2013;
Chen et al., 2018; Higgins et al., 2017; Kim & Mnih, 2018; Zhu et al., 2021; Locatello et al., 2020;
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Keurti et al., 2023). However, our model overcomes this trade-off between the two factors, as
demonstrated in Fig. 7. Although our model’s reconstruction error is two times lower than the
baselines, it achieves higher disentanglement performance than the others with MPI3D datasets.
Further details are provided in Appendix D.1.

Figure 7: Reconstruction error vs. evaluation metrics of the MPI3D dataset (β-VAE metric, FVM,
MIG, and DCI). The top left side indicates the best results on both objectives

Case Studies: Impact of Conformal Mapping We have demonstrated that GL(n), vector addition,
and surjective functions are limited in preserving the dataset’s symmetry structure. Consequently,
we have adopted these three types of symmetry instead of our method. As indicated in Table 3,
the CMCS method outperforms other methods across all metrics. This suggests that enforcing the
consistent symmetries in the angle space is a more suitable method for disentanglement learning.

Table 3: Performance of the three cases of group settings compared to conformal mapping. GL(n)
indicates the General Linear group, Add. indicates a vector addition, and Sur. indicates a surjective
method instead of conformal mapping.

Symmetry
3D Shapes dSprites

beta-VAE FVM MIG DCI beta-VAE FVM MIG DCI

GL(n) 73.50(±17.92) 66.16(±15.95) 19.66(±24.29) 37.93(±23.92) 65.11(±3.89) 47.69(±8.04) 2.12(±1.73) 5.90(±2.11)
Add. 78.60(±11.43) 60.50(±15.29) 25.13(±17.12) 45.84(±8.36) 68.89(±11.45) 68.31(±9.48) 7.22(±4.31) 11.83(±3.85)
Sur. 73.27(±9.97) 63.85(±6.81) 6.20(±4.03) 29.79(±9.86) 80.60(±10.83) 60.40(±6.47) 13.68(±3.86) 23.01(±2.28)
Ours 100.00(±0.00) 100.00(±0.00) 96.57(±0.80) 99.94(±0.18) 95.80(±4.57) 99.26(±1.12) 51.81(±2.97) 63.26(±2.73)

Qualitative Analysis As shown in Fig. 8a- 8c, the baseline results show that multiple factors are
changed when a single dimension value is changed. On the other hand, our results show the fully
disentangled results represent: 1st row is floor color changes, 2nd row is wall color changes, 3rd row
is object color changes, 4th row is scale of object, 5th row is object shape changes, and 6th row is the
rotation changes.

As shown in Fig. 8d- 8f, the baseline results show that multiple factors are changed when a single
dimension value is changed. Also, objects disappear at certain intervals in the baseline results. On
the other hand, supervised methods show better results than the baselines: 1st row is object color
changes, 2nd row is object shape changes, 3rd row is object size changes, 5th row is background color
changes, 6th row is horizontal axis, 7th row is vertical axis changes, and 9th row is camera height
changes. Also, GT model results represents: 1st row is object color changes, 2nd row is object shape
changes, 3rd row is object size changes, 4th row is camera height changes, 5th row is background
color changes, 6th row is horizontal axis changes, 8th row is object color changes, and 9th row is
vertical axis changes. Compared to the baseline model, the cases of overlapping factors in a single
dimension are reduced by the proposed models.

5 RELATED WORKS

Combinatorial Generalization Recent research in Combinatorial Generalization shows that mod-
els trained on disentanglement learning and verified through ground truth experimentally demonstrate
that high disentangled representation does not necessarily imply combinatorial generalization (Mon-
tero et al., 2021; Schott et al., 2022; Montero et al., 2022). Differently, we consider the symmetry-
based disentangled representations, recently studied in the disentanglement learning field to preserve
the symmetry structure of the dataset in latent vector space. MAGANet (Hwang et al., 2023) dramat-
ically improved combinatorial generalization performance by learning symmetries with the Glow
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(a) Commutative Lie Group VAE (b) CMCS (Supervised Method) (c) CMCS (Ground Truth Model)

(d) Commutative Lie Group VAE (e) CMCS (Supervised Method) (f) CMCS (Ground Truth Model)

Figure 8: The 1st column images are randomly selected from the dataset. Each row indicates each
dimension of each model. β-VAE, β-TCVAE, and the Commutative Lie Group VAE trace each
dimension value from -2 to +2. The proposed methods apply a group action + 2π

n to the selected
images a total of 10 times. The numbers located on Fig. 8a-8c refer to factors of the 3D Shapes
dataset: 1⃝, 2⃝, 3⃝, 4⃝, 5⃝, and 6⃝ refer to floor hue, wall hue, object color, scale, shape, and rotation,
respectively. The numbers in Fig. 8d-8f refer to factors of the MPI3D dataset: 1⃝, 2⃝, 3⃝, 4⃝, 5⃝, 6⃝,
and 7⃝ refer to object color, object shape, object size, camera height, background color, horizontal
axis, and vertical axis, respectively.

model. Differently, we guarantee a consistent symmetry of identical transformations with CNN based
model.

