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Abstract
We consider the problem of global optimiza-
tion with noisy zeroth order oracles — a well-
motivated problem useful for various applica-
tions ranging from hyper-parameter tuning for
deep learning to new material design. Existing
work relies on Gaussian processes or other non-
parametric family, which suffers from the curse
of dimensionality. In this paper, we propose a
new algorithm GO-UCB that leverages a para-
metric family of functions (e.g., neural networks)
instead. Under a realizable assumption and a few
other mild geometric conditions, we show that
GO-UCB achieves a cumulative regret of Õ(

√
T )

where T is the time horizon. At the core of GO-
UCB is a carefully designed uncertainty set over
parameters based on gradients that allows opti-
mistic exploration. Synthetic and real-world ex-
periments illustrate GO-UCB works better than
popular Bayesian optimization approaches, even
if the model is misspecified.

1. Introduction
We consider the problem of finding a global optimal solution
to the following optimization problem

max
x∈X

f(x),

where f : X → R is an unknown non-convex function that
is not necessarily differentiable in x.

This problem is well-motivated by many real-world applica-
tions. For example, the accuracy of a trained neural network
on a validation set is complex non-convex function of a set
of hyper-parameters (e.g., learning rate, momentum, weight
decay, dropout, depth, width, choice of activation functions
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...) that one needs to maximize (Kandasamy et al., 2020).
Also in material design, researchers want to synthesize ce-
ramic materials, e.g., titanium dioxide (TiO2) thin films,
using microwave radiation (Nakamura et al., 2017) where
the film property is a non-convex function of parameters
including temperature, solution concentration, pressure, and
processing time. Efficiently solving such non-convex opti-
mization problems could significantly reduce energy cost.

We assume having access to only noisy function evaluations,
i.e., at round t, we select a point xt and receive a noisy
function value yt,

yt = f(xt) + ηt, (1)

where ηt for t = 1, ..., T are independent, zero-mean, σ-
sub-Gaussian noise. This is known as the noisy zeroth-order
oracle setting in optimization literature. Let f∗ be the op-
timal function value, following the tradition of Bayesian
optimization (see e.g., Frazier (2018) for a review), through-
out this paper, we use cumulative regret as the evaluation
criterion, defined as

RT =

T∑
t=1

rt =

T∑
t=1

f∗ − f(xt),

where rt is called instantaneous regret at round t. An
algorithm A is said to be a no-regret algorithm if
limT→∞ RT (A)/T = 0.

Generally speaking, solving a global non-convex optimiza-
tion is NP-hard (Jain et al., 2017) and we need additional
assumptions to efficiently proceed. Bayesian optimization
usually assumes the objective function f is drawn from a
Gaussian process prior. Srinivas et al. (2010) proposed the
GP-UCB approach, which iteratively queries the argmax of
an upper confidence bound of the current posterior belief,
before updating the posterior belief using the new data point.
However, Gaussian process relies on kernels, e.g., squared
error kernel or Matérn kernel, which suffer from the curse
of dimensionality. A folklore rule-of-thumb is that GP-UCB
becomes unwieldy when the dimension is larger than 10.

A naive approach is to passively query T data points uni-
formly at random, estimate f by f̂ using supervised learn-
ing, then return the maximizer of the plug-in estimator
x̂ = argmaxx∈X f̂(x). This may side-step the curse-of-
dimensionality depending on which supervised learning
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model we use. The drawback of this passive query model
is that it does not consider the structure of the function nor
does it quickly “zoom-in” to the region of the space that is
nearly optimal. In contrast, an active query model allows
the algorithm to iteratively interact with the function. At
round t, the model collects information from all previous
rounds 1, ..., t− 1 and decides where to query next.

GO-UCB Algorithm. In this paper, we develop an algo-
rithm that allows Bayesian optimization-style active queries
to work for general supervised learning-based function ap-
proximation. We assume that the supervised learning model
fw : X → R is differentiable w.r.t. its dw-dimensional
parameter vector w ∈ W ⊂ Rdw and that the function class
F = {fw|w ∈ W} is flexible enough such that the true
objective function f = fw∗ for some w∗ ∈ W , i.e., F is re-
alizable. Our algorithm — Global Optimization via Upper
Confidence Bound (GO-UCB) — has two phases:

The GO-UCB Framework:

• Phase I: Uniformly explore n data points.

• Phase II: Optimistically explore T data points.

The goal of Phase I to sufficiently explore the function and
make sure the estimated parameter ŵ0 is close enough to
true parameter w∗ such that exploration in Phase II are
efficient. To solve the estimation problem, we rely on a
regression oracle that is able to return an estimated ŵ0 after
n observations. In details, after Phase I we have a dataset
{(xj , yj)}nj=1, then

ŵ0 ← argmin
w∈W

n∑
j=1

(fw(xj)− yj)
2. (2)

This problem is known as a non-linear least square problem.
It is computationally hard in the worst-case, but many algo-
rithms are known (e.g., SGD, Gauss-Newton, Levenberg-
Marquardt) to effectively solve this problem in practice.
Our theoretical analysis of ŵ0 uses techniques from Nowak
(2007). See Section 5.1 for details.

In Phase II, exploration is conducted following the prin-
ciple of “Optimism in the Face of Uncertainty”, i.e., the
parameter is optimized within an uncertainty region that
always contains the true parameter w∗. Existing work in
bandit algorithms provides techniques that work when fw
is a linear function (Abbasi-yadkori et al., 2011) or a gen-
eralized linear function (Li et al., 2017), but no solution to
general differentiable function is known. At the core of our
GO-UCB is a carefully designed uncertainty ball Ballt over
parameters based on gradients, which allows techniques
from the linear bandit (Abbasi-yadkori et al., 2011) to be
adapted for the non-linear case. In detail, the ball is defined
to be centered at ŵt — the solution to a regularized online
regression problem after t− 1 rounds of observations. And

the radius of the ball is measured by the covariance matrix
of the gradient vectors of all previous rounds. We prove that
w∗ is always trapped within the ball with high probability.

Contributions. In summary, our main contributions are:

1. We initiate the study of global optimization problem
with parametric function approximation and proposed
a new optimistic exploration algorithm — GO-UCB.

2. Assuming realizability and other mild geometric condi-
tions, we prove that GO-UCB converges to the global
optima with cumulative regret at the order of Õ(

√
T )

where T is the time horizon.

3. GO-UCB does not suffer from the curse of dimension-
ality like Gaussian processes-based Bayesian optimiza-
tion methods. The unknown objective function f can
be high-dimensional, non-convex, non-differentiable,
and even discontinuous in its input domain.

4. Synthetic test function and real-world hyperparameter
tuning experiments show that GO-UCB works better
than all compared Bayesian optimization methods in
both realizable and misspecified settings.

Technical novelties. The design of GO-UCB algorithm
builds upon the work of Abbasi-yadkori et al. (2011) and
Agarwal et al. (2021), but requires substantial technical nov-
elties as we handle a generic nonlinear parametric function
approximation. Specifically:

1. LinUCB analysis (e.g., self-normalized Martingale
concentration, elliptical potential lemmas (Abbasi-
yadkori et al., 2011; Agarwal et al., 2021)) is not ap-
plicable for nonlinear function approximation, but we
showed that they can be adapted for this purpose if we
can localize the learner to a neighborhood of w∗.

2. We identify a new set of structural assumptions under
which we can localize the learner sufficiently with only
O(
√
T ) rounds of pure exploration.

3. Showing that w∗ remains inside the parameter uncer-
tainty ball Ballt,∀t ∈ [T ] is challenging. We solve
this problem by setting regularization centered at the
initialization parameter ŵ0 and presenting novel induc-
tive proof of a lemma showing ∀t ∈ [T ], ŵt converges
to w∗ in ℓ2-distance at the same rate.

These new techniques could be of independent interest.

2. Related Work
Global non-convex optimization is an important problem
that can be found in a lot of research communities and
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real-world applications, e.g., optimization (Rinnooy Kan &
Timmer, 1987a;b), machine learning (Bubeck et al., 2011;
Malherbe & Vayatis, 2017), hyperparameter tuning (Hazan
et al., 2018), neural architecture search (Kandasamy et al.,
2018; Wang et al., 2020), and material discovery (Frazier &
Wang, 2016).

One of the most prominent approaches to this problem is
Bayesian Optimization (BO) (Shahriari et al., 2015), in
which the objective function is usually modeled by a Gaus-
sian Process (GP) (Williams & Rasmussen, 2006), so that
the uncertainty can be updated under the Bayesian formal-
ism. Among the many notable algorithms in GP-based BO
(Srinivas et al., 2010; Jones et al., 1998; Bull, 2011; Frazier
et al., 2009; Agrawal & Goyal, 2013; Cai & Scarlett, 2021),
GP-UCB (Srinivas et al., 2010) is the closest to our paper
because our algorithm also selects data points in a UCB
(upper confidence bound) style but the construction of the
UCB in our paper is different since we are not working with
GPs. Scarlett et al. (2017) proves lower bounds on regret for
noisy Gaussian process bandit optimization. GPs are highly
flexible and can approximate any smooth functions, but such
flexibility comes at a price to play — curse of dimension-
ality. Most BO algorithms do not work well when d > 10.
Notable exceptions include the work of Shekhar & Javidi
(2018); Calandriello et al. (2019); Eriksson et al. (2019);
Salgia et al. (2021); Rando et al. (2022) who designed more
specialized BO algorithms for high-dimensional tasks.

Besides BO with GPs, other nonparametric families were
considered for global optimization tasks, but they, too, suffer
from the curse of dimensionality. We refer readers to Wang
et al. (2018) and the references therein.

While most BO methods use GP as surrogate models, there
are other BO methods that use alternative function classes
such as neural networks (Snoek et al., 2015; Springenberg
et al., 2016). These methods are different from us in that they
use different ways to fit the neural networks and a Monte
Carlo sampling approach to decide where to explore next.
Empirically, it was reported that they do not outperform
advanced GP-based methods that use trust regions (Eriksson
et al., 2019).

