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Abstract

In multi-event survival analysis, one aims to predict the prob-
ability of multiple different events occurring over some time
horizon. One typically assumes that the timing of events
is drawn from some distribution conditioned on an indi-
vidual’s covariates. However, during training, one does not
have access to this distribution, and the natural variation in
the observed event times makes the task of survival pre-
diction challenging, on top of the potential interdependence
among events. To address this issue, we introduce a novel
approach for multi-event survival analysis that models the
probability of event occurrence hierarchically at different
time scales, using coarse predictions (e.g., monthly predic-
tions) to iteratively guide predictions at finer and finer grained
time scales (e.g., daily predictions). We evaluate the pro-
posed approach across several publicly available datasets in
terms of both intra-event, inter-individual (global) and intra-
individual, inter-event (local) consistency. We show that the
proposed method consistently outperforms well-accepted and
commonly used approaches to multi-event survival analysis.
When estimating survival curves for Alzheimer’s disease and
mortality, our approach achieves a C-index of 0.91 (95% CI
0.88-0.93) and a local consistency score of 0.97 (95% CI
0.94-0.98) compared to a C-index of 0.75 (95% CI 0.70-0.80)
and a local consistency score of 0.94 (95% CI 0.91-0.97)
when modeling each event separately. Overall, our approach
improves the accuracy of survival predictions by iteratively
reducing the original task to a set of nested, simpler subtasks.

Introduction
Survival analysis, commonly used in fields such as health-
care, aims to estimate the probability of an event occurring
over some time horizon (Lanza et al. 2020; Wongvibulsin,
Wu, and Zeger 2020). In contrast to single-event analysis,
multi-event survival analysis is more challenging due to the
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potentially complex interdependence among events. This re-
lationship is further complicated by the natural variation in
time-to-events, as one typically assumes that they are non-
deterministic and are drawn from some distribution. In light
of these challenges, researchers commonly make the simpli-
fying assumption that the events are independent and apply
existing single-event analysis techniques (Roe et al. 2012).
However, when this assumption does not hold, it can lead to
poor performance (Castañeda and Gerritse 2010). Recently,
Lee et al. (Lee et al. 2018) used multitask learning to jointly
model events. While this improved performance over exist-
ing approaches that assume independence, it remains limited
in that it does not directly account for the natural variation
in time-to-events. To address this, we propose a novel hier-
archical approach that jointly models events. Our approach
improves performance by solving a series of simpler tasks
building up to the original target task.

Given a complex target task, we first divide it into a series
of simpler tasks that serve as guides to help complete the tar-
get task. Our hierarchical approach iteratively predicts sur-
vival at multiple granularities of time (e.g., months, weeks,
then days). Predictions at coarser time scales (e.g., will the
event happen during the prediction horizon or not) are used
to guide predictions at finer time scales (a more complex
task), improving the overall accuracy on the target task. Our
approach applies to the general multi-event setting. We do
not assume any constraints on the order in which events may
occur (Hsieh and Wang 2018), though we outline ways to
account for such constraints if the setting calls for it.

Applied to publicly available data, we present a com-
prehensive evaluation of our proposed approach relative to
existing baselines. To date, evaluation of survival analysis
models in the multi-event setting has been limited. Common
evaluation techniques like the C-index focus on discrimina-
tive performance at the global level (i.e., comparing the risk
of two different individuals for the same event) but not at the
local level (i.e., comparing the risk for two different events
for the same individual). We propose new evaluation metrics
that address these limitations.

Overall, we introduce a novel, hierarchical approach for
multi-event survival analysis. Across several datasets, both
synthetic and real, we show that the proposed method con-
sistently outperforms several well-accepted baselines. More
specifically, our contributions are as follows:



• We propose a novel, hierarchical, deep learning approach
for multi-event survival analysis that models survival hier-
archically along the horizon, using predictions at coarser
time scales to guide predictions at finer time scales

• We highlight the shortcomings of current evaluation ap-
proaches for multi-event survival analysis, present a novel
evaluation framework, and use it for additional supervi-
sion during training

Background and Related Work
Here, we set up the problem of multi-event survival analysis
and review the current approaches as well as the existing
evaluation methods, highlighting limitations.

Problem Setup and Definitions
We aim to predict the probability of survival (an event not
occurring) over time for multiple events based on an indi-
vidual’s covariates. At training time, we assume that we are
provided with the covariates, observed times, and censoring
statuses for each individual. At test time, we are provided
with only the covariates. For each event, an individual’s ob-
served time is the time at which the event occurred or the
time at which the individual was last observed, depending
on the censoring status.

