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Abstract
The ultimate goal of most scientific studies is to understand the underlying causal mechanism be-
tween the involved variables. Structural causal models (SCMs) are widely used to represent such
causal mechanisms. Given an SCM, causal queries on all three levels of Pearl’s causal hierarchy
can be answered: L1 observational, L2 interventional, and L3 counterfactual. An essential aspect
of modeling the SCM is to model the dependency of each variable on its causal parents. Tradi-
tionally this is done by parametric statistical models, such as linear or logistic regression models.
This allows to handle all kinds of data types and fit interpretable models but bears the risk of in-
troducing a bias due to the assumed rigid functional form. More recently neural causal models
came up using neural networks (NNs) to model the causal relationships, allowing the estimation
of nearly any underlying functional form without bias. However, current neural causal models are
generally restricted to continuous variables and do not yield an interpretable form of the causal
relationships. Transformation models range from simple statistical regressions to complex net-
works and can handle continuous, ordinal, and binary data. Here, we propose to use potentially
deep TRAMs to model the functional relationships in SCMs allowing us to bridge the gap between
interpretability and flexibility in causal modeling. We call this method TRAM-DAG and assume
currently that the underlying directed acyclic graph (DAG) is known. For the fully observed case,
we benchmark TRAM-DAGs against state-of-the-art statistical and NN-based causal models. We
show that TRAM-DAGs are interpretable but also achieve equal or superior performance in queries
ranging from L1 to L3 in the causal hierarchy. For the continuous case, TRAM-DAGs allow for
counterfactual queries for three common causal structures, including unobserved confounding.

1. Introduction

Causal understanding is the ultimate goal in science and also essential in applications such as health-
care, economics, and policy-making because it allows to design effective interventions and make
well-founded decisions. Structural Causal Models (SCMs) have become an established method for
a mathematical representation of causal models. An SCM allows to tackle tasks on all three levels
of Pearl’s causal hierarchy: fitting observational distributions (Level 1), estimating interventional
distributions (Level 2), and answering counterfactual queries (Level 3) (Pearl et al., 2000). One
line of research in causal modeling is to estimate the directed acyclic graph (DAG), capturing the
existence and directions of these mutual causal relationships as far as possible from observational
data and asses if there are unobserved confounders. Another line of research starts from the DAG
and focuses on estimating the functional form of the causal relationships of each variable on its
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causal parents. In this paper, we focus on this second line of causal modeling research and intro-
duce TRAM-DAGs (see Fig. 1). The approaches for modeling the causal relationships can often be
assigned to one of two choices: 1) A statistical approach that offers transparent parametric models
for capturing causal relationships between variables of all data types but is prone to bias due to
restrictive assumptions about functional forms (Peters et al. (2017)). 2) Neural network (NN) based
causal models allowing for an unbiased estimation of complex relationships but suffering from their
restriction to continuous data and their black box character.

To the best of our knowledge, our suggested TRAM-DAG is the first interpretable neural causal
model that: a) can handle continuous, ordinal, binary or mixed data types and b) comprises classical
statistical and NN-based approaches allowing to model the causal relationships of the SCM with
interpretable or fully flexible model-parts within the same framework. We demonstrate that TRAM-
DAGs achieve at least state-of-the-art performances in answering causal queries across the three
levels of Pearl’s causal hierarchy while retaining the interpretability required for understanding
causal relationships.

2. Existing approaches for estimating causal relationships in SCMs

Estimating the functional relationships in SCMs can be broadly divided into statistical and NN-
based approaches.

2.1. Causal models based on neural networks

There is a growing body of literature on estimating causal relationships using NNs, mostly genera-
tive neural network models, see Poinsot et al. (2024) for a recent comprehensive review. Theoretical
results on the identifiability of neural causal models with continuous variables are discussed in Xia
et al. (2023) for all three levels of causal hierarchy: fitting the observational data (L1), estimating
intervention effects and interventional distributions (L2) and answering counterfactual questions
(L3). These results are supplemented by numerical experiments using simple feed-forward NNs.
Other methods go beyond simple feed-forward NNs. E.g. Sánchez-Martin et al. (2022) introduced
Variational Graph Autoencoders (VACA). In VACA, the encoder graph network is not allowed to
have hidden layers to allow for L3 identification, which limits the expressiveness of the approach.
Handling L2 queries is also possible with sum-product network, see Poonia et al. (2024) or circuit
models Wang and Kwiatkowska (2023). A particularly interesting class of causal models capable of
L3 queries are models with a bijective generation mechanism (BGM) as described by Nasr-Esfahany
et al. (2023). Their work demonstrated that models in this class are identifiable in the fully observed
and two other cases with unobserved confounders, i.e. an instrumental variable or a backdoor set-
ting. Specifically, a BGM model trained to fit continuous observational data at L1 can also predict
L2 and L3 queries. However, to be bijective BGMs are restricted to continuous variables (see Sec-
tion 4.2 for a discussion). Prominent members of that class of BGMs are normalizing flows (NFs).
NFs rely on a single or a series of simple, invertible transformations to map variables to a simpler
latent distribution - hence NF and TRAMs rely on the same idea (see Section 3.2). Initially, NFs
have been proposed for causal estimation by Khemakhem et al. (2021), who introduced CAREFL
that relies on chaining many simple transformations. Other recent NF-based methods achieve flex-
ible transformations without chaining by directly modeling monotonic transformation. E.g., Balgi
et al. (2024) uses unconstrained monotonic NNs. However, all current NF-based methods suffer
from their black box character and are generally restricted to continuous data.
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2.2. Causal models based on statistical models

Causal modeling dates back to the 1920s when path diagrams were introduced to describe causal
relationships by Wright (1920). To describe the functional relationships in these causal models,
structural equations like discussed in Section 3.1 were formally developed in the 1970s by Jöreskog
(1970). Pearl introduced 1995 the do-calculus based on DAGs for answering causal queries Pearl
(1995). While often linear regression models were used in the past, modern approaches can model
more complex structures and use e.g. generalized linear models (GLMs) to set up the structural
equations. Classical statistical models are usually not over-parametrized, and their interpretable
parameters can be consistently estimated. A drawback of statistical modes are their limited flexi-
bility, which can lead to suboptimal estimates of observational and interventional distributions. An
overview of causal inference in statistics can be found in Pearl (2009) and a detailed discussion
of complete identification methods for the causal hierarchy in Shpitser and Pearl (2008). In our
study, we are in a quite easy setting because we assume a fully observed DAG, and utilize well-
characterized transformation models to estimate the causal relationships. Hence, L2 queries can be
solved by the do-calculus of Pearl when the observational data is accurately fitted Pearl (1995).