Our problem is also connected to the bandits literature (Li
et al., 2019; Foster & Rakhlin, 2020; Russo & Van Roy,
2013; Filippi et al., 2010). The global optimization prob-
lem can be written as a nonlinear bandits problem in which
queried points are actions and the function evaluations are
rewards. However, no bandits algorithms can simultane-
ously handle an infinite action space and a generic nonlinear
reward function. Here “generic” means the reward function
is much more general than a linear or generalized linear
function (Filippi et al., 2010). To the best of our knowl-
edge, we are the first to address the infinite-armed bandit
problems with a general differentiable value function (albeit

with some additional assumptions).

A recent line of work studied bandits and global optimiza-
tion with neural function approximation (Zhou et al., 2020;
Zhang et al., 2020; Dai et al., 2022). The main difference
from us is that these results still rely on Gaussian processes
with a Neural Tangent Kernel in their analysis, thus intrin-
sically linear. Their regret bounds also require the width
of the neural network to be much larger than the number
of samples to be sublinear. In contrast, our results apply
to general nonlinear function approximations and do not
require overparameterization.

3. Preliminaries
3.1. Notations

We use [n] to denote the set {1, 2, ..., n}. The algorithm
queries n points in Phase I and T points in Phase II. Let
X ⊂ Rdx and Y ⊂ R denote the domain and range of f ,
andW ⊂ [0, 1]dw denote the parameter space of a family
of functions F := {fw : X → Y|w ∈ W}. For conve-
nience, we denote the bivariate function fw(x) by fx(w)
when w is the variable of interest. ∇fx(w) and ∇2fx(w)
denote the gradient and Hessian of function f w.r.t. w.
L(w) := Ex∼U (fx(w)− fx(w

∗))2 denotes the (expected)
risk function where U is uniform distribution. For a vec-
tor x, its ℓp norm is denoted by ∥x∥p = (

∑d
i=1 |xi|p)1/p

for 1 ≤ p < ∞ and its ℓ∞ norm is denoted by ∥x∥∞ =
maxi∈[dx] |xi|. For a matrix A, its operator norm is denoted
by ∥A∥op. For a vector x and a square matrix A, define
∥x∥2A = x⊤Ax. Throughout this paper, we use standard big
O notation that hide universal constants; and to improve the
readability, we use Õ to hide all logarithmic factors as well
as all polynomial factors in problem-specific parameters
except dw, 1/µ, T . For reader’s easy reference, we list all
symbols and notations in Appendix A.

3.2. Assumptions

Here we list main assumptions that we will work with
throughout this paper. The first assumption says that we
have access to a differentiable function family that contains
the unknown objective function.

Assumption 3.1 (Realizability). There exists w∗ ∈ W such
that the unknown objective function f = fw∗ . Also, assume
W ⊂ [0, 1]dw . This is w.l.o.g. for any compactW .

Realizable parameter class is a common assumption in liter-
ature (Chu et al., 2011; Foster et al., 2018; Foster & Rakhlin,
2020), usually the starting point of a line of research for a
new problem because one doesn’t need to worry about extra
regret incurred by misspecified parameter. Although in this
paper we only theoretically study the realizable parameter
class, our GO-UCB algorithm empirically works well in
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L(
w)

Expected loss function
Strong convexity boundary
Growth condition boundary

Figure 1. Example of a highly non-convex L(w) satisfying As-
sumption 3.3. Solid lines denote the actual lower bound by taking
min over strong convexity and growth condition. L(w) is strongly
convex near w∗ but can be highly non-convex away from w∗.

misspecified tasks too.

The second assumption is on properties of the function
approximation.

Assumption 3.2 (Bounded, differentiable and smooth func-
tion approximation). There exist constants F,Cg, Ch > 0
such that ∀x ∈ X ,∀w ∈ W , it holds that |fx(w)| ≤ F,

∥∇fx(w)∥2 ≤ Cg, and ∥∇2fx(w)∥op ≤ Ch.

This assumption imposes mild regularity conditions on the
smoothness of the function with respect to its parameter
vector w.

The third assumption is on the expected loss function over
the uniform distribution (or any other exploration distribu-
tion) in the Phase I of GO-UCB.

Assumption 3.3 (Geometric conditions on the loss function).
L(w) = Ex∼U (fx(w) − fx(w

∗))2 satisfies (τ, γ)-growth
condition or µ-local strong convexity at w∗, i.e., ∀w ∈ W ,

min
{µ
2
∥w − w∗∥22,

τ

2
∥w − w∗∥γ2

}
≤ L(w)− L(w∗),

for constants µ, τ > 0, µ < dw and 0 < γ < 2. Also, L(w)
satisfies a c-local self-concordance assumption at w∗, i.e.,
for all w s.t. ∥w − w∗∥∇2L(w∗) ≤ c,

(1− c)2 · ∇2L(w∗) ⪯ ∇2L(w) ⪯ (1− c)−2 · ∇2L(w∗).

We also assume c ≤ 0.5 for convenience. This is without
loss of generality because if the condition holds for c > 0.5,
then the condition for c ≤ 0.5 is automatically satisfied.

This assumption has three main components: (global)
growth condition, local strong convexity, and local self-
concordance.

The global growth condition says that fw with parameters
far away from w∗ cannot approximate f well over the dis-
tribution U . The local strong convexity assumption requires
the local neighborhood near w∗ to have quadratic growth.

These two conditions are strictly weaker than global strong
convexity because it does not require convexity except
in a local neighborhood near the global optimal w∗, i.e.,
{w|∥w − w∗∥2 ≤ (τ/µ)

1
2−γ } and it does not limit the

number of spurious local minima, as the global γ-growth
condition only gives a mild lower bound as w moves away
from w∗. See Figure 1 for an example. Our results work
even if γ is a small constant < 1.

Self-concordance originates from a clean analysis of New-
ton’s method (Nesterov & Nemirovskii, 1994). See Example
4 of Zhang et al. (2017) for a list of examples satisfying
self-concordance. A localized version of self-concordance
is needed in our problem for technical reasons, but again
it is only required within a small ball of radius c near w∗

for the expected loss under U . Our results work even if c
vanishes at O(T−1/4).

To avoid any confusion, the three assumptions we made
above are only about the expected loss function w.r.t. uni-
form distribution U as a function of w, rather than objective
function fw∗(x). The problem to be optimized can still be
arbitrarily complex in terms of X , e.g., high-dimensional
and non-continuous functions. As an example, in Gaussian
process-based Bayesian optimization approaches, fw∗(x)
belongs to a reproducing kernel Hilbert space, but its loss
function is globally convex in its “infinite dimensional” pa-
rameter w. Also, we no longer need this assumption in
Phase II.

Additional notations. For convenience, we define ζ > 0
such that ∥∇2L(w∗)∥op ≤ ζ. The existence of a finite ζ is
implied by Assumption 3.2 and it suffices to take ζ = 2C2

g

because∇2L(w∗) = Ex∼U [2∇fx(w∗)∇fx(w∗)⊤].

4. Main Results
In Section 4.1, we state our Global Optimization with Upper
Confidence Bound (GO-UCB) algorithm and explain key
design points of it. Then in Section 4.2, we prove that its
cumulative regret bound is at the rate of Õ(

√
T ).

4.1. Algorithm

Our GO-UCB algorithm, shown in Algorithm 1, has two
phases. Phase I does uniform exploration in n rounds and
Phase II does optimistic exploration in T rounds. In Step
1 of Phase I, n is chosen to be large enough such that the
objective function can be sufficiently explored. Step 2-3 are
doing uniform sampling. In Step 5, we call regression oracle
to estimate ŵ0 given all observations in Phase I as in eq. (2).
Adapted from Nowak (2007), we prove the convergence rate
of ∥ŵ0−w∗∥2 is at the rate of Õ(1/

√
n). See Theorem 5.2

for details.

The key challenge of Phase II of GO-UCB is to design
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an acquisition function to select xt,∀t ∈ [T ]. Since we
are using parametric function to approximate the objective
function, we heavily rely on a feasible parameter uncertainty
region Ballt,∀t ∈ [T ], which should always contain the true
parameter w∗ throughout the process. The shape of Ballt is
measured by the covariance matrix Σt, defined as

Σt = λI +

t−1∑
i=0

∇fxi
(ŵi)∇fxi

(ŵi)
⊤. (3)

Note i is indexing over both x and w, which means that as
time t goes from 0 to T , the update to Σt is always rank one.
It allows us to bound the change of Σt from t = 0 to T .

Ballt is centered at ŵt, the newly estimated parameter at
round t. In Step 2, we update the estimated ŵt by solving
the following optimization problem:

ŵt = argmin
w

λ

2
∥w − ŵ0∥22

+
1

2

t−1∑
i=0

((w − ŵi)
⊤∇fxi

(ŵi) + fxi
(ŵi)− yi)

2. (4)

The optimization problem is an online regularized least
square problem involving gradients from all previous rounds,
i.e., ∇fxi(ŵi),∀i ∈ [T ]. The intuition behind it is that we
use gradients to approximate the function since we are deal-
ing with generic objective function. We set the regulariza-
tion w.r.t. ŵ0 rather than 0 because from regression oracle
we know how close is ŵ0 to w∗. By setting the gradient
of objective function in eq. (4) to be 0, the closed form

Algorithm 1 GO-UCB
Input: Time horizon T , uniform exploration phase length
n, uniform distribution U , regression oracle Oracle, regular-
ization weight λ, confidence sequence βt for t = 1, 2, ..., T .
Phase I (Uniform exploration)

1: for j = 1, ..., n do
2: Sample xj ∼ U(X ).
3: Observe yj = f(xj) + ηj .
4: end for
5: Estimate ŵ0 ← Oracle(x1, y1, ..., xn, yn).