Multi-Event Survival Analysis
The majority of past work in multi-event survival analysis
focuses on extending the widely used Cox proportional haz-
ards model (Cox 1972). In short, a Cox model learns the
linear contribution of each covariate to the hazard (i.e., the
instantaneous rate of event occurrence at a time point given
survival until that time point). It assumes that the ratio be-
tween the hazards of two individuals is the same over time
(hence the term proportional hazards).

Among the most common Cox-based approaches to
multi-event survival analysis is that proposed by Larson
(Larson 1984), in which each event is modeled separately.
This approach is widely accepted in practical applications
of multi-event survival analysis (Armstrong et al. 2014;
Solomon et al. 2017), but it fails to capture the dependency
among events (e.g., if disease onset is likely, the probability
for death increases). Alternatively, one can use the multi-
state model, which learns a model for each event transition
(e.g., a model is learned for experiencing death conditioned
on previously experiencing disease onset) (Andersen and
Keiding 2002). However, by separately modeling each event
transition, this approach also fails to leverage shared infor-
mation among the events. This limitation has been addressed
for Cox models by using a shared frailty term across models
(i.e., an individual specific variable whose effect on the haz-
ard is multiplicative) (Jiang and Haneuse 2017), additional
forms of regularization (Wang et al. 2017), or by modeling
the joint survival distribution (Hsieh and Wang 2018). How-
ever, these approaches require assumptions on the distribu-
tion of the frailty term, the proportional hazards assumption,
or assumptions on the form of the joint survival distribution,
respectively. Although recent approaches (Lee et al. 2018;
Engelhard et al. 2020) address issues with respect to these

restrictive assumptions, they still suffer in terms of accuracy
due to the natural variation of time-to-events. We tackle this
issue via our hierarchical approach.

Our proposed approach leverages a series of simpler sub-
tasks to guide the predictions of the original task. To date,
the concept of using simpler tasks to aid with predictions
at more complex, finer-grained tasks has not been explored
in survival analysis. However, such an approach has been
used for classification (Kowsari et al. 2017; Meng et al.
2019; Malakouti and Hauskrecht 2019; Seo, Kim, and Han
2019). For example, in text classification, Kowsari et al.
showed how training a classifier to learn to discriminate
among super-classes (e.g., novels and research papers) can
aid in learning to discriminate among sub-classes (e.g., fic-
tion novels and review papers). By breaking the overall task
into a series of nested subtasks, the model can more effec-
tively accomplish the original task.

Evaluation with Multiple Events
Methods for evaluating approaches for multi-event survival
analysis have been limited. Many report the learned coef-
ficients of the Cox model (Andersen and Gill 1982; Peng,
Xiang, and Wang 2018). However, this requires knowledge
of how all possible combinations of the features contribute
to the hazard. In the context of multiple events, alternative
metrics, like the C-index (Harrell et al. 1982), have their own
issues. Here, we focus on two shortcomings of existing met-
rics for multi-event survival analysis: 1) they can result in
biased estimates with respect to portions of the curve, and 2)
they consider only inter-individual rankings.

The C-index is perhaps the most commonly used evalu-
ation metric in survival analysis (Harrell et al. 1982). For
a single event, it summarizes the accuracy of ranking in-
dividuals by calculating the probability that a comparable,
randomly chosen pair of individuals is correctly ranked. For
two individuals to be comparable, at least one must have ex-
perienced the event, and the event must have occurred prior
to when the second individual was last observed. The rank-
ing is correct if the probability of survival for the individual
with the earlier time-to-event is lower at some fixed time
point. The C-index is a weighted average of the AUROC at
different time points (Heagerty and Zheng 2005).

The C-index assumes that rankings are consistent over
time (i.e, if two individuals are correctly ranked at time 1,
then they are correctly ranked at all other time points). How-
ever, for deep approaches to survival analysis, there is no
guarantee that the curves will not cross. To address this as-
sumption, Antolini et al. proposed an extension that com-
pares the probabilities of survival at the earlier point of ob-
servation within each pair instead of some fixed time point
for all pairs (Antolini, Boracchi, and Biganzoli 2005). How-
ever, this comparison can result in an incomplete estimate
of performance, since it does not consider the later points
of observation within the pair, i.e., the time between when
the first and second individuals experienced the event. We
propose an alternative consistency score that compares indi-
viduals at all relevant time points.