3. Background

We briefly introduce the necessary background needed for the proposed TRAM-DAG method (see
Fig. 1) for causal modeling.
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Figure 1: TRAM-DAG model: Each variable in the DAG is modeled by a
TRAM. The TRAMs of the continuous variables X1 and X2 have a
continuous h, and the TRAM of the discrete ordinal variable X3 has a
discrete h. For variables with parents, the conditional transformation
function h(Xi|pa(Xi)) and outcome distribution fXi|pa(Xi) depend on
the values of the parents.
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3.1. Background on DAGs and SCMs for TRAM-DAGs

In this study, we assume that the underlying causal structure, given by a directed acyclic graph
(DAG) (see Fig. 2), is known. We focus on the case where all variables are observed. However,
we would like to emphasize that for the continuous case, TRAM-DAGs are in the class of bijective
generation models (BGM) (see Section 4.2) and therefore applicable beyond the full observed case
Nasr-Esfahany et al. (2023). For the ease of discussion, we restrict to causal models where we
have d mutual independent noise variables Ui meaning that we have no unobserved confounders.
Although noise variables are typically omitted from DAGs for clarity, we include them in the DAG
shown in Fig. 2.

U1

U2 U3X1

X2 X3

X1 = f1(U1)

X2 = f2(X1, U2)

X3 = f3(X1, X2, U3)

U1 ∼ FU1
, U2 ∼ FU2

, U3 ∼ FU3
U1

U2 U3X1

α X3

X1 = f1(U1)

X2 = α

X3 = f3(X1, α, U3)

U1 ∼ FU1
, U2 ∼ FU2

, U3 ∼ FU3

Figure 2: Left: DAG and corresponding SCM skeleton for three observed variables X1, X2, X3 and
unobserved noise U1, U2, U3. Right: The post-interventional DAG and SCM skeleton
when performing a do(X2 = α) intervention.

Taken together, the collection of of d (structural) assignments,

Xi := fi(pa(Xi), Ui), for i = 1, . . . , d. (1)

and the specification of the d mutual independent noise distributions FUi define a structural causal
model (SCM) for the involved variables X1, ..., Xd. Please note that given the observed data, the
form of the functions fi in an SCM would change if another noise distribution FUi is assumed.

When performing a deterministic do-intervention in a causal model, for example, do(X =
α), the intervened variable is forced to take the value of the do-intervention. Consequently, no
other variables influence the intervened variable, resulting in a post-intervention DAG where all
directed edges pointing to the intervened variable are removed (see right panel of Fig. 2). The post-
interventional SCM is updated only for the intervened variable, which now takes on the fixed value
imposed by the intervention.

3.2. Background on transformation models as needed for TRAM-DAGs

We use (deep) transformation models (TRAMs), which have so far only been used in non-causal
regression tasks (Hothorn et al., 2014; Sick et al., 2021; Kook et al., 2022b; Baumann et al., 2021),
for causal modeling by using the causal parents of a variable as predictors (Fig. 1). We can directly
use the core idea of TRAMs (Hothorn et al., 2014) to construct the conditional distribution of a
variable Xi in a causal model, whether continuous, ordinal, or binary, on its parents as follows: A
strictly monotone increasing conditional transformation function h(xi | pa(xi)) is fitted that maps
the unspecified conditional outcome distribution FXi|pa(Xi) to a fixed continuous latent distribution
Fu with a log-concave and continuous density fu (see Fig. 1). This approach allows to model the
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INTERPRETABLE NEURAL CAUSAL MODELS WITH TRAM-DAGS

conditional outcome distribution P (Xi ≤ xi|pa(Xi)) = FXi|pa(Xi)(xi), as

FXi|pa(Xi)(xi) = FU (h(xi|pa(xi))). (2)

Structure of the transformation function h: The transformation function h = hI + hS for a
target Xi consists of an intercept hI that can depend on the parents pa(Xi) and potentially a shift
term hS that can potentially consist of a sum of several linear and complex shift term that depend
on the parents. Depending on the structure of h, the TRAM can be interpretable or be complex
allowing for a high flexibility (see Section 3.2.1).

Choice of the latent distribution FU : The interpretation scale of the shift terms in h depends on
the choice of Fu, while Fu does not impact the ability to accurately estimate conditional outcome
distributions (Hothorn et al., 2014). In this study, we always use the standard logistic distribution as
Fu since it allows us to interpret the shift terms in h as log-odds-ratios (see Appendix A.1).

Intercept function for discrete ordinal or binary variables: For an ordinal variable Xi with
levels 1, 2, ...K, we use a monotone increasing discrete function to model the intercept function h0
(see e.g. X3 in Fig. 1). The discrete intercept function, which potentially depends on the parents, is
given by:

hI(Xi = k|pa(Xi)) = ϑk(pa(Xi)) (3)

where ϑk is a strictly monotone increasing sequence for k = 1, ...K. The probability for a class
level k ∈ {2, ...,K − 1} is given by the area under the latent density over the interval [ϑk−1, ϑk],
for k = 1 the interval is [−∞, ϑ1], for k = K it is [ϑK−1,∞]. A binary outcome can be seen as a
special case where h only consists of one cut-point ϑ, cutting the area under latent density in two
parts where the lower part represents P (Xi = 0) = FU (h(xi = 0).

Intercept function for continuous variables: For continuous variables, we use Bernstein poly-
nomials to model the continuous intercept function, which potentially depends on the parents.

hI(xi|pa(Xi)) =
1

M + 1

M∑
k=0

ϑk(pa(Xi))Bek,M (xi), (4)

where ϑk, k = 0, ...,M are strictly monotone increasing coefficients of the Bernstein polynomial
to ensure a strictly monotone increasing h and Bek,M (xi) denotes the density of a Beta distri-
bution with parameters k + 1 and M − k + 1. We choose Bernstein polynomials because they
can easily be restricted to be strictly monotonically increasing and provide theoretical guaran-
tees for approximating any conditional continuous distribution arbitrarily well as long as the or-
der M is sufficiently large Hothorn et al. (2014). For such a bijective h we can directly formulate
Xi = fi(pa(Xi), Ui) = h−1(Ui|pa(Xi)).