Phase II (Optimistic exploration)
1: for t = 1, ..., T do
2: Update Σt by eq. (3) with the input λ.
3: Update ŵt by eq. (5) with the input λ.
4: Update Ballt by eq. (6) with the input βt.
5: Select xt = argmaxx∈X maxw∈Ballt fx(w).
6: Observe yt = f(xt) + ηt.
7: end for

Output: x̂ ∼ U({x1, ..., xT }).

solution of ŵt is

ŵt = Σ−1
t

(
t−1∑
i=0

∇fxi(ŵi)(∇fxi(ŵi)
⊤ŵi + yi − fxi(ŵi))

)
+ λΣ−1

t ŵ0. (5)

Now we move to our definition of Ballt, shown as

Ballt = {w : ∥w − ŵt∥2Σt
≤ βt}, (6)

where βt is a pre-defined monotonically increasing sequence
that we will specify later. Following the “optimism in the
face of uncertainty” idea, our ball is centered at ŵt with βt

being the radius and Σt measuring the shape. βt ensures that
the true parameter w∗ is always contained in Ballt w.h.p. In
Section 5.2, we will show that it suffices to choose

βt = Õ

(
dwσ

2 +
d3w
µ2

+
d3wt

µ2T

)
, (7)

where Õ hides logarithmic terms in t, T and 1/δ (w.p. 1−δ).

Then in Step 5 of Phase II, xt is selected by joint optimiza-
tion over x ∈ X and w ∈ Ballt. Finally, we collect all
observations in T rounds and output x̂ by uniformly sam-
pling over {x1, ..., xT }.

4.2. Regret Upper Bound

Now we present the cumulative regret upper bound of GO-
UCB algorithm.

Theorem 4.1 (Cumulative regret of GO-UCB). Sup-
pose Assumption 3.1, 3.2, & 3.3 hold with parameters
F,Cg, Ch, ζ, µ, γ, τ, c. Assume

T > Cd2wF
4ι2 ·max

{
µγ/(2−γ)

τ2/(2−γ)
,

ζ

µc2

}2

, (8)

where C is a universal constant and ι is a logarithmic term
depending on n,Ch, 2/δ (both of them from Theorem 5.2).
Then Algorithm 1 with parameters n =

√
T , λ = Cλ

√
T

(for a Cλ logarithmically dependent to T and polynomial in
all other parameters) and β1:T as in eq. (7) obeys that with
probability at least 1− δ,

R√
T+T = Õ

(
√
TF +

√
TβT dw +

Tβ2
T

λ2

)

= Õ

(
d2w
√
T

µ

)
.

Let us highlight a few interesting aspects of the result.
Remark 4.2. Without Gaussian process assumption, we pro-
pose the first algorithm to solve global optimization problem
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with Õ(
√
T ) cumulative regret, which is dimension-free in

terms of its input domain X . GO-UCB is a no-regret algo-
rithm since limT→∞ RT /T = 0, and the output x̂ satisfies
that f∗ − E[f(x̂)] ≤ Õ(1/

√
T ), which is also knowns as

expected simple regret upper bound. The dependence in T
is optimal up to logarithmic factors, as it matches the lower
bound for linear bandits (Dani et al., 2008, Theorem 3).
Remark 4.3 (Choice of λ). One important deviation from
the classical linear bandit analysis is that we require a reg-
ularization that centers around ŵ0 and the regularization
weight λ to be Cλ

√
T , comparing to λ = O(1) in the linear

case. The choice is to ensure that ŵt stays within the lo-
cal neighborhood of ŵ0, and to delicately balance different
terms that appear in the regret analysis to ensure that the
overall regret bound is Õ(

√
T ).

Remark 4.4 (Choice of n). We choose n =
√
T , therefore,

it puts sample complexity requirement on T shown in eq.
(8). The choice of n plays two roles here. First, it guarantees
that the regression result ŵ0 lies in the neighboring region
of w∗ of the loss function L(w) with high probability. The
neighboring region of w∗ has nice properties, e.g., local
strong convexity, which allow us to build the upper bound
of ℓ2-distance between ŵ0 and w∗. Second, in Phase I,
we are doing uniform sampling over the function so the
cumulative regret in Phase I is bounded by 2Fn = 2F

√
T

which is at the same Õ(
√
T ) rate as that in Phase II.

5. Proof Overview
In this section, we give a proof sketch of all theoreti-
cal results. A key insight of our analysis is that there is
more mileage that seminal techniques developed by Abbasi-
yadkori et al. (2011) for analyzing linearly parameterized
bandits problems in analyzing non-linear bandits, though
we need to localize to a nearly optimal region and carefully
handle the non-linear components via more aggressive reg-
ularization. Other assumptions that give rise to a similarly
good initialization may work too and our new proof can
be of independent interest in analyzing other extensions of
LinUCB, e.g., to contextual bandits, reinforcement learning
and other problems.

In detail, first we prove the estimation error bound of ŵ0

for Phase I of GO-UCB algorithm, then prove the feasibility
of Ballt. Finally by putting everything together we prove
the cumulative regret bound of GO-UCB algorithm. Due to
page limit, we list all auxiliary lemmas in Appendix B and
show complete proofs in Appendix C.

5.1. Regression Oracle Guarantee

The goal of Phase I of GO-UCB is to sufficiently explore
the unknown objective function with n uniform queries and
obtain an estimated parameter ŵ0. By assuming access to a
regression oracle, we prove the convergence bound of ŵ0

w.r.t. w∗, i.e., ∥ŵ0 − w∗∥22. To get started, we need the
following regression oracle lemma.

Lemma 5.1 (Adapted from Nowak (2007))). Suppose As-
sumption 3.1 & 3.2 hold. There is an absolute constant C ′,
such that after round n in Phase I of Algorithm 1, with prob-
ability > 1− δ/2, regression oracle estimated ŵ0 satisfies

Ex∼U [(fx(ŵ0)− fx(w
∗))2] ≤ C ′dwF

2ι

n
,

where ι is the logarithmic term depending on n,Ch, 2/δ.

Nowak (2007) proves that expected square error of Empir-
ical Risk Minimization (ERM) estimator can be bounded
at the rate of Õ(1/n) with high probability, rather than
Õ(1/

√
n) rate achieved by Chernoff/Hoeffding bounds. It

works with realizable and misspecified settings. Proof of
Lemma 5.1 includes simplifying it with regression oracle,
Assumption 3.1, and ε-covering number argument over pa-
rameter class. Basically Lemma 5.1 says that expected
square error of fx(ŵ0) converges to fx(w

∗) at the rate of
Õ(1/n) with high probability. Based on it, we prove the
following regression oracle guarantee.

Theorem 5.2 (Regression oracle guarantee). Suppose As-
sumption 3.1, 3.2, & 3.3 hold. There is an absolute constant
C such that after round n in Phase I of Algorithm 1 where
n satisfies n ≥ CdwF

2ι ·max
{

µγ/(2−γ)

τ2/(2−γ) ,
ζ

µc2

}
, with prob-

ability > 1− δ/2, regression oracle estimated ŵ0 satisfies

∥ŵ0 − w∗∥22 ≤
CdwF

2ι

µn
,

where ι is the logarithmic term depending on n,Ch, 2/δ.

Compared with Lemma 5.1, there is an extra sample com-
plexity requirement on n because we need n to be suffi-
ciently large such that the function can be sufficiently ex-
plored and more importantly ŵ0 falls into the neighboring
region (strongly convex region) of w∗. See Figure 1 for illus-
tration. It is also the reason why strong convexity parameter
µ appears in the denominator of the upper bound.

5.2. Feasibility of Ballt

The following lemma is the key part of algorithm design of
GO-UCB. It says that our definition of Ballt is appropriate,
i.e., throughout all rounds in Phase II, w∗ is contained in
Ballt with high probability.

Lemma 5.3 (Feasibility of Ballt). Set Σt, ŵt as in eq. (3),
(5). Set βt as

βt = Õ

(
dwσ

2 +
d3w
µ2

+
d3wt

µ2T

)
. (9)

Suppose Assumption 3.1, 3.2, & 3.3 hold and choose n =√
T , λ = Cλ

√
T . Then ∀t ∈ [T ] in Phase II of Algorithm 1,

6
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w.p. > 1− δ,

∥ŵt − w∗∥2Σt
≤ βt.

For reader’s easy reference, we write our choice of βt again
in eq. (9). Note this lemma requires careful choices of λ and
n because βt appears later in the cumulative regret bound
and βt is required to be at the rate of Õ(1). The proof has
three steps. First we obtain the closed form solution of ŵt

as in eq. (5). Next we use induction to prove that ∀t ∈
[T ], ∥ŵt −w∗∥22 ≤ Õ(C̃/n) for some universal constant C̃.
Finally we prove ∥ŵt − w∗∥2Σt

≤ βt.

5.3. Regret Analysis

To prove cumulative regrets bound of GO-UCB algorithm,
we need following two lemmas of instantaneous regrets in
Phase II of GO-UCB.

Lemma 5.4 (Instantaneous regret bound). Set Σt, ŵt, βt as
in eq. (3), (5), & (7) and suppose Assumption 3.1, 3.2, &
3.3 hold, then with probability > 1 − δ, w∗ is contained
in Ballt. Define ut = ∥∇fxt

(ŵt)∥Σ−1
t

, then ∀t ∈ [T ] in
Phase II of Algorithm 1,

rt ≤ 2
√
βtut +

2βtCh

λ
.

The first term of the upper bound is pretty standard, seen
also in LinUCB (Abbasi-yadkori et al., 2011) and GP-UCB
(Srinivas et al., 2010). After we apply first order gradient
approximation of the objective function, the second term
is the upper bound of the high order residual term, which
introduces extra challenge to derive the upper bound.