Within the multi-event setting, the C-index is typically
computed for each event separately. As a result, this com-



pares individuals within the context of a specific event.
While this captures discriminative performance among in-
dividuals (inter-individual, intra-event) at the global level, it
does not capture discriminative performance within an indi-
vidual (inter-event, intra-individual) at the local level (i.e., it
does not evaluate the survival curves among events within
the same individual). We go beyond the notion of global
rankings and consider local rankings within individuals.

Methods
We introduce a novel approach for multi-event survival anal-
ysis that improves the accuracy of previous work. Our archi-
tecture contains a hierarchical component that uses predic-
tions at coarser time scales (a simpler task) to guide pre-
dictions at finer time scales (a more complex task). During
training, we rely on a composite loss function composed of
both established and novel ranking penalties that provide su-
pervision across the entire prediction horizon. Unless other-
wise mentioned, we assume censoring is non-informative.

Notation
Let N be the number of individuals, K be the number of
events, and T be the size of the discrete time horizon over
which we consider survival. We define the ‘original task’ as
predicting the probability of event occurrence at each time
point t = 1, 2, ..., T .

Each individual i = 1, 2, ..., N is associated with three
variables: {x(i), c(i), o(i)}. Let x(i) ∈ RD be the vector of
covariates. Let c(i) ∈ {0, 1}K be the vector of censoring
statuses for each event, where c(i)k is 1 event k is censored
and 0 otherwise. Let o(i) ∈ {1, 2, ..., T}K be the vector of
observed times for each event. Let e(i) ∈ {1, 2, ..., T}K be
the vector of time-to-events, where o(i)k = e

(i)
k if c(i)k = 0,

and o(i)k < e
(i)
k otherwise. e(i) is not provided in the data. Let

S(i) = {s(i)1 , s(i)2 , ..., s(i)K } be a matrix of survival curves for
individual i. s(i)k = (P (e

(i)
k > 1), P (e

(i)
k > 2), ..., P (e

(i)
k >

T )) describes the probability of individual i not having event
k until t for t = 1, 2, ..., T . Let P(i) = {p(i)

1 ,p(i)
2 , ...,p(i)

K }
be a set of probability distributions for individual i. p(i)

k =

(P (e
(i)
k = 1), P (e

(i)
k = 2), ..., P (e

(i)
k = T )) describes the

probability of i experiencing event k at t = 1, 2, ..., T .
Let (b1, b2, ..., bM ) be a vector of size M , where M is the

number of temporal granularities. At granularitym, form =
1, 2, ...,M , we split the horizon into T/bm non-overlapping
time bins, where the number of time points from the orig-
inal task contained in each time bin is bm. b1 = T is the
coarsest granularity (i.e., it has one time bin containing all
time points from the original task), and bM = 1 is the granu-
larity of the original task. bm are monotonically decreasing,
and bm−1modbm ≡ 0. The time bin in which o(i)k falls at
granularity m is then o(i)km. Let τ (m)

z be a set of time points
from the original task, regrouped, under granularity m, for
z = 1, 2, ..., T/bm. For example, if T = 6 and bm = 3,
then we split the horizon in half with τ (m)

1 = {1, 2, 3} and
τ
(m)
2 = {4, 5, 6}. p(i)km[z] =

∑
u∈τ(m)

z
p
(i)
k [u] is then the

Figure 1: Proposed architecture. A multitask network that
takes x as input and outputs P̂ , a set of probability distri-
butions for each event. Event specific subnetworks, εk, esti-
mate the probability distribution, p̂k, hierarchically. At gran-
ularity m, p̂km is constructed from φkm(θ(x)) and p̂km−1.

probability of event occurrence in τ (m)
z . We denote indexes

into probability vectors with square brackets (e.g. p[t]) and
use a ‘hat’ for the model’s estimates (e.g., p̂).

Overall Architecture
The components of our approach are incorporated into a
multitask architecture (Figure 1) with a shared layer θ to
account for dependencies among events. It containsK event
specific subnetworks, ε1, ε2, ..., εK , where εk takes the out-
put from θ as input and constructs p̂k in a hierarchical man-
ner, as described below. From P̂ , the survival curves, Ŝ, can
be derived as s(i)k [t] = 1−

∑t−1
u=1 p

(i)
k [u] for time point t.