Disentanglement Learning The initially proposed methods, such as Higgins et al. (2017); Chen
et al. (2018); Kim & Mnih (2018), partition each dimension to ensure mutual exclusivity, employing
measures like mutual information or total correlation. However, these approaches do not account
for the symmetry structure of the dataset space. Defining the symmetry group and group action as
a General Linear group and matrix multiplication (Zhu et al., 2021; Jung et al., 2024; Marchetti
et al., 2023b) enhances disentanglement performance. Nevertheless, we theoretically demonstrate
the limitations of the General Linear group for cyclic semantics in the disentangled space. Other
works commonly define the symmetry group acting on the latent vector space as a cyclic group with
surjective functions (Yang et al., 2021; Keurti et al., 2023; Falorsi et al., 2018). Differently, our focus
is on employing isomorphism to represent the cyclic group rather than a homomorphism.

6 CONCLUSION

In this paper, we address the limitations in expressing consistent symmetry for identical semantic
changes, demonstrating three conditions of group settings causing them in existing methods of
disentanglement learning and combinatorial generalization with VAEs. We propose a conformal
mapping of latent vectors to a space specifically designed to guarantee consistency, along with its
learning methodology. This work aims to fill theoretical gaps in the literature by conducting empirical
analyses based on given ground truths concerning latent factors of variation. To the best of our
knowledge, we are the first to propose a method that enhances combinatorial generalization and
disentanglement learning simultaneously. Moreover, the consistent symmetry significantly enhances
disentanglement scores for VAEs without compromising reconstruction error, thereby identifying
achievable performance for unsupervised methods in case accurate estimation of factor variation
is supported. We believe this work indicates a promising direction for constructing more effective
inductive biases for disentangled representation in practical generative models.
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Table 4: Notation Table

Set
F Set of latent factor X Dataset
Z Set of latent vector F Space of latent factor
X Space of dataset Z Space of latent vector
Y Space of latent vector Θ Set of angle: {θ| − π < θ ≤ π}

Group
G Group GF Group acted on the set of latent factors
Gz Group acted on the set of latent vectors Gc Cyclic group

GL(n) General Linear group GL′(n)
General Linear group implemented
by matrix exponential GL′(n) ⊂ GL(n)

g Group element of group G g Lie algebra of GL(n,R)
α(·, ·) Group action ◦F Binary operation of Group GF

◦z Binary operation of Group Gz g
(i)→(i+1)
zj Symmetry between zi

j and zi+1
j

Function
Ω F → X qϕ X → Z
Γ GF → Gz Γ′ Gz → Gy

ex Matrix exponential f R → {c|c ∈ C, |c| = 1}
f ′ {c|c ∈ C, |c| = 1} → Θ C.E.(·) Cross-entropy loss
DKL(·||·) Kullbeck-Leibler divergence N (µ,Σ) Gaussian distribution
U{a, b} Discrete uniform distribution

Linear Algebra
I Identity matrix V Codebook
J Jordan normal form N Nilpotent matrix
Mk Zeros matrix except kth column vector mk kth column vector of Mk

z Latent vector ∈ Rn zk kth dimension value of z
c Latent vector ∈ Cn ck kth dimension value of c
θ θ ∈ Θn θk kth dimension value of θ
θc Canonical point 0⃗ Zeros vector
∆v

∑
k ∆vk ∆vk Sparse vector (kth dimension value ∈ R\{0})

k Step ki→j Step from θi to θj
Others

R Real number Z+ Integer
C Complex number R Real part of complex number
I Imaginary part of complex number |Fi| number of factors
|| · || L1 norm || · ||2 L2 norm
l Ground truth
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A PROOF OF LIMITATIONS

We consider the dimension-wise disentangled representation, so we constraint a few conditions as
follows:
Condition A.1. There exists an equivariant function qϕ ◦ Ω : F → Z mapping fully disentangled
factor and latent space.
Condition A.2. Z is a Gz-set that is a symmetry group acting on Z.
Condition A.3. Group element gz only affects to a single dimension value of latent vector z, where
gz ∈ Gz .

A.1 PROOF: LIMITATIONS OF GL(n)

Proof: Limitations of GL(n), implemented by the matrix exponential, to Represent the Cyclic
Semantics on the Disentangled Space
Condition A.4. The symmetry group Gz (GL′(n)) acting on latent vector space is defined as a
subgroup of the General Linear group, implemented with matrix exponential.
Condition A.5. For gk ∈ Rn×n and g =

∏
k g

k, gk only affects the kth dimension value of vector
z.