Technically, proof of Lemma 5.4 requires w∗ is contained in
our parameter uncertainty ball Ballt with high probability
throughout Phase II of GO-UCB, which has been proven in
Lemma 5.3. Later, the proof utilizes Taylor’s theorem and
uses the convexity of Ballt twice. See Appendix C.4. The
next lemma is an extension of Lemma 5.4, where the proof
uses monotonically increasing property of βt in t.

Lemma 5.5 (Summation of squared instantaneous regret
bound). Set Σt, ŵt, βt as in eq. (3), (5), & (7) and suppose
Assumption 3.1, 3.2, & 3.3 hold, then with probability >
1− δ, w∗ is contained in Ballt and ∀t ∈ [T ] in Phase II of
Algorithm 1,

T∑
t=1

r2t ≤ 16βT dw log

(
1 +

TC2
g

dwλ

)
+

8β2
TC

2
hT

λ2
.

Proof of Theorem 4.1 follows by putting everything together

via Cauchy-Shwartz inequality
∑T

t=1 rt ≤
√
T
∑T

t=1 r
2
t .

6. Experiments
We compare our GO-UCB algorithm with four Bayesian
Optimization (BO) algorithms: GP-EI (Jones et al., 1998),
GP-PI (Kushner, 1964), GP-UCB (Srinivas et al., 2010), and
Trust Region BO (TuRBO) (Eriksson et al., 2019), where
the first three are classical methods and TuRBO is a more
advanced algorithm designed for high-dimensional cases.

To run GO-UCB, we choose our parametric function model
f̂ to be a two linear layer neural network with sigmoid
function being the activation function:

f̂(x) = linear2(sigmoid(linear1(x))),

where w1, b1 denote the weight and bias of linear1 layer
and w2, b2 denote those of linear2 layer. Specifically, we
set w1 ∈ R25×dx , b1 ∈ R25, w2 ∈ R25, b2 ∈ R, meaning
the dimension of activation function is 25. All implemen-
tations are based on BoTorch framework (Balandat et al.,
2020) and sklearn package (Head et al., 2021) with default
parameter settings. To help readers reproduce our results,
implementation details are shown in Appendix D.1.

6.1. Synthetic Experiments

First, we test all algorithms on three high-dimensional
synthetic functions defined on [−5, 5]dx where dx = 20,
including both realizable and misspecified cases. The
first test function f1 is created by setting all elements in
w1, b1, w2, b2 in f̂ to be 1, so f1 is a realizable function
given f̂ . The second and third test functions f2, f3 are
Styblinski-Tang function and Rastrigin function, defined as:

f2 = −1

2

20∑
i=1

x4
i − 16x2

i + 5xi,

f3 = −200 +
20∑
i=1

10 cos(2πxi)− x2
i ,

where xi denotes the i-th element in its 20 dimensions,
so f2, f3 are misspecified functions given f̂ . We set n =
5, T = 25 for f1 and n = 8, T = 64 for f2, f3. To reduce
the effect of randomness in all algorithms, we repeat the
whole optimization process for 5 times for all algorithms
and report mean and error bar of cumulative regrets. The
error bar is measured by Wald’s test with 95% confidence,
i.e., 1.96ν/

√
5 where ν is standard deviation of cumulative

regrets and 5 is the number of repetitions.

From Figure 2, we learn that in all tasks our GO-UCB
algorithm performs better than all other four BO approaches.
Among BO approches, TuRBO performs the best since it is
specifically designed for high-dimensional tasks. In Figure
2(a), mean of cumulative regrets of GO-UCB and TuRBO
stays the same when t ≥ 22, which means that both of them
have found the global optima, but GO-UCB algorithm is
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(a) f1 (realizable)
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(b) f2 (misspecified)
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(c) f3 (misspecified)

Figure 2. Cumulative regrets (the lower the better) of all algorithms on 20-dimensional f1, f2, f3 synthetic functions.
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(a) Random forest (dx = 7)
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(b) Multi-layer perceptron (dx = 8)
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(c) Gradient boosting (dx = 11)

Figure 3. Cumulative regrets (the lower the better) of all algorithms in real-world hyperparameter tuning task on Breast-cancer dataset.

able to find the optimal point shortly after Phase I and enjoys
the least error bar. It is well expected since f1 is a realizable
function for f̂ . Unfortunately, GP-UCB, GP-EI, and GP-PI
incur almost linear regrets, showing the bad performances
of classical BO algorithms in high-dimensional cases.

In Figure 2(b) and 2(c), all methods are suffering from linear
regrets because f2, f3 are misspecified functions. The gap
between GO-UCB and other methods is smaller in Figure
2(c) than in 2(b) because optimizing f3 is more challenging
than f2 since f3 has more local optimal points.

6.2. Real-World Experiments

To illustrate the GO-UCB algorithm works in real-world
tasks, we do hyperparameter tuning experiments on three
tasks using three classifiers. Three UCI datasets (Dua &
Graff, 2017) are Breat-cancer, Australian, and Diabetes, and
three classifiers are random forest, multi-layer perceptron,
and gradient boosting where each of them has 7, 8, 11 hyper-
parameters. For each classifier on each dataset, the function
mapping from hyperparameters to classification accuracy
is the black-box function that we are maximizing, so the
input space dimension dx = 7, 8, 11 for each classifier. We
use cumulative regret to evaluate hyperparameter tuning
performances, however, best accuracy f∗ is unknown ahead
of time so we set it to be the best empirical accuracy of each

task. To reduce the effect of randomness, we divide each
dataset into 5 folds and every time use 4 folds for training
and remaining 1 fold for testing. We report mean and error
bar of cumulative regrets where error bar is measured by
Wald’s test, the same as synthetic experiments.

Figure 3 shows results on Breast-cancer dataset. In Figure
3(b)(c) GO-UCB performs statistically much better that all
other BO algorithms since there is almost no error bar gap
between TuRBO and GO-UCB. It shows that GO-UCB
can be deployed in real-world applications to replace BO
methods. Also, in Figure 3(b) performance of GO-UCB
Phase I is not good but GO-UCB can still perform better
than others in Phase II, which shows the effectiveness of
Phase II of GO-UCB. In Figure 3(a) all algorithms have
similar performances. In Figure 3(b), TuRBO performs
similarly as GP-UCB, GP-EI, and GP-PI when t ≤ 23, but
after t = 23 it performs better and shows a curved regret
line by finding optimal points. Due to page limit, results
on Australian and Diabetes datasets are shown in Appendix
D.2 where similar algorithm performances can be seen.

Note in experiments, we choose parametric model f̂ to
be a two linear layer neural network. In more real-world
experiments, one can choose the model f̂ in GO-UCB to
be simpler functions or much more complex functions, e.g.,
deep neural networks, depending on task requirements.
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7. Conclusion
Global non-convex optimization is an important problem
that widely exists in many real-world applications, e.g., deep
learning hyper-parameter tuning and new material design.
However, solving this optimization problem in general is
NP-hard. Existing work relies on Gaussian process assump-
tion, e.g., Bayesian optimization, or other non-parametric
family which suffers from the curse of dimensionality.

We propose the first algorithm to solve such global optimiza-
tion with parametric function approximation, which shows
a new way of global optimization. GO-UCB first uniformly
explores the function and collects a set of observation points
and then uses the optimistic exploration to actively select
points. At the core of GO-UCB is a carefully designed un-
certainty set over parameters based on gradients that allows
optimistic exploration. Under realizable parameter class
assumption and a few mild geometric conditions, our the-
oretical analysis shows that cumulative regret of GO-UCB
is at the rate of Õ(

√
T ), which is dimension-free in terms

of function domain X . Our high-dimensional synthetic test
shows that GO-UCB works better than BO methods even in
misspecified setting. Moreover, GO-UCB performs better
than BO algorithms in real-world hyperparameter tuning
tasks, which may be of independent interest.

There is µ, the strongly convexity parameter, in the denom-
inator of upper bound in Theorem 4.1. µ can be small in
practice, thus the upper bound can be large. Developing the
cumulative regret bound containing a term depending on µ
but being independent to T remains a future problem.
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A. Notation Table

Table 1. Symbols and notations.

Symbol Definition Description
∥A∥op operator norm
Ballt eq. (6) parameter uncertainty region at round t
βt eq. (7) parameter uncertainty region radius at round t
µ local strong convexity parameter
c local self-concordance parameter

C, ζ constants
dx domain dimension
dw parameter dimension
δ failure probability
ε covering number discretization distance
η σ-sub-Gaussian observation noise

fw(x) objective function at x parameterized by w
fx(w) objective function at w parameterized by x
∇fx(w) 1st order derivative w.r.t. w parameterized by x
∇2fx(w) 2nd order derivative w.r.t. w parameterized by x

F function range constant bound
γ, τ growth condition parameters

ι, ι′, ι′′ logarithmic terms
L(w) E[(fx(w)− fx(w

∗))2] expected loss function
λ regularization parameter
n time horizon in Phase I
[n] {1, 2, ..., n} integer set of size n

Oracle regression oracle
rt fw∗(x∗)− fw∗(xt) instantaneous regret at round t

RT

∑T
t=1 rt cumulative regret after round T

Σt eq. (3) covariance matrix at round t
T time horizon in Phase II
U uniform distribution
w w ∈ W function parameter
w∗ w∗ ∈ W true parameter
ŵ0 oracle-estimated parameter after Phase I
ŵt eq. (5) updated parameter at round t
W W ⊆ [0, 1]dw parameter space
x x ∈ X data point
x∗ optimal data point
∥x∥∞ (

∑d
i=1 |xi|p)1/p ℓp norm

∥x∥p maxi∈[d] |xi| ℓ∞ norm
∥x∥A

√
x⊤Ax distance defined by square matrix A

X X ⊆ Rdx function domain
Y Y = [−F, F ] function range

B. Auxiliary Technical Lemmas
In this section, we list auxiliary lemmas that are used in proofs.

Lemma B.1 (Adapted from eq. (5) (6) of Nowak (2007)). Given a dataset {xi, yi}nj=1 where yj is generated from eq.
(1) and f0 is the underlying true function. Let f̂ be an ERM estimator taking values in F where F is a finite set and
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F ⊂ {f : [0, 1]d → [−F, F ]} for some F ≥ 1. Then with probability > 1− δ, f̂ satisfies that

E[(f̂ − f0)
2] ≤

(
1 + α

1− α

)(
inf
f∈F

E[(f − f0)
2] +

F 2 log(|F|) log(2)
nα

)
+

2 log(2/δ)

nα
,

for all α ∈ (0, 1].