Hierarchical Component. We iteratively predict whether
the event will occur at increasingly finer time scales and
hypothesize that it improves performance through the de-
creased variance of the coarser scales. In the example from
Figure 2 (T = 4, M = 3), we aim to predict the discrete
probability of event occurrence at t = 1 (i.e., P (e = 1)). In-
stead of directly predicting P (e = 1), we begin at the coars-
est granularity (m = 1, b1 = 4 and τ (1)1 = {1, 2, 3, 4}), and
predict P (e ∈ τ

(1)
1 ). Then, we move to m = 2 (b2 = 2,

τ
(2)
1 = {1, 2}, and τ (2)2 = {3, 4}). We predict the proba-

bility that the event occurs in the first half of the horizon,
τ
(2)
1 , conditioned on it occurring within the horizon (i.e.,
P (e ∈ τ (2)1 |e ∈ τ

(1)
1 )). Next, we move to m = 3 (the orig-

inal task), where b3 = 1. We then predict P (e ∈ τ
(3)
1 |e ∈

τ
(2)
1 ) = P (e = 1|e ∈ τ (2)1 ) and recover P (e = 1) = P (e =

1|e ∈ τ (2)1 )P (e ∈ τ (2)1 |e ∈ τ
(1)
1 )P (e ∈ τ (1)1 ).

Claim. Predicting the guiding task is a lower variance task
compared to predicting the original task directly.

Justification. Assume for the original task that an individ-
ual’s time-to-event, e, is a random variable drawn from some
discrete distribution conditioned on their covariates x, where
the probability of each time point occurring is non-zero. Let
EO(e) and V arO(e) be the expected value and variance of
e, respectively, under the original task, O. Next, consider



Figure 2: Example prediction. We predict if the event will
occur within the horizon, and then iteratively predict at finer
time scales until reaching the original time scale.

a guiding task, G, that uses coarser grained time bins. For
coarse grained time bin τz , z = 1, 2, ..., T/b, P (e ∈ τz) =∑
u∈τz P (e = u). Time steps from the original task that fall

into the same coarse grained time bin are equivalent under
the guiding task, and V arG(e) < V arO(e), where V arG(e)
is the variance of e under G.

V arG(e) =
∑T/b

z=1
P (e ∈ τz)(z − EG(e))

2

=
∑T

t=1
P (e = t)(bt/bc − bEO(e)/bc)2

<
∑T

t=1
P (e = t)(t− EO(e))

2 = V arO(e)

We prove the inequality in the Supplement.
Claim. Predicting the original task conditioned on a guid-

ing task is a lower variance task compared to predicting the
original task directly in expectation.

Justification. By the law of total variance, where EO|G
and V arO|G denote the expectation and variance of e with
respect to the original task conditioned on the guiding task,

V arO(e) = E(V arO|G(e)) + V ar(EO|G(e))

=⇒ E(V arO|G(e)) < V arO(e)

since V arO(e) 6= 0 from our assumption on the distribution
of e. We later demonstrate empirically that using predictions
from the guiding task and the original task conditioned on
the guiding task improve the predictions of the original task.

The hierarchical component is implemented within each
ε subnetwork (Figure 1) as described in Algorithm 1. For
event k, we first predict at the coarsest granularity (i.e., the
horizon) via φk1 (line 1). We then consider grains m =
2, 3, ...,M iteratively (line 2). For granularity m, we com-
pute the conditional probability distribution (line 3; e.g.,
P (ek ∈ τ

(m)
1 |ek ∈ τ

(m−1)
1 )), and recover the marginal

probabilities for each time bin (e.g., P (ek ∈ τ (m)
1 )) via mul-

tiplication with the corresponding marginal probability from
granularity m− 1 (e.g., P (ek ∈ τ (m−1)1 )) (lines 4-6). After
reaching granularityM , we will have computed correspond-
ing the probabilities of the original task (lines 7-8).

For each event e, we account for individuals who do not
experience event e by time T by predicting P̂ (e ∈ τ (1)1 ) =

P̂ (e ≤ T ). We implement this within the ε subnetworks as
part of the probability predictions.

Training Loss
We learn the model parameters by minimizing a composite
loss L = LTTE + αLg . Scalar hyperparameter α ∈ R+

Algorithm 1 Hierarchical prediction for event k. p̂km is the
predicted probability distribution at granularity m.