3.2.1. FLEXIBLE AND INTERPRETABLE DEEP TRAMS: CI, SI-CS, SI-LS

To model fully flexible function fi for a variable Xi in an SCM we allow the parameters ϑk in the
intercept of h (discrete or continuous) to change with the value of the parents of Xi (see Eq. (3),
Eq. (4)). We call this a complex intercept (CI) model, which provides maximal flexibility and
can approximate any conditional outcome distribution arbitrarily well, as shown in Hothorn et al.
(2014), where CI models are referred to as response-varying effect models.
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To model a causally interpretable effect for each parent Xj ∈ pa(Xi) on Xi, we design the
transformation function as h(xi|pa(xi)) = hI(xi) +

∑
j s(xj) with a simple intercept (SI) hI that

does not depend on the parents, and additive interpretable shift terms s(xj) depending on the values
xj taken by the parents Xj ∈ pa(Xi). A shift term s(xj) is either a linear shift (LS) LSxj = βjxj
or a complex shift (CS) CSxj = γ(xj). In this study, all shift parameters in the TRAM-DAG can
be interpreted as log-odds-ratios since we use in all experiments the standard logistic distribution
as FU . While being the least flexible, the linear shift terms in the transformation h are the most
interpretable. The parameter βj can be causally interpreted as the log-odds ratio. Hence, exp(βj)
represents the factor by which the odds, odds(Xi ≤ x) = P (Xi≤x)

1−P (Xi≤x) , change when intervening
on the parent Xj ∈ pa(Xi) by increasing it by one unit (see Appendix A). Importantly, in causal
models, we do not require that all other parents Xj′ ∈ pa(Xi) with j′ ̸= j stay constant; they
may also change upon the intervention on Xj . Appendix C.4 provides an illustrative experiment
showing that the causal parameter βj , that was estimated on observational data, can be used to
correctly predict the interventional effect of a parent Xj on the target Xi, by comparing eβj to the
change of the odds(Xi ≤ x) when the intervention is actually performed in the DGP by increasing
the parent Xj by one unit. For the more flexible complex shift terms CSxj = γ(xj), the change in
the odds when increasing Xj by one unit can be expressed as exp(γ(xj + 1) − γ(xj)). While the
causal effect of a CS cannot be summarized by a single coefficient anymore, it can be interpreted
by plotting γ(xj) against xj (see e.g. Fig. 7).

To decide between a TRAM with full flexibility or interpretable effects, we follow the top-down
approach as described in Hothorn (2018) aiming for maximal interpretability without sacrificing too
much predictive performance as measured by the likelihood on an independent test set.

4. TRAM-DAGs

Here, we describe briefly how to fit TRAM-DAGs (see Fig. 1) and how to use them for tackling
causal queries on all three levels in Pearl’s causal hierarchy. The structure of TRAM-DAGs can be
described by meta-adjacency matrix MA (see, e.g., Fig. 3) where the element in the i-th row and
jth column describes the effect type of Xi on Xj which can be either a complex intercept (CI), a
complex shift (CS), a linear shift (LS) or no influence at all (0). If the j-th column holds no CI-entry,
then the intercept is modeled as SI, if all entries are 0, then Xj is a source node with h(xj) = SI .

Figure 3: Left: DAG with meta information on the TRAMs, Right: h structures and the meta-
adjacency matrix MA resulting from the DAG and the TRAM structures.
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4.1. Architecture and training of TRAM-DAGs

Each (deep) TRAM in the TRAM-DAG can be trained separately on observational data. Details on
training a (deep and interpretable) TRAM based on NNs are described in Kook et al. (2022b); Her-
zog et al. (2023); Kook et al. (2022a). For convenience, we have constructed a model that consists
of a set of customized NNs including masked autoregressive flows (MAFs, see Papamakarios et al.
(2018)) taking as input the meta-adjacency matrix MA (see Fig. 3) and the observational data. The
output is the components of the d transformation functions, i.e. the ϑ-values for the intercept terms
(see Eq. (3), Eq. (4)) and the linear and complex shift terms. We train all NNs jointly using the
Adam optimizer.

4.2. Causal queries using TRAM-DAGs

If all variables are continuous and the TRAMs are flexible enough to accurately fit the observational
data, we can show that our fitted TRAM-DAG can solve tasks on all three levels of Pearl’s causal
hierarchy.

Proposition: Counterfactual Equivalence of continuous TRAM-DAGs
Consider a SCM that contains only continuous variables. If the continuous and fully observed
TRAM-DAG model can reproduce the observational distribution L1, then it will also reproduce the
same interventional L2 and counterfactual L3 queries as the SCM.
Proof A continuous TRAM-DAG is based on transformation functions modeled by Bernstein poly-
nomials with strictly monotone increasing coefficients. This ensures that each transformation is
strictly monotone increasing. Therefore, continuous TRAM-DAGs fall into the class of BGMs of
and the Lemma B.2 in Nasr-Esfahany et al. (2023) holds, stating the equivalence.

Although we focus on the fully observed case in this paper, it is important to note that con-
tinuous TRAM-DAGs, are BGMs and so theoretically capable of handling also some additional
scenarios with unobserved confounders, as demonstrated in Lemma B.3 and B.4 in Nasr-Esfahany
et al. (2023). Please also note that the monotonicity constraint does not effect the expressiveness of
the transformation. In the following, we will show how tasks on L1 and L2 are tackled by all kinds
of TRAM-DAGs and tasks of L3 by continuous TRAM-DAGs.

L1: Sampling from the observational distribution of continuous or mixed TRAM-DAGs
To estimate the joint observational distribution, we sample d-dimensional observations (x1, ..., xd)
from our fitted TRAM-DAG. We first sample values uj from each exogenous distribution uj ∼
FUj , j = 1, ...d. We go along the causal order and start with source nodes. In the case of a discrete
variable Xi, we increase the sampled ui to the next value of the discrete transformation function
h ≥ ui. We deduce the corresponding sample xi, by the requirement ui = h(xi) which in case of
continuous variables can be written as xi = h−1(ui). For non-source nodes Xj , uj = h(xj |pa(xj))
is determined by the sampled values xj of the parents. To get a sample xj corresponding to uj , we
proceed as before.