In prior works (Jung et al., 2024; Zhu et al., 2021; Kuzina et al., 2022; Miyato et al., 2022; Marchetti
et al., 2023a), the General Linear group GL(n) is usually implemented with the Lie algebra g to
represent the symmetries between two inputs in the latent vector space:

g = e
∑

i αigi , (7)

where g ∈ GL(n), α ∈ R, g ∈ Rn×n, and the matrix exponential eg defined as eg =
∑∞

n=0
1
n!g

n.
In addition, group GL(n) acts on the latent vector space Z with group action:

α(g, z) = gz, (8)

where latent vector z ∈ Rn, commonly used in previous works (Zhu et al., 2021; Jung et al., 2024;
Kuzina et al., 2022; Marchetti et al., 2023a). We first show the property of disentangled representation
with matrix exponential.
Proposition A.6. Let the symmetry group Gz (GL′(n)) is defined as a subgroup of the General
Linear group that implemented with matrix exponential, where GL′(n) = {eM |M ∈ Rn×n}, gk is
an element of GL′(n), and g =

∏
k g

k. Then egz = eIgz + v′.

Proof. If group element g acts on latent vector then, gz − z = ∆v, where ∆v =
∑

k ∆vk, ∆vk is
a sparse vector (kth dimension value ∈ R\{0}, otherwise it is zero), and gkz − z = ∆vk. Then we
define (g)nz − z = n∆v + (n− 1)v′

n, where v′
n ∈ Rn is an arbitrary real vector. Group element g

represents the cyclic semantics of the dataset space, then it satisfies the following equation:

(gi − I)z = ∆v

1

2!
((gi)

2 − I)z =
2

2!
(∆v +

1

2
v′
2)

...

lim
n→∞

1

n!
((gi)

n − I)z = lim
n→∞

1

(n− 1)!
(∆v +

1

n
v′
n).

(9)

By adding left- and right-hand side of Eq. 9, we then get:

⇒ (egi − I)z − (e− 1)Iz = eI∆v + v′

⇒ egiz = eIgiz + v′,
(10)

where gi ∈ G, v′ = limn

∑
n

1
n!v

′
n and v′ = v′ + eI∆v.

Lemma A.7. By the Proposition A.6, if v′ = 0⃗ in Eq. 10, then g = I and the index of the nilpotent
matrix of Jordan normal form of g is 2.
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Proof. The trivial solution of (eg − eIg)z = 0,∀z ∈ Z is that

eg − eIg = 0. (11)

Every matrix g ∈ Cn×n has a Jordan normal form J as g = SJS−1. Then group element (g = eg)
follows as:

eg = lim
n→∞

I + SJS−1 +
1

2!
SJ2S−1 + · · ·+ 1

n!
SJnS−1

= lim
n→∞

I + S(J +
1

2!
J2 + · · ·+ 1

n!
Jn)S−1

= I + S(eJ − I)S−1

= SeJS−1

(12)

In the same way, the exponential of g is equal to:

eg = See
J

S−1 (13)

Therefore group element g satisfies

See
J

S−1 = eISeJS−1

⇒ ee
J

= eIeJ (∵ eI = eI)

⇒ ee
J

= eI+J (∵ IJ = JI)

∴ eJ = I + J

(14)

If J = 0, then g satisfies the Eq. 14 and g = I . If J ̸= 0 then,

eJ =


eλ1 eJ1,2 · · · eJ1,n

eλ2 · · · eJ2,n
. . .

...
eλn

 , and I + J =


λ1 + 1 (I + J)1,2 · · · (I + J)1,n

λ2 + 1 · · · (I + J)2,n
. . .

...
λn + 1

 , (15)

where empty values are all zero. To satisify the Eq. 14, λi = 0 for eλi = λi+1, then J = D+N = N
because diagonal of D λi = 0, where D is a diagonal matrix and N is a nilpotent matrix. Therefore,

eJ = eN and I + J = I +N

⇒ eN = I +N

⇒ lim
n→∞

1

2!
N2 +

1

3!
N3 + · · ·+ 1

n!
Nn = 0

(16)

Therefore if the index of nilpotent matrix is 2 and eJi,j = (I + J)i,j where i < j, then it satisfies the
Eq. 11

Lemma A.8. If the index of the nilpotent matrix of Jordan normal form of g is 2, then g = eg does
not represent the cyclic semantics.

Proof. If g is an element of cyclic group then there exists nth power of g such that gn is the identity
matrix.

gn = S(I + nN)S−1 = I (∵ N2 = 0)

⇒ I + SnNS−1 = I

⇒ SnNS−1 = 0.