Input: θ(x), learned representation from θ
Output: p̂k, estimated distribution of occurrence at the
original time scale

Hierarchical Prediction(θ(x))
1: p̂k1 ← φk1(θ(x)) . P̂ (e ≤ T )
2: for m = 2 to M do
3: p̂km ← φkm(θ(x)) . conditional probabilities
4: for z = 1 to T/bm do
5: zm−1 ← b(z − 1)bm/bm−1c+ 1 . time index
6: p̂km[z]← p̂km[z]× p̂km−1[zm−1] . marginal
7: p̂k ← p̂kM
8: return p̂k

controls the tradeoff between the losses.
LTTE =

(∑M
m=1−LmTTE

)
maximizes the likelihood of

each event when it occurs, for uncensored individuals, and
the likelihood of survival for each individual at each event
until their last observation time, for censored individuals.
Unlike previous work (Lee et al. 2018; Ren et al. 2019), we
compute LTTE over multiple time scales (Eq. 1). 1(a) is an
indicator for whether condition a is true.

LmTTE =

N∑
i=1

K∑
k=1

1
(
c
(i)
k == 0

)
log
(
p̂
(i)
km[o

(i)
km]
)

+ 1
(
c
(i)
k == 1

)
log

1−

o
(i)
km∑
t=1

p̂
(i)
km[t]

 (1)

Lg =
∑K
k=1 L

k
g maximizes global consistency and fur-

ther improves performance by encouraging the model to cor-
rectly rank the relevant pairs of individuals. For event k,
let Ck be the set of comparable individuals (defined in the
Supplement). We compute Lg at the finest time scale for
each event (Eq. 2) where F (s1, s2, σ) = exp((s1 − s2)/σ),
o∗(j)k = o

(j)
k if c(j)k = 1 and o∗(j)k = o

(j)
k − 1 otherwise

(explained below). σg is a scalar hyperparameter.

Lkg =
∑

i,j∈Ck
F
(
ŝ
(i)
k [o

(i)
k ], ŝ

(j)
k [o

(i)
k ], σg

)
+ F

(
ŝ
(i)
k [o∗(j)k ], ŝ

(j)
k [o∗(j)k ], σg

) (2)

Previous work (Lee et al. 2018) only uses the forward con-
sistency (C-index) term of Lkg (i.e., the first term of Lkg ).
When evaluating global rankings, comparable individuals
are compared at the earlier observation point only. This ig-
nores the time steps between the two observation points, and
could lead to inconsistent rankings (Figure 3).

Claim. Let i = 1, 2 be a comparable pair of individuals
with observed times, o(1) and o(2), respectively, such that
o(1) < o(2). Comparing at time o(1) only is insufficient.

Justification. During the time between o(1) and o(2), i = 1
experienced the event, while i = 2 did not. The last time
point at which this is known to be true is o(2) if c(2) = 1



Figure 3: Consistency example. Individuals i = 1, 2 are
shown by the blue and red curves, with time to event o(1)

and observed time o(2), respectively. Left: curves are con-
sistent at o(1) and o(2). Right: curves are inconsistent at o(2).

and o(2)−1 otherwise (i.e., o∗(2)). Thus, at o∗(2), we expect
that s(1)[o∗(2)] < s(2)[o∗(2)]. This is captured by the second
term of Eq. 2. Thus, we encourage the network to correctly
rank individuals throughout the horizon.

Censorship Due to (Semi-)Competing Events
Until now, we considered the general multi-event case,
where there were no constraints on the ordering of events.
This assumed that all events occur eventually (i.e., s[t]→ 0
as t → ∞). However, this is not true in some cases of
informative censoring, where the occurrence of one event
can be prevented by another, such as with competing (Fine
and Gray 1999) and semi-competing (Fine, Jiang, and Chap-
pell 2001) events. For example, cancer relapse and death are
semi-competing events, where death prevents the occurrence
of relapse but not vice versa. For relapse, we account for this
constraint by predicting the probability that it will never oc-
cur, even past t = T . For events that never occur, e = null.

We implement this by adding another level of granularity
to our predictions. Instead of first predicting P (e ≤ T ), we
first predict P (e 6= null) and P (e ≤ T |e 6= null). We then
multiply to obtain P (e ≤ T ). Within LTTE , we maximize
1 − P (e 6= null) instead of 1 −

∑o
t=1 p̂[t]. Within Lg , o∗

takes the value T instead of o or o− 1.