L2: Estimating interventional distributions and treatment effects for continuous or mixed
TRAM-DAGs We look at do-interventions where one variable is set to a certain value do(Xi = α).
This results in a post-interventional graph where all arrows pointing to the intervened variables are
deleted (see Figure 2). To estimate the joint interventional distribution, we proceed similarly as
described in L1 but set Xi = α and go now along the causal order in the post-interventional DAG.
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L3: Answering counterfactual queries with continuous TRAM-DAGs In a counterfactual
task, we answer ”what if” questions such as: What value would XJ have taken if the variable Xi

had taken the values α instead of the observed value xi? For illustration, look at Fig. 1 and assume
Xj = X3 and Xi = X2 and that all variables are continuous. We answer the counterfactual ques-
tion in three steps:
1) Abduction: determine the noise values ui that correspond to the observations by ui = h(xi|pa(Xi)),
2) Action: Determine the counterfactual DAG for xci = α that correspond to the post-interventional
DAG (see for example Section 3.1),
3) Prediction: use the counterfactual DAG, the counterfactual value xci = α, the sampled noise
values and go along the causal order to determine for all descendants Xj the counterfactual value
as xj = h−1(ui|pa(xj) by using the updated h where at least one parent is a descendant of Xi

and has, therefore, an updated counterfactual value which likely resulted in a changed h. Note that
for discrete or mixed TRAM-DAGs, counterfactual queries are not possible which is a fundamen-
tal limitation of causal models based on discrete ordinal variables, generated by interval censoring
of an underlying continuous latent variable, and not a limitation of our proposed framework (see
Appendix B for details).

5. Benchmarking TRAM-DAG against Neural Causal Models

Here, we benchmark TRAM-DAG with state-of-the-art NN and NF-based causal models. These
models focus on estimating observational, interventional, and counterfactual distributions without
requiring the interpretability of the fitted SCM. The code to reproduce the experiments can be found
at: https://github.com/tensorchiefs/tram-dag.

5.1. Observational Distribution L1

To illustrate TRAM-DAG’s ability to fit complex observational continuous data flexibly, we repli-
cate an example originally introduced in Sánchez-Martin et al. (2022) and fitted with their VACA
method. The data generating process (DGP) consists of three variables, X1, X2, X3, details are pro-
vided in Appendix C.1. The variable X1 follows a bimodal distribution, and X2 and X3 are linearly
dependent on X1. This leads to non-Gaussian marginal distributions also for X2 and X3 (see diago-
nal in Fig. 4). We benchmarked flexible TRAM-DAG with Causal Normalizing Flow (CNF) Javaloy
et al. (2024). Fig. 4 shows that the distribution of the samples from the fitted TRAM-DAG model
closely resamples the distribution of the DGP, including the bimodal distribution of X1, while the
sample distribution from the fitted CNF fails to capture the bimodal distribution of X1, likely due to
the inflexibility of the used transformation. We then adapted Neural Spline Flows (NSF) (Durkan
et al., 2019) to the causal setting and observed a similar performance (see Fig. 12) as achieved
by TRAM-DAGs. This highlights the importance of achieving flexibility in distribution modeling,
which can be easily achieved with TRAM-DAGs.

5.2. Interventional Distribution L2

Next, we benchmark TRAM-DAG’s capability to model interventional distributions by replicating
the interventional experiment in Javaloy et al. (2024). We used the fitted complex intercept TRAM-
DAG to perform do-interventions on X2 with do(X2) = −3, do(X2) = −2, and do(X2) = 0.
Comparing the ground truth interventional distribution with the estimated interventional distribution
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Figure 4: L1: Comparative analysis of joint and marginal observational distributions for samples
generated by the DGP (see Appendix C.1 red), our fitted TRAM-DAG (blue), and the
fitted CNF from the original study (yellow) (Javaloy et al. (2024)). The diagonal shows
estimates of the marginal distributions, the lower triangle shows 2D density estimates,
and the upper triangle presents scatter plots with subsampling.

doX2 = −3 doX2 = −1 doX2 = 0

−
7.

5

−
5.

0

−
2.

5

0.
0

2.
5

5.
0

−
7.

5

−
5.

0

−
2.

5

0.
0

2.
5

5.
0

−
7.

5

−
5.

0

−
2.

5

0.
0

2.
5

5.
0

0.00

0.05

0.10

0.15

x3

p(
x3

|d
o(

x2
)

Methods
CNF
DGP
Ours

Figure 5: L2: Interventional Distribution P (X3|do(X2)) for different values of the do-intervention
resulting from the DGP (see Appendix C.1 red), our fitted TRAM-DAG (blue), and the
fitted CNF from the original study (yellow) (Javaloy et al. (2024)).

achieved with the CNF method and our TRAM-DAG method Fig. 5 demonstrates TRAM-DAG’s
ability to capture the correct and complex interventional distribution and outperforms CNF. Please
note that it is straightforward to estimate from the interventional distribution the treatment effect of
increasing X2 by one unit from −3 to −2 by the difference of the means of the estimated distribu-
tions, E(X3|do(x2 = −2))− E(X3|do(x2 = −3).
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5.3. Counterfactual queries L3

To evaluate TRAM-DAG’s performance on counterfactual queries, we replicate the counterfactual
experiments presented in CAREFL (Khemakhem et al., 2021) based on a non-linear DGP with
four variables (see Appendix C.2 for more details). Following Khemakhem et al. (2021), we fo-
cus on the DGP generated observations, from which we pick the following observation xobs =
(2.00, 1.50, 0.81,−0.28). We then consider two counterfactual queries:

(i) What would the expected value of x3 would have been, if the variable X2 would have taken
the values x2 = α instead of observed value x2 = 1.5?

(ii) What would the expected value of x4 would have been, if X1 would have taken the value
x1 = α instead of the observed x1 = 2?