Lemma B.2 (Sherman-Morrison lemma (Sherman & Morrison, 1950)). Let A denote a matrix and b, c denote two vectors.
Then

(A+ bc⊤)−1 = A−1 − A−1bc⊤A−1

1 + c⊤A−1b
.

Lemma B.3 (Self-normalized bound for vector-valued martingales (Abbasi-yadkori et al., 2011; Agarwal et al., 2021)).
Let {ηi}∞i=1 be a real-valued stochastic process with corresponding filtration {Fi}∞i=1 such that ηi is Fi measurable,
E[ηi|Fi−1] = 0, and ηi is conditionally σ-sub-Gaussian with σ ∈ R+. Let {Xi}∞i=1 be a stochastic process with Xi ∈ H
(some Hilbert space) and Xi being Ft measurable. Assume that a linear operator Σ : H → H is positive definite, i.e.,
x⊤Σx > 0 for any x ∈ H. For any t, define the linear operator Σt = Σ0 +

∑t
i=1 XiX

⊤
i (here xx⊤ denotes outer-product

inH). With probability at least 1− δ, we have for all t ≥ 1:∥∥∥∥∥
t∑

i=1

Xiηi

∥∥∥∥∥
2

Σ−1
t

≤ σ2 log

(
det(Σt) det(Σ0)

−1

δ2

)
.

C. Missing Proofs
In this section, we show complete proofs of all technical results in the main paper. For reader’s easy reference, we define ι
as a logarithmic term depending on n,Ch, 2/δ (w.p. > 1− δ/2), ι′ as a logarithmic term depending on t, dw, Cg, 1/λ, 2/δ
(w.p. > 1− δ/2), and ι′′ as a logarithmic term depending on t, dw, Cg, 1/λ.

C.1. Regression Oracle Guarantee

Lemma C.1 (Restatement of Lemma 5.1). Suppose Assumption 3.1 & 3.2 hold. There is an absolute constant C ′, such that
after round n in Phase I of Algorithm 1, with probability > 1− δ/2, regression oracle estimated ŵ0 satisfies

Ex∼U [(fx(ŵ0)− fx(w
∗))2] ≤ C ′dwF

2ι

n
,

where ι is the logarithmic term depending on n,Ch, 2/δ.

Proof. The regression oracle lemma establishes on Lemma B.1 which works only for finite function class. In order to work
with our continuous parameter classW , we need ε-covering number argument.

First, let w̃, W̃ denote the ERM parameter and finite parameter class after applying covering number argument onW . By
Lemma B.1, we find that with probability > 1− δ/2,

Ex∼U [(fx(w̃)− fx(w
∗))2] ≤

(
1 + α

1− α

)(
inf

w∈W̃∪{w∗}
Ex∼U [(fx(w)− fx(w

∗))2] +
F 2 log(|W̃|) log(2)

nα

)
+

2 log(4/δ)

nα

≤
(
1 + α

1− α

)(
F 2 log(|W̃|) log(2)

nα

)
+

2 log(4/δ)

nα
,

where the second inequality is by realizable assumption (Assumption 3.1). Our parameter class W ⊆ [0, 1]dw , so
log(|W̃|) = log(1/εdw) = dw log(1/ε) and the new upper bound is that with probability > 1− δ/2,

Ex∼U [(fx(w̃)− fx(w
∗))2] ≤ C

′′
(
dwF

2 log(1/ε)

n
+

log(2/δ)

n

)
,

13
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where C
′′

is a universal constant obtained by choosing α = 1/2. Note w̃ is the ERM parameter in W̃ after discretization,
not our target parameter ŵ0 ∈ W . By (a+ b)2 ≤ 2a2 + 2b2,

Ex∼U [(fx(ŵ0)− fx(w
∗))2] ≤ 2Ex∼U [(fx(ŵ0)− fx(w̃))

2] + 2Ex∼U [(fx(w̃)− fx(w
∗))2]

≤ 2ε2C2
h + 2C

′′
(
dwF

2 log(1/ε)

n
+

log(2/δ)

n

)
(10)

where the second line applies discretization error ε and Assumption 3.2. By choosing ε = 1/
√
nC2

h, we get

(10) =
2

n
+

C
′′
dwF

2 log(nC2
h)

n
+

2C
′′
log(2/δ)

n
≤ C ′ dwF

2 log(nC2
h) + log(2/δ)

n

where we can take C ′ = 2C
′′

(assuming 2 < C
′′
dwF

2 log(nC2
h)). The proof completes by defining ι as the logarithmic

term depending on n,Ch, 2/δ.

Theorem C.2 (Restatement of Theorem 5.2). Suppose Assumption 3.1, 3.2, & 3.3 hold. There is an absolute constant C
such that after round n in Phase I of Algorithm 1 where n satisfies

n ≥ CdwF
2ι ·max

{
µγ/(2−γ)

τ2/(2−γ)
,

ζ

µc2

}
,

with probability > 1− δ/2, regression oracle estimated ŵ0 satisfies

∥ŵ0 − w∗∥22 ≤
CdwF

2ι

µn
,

where ι is the logarithmic term depending on n,Ch, 2/δ.

Proof. Recall the definition of expected loss function L(w) = Ex∼U (fx(w) − fx(w
∗))2 and the second order Taylor’s

theorem, L(ŵ0) at w∗ can be written as

L(ŵ0) = L(w∗) + (ŵ0 − w∗)∇L(w∗) +
1

2
∥ŵ0 − w∗∥2∇2L(w̃),

where w̃ lies between ŵ0 and w∗. Also, because ∇L(w∗) = ∇Ex∼U (fx(w
∗) − fx(w

∗))2 = 0, then with probability
> 1− δ/2,

1

2
∥ŵ0 − w∗∥2∇2L(w̃) = L(ŵ0)− L(w∗) ≤ C ′dwF

2ι

n
, (11)

where the inequality is due to Lemma 5.1.

Next, we prove the following lemma stating after a certain number of n samples, ∥ŵ0 −w∗∥∇2L(w∗) can be bounded by the
parameter c from our local-self-concordance assumption.

Lemma C.3. Suppose Assumption 3.1, 3.2, & 3.3 hold. There is an absolute constant C ′ such that after round n in Phase I
of Algorithm 1 where n satisfies

n ≥ 2C ′dwF
2ι ·max

{
µγ/(2−γ)

τ2/(2−γ)
,

ζ

µc2

}
,

then with probability > 1− δ/2,

∥ŵ0 − w∗∥∇2L(w∗) ≤ c.

Proof. First we will prove that when n satisfies the first condition, then ∥ŵ0 − w∗∥2 ≤ (τ/µ)1/(2−γ) by a proof by
contradiction.

14
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Assume ∥ŵ0 −w∗∥2 > (τ/µ)1/(2−γ). Check that under this condition, we have τ
2∥ŵ0 −w∗∥γ2 < µ

2 ∥ŵ0 −w∗∥22, therefore
the growth-condition (rather than the local strong convexity) part of the Assumption 3.3 is active. By the (τ, γ)-growth
condition, we have

τ

2
∥ŵ0 − w∗∥γ2 ≤ L(ŵ0)− L(w∗) ≤ C ′dwF

2ι

n
.

Substituting the first lower bound of n in the assumption, we get

∥ŵ0 − w∗∥ ≤ (τ/µ)1/(2−γ),

thus having a contradiction. This proves that when n satisfies the first condition, ŵ0 is within the region where local strong
convexity is active.

By the local strong-convexity condition,

µ

2
∥ŵ0 − w∗∥22 ≤ L(ŵ0)− L(w∗) ≤ C ′dwF

2ι

n
.

Then,

∥ŵ0 − w∗∥∇2L(w∗) ≤
√

ζ∥ŵ0 − w∗∥2 ≤

√
2ζC ′dwF 2ι

µn
.

Substitute the second lower bound on n that we assumed, we get that

∥ŵ0 − w∗∥∇2L(w∗) ≤

√
2ζC ′dwF 2ι

µn
≤ c.

Now we continue the proof of Theorem 5.2. Observe that ∥w̃−w∗∥∇2L(w∗) ≤ ∥ŵ0 −w∗∥∇2L(w∗) ≤ c, since w̃ lies on the
line-segment between ŵ0 and w∗. It follows that by the c-local self-concordance assumption (Assumption 3.3),

(1− c)2∥ŵ0 − w∗∥2∇2L(w∗) ≤ ∥ŵ0 − w∗∥2∇2L(w̃).

Therefore, by eq. (11)

∥ŵ0 − w∗∥2∇2L(w∗) ≤
2C ′dwF

2ι

(1− c)2n
.

The proof completes by inequality ∥ŵ0 − w∗∥22 ≤ ∥ŵ0 − w∗∥2∇2L(w∗)/µ due to µ-strongly convexity of L(w) at w∗

(Assumption 3.3) and defining C = 2C ′/(1− c)2.

C.2. Properties of Covariance Matrix Σt

In eq. (3), Σt is defined as λI +
∑t−1

i=0∇fxi
(ŵi)∇fxi

(ŵi)
⊤. In this section, we prove three lemmas saying the change of

Σt as t ∈ 1, ..., T is bounded in Phase II of GO-UCB. The key observation is that at each round i, the change made to Σt is
∇fxi

(ŵi)∇fxi
(ŵi)

⊤, which is only rank one.