Experimental Setup
We evaluate our proposed approach across different publicly
available datasets and compare to several baselines. We hy-
pothesize that our hierarchical approach to survival analysis
will lead to consistent improvements across a range of eval-
uation metrics, compared to existing approaches.

Datasets
We used four datasets. One was a multi-event synthetic
dataset for which we know ground truth, facilitating eval-
uation. The remainder were real, publicly available datasets
from the health domain. Of the real datasets, one of them
contained competing risks while the other two were semi-
competing risks. Outcome rates are reported in Table 1.

Synthetic: this dataset is based on a synthetic dataset from
previous work (Lee et al. 2018) and contains two events,
where both can occur in any order. It serves as a sanity
check. We generated 5,000 individuals, each with 15 covari-
ates. The covariates and time-to-events were drawn from the

Dataset N D K T Event Sequence: %

Synthetic 5,000 15 2 20 o1: 20.9, o2: 20.4
o1, o2: 4.4, o2, o1: 4.3

ADNI 1,604 965 2 60 AD: 19.3, D: 0.5
AD, D 0.6

MIMIC 13,801 3,822 3 12

A: 5.2, S: 1.5, D: 4.3
A, S: 5.0, A, D: 0.7

A, S, D: 1.9
-III S, A: 0.3, S, D: 0.5

S, A, D: 0.2
SEER 11,374 689 2 120 DC: 6.9, DP: 8.2

Table 1: Dataset summaries. T is in months for ADNI
and SEER, and hours for MIMIC-III. ‘D’, ‘A’, ‘S’, and
‘DC’/‘DP’ mean death, ARF, shock, and death from larynx
cancer/pulmonary disease, respectively.

distributions described below. Xy:z denotes X from covari-
ate indexes y to z, inclusive. U denotes a uniform distribu-
tion. Given the time to events, a time horizon was chosen at
the 50th percentile among the times of the first event expe-
rienced to allow for an equal proportion of individuals who
experience no event and at least one event. We discretized
all observed times into 20 evenly spaced bins.

X1:5 ∼ U(−5, 5)5,X6:15 ∼ U(−10, 10)10

u1 ∼ Lognormal((1T |X1:5|)2 + (1T |X6:10|)2, 0.4)
u2 ∼ Lognormal((1T |X1:5|)2 + (1T |X11:15|)2, 0.4)
v1 ∼ u1 + Lognormal(0.5(1T |X1:5|)2, 0.4)
v2 ∼ u2 + Lognormal(0.5(1T |X1:5|)2, 0.4)
e1 = u1 if u1 < u2, v1 otherwise

e2 = u2 if u2 < u1, v2 otherwise

ADNI: a publicly available dataset containing data
on Alzheimer’s disease (AD)1. We considered the semi-
competing outcomes of AD onset and death as events. We
selected a cohort of 1,604 participants, excluding left cen-
sored individuals. We considered a prediction horizon of five
years, where time was measured relative to the individual’s
first encounter with the ADNI study, and we predicted at the
monthly level (T = 60). After preprocessing (Supplement),
each individual had 965 covariates. Overall, 28.7% of the
population was event free by t = 60, and 50.8% of the pop-
ulation did not experience an event due to loss of followup.

MIMIC-III: a publicly available dataset of electronic
health record data (Johnson et al. 2016). Unlike ADNI, the
data cover a smaller time scale (e.g., hours rather than years).

1Data used in the preparation of this article were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003 as
a public-private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test
whether serial magnetic resonance imaging (MRI), positron emis-
sion tomography (PET), other biological markers, and clinical
and neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).



We considered three semi-competing outcomes: 1) acute
respiratory failure (ARF), 2) shock, and 3) in hospital mor-
tality (death). MIMIC-III includes data pertaining to vital
signs, medications, diagnostic and procedure codes, and lab-
oratory measurements. Each event was defined as described
by Oh et al. (Oh et al. 2019). We considered a prediction
horizon of 12 hours, where time was measured relative to
six hours after the start of an ICU (intensive care unit) en-
counter, and we predicted at the hourly level (T = 12). We
used data from the first 30 minutes of the ICU encounter
to avoid label leakage, excluding encounters where an event
occurred within the first six hours. This resulted in a sample
of 13,801 ICU encounters corresponding to 10,947 patients.
After preprocessing (Supplement), each encounter was as-
sociated with 3,822 covariates. Overall, 76.3% of the popu-
lation was event free by t = 12, and 4.1% of the population
did not experience an event due to loss of followup.