In both experiments α values in the range between −3 and 3 are considered (see Fig. 6). The

−5.0

−2.5

0.0
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5.0

−2 0 2
would x2 have been alpha

X
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Figure 6: L3: Results of the counterfactual queries as posed in CAREFL based on a picked four-
dimensional observation (Khemakhem et al., 2021). Left: the expected value of the
counterfactual distribution of X3 (depicted on the y-axis) if X2 would have taken the
value α (depicted on the x-axis) instead of the observed value x2 = 1.5. Right: the
expected value of the counterfactual distribution of X4 if X1 would have been α instead
of the observed value x1 = 2. Shown are results from the DGP (see Appendix C.2 red),
our TRAM-DAG (blue) and CAREFL (yellow).

results of this benchmark experiment show that our TRAM-DAG closely resamples the true coun-
terfactual results and slightly outperforms the CAREFL method.

Overall, TRAM-DAG is on par or slightly outperforms state-of-the-art NN- and NF-based
causal methods on all three levels of Pearl’s hierarchy.

6. Experiments with interpretable components

The following experiments focus on demonstrating that an SCM where the causal relationships are
given by interpretable functions can be fitted by TRAM-DAGs without losing the interpretability.
That is because causal TRAMs can be set up as interpretable models allowing the user to understand
and judge the modeled causal effect of each parent on the target variable, as well as predicting the
effect of interventions (see Section 3.2.1, Appendix C.4).
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6.1. Continuous Case

We start with an SCM involving three continuous variables (see DAG in Fig. 7).

X2

X1 X3

2 −f(X2)

−0.2

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
x2

~
f(

x2
)

Figure 7: Left: DAG with three continuous variables and meta information for shift terms in h:
h(x1) = SI , h(x2|x1) = SI + 2 · x1, h(x3|x1, x2) = SI − 0.2 · x1 − f(x2)
Right: Complex shift term CS = −f(x2) depicted as solid black line for the DGP
ground truth f(x2) = 0.75 · arctan (5 · (x2 + 0.12)) along with blue dots for the esti-
mated CS in the fitted TRAM-DAG.

The DGP generates all three variables using a TRAM model with simple intercept and inter-
pretable shift terms. We now perform three experiments, each with slightly different DGP and
TRAM-DAG specifications. In the DGPs of all three experiments we use linear effects of X1 on
X2 and X3 (β12 = 2, β13 = −0.2) and also use linear shift term to specify these effects in the fitted
TRAM-DAGs. However, we use different choices for the functional form f of the causal effect of
X2 on X3 in the DGP (see e.g. Fig. 7) and different specifications in the fitted TRAM-DAGs.

Linear-shift DGP and linear-shift model We use in the DGP f(X2) = −0.3 ·X2, resulting in
in h(x3|x1, x2) = SI + β13 · x1 − f(x2) = SI − 0.2 · x1 + 0.3 · x2 and fit a correctly specified
TRAM-DAG model with linear shift terms for all variables. The estimated coefficients are in good
agreement with the true values from the DGP (β12 = 2, β̂12 = 1.98 ; β13 = −0.2, β̂13 = −0.21 ;
β23 = 0.3, β̂23 = 0.26) and can be causally interpreted as log-odds-ratio (see Section 3.2.1). The
fitting process in shown in Appendix C.3.

Complex-shift DGP and complex-shift model Next, we increase the complexity of the DGP by
defining f(X2) = 0.75 · arctan (5 · (X2 + 0.12)) which introduces a non-linear causal impact of
X2 on X3. We fit correctly specified TRAM-DAG with a complex shift term and achieve correctly
estimated coefficients in the linear shift terms of X1 on X2 and X3 (β12 = 2, β̂12 = 2.07 ; β13 =
−0.2, β̂13 = −0.203 ) and a well fitted CS function f(X2) (see right panel in Fig. 7) confirming
TRAM-DAG’s capability to capture complex non-linear dependencies.

Linear-shift DGP and complex-shift model Now we use in the DGP again a linear effect of
X2 on X3 with f(X2) = −0.3 · X2. However, we fit a miss-specified TRAM-DAG model with
a complex shift term to model the effect of X2 on X3. Even under such a misspecification of the
TRAM-DAG, the linear form of f(x2) is approximately matched, and the coefficients β12 = 2,
β13 = −0.2 are well estimated (see Appendix C.3.3). Noteworthy, the observational and interven-
tional distributions are accurately estimated (see Fig. 17).

Additional results of these experiments can be found in Appendix C.3.
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6.2. Mixed data types

We now use an SCM involving three variables of mixed data types (see Fig. 8). Compared to the
DGP from the continuous case in the last subsection we have replaced the continuous X3 with an
ordered categorical variable X3 ∈ {1, 2, 3, 4} (as in Fig. 1) and now use a positive linear effect of
X1 on X3 (β13 = 2) and a negative effect (β23 = −0.3) if f is linear.

Figure 8: DAG and setting for the interpretation experiment in the mixed case.
.
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Figure 9: L1 and L2 for the mixed data experiment: Comparison of observational and interventional
distributions where all shift therms were linear in the DGP and the fitted TRAM-DAG.
The frequencies of X3 have been multiplied by a factor of 4 for visual convenience.

In a first experiment with mixed data types we used for f(x2) = −0.3 · x2. This results in
h(x3|x1, x2) = SI +β13 ·x1+ f(x2) = SI − 0.2 ·x1− 0.3 ·x2 and showed that the coefficients in
all three linear shift terms are accurately fitted (see Fig. 19). Then we showed that that observational
and interventional distributions are accurately estimated in case of LS and CS (see (Fig. 9, Fig. 20).
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We have added an illustrative example in Appendix C.4 to demonstrated that the estimated
coefficients in the linear shift terms of a correctly specified and fitted TRAM-DAG allow to correctly
predict the effect of an intervention on a parent variable in terms of the resulting change of the odds
to observe values below or equal to a freely specifiable cutoff after the intervention compared to
before.

With these experiments we have demonstrate TRAM-DAG’s applicability to tackle L1 and L2

tasks with mixed data types.