(17)

To satisfy the Eq. 17, N = 0 because the index of N is 2.

By the Lemma A.7 and A.8, there exists only one element to represent the cyclic semantics of the
dataset in the disentangled space.
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Lemma A.9. If v′ ∈ Rn\{0}, then 1) gk represents the cyclic semantic as gk = I + Mk and
mk ∈ Rn, where mk is a kth column vector of Mk, mj = 0 and j ∈ {1, 2, . . . , n}\{k}.

Proof. As we define that gk only affect to a single dimension value of z we rewirte Eq. 10 as follows:

eg
k

z = eIgkz + v′k, (18)

where v′k is a sparse vector. For Eq. 18 ∀z ∈ Z then symmetry gk follows as:

eg
k

− eIgk =
[⃗
0 · · · 0⃗ mk 0⃗ · · · 0⃗

]
, (19)

where 0⃗ is a zero column vector.

Then, satisfying the Eq. 19 and affecting a single dimension:

z⊺gk = [z1, · · · , zk−1, zk + α, zk+1, · · · , zn]
z⊺eIgk = [ez1, · · · , ezk−1, e(zk + α), ezk+1, · · · , ezn]

∴ z⊺eg
k

= [ez1, · · · , ezk−1, zk + β, ezk+1, · · · , ezn]

⇒ z⊺(eg
k

− eI) = [0, · · · , 0, (1− e)zk + β, · · · , 0].

(20)

For Eq. 20 for all z, then

eg
k

− eI = [⃗0 · · · 0⃗ m′k 0⃗ · · · 0⃗]

∴ eg
k

= eI + [⃗0 · · · 0⃗ m′k 0⃗ · · · 0⃗].
(21)

By the same way, gk = I+[⃗0 · · · 0⃗mk 0⃗ · · · 0⃗] = I+Mk because z⊺(gk−I) is a sparse vector.

Lemma A.10. For gk to represent cyclic semantics, gk = I .

Proof. If I +Mk represents the cyclic semantic the, there exists a n where (I +Mk)(n+1) = I .
The fomation of the power of the matrix (I+Mk)n is also I+Mk

n , where Mk
n ∈ Mkis an arbitrary

real matrix. Therefore Mk
n = 0, then gk = I .

It implies that gk represents only an identity transformation of dataset space.
Theorem A.11. (Limit of GL′(n)) According to Proposition A.6, only the identity matrix (g = I)
represents the cyclic semantics of the dataset with consistent symmetries, where g ∈ GL′(n)

Proof. Through the Lemma A.7 to Lemma A.10, if the group element g represents the cyclic
semantics, then only the identity matrix satisfies the Eq. 9. There is always a case as g = eg, and
(g)n−1 = (eg)n−1 but (g)n ̸= (eg)n, where g ̸= I , because g can not represent the cyclic semantic.
By the equivariant function qϕ:

qϕ(x1) = z1

qϕ(gx ◦x x1) = Γ(gx) ◦z z1
...

qϕ(g
n−1
x ◦x x1) = [Γ(gx)]

n−1 ◦c z1
qϕ(g

n
x ◦x x1) ̸= [Γ(gx)]

n ◦c z1 (∵ [Γ(gx)]
n ̸= (eg)n).

(22)

It implies that cyclic semantic gx between the xk and xk+1 is divided as:

Γ(gx) =

{
eg if k < n

eg
′

if k = n
, where g ̸= g′. (23)

Therefore, representing the cyclic semantics of the dataset with consistent symmetry is impossible
according to the Theorem A.11.
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Limitations of GL(n) to Represent the Cyclic Semantics on the Disentangled Space
Theorem A.12. (Limit of GL(n)) If H ⊂ GL(n), then only the identity matrix of GL(n) represents
the cyclic semantics of the dataset with consistent symmetries, where H = {h|h = I +Mk}, mk is
a column vector of Mk, mj = 0⃗ and j ∈ {1, 2, . . . , n}\{k}.

Proof. If the invertible matrix g changes a single dimension value of the latent vector z then,

z⊺g − z = [0, . . . , 0, α, 0, . . . , 0]

⇒ z⊺(g − I) = [0, . . . , 0, α, 0, . . . , 0].

⇒ [z1, . . . , zn]

g11 − 1 · · · g1n
...

. . .
...

gn1 · · · gnn − 1

 = [0, . . . , 0, α, 0, . . . , 0]

(24)

As defined the G-set as a latent vector space Z , group element g satisfies the Eq. 24 over all vectors.
Then g − I elements are all 0, except the kth column vector (mk ̸= 0). Therefore, group element
g ∈ H .

Theorem A.13. If h ∈ H\{I}, then this set does not represent the consistent symmetry with cyclic
semantics.

Proof. According to Lemma A.10, hk = I . Therefore, hk represents only the identity transformation
of the dataset space.