SEER: (https://seer.cancer.gov/data/): a publicly avail-
able dataset containing cancer incidence data from
population-based registries, used by previous work to study
competing risks (Lee et al. 2018; Zhang and Zhou 2018). We
considered the competing outcomes of death due to larynx
cancer and death due to pulmonary disease. We selected a
cohort of 11,374 participants between ages 60-65, exclud-
ing left censored individuals. We considered a prediction
horizon of 10 years, where time was measured relative to
the individual’s age, and we predicted at the monthly level
(T = 120). Covariates included features relating to demo-
graphics, tumor behavior, and tumor characteristics. After
preprocessing (Supplement), each individual was associated
with 689 covariates. Overall, 21.0% of the population was
event free by t = 120, and 63.9% of the population did not
experience an event due to loss of followup.

Baselines
We compare our approach with the following baselines. We
also perform an ablation study as outlined in Section 5.2.

Independent: This approach learns a separate model for
each event and assumes that the time-to-events among all
events are independent. This baseline, though simplistic,
is most commonly used in clinical research (Felker et al.
2017). Our implementation uses a series of separate feed
forward networks. It is trained to predict at the given time
scale only, minimizing the forward consistency term of Lg .

DeepHit: This approach (Lee et al. 2018) models all
events simultaneously in a single model, but was designed
for competing risks (where the occurrence of one event pre-
vents the occurrence of the other events) in that it assumes∑T
t=1

∑K
k=1 pk[t] = 1. It accounts for dependencies among

events via θ but not for individuals who experience no event
by time T . It is trained using the forward consistency term
of Lg and predicts at the given time scale only. For the non-
competing risks datasets, we adapt DeepHit by instead as-
suming

∑T
t=1 pk[t] = 1 for k = 1, 2, ...,K. For the semi-

competing risks datasets, we also predict P (e 6= null). This
baseline allows us to explore whether approaches for com-
peting risks generalize to other multi-event settings.

Oracle: An ‘approach’ with access to the ground truth

Figure 4: Local consistency. The red and blue curves rep-
resent individuals i = 1, 2, and the dashed and solid curves
represent eventsE = 1, 2, respectively. The curves are glob-
ally (top), but not locally (bottom) consistent. i = 1: incon-
sistent at o(1)2 . i = 2: inconsistent at o(2)1 and o(2)2 .

time-to-event distributions on the synthetic data. It provides
an upper bound for performance.

Evaluation
We evaluate using measures of both global and local consis-
tency. For global evaluation, we report the average C-index,
as in previous work (Lee et al. 2018; Katzman et al. 2018),
and average global consistency across all events. For event,
k, we compute the global consistency as in Eq. 3. |Ck| is the
size of Ck (i.e., the number of comparable individuals). Let
Tk(i, j) (defined in the Supplement) be the set of compara-
ble time points for individuals i and j with size |Tk(i, j)|.

1

|Ck|
∑
i,j∈Ck

1

|Tk(i, j)|
∑

t∈Tk(i,j)

1(ŝ(i)k [t] < ŝ
(j)
k [t]) (3)

Unlike past work, we measure local consistency, as it
is critical that multi-event models can discriminate among
events within an individual (Figure 4). We compute it for in-
dividual i as in Eq. 4. Let Ci be the set of comparable events
with size |Ci|, and let T i(j, k) be the set of comparable time
points for events j and k with size |T i(j, k)| (defined in the
Supplement). We report the average among all individuals.

1

|Ci|
∑

j,k∈|Ci|

1

|T i(j, k)|
∑

t∈T i(j,k)

1(ŝ(i)j [t] < ŝ
(i)
k [t]) (4)

Implementation Details
For each dataset, we randomly split the data into 60/20/20%
training/validation/test, and data from the same individ-
ual did not appear across splits. All models were trained
in Python3.6 and Pytorch (Paszke et al. 2017), using
Adam (Kingma and Ba 2014). Hyperparameters, includ-
ing the learning rate, L2 regularization constant, and ob-
jective function scalars (e.g., α), were tuned using a ran-
dom grid search, with a budget of 20. We used early
stopping based on validation set performance, where we



(a) Synthetic. Multi-event. (b) ADNI. Semi-competing. (c) MIMIC-III. Semi-competing. (d) SEER. Competing risks.