Lemma C.4 (Adapted from Agarwal et al. (2021)). Set Σt, ŵt as in eq. (3) & (5), suppose Assumption 3.1 & 3.3 hold, and
define ut = ∥∇fxt(ŵt)∥Σ−1

t
. Then

detΣt = detΣ0

t−1∏
i=0

(1 + u2
i ).

15
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Proof. Recall the definition of Σt = λI +
∑t−1

i=0∇fxi
(ŵi)∇fxi

(ŵi)
⊤ and we can show that

detΣt+1 = det(Σt +∇fxt
(wt)∇fxt

(wt)
⊤)

= det(Σ
1
2
t (I +Σ

− 1
2

t ∇fxt
(wt)∇fxt

(wt)
⊤Σ

− 1
2

t )Σ
1
2
t )

= det(Σt) det(I +Σ
− 1

2
t ∇fxt

(wt)(Σ
− 1

2
t ∇fxt

(wt))
⊤)

= det(Σt) det(I + vtv
⊤
t ),

where vt = Σ
− 1

2
t ∇fxt

(wt). Recall ut is defined as ∥∇fxt
(ŵt)∥Σ−1

t
. Because vtv

⊤
t is a rank one matrix, det(I + vtv

⊤
t ) =

1 + u2
t . The proof completes by induction.

Lemma C.5 (Adapted from Agarwal et al. (2021)). Set Σt as in eq. (3) and suppose Assumption 3.1, 3.2, & 3.3 hold. Then

log

(
detΣt−1

detΣ0

)
≤ dw log

(
1 +

tC2
g

dwλ

)
.

Proof of Lemma C.4 directly follows definition of Σt and proof of Lemma C.5 involves Lemma C.4 and inequality of
arithmetic and geometric means. Note Cg is a constant coming from Assumption 3.2. We do not claim any novelty in proofs
of these two lemmas which replace feature vector in linear bandit (Agarwal et al., 2021) with gradient vectors.

Proof. Let ξ1, ..., ξdw denote eigenvalues of
∑t−1

i=0∇fxi(wi)∇fxi(wi)
⊤, then

dw∑
k=1

ξk = tr

(
t−1∑
i=0

∇fxi
(wi)∇fxi

(wi)
⊤

)
=

t−1∑
i=0

∥∇fxi
(wi)∥22 ≤ tC2

g , (12)

where the inequality is by Assumption 3.2. By Lemma C.4,

log

(
detΣt−1

detΣ0

)
≤ log det

(
I +

1

λ

t−1∑
i=0

∇fxi(wi)∇fxi(wi)
⊤

)

= log

(
dw∏
k=1

(1 + ξk/λ)

)

= dw log

(
dw∏
k=1

(1 + ξk/λ)

)1/dw

≤ dw log

(
1

dw

dw∑
k=1

(1 + ξk/λ)

)

≤ dw log

(
1 +

tC2
g

dwλ

)
,

where the second inequality is by inequality of arithmetic and geometric means and the last inequality is due to eq. (12).

Lemma C.6. Set Σt, ŵt as in eq. (3) & (5) and suppose Assumption 3.1, 3.2, & 3.3 hold. Then

t−1∑
i=0

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi) ≤ 2dw log

(
1 +

tC2
g

dwλ

)
.

A trivial bound of LHS in Lemma C.6 could be simply O(tC2
g/λ). Lemma C.6 is important because it saves the upper

bound to be O(log(tC2
g/λ)), which allows us to build a feasible parameter uncertainty ball, shown in the next section.
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Proof. First, we prove ∀i ∈ {0, 1, ..., t − 1}, 0 < ∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi) < 1. Recall the definition of Σt, it’s easy to
see that Σt is a positive definite matrix and thus 0 < ∇fxi(ŵi)

⊤Σ−1
t ∇fxi(ŵi). To prove it’s smaller than 1, we need to

decompose Σt and write

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi)

= ∇fxi
(ŵi)

⊤

(
λI +

t−1∑
i=0

∇fxi
(ŵi)∇fxi

(ŵi)
⊤

)−1

∇fxi
(ŵi)

= ∇fxi
(ŵi)

⊤

(
∇fxi

(ŵi)∇fxi
(ŵi)

⊤ −∇fxi
(ŵi)∇fxi

(ŵi)
⊤ + λI +

t−1∑
i=0

∇fxi
(ŵi)∇fxi

(ŵi)
⊤

)−1

∇fxi
(ŵi).

Let A = −∇fxi
(ŵi)∇fxi

(ŵi)
⊤ + λI +

∑t−1
i=0∇fxi

(ŵi)∇fxi
(ŵi)

⊤, and it becomes

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi) = ∇fxi
(ŵi)

⊤(∇fxi
(ŵi)∇fxi

(ŵi)
⊤ +A)−1∇fxi

(ŵi).

By applying Sherman-Morrison lemma (Lemma B.2), we have

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi) = ∇fxi
(ŵi)

⊤
(
A−1 − A−1∇fxi(ŵi)∇fxi(ŵi)

⊤A−1

1 +∇fxi
(ŵi)⊤A−1∇fxi

(ŵi)

)
∇fxi

(ŵi)

= ∇fxi
(ŵi)

⊤A−1∇fxi
(ŵi)−

∇fxi
(ŵi)

⊤A−1∇fxi
(ŵi)∇fxi

(ŵi)
⊤A−1∇fxi

(ŵi)

1 +∇fxi(ŵi)⊤A−1∇fxi
(ŵi)

=
∇fxi

(ŵi)
⊤A−1∇fxi

(ŵi)

1 +∇fxi(ŵi)⊤A−1∇fxi(ŵi)
< 1.

Next, we use the fact that ∀x ∈ (0, 1), x ≤ 2 log(1 + x), and we have

t−1∑
i=0

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi) ≤
t−1∑
i=0

2 log
(
1 +∇fxi

(ŵi)
⊤Σ−1

t ∇fxi
(ŵi)

)
≤ 2 log

(
detΣt−1

detΣ0

)
≤ 2dw log

(
1 +

tC2
g

dwλ

)
,

where the last two inequalities are due to Lemma C.4 and C.5.

C.3. Feasibility of Ballt

Lemma C.7 (Restatement of Lemma 5.3). Set Σt, ŵt as in eq. (3), (5). Set βt as

βt = Õ

(
dwσ

2 +
d3w
µ2

+
d3wt

µ2T

)
.

Suppose Assumption 3.1, 3.2, & 3.3 hold and choose n =
√
T , λ = Cλ

√
T . Then ∀t ∈ [T ] in Phase II of Algorithm 1, w.p.

> 1− δ,

∥ŵt − w∗∥2Σt
≤ βt.

Proof. The proof has three steps. First we obtain the closed form solution of ŵt. Next we derive the upper bound of
∥ŵi − w∗∥22. Finally we use it to prove that the upper bound of ∥ŵt − w∗∥2Σt

matches our choice of βt.

Step 1: Closed form solution of ŵt. The optimal criterion for the objective function in eq. (4) is

0 = λ(ŵt − ŵ0) +

t−1∑
i=0

((ŵt − ŵi)
⊤∇fxi

(ŵi) + fxi
(ŵi)− yi)∇fxi

(ŵi).
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Rearrange the equation and we have

λ(ŵt − ŵ0) +

t−1∑
i=0

(ŵt − ŵi)
⊤∇fxi(ŵi)∇fxi(ŵi) =

t−1∑
i=0

(yi − fxi(ŵi))∇fxi(ŵi),

λ(ŵt − ŵ0) +

t−1∑
i=0

(ŵt − ŵi)
⊤∇fxi

(ŵi)∇fxi
(ŵi) =

t−1∑
i=0

(yi − fxi
(w∗) + fxi

(w∗)− fxi
(ŵi))∇fxi

(ŵi),

λ(ŵt − ŵ0) +

t−1∑
i=0

ŵ⊤
t ∇fxi

(ŵi)∇fxi
(ŵi) =

t−1∑
i=0

(ŵ⊤
i ∇fxi

(ŵi) + ηi + fxi
(w∗)− fxi

(ŵi))∇fxi
(ŵi),

ŵt

(
λI +

t−1∑
i=1

∇fxi(ŵi)∇fxi(ŵi)
⊤

)
− λŵ0 =

t−1∑
i=0

(ŵ⊤
i ∇fxi(ŵi) + ηi + fxi(w

∗)− fxi(ŵi))∇fxi(ŵi),

ŵtΣt = λŵ0 +

t−1∑
i=0

(ŵ⊤
i ∇fxi(ŵi) + ηi + fxi(w

∗)− fxi(ŵi))∇fxi(ŵi),

where the second line is by removing and adding back fxi
(w∗), the third line is due to definition of observation noise η and

the last line is by our choice of Σt (eq. (3)). Now we have the closed form solution of ŵt:

ŵt = Σ−1
t

(
λŵ0 +

t−1∑
i=0

(ŵ⊤
i ∇fxi

(ŵi) + ηi + fxi
(w∗)− fxi

(ŵi))∇fxi
(ŵi)

)
.