Therefore, representing the cyclic semantics of the dataset with consistent symmetry implemented by
the GL(n) is impossible except in the case of the identity matrix.

A.2 PROOF: LIMITATIONS OF VECTOR ADDITION FOR CYCLIC SEMANTICS ON THE
DISENTANGLED SPACE

In the previous works (Hwang et al., 2023), the vector addition is used to define a group action
between two latent vectors for an equivariant model, where the group action α(g,z) = g + z.

Theorem A.14. If the group action is defined as α(g,zi) = g + zi, then g does not represent the
consistent symmetry for cyclic semantics with disentangled representation, where g ∈ G\{⃗0} and
z ∈ Rn.

Proof. If g represents the cyclic semantics of X , then there exists:

(g)n = ng = 0⃗. (25)

The solution of Eq. 25 is g = 0⃗. There is always a case as g = a, and (g)n−1 = (n − 1)a but
(g)n ̸= na, where g ̸= 0⃗, because g can not represent the cyclic semantics. By the equivariant
function qϕ:

qϕ(x1) = z1

qϕ(gx ◦x x1) = Γ(gx) ◦z z1
...

qϕ(g
n−1
x ◦x x1) = (n− 1)[Γ(gx)] ◦c z1

qϕ(g
n
x ◦x x1) ̸= n[Γ(gx)] ◦c z1 (∵ n[Γ(gx)] ̸= na).

(26)

It implies that cyclic semantic gx between the xk and xk+1 is divided as:

Γ(gx) =

{
a if k < n

a′ if k = n
, where a ̸= a′. (27)
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According to Theorem A.14, the group action defined as α(g,z) = g + z represents the cyclic
semantics of the dataset with consistent symmetry when g = 0⃗. However, the group elements are
insufficient to encompass the entire cyclic semantics of input space. Additionally, this causes the
inconsistency issue when holding consistency with vector addition.

A.3 PROOF: LOSS OF SYMMETRY STRUCTURE WITH ENDOMORPHISM

Definition A.15. Let (G, ·), (H, ◦) be two groups. If mapping function Γ : G → H , s.t. Γ(gi · gj) =
Γ(gi) ◦ Γ(gj), then Γ is called homomorphism.

Definition A.16. Let Γ is surjective then Γ is called endomorphism.

Definition A.17. Let a special case of homomorphism where Γ is bijective is called isomorphism.

Corollary A.18. By the equivariant and surjective function b : Z → Y , the capacity of Z and Y
is |Z| ≥ |Y| then Γ is an endomorphism because |GZ | ≥ |GY |. On the other hand, isomorphism
identically maps the two spaces (|GZ | = |GY |).

Therefore, if b is surjective and not injective, then there exists at least one case where Γ′(gi) = Γ′(gj).
It implies that loss of symmetry structure occurs with a surjective function.

B DETAILS OF EXPERIMENTS SETTING

B.1 RESOURCES

We set the following settings for all experiments on a single Galaxy 2080Ti GPU, a single Galaxy
3090 GPU, and a single NVIDIA A100 GPU for the dSprites 3D Shapes and MPI3D datasets. The
Python version is 3.7.10, and the PyTorch version is 1.9.1. More details are in the README.md file.

B.2 DATASETS

1) The dSprites dataset consists of 737,280 binary 64 × 64 images with five independent ground
truth factors(number of values), i.e. x-position (32), y-position (32), orientation (40), shape (3), and
scale (6) (Matthey et al., 2017). Any composite transformation of x- and y-position, orientation
(2D rotation), scale, and shape is commutative. 2) The 3D Shapes dataset consists of 480,000 RGB
64 × 64 × 3 images with six independent ground truth factors: orientation (15), shape (4), floor
color (10), scale (8), object color (10), and wall color (10) (Burgess & Kim, 2018). 3) The MPI3D
(real-world complex) dataset consists of 460,800 RGB 64× 64× 3 images with seven independent
ground truth factors: color (4) shape (4), size (2), height (3), background color (3), horizontal (40),
and vertical axis (40) (Gondal et al., 2019). Additionally, we use cLPR dataset1 consists of 250,047
RGB 64 × 64 × 3 images with three independent ground truth factors: x-rotation (63), y-rotation
(63), and z-rotation (63).

B.3 SETTING FOR COMBINATORIAL GENERALIZATION

Train and Test datasets We except the case [shape=ellips, position-x ≥ 0.6, position-y ≥
0.6, 120◦ ≤ rotation ≤ 240◦, scale < 0.6] for dSprites r2e training set and
[shape=square, position-x ≥ 0.5] for dSprites r2r training set.