Figure 5: Comparison to existing approaches. Our approach outperforms state-of-the-art approaches in different multi-event
settings across different metrics. Error bars represent empirical 95% confidence intervals.

aimed to maximize the average of the proposed global
and local consistencies. All network layers were initial-
ized with Xavier initialization from a uniform distribu-
tion. We report results on the held-out test set, with er-
ror bars representing empirical 95% confidence intervals
(CI) from 1,000 bootstrapped samples. More details about
the code (https://gitlab.eecs.umich.edu/mld3/hierarchical-
survival-analysis) are given in the Supplement.

Results and Takeaways
Here, we evaluate the proposed approach on four datasets.

How Does the Proposed Approach Perform?
As shown in Figure 5, the proposed method noticeably
outperforms both baselines on all datasets. For SEER, the
proposed method achieved a global and local consistency
of 0.80 (95% CI=0.77-0.82) and 0.78 (95% CI=0.74-0.82),
while using DeepHit achieved a global and local consistency
of 0.79 (95% CI=0.77-0.82) and 0.77 (95% CI=0.73-0.81),
respectively. The poorer performance of our adaptation of
DeepHit to the non-competing risks datasets suggests that it
does not generalize well to other settings.

Do Hierarchical Predictions Help?
To assess the extent to which the hierarchical component im-
proved performance, we performed an ablation study. Our
main ablations are as follows, with a more thorough evalua-
tion in the Supplement. To control for the number of network
parameters, the overall network size was kept constant.

DeepHit(A) (adapted) (DA): We generalized previous
work to the multi-event setting (Lee et al. 2018) and im-
plemented it as described in our adaptation of DeepHit to
the non-competing risks datasets. Proposed minus hierar-
chical (-HA): We built from DA such that Lg penalizes at
the first and last relevant time points, and we account for in-
dividuals who remain event free by time T . It assesses the
proposed approach without the hierarchical component. Our
proposed method (P) builds from -HA in that we utilize the
hierarchical architecture and loss function.

Results are shown in Table 2. First, notice that the addi-
tion of the hierarchical component improves over the base-
lines across all datasets and all evaluation metrics. The mag-
nitude of improvement is larger in MIMIC-III than the other
real datasets. We hypothesize that this is due to the increased

Dataset Apr C-Index Global Local
Consistency Consistency

Synthetic
DA .61(.59-.63) .58(.56-.60) .60(.57-.63)
-HA .73(.71-.75) .73(.72-.75) .77(.74-.81)

P .77(.76-.79) .77(.76-.79) .83(.80-.86)

ADNI
DA .82(.74-.88) .80(.72-.78) .95(.92-.97)
-HA .90(.88-.92) .89(.87-.91) .95(.90-.98)

P .91(.88-.93) .90(.88-.92) .97(.94-.98)

MIMIC
DA .60(.58-.63) .56(.54-.58) .65(.63-.67)
-HA .66(.63-.69) .66(.63-.69) .74(.71-.78)

-III P .68(.65-.70) .68(.65-.70) .75(.71-.78)

SEER
DA .79(.76-.81) .78(.75-.80) .75(.71-.80)
-HA .79(.77-.81) .79(.76-.81) .76(.72-.80)

P .80(.78-.83) .80(.77-.82) .78(.74-.82)

Table 2: Ablation study. DA adapts DeepHit to the multi-
event setting. -HA augmentsLg and accounts for individuals
who remain event free by time T . The highest values are
bolded. Error bars show empirical 95% confidence intervals.
‘Apr’ means approach.

difficulty from modeling three events instead of two. The
larger performance gains in local consistency compared to
the other metrics on most datasets also show the that pro-
posed approach is effective in modeling interdependencies
among events. Second, increased supervision over Lg and
accounting for individuals who remain event free by time
T led to large improvements in performance. This is likely
because over 20% of individuals in each dataset were event
free throughout the horizon.

Conclusion
We introduced a novel approach for multi-event survival
analysis. It utilizes a novel hierarchical structure that divides
the task of predicting event occurrence over a time horizon
T into a series of simpler, yet practically relevant, subtasks
that iteratively build on one other. On both synthetic and
real datasets, we showed that the proposed method led to
improvements over well-accepted baselines across different
performance metrics. Through ablations, we demonstrated
the effectiveness of the hierarchical component. Going for-
ward, one might consider extensions for recurrent events.
Nonetheless, this work represents an important foundation
for future work in multi-event survival analysis.
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