Further, ŵt − w∗ can be written as

ŵt − w∗ = Σ−1
t

(
t−1∑
i=0

∇fxi
(ŵi)(∇fxi

(ŵi)
⊤ŵi + ηi + fxi

(w∗)− fxi
(ŵi))

)
+ λΣ−1

t ŵ0 − Σ−1
t Σtw

∗

= Σ−1
t

(
t−1∑
i=0

∇fxi(ŵi)(∇fxi(ŵi)
⊤ŵi + ηi + fxi(w

∗)− fxi(ŵi))

)
+ λΣ−1

t (ŵ0 − w∗)

− Σ−1
t

(
t−1∑
i=0

∇fxi(ŵi)∇fxi(ŵi)
⊤

)
w∗

= Σ−1
t

(
t−1∑
i=0

∇fxi
(ŵi)(∇fxi

(ŵi)
⊤(ŵi − w∗) + ηi + fxi

(w∗)− fxi
(ŵi))

)
+ λΣ−1

t (ŵ0 − w∗)

= Σ−1
t

(
t−1∑
i=0

∇fxi
(ŵi)

1

2
∥w∗ − ŵi∥2∇2fxi

(w̃)

)
+Σ−1

t

(
t−1∑
i=0

∇fxi
(ŵi)ηi

)
+ λΣ−1

t (ŵ0 − w∗), (13)

where the second line is again by our choice of Σt and the last equation is by the second order Taylor’s theorem of fxi
(w∗)

at ŵi where w̃ lies between w∗ and ŵi.

Step 2: Upper bound of ∥ŵi − w∗∥22. Note eq. (13) holds ∀i ∈ [T ] because all ŵi are obtained through the same
optimization problem, which means

ŵi − w∗ = Σ−1
i

(
i−1∑
ρ=0

∇fxρ
(ŵρ)

1

2
∥w∗ − ŵρ∥2∇2fxρ (w̃)

)
+Σ−1

i

(
i−1∑
ρ=0

∇fxρ
(ŵρ)ηρ

)
+ λΣ−1

i (ŵ0 − w∗).

By inequality (a+ b+ c)2 ≤ 4a2 + 4b2 + 4c2 and definition of Σi, we take the square of both sides and get

∥ŵi − w∗∥22 ≤
4

λ

∥∥∥∥∥
i−1∑
ρ=0

∇fxρ
(ŵρ)ηρ

∥∥∥∥∥
2

Σ−1
i

+ 4∥ŵ0 − w∗∥22 +
1

λ

∥∥∥∥∥
i−1∑
ρ=0

∇fxρ
(ŵρ)∥w∗ − ŵρ∥2∇2fxρ (w̃ρ)

∥∥∥∥∥
2

Σ−1
i

. (14)
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Now we use induction to prove the convergence rate of ∥ŵi − w∗∥22,∀i ∈ [T ]. Recall at the very beginning of Phase II,
by Theorem 5.2 (check that the condition on n is satisfied due to our condition on T and the choice of n =

√
T ), with

probability > 1− δ/2,

∥ŵ0 − w∗∥22 ≤
CdwF

2ι

µn
.

To derive a claim based on induction, formally, we suppose at round i, there exists some universal constant C̃ such that with
probability > 1− δ/2,

∥ŵi − w∗∥22 ≤
C̃dwF

2ι

µn
.

Our task is to prove that at round i+ 1 with probability > 1− δ/2,

∥ŵi+1 − w∗∥22 ≤
C̃dwF

2ι

µn
.

Note C̃ is for induction purpose, which can be different from C.

From eq. (14), at round i+ 1 we can write

∥ŵi+1 − w∗∥22 ≤
4σ2

λ
log

(
det(Σi) det(Σ0)

−1

δ2i

)
+

4CdwF
2ι

µn
+

1

λ

∥∥∥∥∥
i∑

ρ=0

∇fxρ
(ŵρ)∥w∗ − ŵρ∥2∇2fxρ (w̃ρ)

∥∥∥∥∥
2

Σ−1
i+1

≤ 4σ2

λ

(
dw log

(
1 +

iC2
g

dwλ

)
+ log

(
π2i2

3δ

))
+

4CdwF
2ι

µn

+
1

λ

∥∥∥∥∥
i∑

ρ=0

∇fxρ(ŵρ)∥w∗ − ŵρ∥2∇2fxρ (w̃ρ)

∥∥∥∥∥
2

Σ−1
i+1

≤ 4dwσ
2ι′

λ
+

4CdwF
2ι

µn
+

1

λ

∥∥∥∥∥
i∑

ρ=0

∇fxρ(ŵρ)∥w∗ − ŵρ∥2∇2fxρ (w̃ρ)

∥∥∥∥∥
2

Σ−1
i+1

,

where the first inequality is due to self-normalized bound for vector-valued martingales (Lemma B.3 in Appendix B) and
Theorem 5.2, the second inequality is by Lemma C.5 and our choice of δi = 3δ/(π2i2), and the last inequality is by defining
ι′ as the logarithmic term depending on i, dw, Cg, 1/λ, 2/δ (with probability > 1− δ/2). The choice of δi guarantees the
total failure probability over t rounds is no larger than δ/2. Now we use our assumption ∥ŵi − w∗∥22 ≤ C̃dwF 2ι

µn to bound
the last term.

∥ŵi+1 − w∗∥22 ≤
4dwσ

2ι′

λ
+

4CdwF
2ι

µn
+

C̃2C2
hd

2
wF

4ι2

µ2λn2

(
i∑

ρ=0

√
∇fxρ(ŵρ)⊤Σ

−1
i+1∇fxρ(ŵρ)

)2

≤ 4dwσ
2ι′

λ
+

4CdwF
2ι

µn
+

C̃2C2
hd

2
wF

4ι2

µ2λn2

(
i∑

ρ=0

1

)(
i∑

ρ=0

∇fxρ
(ŵρ)

⊤Σ−1
i+1∇fxρ(ŵρ)

)

≤ 4dwσ
2ι′

λ
+

4CdwF
2ι

µn
+

C̃2C2
hd

3
wF

4iι′′ι2

µ2λn2
,

where the first inequality is due to smoothness of loss function in Assumption 3.3 and triangular inequality, the second
inequality is by Cauchy-Schwarz inequality, and the last inequality is because of Lemma C.6 and defining ι′′ as logarithmic
term depending on i, dw, Cg, 1/λ.

What we need is that there exists some universal constant C̃ such that

4dwσ
2ι′

λ
+

4CdwF
2ι

µn
+

C̃2C2
hd

3
wF

4iι2ι′′

λµ2n2
≤ C̃dwF

2ι

µn
.

19



Global Optimization with Parametric Function Approximation

Note the LHS is monotonically increasing w.r.t i so the inequality must hold when i = T , i.e.,

4dwσ
2ι′

λ
+

4CdwF
2ι

µn
+

C̃2C2
hd

3
wF

4Tι2ι′′

λµ2n2
≤ C̃dwF

2ι

µn
.

Recall the range of our function is [−F, F ], given any distribution, the variance σ2 can always be upper bounded by F 2/4,
so we just need to show that

dwF
2ι′

λ
+

4CdwF
2ι

µn
+

C̃2C2
hd

3
wF

4Tι2ι′′

λµ2n2
≤ C̃dwF

2ι

µn
,

µ2n2ι′ + 4λµnCι+ C̃2C2
hd

2
wF

2Tι2ι′′ ≤ λµnC̃ι,

C̃2C2
hd

2
wF

2Tι2ι′′ − C̃λµnι+ µ2n2ι′ + 4λµnCι ≤ 0,

where the second and third lines are by rearrangement. A feasible solution on C̃ requires

λ2µ2n2ι2 − 4C2
hd

2
wF

2Tι2ι′′(µ2n2ι′ + 4λµnCι) ≥ 0,

λ2µ2n− 4C2
hd

2
wF

2Tι′′(µ2nι′ + 4λµCι) ≥ 0, (15)

where the second line is by rearrangement. Substitute our choices of λ = Cλ

√
T , n =

√
T and solve the quadratic inequality

for Cλ; we get that it suffices to choose

Cλ = 4

√
C2

hd
2
wF

2ι′ι′′ +
16C2C4

hd
4
wF

4ι2ι′′2

µ2
= Õ

(
d2w
µ

)
, (16)

with assumption dw > µ. Check that Cλ depends only logarithmically on T and that it ensures eq. (15) holds, therefore
certifying that a universal constant C̃ exists. Therefore, by induction, we prove that ∀i ∈ [T ] there exists a universal constant
C̃ such that with probability > 1− δ/2,

∥ŵi − w∗∥22 ≤
C̃dwF

2ι

µn
.

With this result, now we are ready to move to Step 3.

Step 3: Upper bound of ∥ŵt − w∗∥2Σt
. Multiply both sides of eq. (13) by Σ

1
2
t and we have

Σ
1
2
t (ŵt − w∗) ≤ 1

2
Σ

− 1
2

t

(
t−1∑
i=0

∇fxi
(ŵi)∥w∗ − ŵi∥2∇2fxi

(w̃)

)
+Σ

− 1
2

t

(
t−1∑
i=0

∇fxi
(ŵi)ηi

)
+ λΣ

− 1
2

t (ŵ0 − w∗).

Take square of both sides and by inequality (a+ b+ c)2 ≤ 4a2 + 4b2 + 4c2 we obtain

∥ŵt − w∗∥2Σt
≤ 4

∥∥∥∥∥
t−1∑
i=0

∇fxi(ŵi)ηi

∥∥∥∥∥
2

Σ−1
t

+ 4λ2∥ŵ0 − w∗∥2
Σ−1

t
+

∥∥∥∥∥
t−1∑
i=0

∇fxi(ŵi)∥w∗ − ŵi∥2∇2fxi
(w̃)

∥∥∥∥∥
2

Σ−1
t

.

The remaining proof closely follows Step 2, i.e.,

∥ŵt − w∗∥2Σt
≤ 4dwσ

2ι′ +
4λCdwF

2ι

µn
+

C̃2C2
hd

2
wF

4ι2

µ2n2

(
t−1∑
i=0

√
∇fxi

(ŵi)⊤Σ
−1
t ∇fxi

(ŵi)

)2

≤ 4dwσ
2ι′ +

4λCdwF
2ι

µn
+

C̃2C2
hd

2
wF

4ι2

µ2n2

(
t−1∑
i=0

1

)(
t−1∑
i=0

∇fxi
(ŵi)

⊤Σ−1
t ∇fxi

(ŵi)

)

≤ 4dwσ
2ι′ +

4λCdwF
2ι

µn
+

C̃2C2
hd

3
wF

4tι′′ι2

µ2n2

≤ Õ

(
dwσ

2 +
d3w
µ2

+
d3wt

µ2T

)
,
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where the last inequality is by our choices of λ = Cλ

√
T , n =

√
T . Therefore, our choice of

βt = Õ

(
dwσ

2 +
d3w
µ2

+
d3wt

µ2T

)
guarantees that w∗ is always contained in Ballt with probability 1− δ.