We except the case [floor-hue > 0.5, wall-hue > 0.5, object-hue ≥
0.5, shape=cylinder, object-scale=1, object-orientation=0] for 3D Shapes r2e training set
and [object-hue ≥ 0.5, shape=oblong] for 3D Shapes r2r training set.

We except the case [shape = cone, object size = 0, cameraheight = 1, background color =
purple, object color ∈ {blue, brown, olive}, horizontal axis ≥ 20, vertical axis ≥ 20]for r2e training
set and [shape = cylinder, scale < 6, orientation, 16 ≤ horizontal axis < 32, vertical axis] for r2r
training set.

1https://github.com/yvan/cLPR
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Hyper-Parameter Tuning We set β ∈ {1, 2, 10} for β-VAE (Higgins et al., 2017) and β-
TCVAE (Chen et al., 2018), and β ∈ {1, 10} for VAE-MAGA, which employs the MAGA-net
proposed module on the CNN-based encoder and decoder, instead of Glow (Kingma & Dhari-
wal, 2018). We set the common hyper-parameters of the proposed method at α ∈ {100, 1000},
γ ∈ {1, 10}, λ ∈ {0.0, 1.0} for the supervised and ground truth models, and β ∈ {1.0, 2.0} for the
supervised method. We run each model with three seeds, ∈ {1, 2, 3}. We set N = 1000 and n′ = 10.

Decoder Equivariant Loss For combinatorial generalization, we add the decoder equivariant loss
as:

Lde = R.E(xj , pθ ◦ gi→j ◦θ (f ′ ◦ f ◦ qϕ(xi))), (28)
where R.E(·) is a reconstruction error and pθ is a decoder. We add the Lde to the objective losses
with hyper-parameter λ.

B.4 SETTING FOR DISENTANGLEMENT LEARNING

Hyper-Parameter Tuning We set β ∈ {1, 2, 10} for β-VAE (Higgins et al., 2017) and β-
TCVAE (Chen et al., 2018), γ ∈ {10, 20, 40} for Factor-VAE (Kim & Mnih, 2018), hyrec ∈
{0.1, 0.2, 0.7} for CLG-VAE (Zhu et al., 2021), β = 1 for Ada-GVAE (Locatello et al., 2020).
We set the common hyper-parameters of proposed method α ∈ {100, 1000}, γ = 1 for superivsed
and ground truth model, β ∈ {1.0, 2.0} for supervised method, and λ = 1.0, p = 0.5 for semi-
supervised method. We run 10 seed variance over each model with seed ∈ {1, 2, . . . , 10}. We set
N = 1000 and n′ = 10. We evaluate four metrics β-VAE metric (Higgins et al., 2017), Factor VAE
metric (Kim & Mnih, 2018), SAP (Kumar et al., 2018), and DCI (Eastwood & Williams, 2018).

C COMBINATORIAL GENERALIZATION RESULTS

As shown in Fig. 9a, we selected the four worst samples (those with the highest reconstruction errors):
1) β-VAE results contain only position semantics, 2) β-TCVAE captures the position and scale values
but fails to capture the shape and rotation factors, 3) VAE-MAGA struggles with generalization.
Even though our method does not capture all semantics, it shows improvement compared to the
baselines: 4) the supervised method misses either the shape or rotation, and 5) the GT model only
misses the shape semantic. As shown in Fig. 9b, the representations of the baseline are not close to
a disentangled representation. In contrast, the representation of the supervised method approaches
a disentangled representation and shows better generalization. This implies that a disentangled
representation containing the symmetry structure could benefit combinatorial generalization.

(a) Visualization of generated images of the worst 4 samples of R2R task. Each 1st row is a group truth, and
2nd row is a generated image. The red box indicates the results, which do not contain all the semantics of
ground truth.

(b) Visualization of DCI metric of dSprites dataset

Figure 9: Qualitative results of combinatorial generalization of dSprites dataset (R2R). A more sparse
matrix implies clear disentanglement.
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(a) Visualization of generated images of the worst 4 samples of R2E task. Each 1st row is a group truth, and
2nd row is a generated image. The red box indicates the results, which do not contain all the semantics of
ground truth.

(b) Visualization of DCI metric of dSprites dataset

Figure 10: Qualitative results of combinatorial generalization of dSprites dataset (R2E). A more
sparse matrix implies clear disentanglement.

(a) Visualization of generated images of the worst 10 samples of the R2R task. Each 1st and 2nd

row shows the group truth samples and the generated results, respectively. The red box indicates the
negative results, which do not contain all the semantics of the ground truth. We utilize randomly
selected pivot images as introduced in Hwang et al. (2023) for the CMCS model.

(b) Visualization of DCI metric of 3D Shapes dataset (training set). A more sparse matrix implies
clear disentanglement.