7. Conclusion

In this paper, we introduced TRAM-DAGs, a novel framework for interpretable neural causal mod-
els. TRAM-DAGs range from transparent and interpretable causal models to causal models with
the flexibility of deep learning models. Tuning the level of interpretability and flexibility for cer-
tain applications depends on the complexity of the data and the needed interpretability. Continuous
TRAM-DAGs can be trained using observational data and used to answer queries across all three
levels of Pearl’s causal hierarchy: observational(L1), interventional (L2), and counterfactual (L3).
Mixed TRAM-DAGs are restricted to queries within the first two levels (L1 and L2). The pos-
sibility to incorporate binary, ordinal, continuous, or mixed data types in a TRAM-DAG is a big
advantage compared to other state of the art causal models that rely on NNs. In the continuous case,
TRAM-DAGs fall within the class of bijective generation mechanism (BGM) models, inheriting
all BGM properties, particularly their applicability to common causal structures with unobserved
confounding (Nasr-Esfahany et al., 2023).
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References

Sourabh Balgi, Adel Daoud, Jose M Pena, Geoffrey T Wodtke, and Jesse Zhou. Deep learning with
dags. arXiv preprint arXiv:2401.06864, 2024.

Philipp FM Baumann, Torsten Hothorn, and David Rügamer. Deep conditional transformation mod-
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SUPPLEMENTARY MATERIAL

Appendix A. Transformation models

TRAMs were introduced in 2014 as a flexible distributional regression method for tabular ordered
data which can be continuous, discrete, or censored. (Hothorn et al., 2014). Later, TRAMs were
extended to deep TRAMs by Sick et al. (2021) using neural networks, allowing the inclusion of
unstructured data modalities like images. TRAMs comprise most classical statistical regression
models, like linear or logistic regression or other GLMs, and have hence the same interpretability of
their parameters and the same guarantees as these well-established statistical models (Hothorn et al.,
2014). However, TRAMs do provide a much larger family of models since TRAMs do not require
pre-specify the family of the outcome distribution and allow to model flexible outcome distributions
that change with the predictors, resulting in distributions that do not even need to belong to a known
distribution family.

A.1. Interpretability of the shift terms

The choice of the latent distribution Fu has no influence of the prediction power of the TRAM but
determines the interpretation scale of the shift terms in the transformation function h (Hothorn et al.,
2014). In our experiments we always use the standard logistic distribution P (Y ≤ y) = FY (y) =

FSL(z) := (1+exp(−z))−1 as latent distribution with inverse F−1
SL (P ) = log

(
P

1−P

)
= log(odds)

that allows to interpret the shift parameters as log-odds ratios. This is known from the logistic
regression where the target Y is binary, but is also valid for ordinal or continuous target variables as
demonstrated here for a SI − LSx1 − CSx2 model with h(y|x1, x2) = h0(y) + β1x1 + γ(x2) and
a continuous target Y :

FY |x1,x2
(y) = FSL(h(y|x1, x2))

⇔ P (Y ≤ y|x1, x2) = FSL(h0(y) + β1x1 + γ(x2))

⇔ log(odds(Y ≤ y|x1, x2) = h0(y) + β1x1 + γ(x2)

ORx1→x1+1 =
odds(Y ≤ y|x1 + 1, x2)

odds(Y ≤ y|x1, x2)
=

exp (h0(y) + β1(x1 + 1) + γ(x2))

exp (h0(y) + β1x1 + γ(x2))

= exp(β1)

ORx2→x2+1 =
odds(Y ≤ y|x1, x2 + 1)

odds(Y ≤ y|x1, x2)
=

exp (h0(y) + β1x1 + γ(x2 + 1))

exp (h0(y) + β1x1 + γ(x2))

= exp(γ(x2 + 1)− γ(x2))

Hence exp(βi) is interpreted as odds-ratio, which is the factor by which the odds for Y ≤
y is changing if increasing xi by one unit and holding all other variables constant. Remark-
ably, this holds for any threshold value y, and hence, these models are called proportional odds
models. Equivalently, the parameter βi in a LS term can be interpreted as log-odds-ratio βi =
log(ORxi → xi + 1). Please note that in a causal model, where all predictors Xi are direct causal
parents of the target Y , this interpretation holds causally. This means that when intervening on the
predictor Xi by increasing it by one unit, the other parents of Y may change upon this intervention
and the observed odds of Y ≤ y in the interventional data will differ by the factor exp(βi) compared
to the observational data. We demonstrate that β in a LS does correctly predict this interventional
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effect in an illustrative example in Appendix C.4. This requires that the causal model is correct,
meaning it matches the data-generating process as in most of our experiments.

Proportional odds models are more commonly used for an ordinal target where the parameters
in the LS terms quantify the change of the odds for Y ≤ yk holding for all class levels yk.

The same math works for a binary target where we look at the odds for Y ≤ 0, which is same as
the odds for Y = 0. The odds for Y = 0 changes by the factor exp(βi) if xi is increased by one unit
and all other predictors stay constant. Note that in most implementations of the logistic regression
the default latent distribution is the standard logistic distribution and a βi in the linear regression
can be interpreted as log-odds-rations for Y = 1.

For a CS term, the difference of the estimated shifts can be interpreted as log-odds-ratio γ(xj +
1)− γ(xj) = log(ORxj → xj + 1)

Appendix B. Impossibility of Counter-Factual queries for discrete targets

Here we show why counterfactual queries can in general not be answered for discrete variables that
are generated by censoring an underlying continuous variable. For example sport grades in an 100
meter running test are ordinal and give an incomplete quantification of the student’s speed since
all students who run the 100 meter in a certain interval of time get the same grade - the grades are
interval censored.

Counterfactual queries typically require a unique mapping from the observed outcome x to the
underlying noise realizations u (”abduction”), so that one can subsequently ”re-run” u under a hy-
pothetical intervention (”action” and ”prediction”). For continuous outcome variables, this mapping
can be made bijective under mild assumptions, rendering counterfactual queries well-defined. How-
ever, for discrete (e.g., binary or ordinal) outcome variables, the mapping from a continuous noise
variable to the observed discrete value is necessarily many-to-one: an entire interval of latent noise
values collapses to a single discrete outcome.