C.4. Regret Analysis

Lemma C.8 (Restatement of Lemma 5.4). Set Σt, ŵt, βt as in eq. (3), (5), & (7) and suppose Assumption 3.1, 3.2, & 3.3
hold, then with probability > 1− δ, w∗ is contained in Ballt. Define ut = ∥∇fxt(ŵt)∥Σ−1

t
, then ∀t ∈ [T ] in Phase II of

Algorithm 1,

rt ≤ 2
√
βtut +

2βtCh

λ
.

Proof. By definition of instantaneous regret rt,

rt = fx∗(w∗)− fxt(w
∗).

Recall the selection process of xt and define w̃ = argmaxw∈Ballt fxt
(w),

rt ≤ fxt(w̃)− fxt(w
∗) = (w̃ − w∗)⊤∇fxt(ẇ),

where the equation is by first order Taylor’s theorem and ẇ lies between w̃ and w∗ which means ẇ is guaranteed to be in
Ballt since Ballt is convex. Then, by adding and removing terms,

rt = (w̃ − ŵt + ŵt − w∗)⊤(∇fxt
(ŵt)−∇fxt

(ŵt) +∇fxt
(ẇ))

≤ ∥w̃ − ŵt∥Σt
∥∇fxt

(ŵt)∥Σ−1
t

+ ∥ŵt − w∗∥Σt
∥∇fxt

(ŵt)∥Σ−1
t

+ (w̃ − ŵt)
⊤(∇fxt

(ẇt)−∇fxt
(ŵt))

+ (ŵt − w∗)⊤(∇fxt(ẇ)−∇fxt(ŵt)),

where the last inequality is due to Holder’s inequality. By definitions of βt in Ballt and ut = ∥∇fxt
(ŵt)∥Σ−1

t
,

rt ≤ 2
√
βtut + (w̃ − ŵt)

⊤(∇fxt(ẇ)−∇fxt(ŵt)) + (ŵt − w∗)⊤(∇fxt(ẇ)−∇fxt(ŵt)).

Again by first order Taylor’s theorem where ẅ lies between ẇ and ŵ and thus ẅ lies in Ballt,

rt ≤ 2
√

βtut + (w̃ − ŵt)
⊤Σ

1
2
t Σ

− 1
2

t ∇2fxt
(ẅ)Σ

− 1
2

t Σ
1
2
t (ẇ − ŵt) + (ŵt − w∗)⊤Σ

1
2
t Σ

− 1
2

t ∇2fxt
(ẅ)Σ

− 1
2

t Σ
1
2
t (ẇ − ŵt)

≤ 2
√
βtut + ∥(w̃ − ŵt)

⊤Σ
1
2
t ∥2∥Σ

− 1
2

t ∇2fxt
(ẅ)Σ

− 1
2

t ∥op∥Σ
1
2
t (ẇ − ŵt)∥2

+ ∥(ŵt − w∗)⊤Σ
1
2
t ∥2∥Σ

− 1
2

t ∇2fxt(ẅ)Σ
− 1

2
t ∥op∥Σ

1
2
t (ẇ − ŵt)∥2

≤ 2
√

βtut +
2βtCh

λ
,

where the second inequality is by Holder’s inequality and the last inequality is due to definition of βt in Ballt, Assumption
3.2, and our choice of Σt.

Lemma C.9 (Restatement of Lemma 5.5). Set Σt, ŵt, βt as in eq. (3), (5), & (7) and suppose Assumption 3.1, 3.2, & 3.3
hold, then with probability > 1− δ, w∗ is contained in Ballt and ∀t ∈ [T ] in Phase II of Algorithm 1,

T∑
t=1

r2t ≤ 16βT dw log

(
1 +

TC2
g

dwλ

)
+

8β2
TC

2
hT

λ2
.
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Proof. By Lemma 5.4 and inequality (a+ b)2 ≤ 2a2 + 2b2,

T∑
t=1

r2t ≤
T∑

t=1

8βtu
2
t +

8β2
tC

2
h

λ2

≤ 8βT

T∑
i=1

u2
t +

8β2
TC

2
hT

λ2

≤ 16βT dw log

(
1 +

TC2
g

dwλ

)
+

8β2
TC

2
hT

λ2
,

where the second inequality is due to βt is increasing in t and the last inequality is by Lemma C.6.

By putting everything together, we are ready to prove the main cumulative regret theorem.

Proof of Theorem 4.1. By definition of cumulative regret including both Phase I and II,

R√
T+T =

√
T∑

j=1

rj +

T∑
t=1

rt

≤ 2
√
TF +

√√√√T

T∑
t=1

r2t

≤ 2
√
TF +

√
16TβT dw log

(
1 +

TC2
g

dwλ

)
+

8T 2β2
TC

2
h

λ2

≤ Õ

(
√
TF +

√
TβT dw +

T 2β2
T

λ2

)
,

where the first inequality is due to function range and Cauchy-Schwarz inequality, the second inequality is by Lemma 5.5
and the last inequality is obtained by setting λ = Cλ

√
T , n =

√
T as required by Lemma 5.3 where Cλ is in eq. (16).

Recall that βt is defined in eq. (7), so

βT = Õ

(
d3w
µ2

)
.

The proof completes by plugging in upper bound of βT .

D. Additional Experimental Details
In addition to Experiments section in main paper, in this section, we show details of algorithm implementation and and
real-world experiments.

D.1. Implementation of GO-UCB

Noise parameter σ = 0.01. Regression oracle in GO-UCB is approximated by stochastic gradient descent algorithm on
our two linear layer neural network model with mean squared error loss, 2000 iterations and 10−11 learning rate. Exactly
solving optimization problem in Step 5 of Phase II may not be computationally tractable, so we use iterative gradient ascent
algorithm over x and w with 2000 iterations and 10−4 learning rate. βt is set as d3wF

4t/T . λ is set as
√
T log2 T .

D.2. Real-world Experiments

Hyperparameters can be continuous or categorical, however, in order to fairly compare GO-UCB with Bayesian optimization
methods, in all hyperparameter tuning tasks, we set function domain to be [0, 10]dx , a continuous domain. If a hyperparameter
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is categorical, we allocate equal length domain for each hyperparameter. For example, the seventh hyperparameter of random
forest is a bool value, True or False and we define [0, 5) as True and [5, 10] as False. If a hyperparameter is continuous,
we set linear mapping from the hyperparameter domain to [0, 10]. For example, the sixth hyperparameter of multi-layer
perceptron is a float value in (0, 1) thus we multiply it by 10 and map it to (0, 10).

Hyperparameters in hyperparameter tuning tasks. We list hyperparameters in all three tasks as follows.

Classification with Random Forest.

1. Number of trees in the forest, (integer, [20, 200]).

2. Criterion, (string, “gini”, “entropy”, or “logloss”).

3. Maximum depth of the tree, (integer, [1, 10]).

4. Minimum number of samples required to split an internal node, (integer, [2, 10]).

5. Minimum number of samples required to be at a leaf node, (integer, [1, 10]).

6. Maximum number of features to consider when looking for the best split, (string, “sqrt” or “log2”).

7. Bootstrap, (bool, True or False).

Classification with Multi-Layer Perceptron.

1. Activation function (string, “identity”, “logistic”, “tanh”, or “relu”).

2. Strength of the L2 regularization term, (float, [10−6, 10−2]).

3. Initial learning rate used, (float, [10−6, 10−2]).

4. Maximum number of iterations, (integer, [100, 300]).

5. Whether to shuffle samples in each iteration, (bool, True or False).

6. Exponential decay rate for estimates of first moment vector, (float, (0, 1)).

7. Exponential decay rate for estimates of second moment vector (float, (0, 1)).

8. Maximum number of epochs to not meet tolerance improvement, (integer, [1, 10]).

Classification with Gradient Boosting.

1. Loss, (string, “logloss” or “exponential”).

2. Learning rate, (float, (0, 1)).

3. Number of estimators, (integer, [20, 200]).

4. Fraction of samples to be used for fitting the individual base learners, (float, (0, 1)).

5. Function to measure the quality of a split, (string, “friedman mse” or “squared error”).

6. Minimum number of samples required to split an internal node, (integer, [2, 10]).

7. Minimum number of samples required to be at a leaf node, (integer, [1, 10]).

8. Minimum weighted fraction of the sum total of weights, (float, (0, 0.5)).

9. Maximum depth of the individual regression estimators, (integer, [1, 10]).

10. Number of features to consider when looking for the best split, (float, “sqrt” or “log2”).
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(a) Random forest (dx = 7)
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(b) Multi-layer perceptron (dx = 8)
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(c) Gradient boosting (dx = 11)

Figure 4. Cumulative regrets (the lower the better) of all algorithms in real-world hyperparameter tuning task on Australian dataset.
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(a) Random forest (dx = 7)
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(b) Multi-layer perceptron (dx = 8)
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(c) Gradient boosting (dx = 11)

Figure 5. Cumulative regrets (the lower the better) of all algorithms in real-world hyperparameter tuning task on Diabetes dataset.

11. Maximum number of leaf nodes in best-first fashion, (integer, [2, 10]).

Results on Australian and Diabetes datasets. Due to page limit of the main paper, we show experimental results of
hyperparameter tuning tasks on Australian and Diabetes datasets in Figure 4 and Figure 5. Our proposed GO-UCB algorithm
performs consistently better than all other algorithms, which is the same as on Breast-cancer dataset in main paper.
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