Figure 11: Qualitative results of combinatorial generalization of 3D Shapes dataset (R2E).
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(a) Visualization of generated images of the worst 10 samples of the R2R task. Each 1st and 2nd

row shows the group truth samples and the generated results, respectively. The red box indicates the
negative results, which do not contain all the semantics of the ground truth. We utilize randomly
selected pivot images as introduced in Hwang et al. (2023) for the CMCS model.

(b) Visualization of DCI metric of 3D Shapes dataset (training set). A more sparse matrix implies
clear disentanglement.

Figure 12: Qualitative results of combinatorial generalization of MPI3D dataset (R2E).

(a) Visualization of generated images of the worst 10 samples of the R2R task. Each 1st and 2nd row shows the
group truth samples and the generated results, respectively. The red box indicates the negative results, which
do not contain all the semantics of the ground truth. We utilize randomly selected pivot images as introduced
in Hwang et al. (2023) for the CMCS model.

(b) Visualization of DCI metric of 3D Shapes dataset (training set). A more sparse matrix implies clear
disentanglement.

Figure 13: Qualitative results of combinatorial generalization of MPI3D dataset (R2R).
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D DISENTANGLEMENT LEARNING RESULTS

D.1 TRADE-OFF (3D SHAPES)

As illustrated in Fig. 14, the proposed models improve the reconstruction error and disentanglement
performance simultaneously on the dSprites dataset. Additionally, while the reconstruction error
slightly decreases, the model performance dramatically improves compared to the baselines on the
3D Shapes dataset.

D.2 GENERALIZATION WITH DISENTANGLED REPRESENTATIONS

(a) dSprites

(b) 3D Shapes

Figure 14: Reconstruction error vs. evaluation metrics (β-VAE metric, FVM, MIG, and DCI). The
top left side indicates the best results for both objectives.

D.3 IMPACT OF EACH LOSS

Table 5: Disentanglement performance over hyper-parameters

(α, γ) reconst. err. beta-VAE FVM MIG DCI
(100, 1) 17.88(±1.24) 88.40(±4.97) 82.13(±1.86) 33.88(±3.03) 42.27(±2.02)
(200, 1) 21.23(±0.89) 92.44(±5.81) 87.54(±4.13) 35.21(±2.17) 47.40(±2.14)
(500, 1) 26.00(±2.72) 94.00(±4.42) 96.41(±1.83) 43.73(±3.55) 55.36(±2.70)

(1000, 1) 27.41(±0.73) 95.80(±4.57) 99.26(±1.12) 51.81(±2.97) 63.26(±2.73)
(a) dSrites with Ground Truth model

(α, β, γ) reconst. err. beta-VAE FVM MIG DCI
(100, 1, 1) 19.53(±1.75) 85.78(±5.87) 82.10(±2.81) 27.12(±1.98) 34.42(±1.04)
(100, 2, 1) 17.58(±1.08) 86.44(±5.90) 82.40(±1.62) 34.08(±1.75) 41.16(±0.98)

(1000, 1, 1) 26.22(±1.31) 91.40(±4.90) 93.46(±1.97) 46.35(±1.94) 57.92(±1.97)
(1000, 2, 1) 26.32(±2.20) 91.40(±4.99) 93.74(±1.82) 51.03(±2.42) 64.69(±1.55)

(b) dSrites with Supervised method

(α, γ) reconst. err. beta-VAE FVM MIG DCI
(100, 1) 33.62(±5.38) 89.60(±6.17) 82.44(±3.78) 53.37(±12.87) 60.04(±13.98)
(200, 1) 34.50(±5.35) 95.00(±5.34) 91.95(±7.14) 68.06(±17.82) 74.16(±14.69)
(500, 1) 29.30(±1.72) 100.00(±0.00) 97.28(±3.05) 86.68(±5.56) 90.68(±5.87)
(1000, 1) 24.94(±1.51) 100.00(±0.00) 100.00(±0.00) 95.57(±0.80) 99.94(±0.18)

(c) 3D Shapes with Ground Truth model
Table 6: Disentanglement performance of Homomorphism VAE vs. Ours with dSprites.

Model beta-VAE FVM MIG DCI
Homomorphism VAE 18.80(±5.75) 30.24(±12.18) 0.39(±0.76) 1.35(±1.12)

Groupified-VAE 79.30(±9.23) 69.75(±13.66) 21.03(±9.20) 31.08(±10.87)
CMCS-SP 91.40(±4.99) 93.74(±1.82) 51.02(±2.42) 64.69(±1.55)
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D.4 OURS VS. HOMOMORPHISM VAE

As shown in Table 6, our model outperforms Homomorphism VAE (Keurti et al., 2023) and Groupi-
fied-VAE (Yang et al., 2021). Homomorphism VAE (Keurti et al., 2023) utilizes s the SO(2) for
disentangled representation, and the elements of SO(2) affect the multi-dimension value of the latent
vector. It implies that the SO(2) group is not appropriate symmetry for dimension-wise disentangled
representation.