For illustration, look at Figures 1 and 10. Let’s take the following counterfactual query: What
value would X3 have taken if the variable X2 would have taken the values α instead of the ob-
served value x2? For the discrete variable X3, the discrete transformation h(x3|pa(x3)) strictly
monotone but not bijective. Hence, it is not possible to determine unambiguous values for the noise
variable U3 as needed in the abduction step of a counterfactual analysis . Imagine the observed
level of X3 was level two, x3 = 2 (purple), then all noise values u3 ∈ [h(1|x1, x2), h(2|x1, x2)]
(indicated by the purple bar) would be possible since all these noise values lead to the observed
value x3 = 2. This can then lead to problems in the prediction step. In a counterfactual sit-
uation we imagine that X2 would have taken xc2 = α instead of the observed x2. Hence, the
transformation function h(x3|x1, α) (indicated by crosses in the Figure) has probably changed
compared to the original h(x3|x1, x2) (indicated by dots in the Figure). Then it can happen that
h(1|x1, α) ∈ [h(1|x1, x2), h(2|x1, x2)] (as illustrateted in the Figure), resulting in xc3 = 1, if
u3 ≤ h(1|x1, α) and xc3 = 2, if h(1|x1, α) ≤ u3 ≤ h(2|x1, α). As demonstrated in this example, it
is not in general possible to determine an unambiguous counterfactual xc3 for ordinal variables.

Appendix C. Additional Experimental Results and details of the experiments

The code to reproduce the experiments is available at: https://github.com/tensorchiefs/
tram-dag
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Figure 10: TRAM with discrete target X3 with a original h corresponding to the observed values
x1, x2 (indicated with dots) and a counterfactual h in the counterfactual situation xc2 = α
(indicated as crosses). The solid colored areas in fU3 correspond to the cutpoints of the
original h, while the counterfactual h would lead to shifted cutpoints as indicated by the
hatched colored bars below fU3 . If x3 = 2 was observed then the corresponding noise
value could have been any value in the following interval u3 ∈ [h(1|x1, x2), h(2|x1, x2)]
indicated by the thick purple bar. In the counterfactual situation where X2 would have
taken the value α the unambiguity of u3 results in an unambiguity of the counterfactual
value xc3, because different parts of the possible noise values (solid purple bar) fall into
different counterfactual bins (hashed bars) which would result in different counterfactual
values of xc3.

C.1. Observational Distribution and do interventions

C.1.1. DATA GENERATING PROCESS

The Data Generating Process (DGP) follows the original VACA paper (see appendix E.1 in Sánchez-
Martin et al. (2022)).

X1

X2 X3

−1

0.25

1

Figure 11: DAG of the DGP process in the original VACA paper

X1 =

{
N (−2,

√
1.5)with probability 0.5,

N (1.5, 1)with probability 0.5
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X2 = −X1 +N (0, 1)

X3 = X1 + 0.25 ·X2 +N (0, 1)

Note that X1 follows a bimodal distribution according to the following DGP

C.1.2. MODELS

We compare our TRAM-DAG against default implementation of Causal Normalizing Flow (CNF)
by Javaloy et al. (2024). The CNF is based on MAF-like NN with 3 hidden layers each of dimension
16 using affine linear transformations but is still not able to fit a bimodal observational or interven-
tional distribution (see Fig. 4, Fig. 5). It is important to note that Javaloy et al. (2024) uses a different
version of the DGP compared to Sánchez-Martin et al. (2022), where the bimodal distribution for
X1 is replaced by a standard normal distribution N (0, 1) which could be fitted by CNF model.

C.1.3. ADDITIONAL EXPERIMENTS WITH NEURAL SPLINE FLOWS

In Figure 12, we replicate the experiment from Figure 4, but replace the inflexible Causal Normal-
izing Flow (CNF) presented by Javaloy et al. (2024) with a Neural Spline Flow (NSF). As expected,
the NSF achieves a more accurate fit to the bimodal distribution of X1, underscoring the value of
using flexible transformations, such as NSF or TRAM-DAGs with complex intercepts modeled by
Bernstein polynomials for modeling complex distributions.
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Figure 12: L1 : Samples generated by the DGP (see Fig. 11), our fitted TRAM-DAG and fitted
Neural Spline Flow (NSF). Same experiment as for Figure 4 but this time the inflexible
CNF has been replaced by a flexible NSF.
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C.2. Counterfactual CAREFL experiment

Here we present additional information for the counterfactual CARELF experiment done by Khe-
makhem et al. (2021). The DAG is depicted in the following causal graph in Fig. 13. The DGP for

X1 X2

X3 X4

1

0.5 ·X3
2

−1

0.5 ·X2
1

Figure 13: DAG of the DGP used in the counterfactual experiment to benchmark TRAM-DAG with
the CAREFL method presented in 13

the four variables X1, X2, X3, and X4, where X3 and X4 holds as non-linear transformations of
X1 and X2 and is defined as follows:

X1, X2 ∼ Laplace(0,
1√
2
)

X3 = X1 + 0.5 ·X3
2 + Laplace(0,

1√
2
)

X4 = −X2 + 0.5 ·X2
1 + Laplace(0,

1√
2
)

For our implementation, we employed the same architecture and training procedure as described
in Section 4.1. We compare our results against the original CAREFL model, as presented in Figure
5 of Khemakhem et al. (2021).

C.3. Interpretable Experiments Continuous Case

Here, we give additional results for the experiments with DGP with three continuous variables and
fitted interpretable TRAM-DAGs (see Section 6.1, Fig. 7).

For the simple intercept in the interpretable continuous TRAM-DAG, we used Bernstein poly-
nomials of order M = 20 (see Eq. (4)). The training was conducted for 500 epochs on a dataset
containing 40000 samples, utilizing the Adam optimizer with the default learning rate of 0.001.

C.3.1. LINEAR-SHIFT DGP AND LINEAR-SHIFT MODEL

The causal effect of X2 on X3 is in the DGP is linear given by f(X2) = −0.3 ·X2, resulting in in
h(x3|x1, x2) = SI + β13 · x1 − f(x2) = SI − 0.2 · x1 + 0.3 · x2 and hence β23 = 0.3. The used
TRAM-DAG models the causal impact of all parents on their target as linear shift term. Fig. 14
illustrates the evolution of the estimated coefficients throughout the training process, showing how
the estimated coefficients in LS-terms of the TRAM-DAG converge towards the true coefficients of
the DGP β12 = 2, β13 = −0.2 , and β23 = 0.3. Please note, that the fitted TRAM-DAG accurately
recovers the ground truth coefficients.
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Figure 14: Interpretable continuous case experiment with three linear shift terms: Estimated co-
efficients β12, β13, and β23 over training epochs, with dashed lines indicating the true
coefficient values of the DGP.

C.3.2. COMPLEX-SHIFT DGP AND COMPLEX-SHIFT MODEL

The causal effect of X2 on X3 in the DGP is modeled as complex shiftf(x2) = 0.75·arctan (5 · (x2 + 0.12)).
The other causal effects in the DGP remain linear effects.

Figure Fig. 15 shows that the estimated coefficients in LS-terms of the TRAM-DAG converge
towards the true coefficients of the DGP β12 = 2, β13 = −0.2.
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Figure 15: Interpretable continuous case experiment with two linear shift terms and one complex
shift term: Estimated coefficients β12, β13 of the two LS over training epochs, with
dashed lines indicating the true coefficient values of the DGP.

In Fig. 16, we see that the estimated observational and interventional distributions match the
corresponding distributions produced by the DGP.
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Figure 16: L1 and L2 in the interpretable continuous case experiment with two linear shift terms
and one complex shift term: Comparison of observational distributions (upper panel)
and interventional distributions (lower panel) in the continuous case as generated by the
DGP or the fitted TRAM-DAG. The DGP holds f(x2) = 0.75 ∗ atan(5 ∗ (x2 + 0.12))
and the TRAM-DAG modeled this effect by a CS.

.

C.3.3. LINEAR SHIFT DGP, COMPLEX SHIFT MODEL

We now examine the scenario of a misspecified TRAM-DAG is fitted. The causal effect of X2 on
X3 is in the DGP is linear β23 = 0.3, the other causal effects in the DGP are also linear effects
with true coefficients β12 = 2, β13 = −0.2. However the TRAM-DAG models the causal effect
of X2 on X3 by a complex shift. In Fig. 17 (left side), we see the estimated complex shift term
−f̂(X2) for the case where the true function is f(X2) = −0.3 ·X2. We note small deviations of the
fitted CS-term to the underlying linear function f(x2). As seen in the right panel of Fig. 17, both
the observational distributions and interventional distributions show close alignment between the
DGP and our trained model. The minor derivations have little effect on the quality of the estimated
observational distributions, making training more challenging. Therefore we attribute the slight
deviations to the limited training time and time data.

C.3.4. NON-MONOTONOUS DGP

To demonstrate that TRAM-DAGS are also able to fit complex non-monotonous functions the SCM,
Fig. 18 presents the estimated coefficients β12 and β23, along with the estimated non-monotonous
function f̂(x2) for f(x2) = 2 sin(3x2) + x2.
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Figure 17: Interpretable continuous case experiment with three linear shift in DGP and two LS and
one CS in the model: Left: Comparing the true linear effect f(x2) = 0.3 · x2 of X2

on X3 in the DGP (black solid line) with the estimated CS f̂(X2) in the fitted TRAM-
DAG (blue dots). Right: Comparison of observational distributions (upper panel) and
interventional distributions (lower panel) as generated by the DGP or the fitted TRAM-
DAG.
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Figure 18: Interpretable continuous case experiment with two linear shift terms and one non-
monotone shift terms in DGP and a correctly specified model: Left: Comparison of
the true and estimated coefficients in the linear shift terms. Right: Comparison of the
true non-monotone shift term f(x2) = 2 sin(3x2) + x2 in the DGP (black solid line)
and the fitted complex shift term in the TRAM-DAG (blue dots).
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C.4. Interpretable Experiments Mixed Case

Here, we give additional results for the experiments for interpretable mixed TRAM-DAGs of Sec-
tion 6.2 where X3 is an ordinal variable (see Fig. 8).

Linear-shift DGP and linear-shift model We use in the DGP f(X2) = −0.3 · X2 and fit
a correctly specified TRAM-DAG model with linear shift terms for all variables. The estimated
coefficients are in good agreement with the true values (see Fig. 19)..
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Figure 19: Interpretable experiments mixed case with only linear shift terms: Estimated coefficients
β12, β13, and β23 over training epochs, with dashed lines representing the true coefficient
values of the DGP.

Correctness of the predicted interventional effect To illustrate the interpretation of the esti-
mated causal coefficients in the linear shift terms we use the transformation function h(x2|x1) =
SI+β12 ·x1 where in the DGP β12 = 2 which was estimated in the TRAM-DAG to be β̂12 = 2.05.

Let’s predict how the odds(x2 ≤ c) = P (X2≤c)
1−P (X2≤c) will change if x1 is increased by one unit and

choose c = −1.
According the theory of causal TRAM-DAGs the odds(x2 ≤ c) should be in the interventional

data changed by the factor of eβ̂12 = e2.05 = 7.74 compared to this odds in the observational data.
Hence the odds-ratio should be approximately ÔR = e2.05 = 7.74.

To check this prediction we sample from the original DGP 40000 observations and then we adapt
the DGP to a situation where X1 is increased by one unit and sample also 40000 observation from
the interventional distribution. Using this data we count in both samples how many x2 observations
were greater or not then the arbitray chosen cutoff c = −1 and receive the following number:

number of x2-values
Type ≤ −1 > −1
Interventional 5119 34881
Observed 744 39256

This leads a point estimate of ÔR = 7.74 and a 95% confidence interval [7.16, 8.38] that holds the
prediction of ÔR = eβ̂12 = e2.05 = 7.74 and the theoretical value of OR = 7.4. Hence, we were
able to predict the correct change of the odds(x2 ≤ −1) upon increasing X1 in the DGP by one
unit from the estimated parameter β̂12 = 2.02 of the TRAM-DAG that was fitted on observational
data without having access to the interventional data.
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Complex-shift DGP and complex-shift model Next, we increase the complexity of the DGP
by defining f(x2) = 0.5 · exp(x2) which introduces a non-linear causal impact of X2 on X3. We
fit correctly specified TRAM-DAG and and show that the fitted model can be used to accurately
estimate the observational and interventional distributions (see Fig. 20).
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Figure 20: L1 and L2 for the mixed data experiment where the shift term from X2 on X3 were
non-linear in the DGP with f(x2) = 0.5 · exp(x2) and modeled as complex shift term
in the fitted TRAM-DAG: Comparison of observational distributions (upper panel) and
interventional distributions (lower panel) as generated by the mixed DGP or the fitted
mixed TRAM-DAG. The frequencies of X3 have been multiplied by a factor of 4 for
visual convenience.
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