D.5 IMPACT OF KNOWN LABEL RATIO

We set the known label ratio p ∈ {0.1, 0.2, 0.4, 0.5}. As shown in Table 7, our model is robust to the
known label ratio except for the DCI metric.

Table 7: Disentanglement performance of semi-supervised learning methods.

Model dSprites 3DShapes
beta-VAE FVM MIG DCI beta-VAE FVM MIG DCI

Ada-GVAE 83.60(±2.61) 83.67(±2.97) 21.34(±5.35) 47.26(±1.89) 72.75(±6.50) 59.81(±6.14) 24.77(±7.48) 64.57(±4.04)
CMCS-semi (0.1) 88.60(±7.72) 83.36(±3.51) 14.71(±1.25) 23.46(±1.69) 86.80(±3.90) 84.05(±2.66) 55.17(±2.18) 61.79(±3.15)
CMCS-semi (0.2) 89.78(±6.67) 83.88(±2.76) 23.03(±2.54) 28.07(±1.40) 85.00(±13.11) 83.00(±7.29) 54.20(±13.35) 60.26(±12.00)
CMCS-semi (0.4) 88.20(±5.92) 83.49(±2.22) 31.87(±2.02) 39.44(±0.79) 86.40(±6.98) 87.61(±7.09) 61.47(±9.51) 67.87(±8.39)
CMCS-semi (0.5) 87.00(±7.07) 84.50(±1.41) 31.95(±2.40) 39.36(±1.49) 95.00(±7.07) 88.81(±13.17) 57.94(±16.52) 72.14(±3.23)

E QUALITATIVE ANALYSIS OF DISENTANGLEMENT LEARNING

3D Shapes As shown in Fig. 15, the baseline results show that multiple factors are changed when
a single dimension value is changed. On the other hand, ours show the fully disentangled results
represent: 1st row is the floor color changes, 2nd row is the wall color changes, 3rd row is the object
color changes, 4th row is the scale of object, 5th row is the object shape changes, and 6th row is the
rotation changes.

MPI3D As shown in Fig. 16, the baseline results show that multiple factors are changed when a
single dimension value is changed. Also, the object usually disappeared following the intervals with
baselines. On the other hand, supervised methods show better results than baselines: 1st row is the
object color changes, 2nd row is the object shape changes, 3rd row is the object size changes, 5th
row is the background color changes, 7th row is the vertical axis changes, and 9th row is the height
changes. Also, the GT model results represent: 1st row is the object color changes, 2nd row is the
object shape changes, 3rdrow is the object size changes, 4th row is the height changes, 5th row is the
background color changes, 6th row is the vertical axis changes, and 7th row is the horizontal axis
changes.

cLPR As shown in Fig. 17, the Homomorphism VAE (Keurti et al., 2023) shows that multiple
factors are changed when a single dimension value is changed. Also, the reconstruction quality is
lower than ours (CMCS-GT and CMCS-SP). On the other hand, the supervised method shows better
results than the Homomorphism VAE: 1st and 3rd rows are z-axis rotation, 2nd row is y-zis rotation,
and 4th row is x-axis rotation. Also, the GT model results represent: 1st and 2nd rows are x-axis
rotation, 3rd row is z-axis rotation, and 4th and 6th rows are y-axis rotation.
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(a) β-VAE (b) β-TCVAE

(c) Commutative Lie Group VAE

(d) CMCS (Supervised Method) (e) CMCS (Ground Truth Model)

Figure 15: The 1st column images are randomly selected from the dataset. Each row indicates
each dimension of each model. β-VAE, β-TCVAE, and Commutative Lie Group VAE trace each
dimension value from -2 to +2. The proposed methods apply a group action + 2π

n to the selected
images a total of 10 times.
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(a) β-VAE (b) β-TCVAE

(c) Commutative Lie Group VAE

(d) CMCS (Supervised Method) (e) CMCS (Ground Truth Model)

Figure 16: The 1st column images are randomly selected from the dataset. Each row indicates
each dimension of each model. β-VAE, β-TCVAE, and Commutative Lie Group VAE trace each
dimension value from -2 to +2. The proposed methods apply a group action + 2π

n to the selected
images a total of 10 times.
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(a) CMCS-GT

(b) CMCS-Super

(c) Homomorphism VAE

Figure 17: The 1st column images are randomly selected from the dataset. Each row indicates each
dimension of each model. CMCS-GT, CMSC-Super (α: 100.0), and homomorphism VAE trace each
dimension value from -2 to +2. The proposed methods apply a group action + 2π

n to the selected
images a total of 10 times. And red color axis is a rotation axis.
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