
SayNav: Grounding Large Language Models
for Dynamic Planning to Navigation in New Environments

Primary Keywords: Learning; Robotics; Knowledge Representation/Engineering

Abstract

Semantic reasoning and dynamic planning capabilities are
crucial for an autonomous agent to perform complex nav-
igation tasks in unknown environments. It requires a large
amount of common-sense knowledge, that humans possess,
to succeed in these tasks. We present SayNav, a new approach5

that leverages human knowledge from Large Language Mod-
els (LLMs) for efficient generalization to complex naviga-
tion tasks in unknown large-scale environments. SayNav uses
a novel grounding mechanism, that incrementally builds a
3D scene graph of the explored environment as inputs to10

LLMs, for generating feasible and contextually appropriate
high-level plans for navigation. The LLM-generated plan is
then executed by a pre-trained low-level planner, that treats
each planned step as a short-distance point-goal navigation
sub-task. SayNav dynamically generates step-by-step instruc-15

tions during navigation and continuously refines future steps
based on newly perceived information. We evaluate SayNav
on multi-object navigation (MultiON) task, that requires the
agent to utilize a massive amount of human knowledge to ef-
ficiently search multiple different objects in an unknown en-20

vironment. We also introduce a benchmark dataset for Mul-
tiON task employing ProcTHOR framework that provides
large photo-realistic indoor environments with variety of ob-
jects. SayNav achieves state-of-the-art results and even out-
performs an oracle based baseline with strong ground-truth25

assumptions by more than 8% in terms of success rate, high-
lighting its ability to generate dynamic plans for successfully
locating objects in large-scale new environments.

1 Introduction
Finding multiple target objects in a novel environment is a30

relatively easy task for a human but a daunting task for an
autonomous agent. Given such a task, humans are able to
leverage common-sense priors like room layouts and plausi-
ble object placement to infer likely locations of objects. For
example, there are higher chances of finding a pillow on the35

bed in the bedroom and a spoon on the dining table or in
the kitchen. Humans are also capable of dynamically plan-
ning and adjusting their search strategies and actions based
on new visual observations during exploration in a new en-
vironment. For example, a human would search for a spoon40

first instead of a pillow if entering a kitchen.
Such reasoning and dynamic planning capabilities are

essential for an autonomous agent to accomplish complex

navigation tasks in novel settings, such as searching and
locating specific objects in new houses. However, current 45

learning-based methods, with the most popular being deep
reinforcement learning (DRL) (Anderson et al. 2018; Chap-
lot et al. 2020; Khandelwal et al. 2022), require massive
amounts of training for the agent to achieve reasonable per-
formance even for simpler navigation tasks, such as finding 50

a single object (object-goal navigation) or reaching a single
target point (point-goal navigation) (Anderson et al. 2018).
Moreover, significant computational resources are needed to
replicate human ability to generalize to new environments.
Such computational demands impede the development of an 55

autonomous agent to efficiently conduct complex tasks at
unknown places.

In this paper, we propose SayNav – a new approach to
leverage common-sense knowledge from Large Language
Models (LLMs) for efficient generalization to complicated 60

navigation tasks in unknown large-scale environments. Re-
cently, agents equipped with LLM-based planners have
shown remarkable capabilities to conduct complex manip-
ulation tasks with only a few training samples (Ahn et al.
2022; Song et al. 2022). SayNav follows this trend of utiliz- 65

ing LLMs in developing generalist planning agents specifi-
cally for navigation tasks. To fully demonstrate and validate
SayNav’s capabilities, we choose a complex navigation task,
multi-object navigation (MultiON). For this task, the agent
needs to efficiently explore a new 3D environment to locate 70

multiple different objects given the names of these objects.
This task requires a large amount of prior knowledge and
dynamic planning capabilities (similar to humans) for suc-
cess.

MultiON task has emerged recently as a generalization of 75

the Object-goal Navigation task. It was introduced by (Wani
et al. 2020) as a task of “navigation to an ordered sequence
of objects” and most of the other works on MultiON fol-
low the same definition. (Gireesh et al. 2023) dropped the
constraint of having a ordered sequence of the given objects 80

and defined the goal as to localize certain number of objects
in any order. This is how we also define our MultiON task
as it poses much larger planning challenges and task com-
plexities than the previous definition. Following the trend in
MultiON task, we will be using three different objects as the 85

targets for each episode for experiments. Note that SayNav
is capable of searching for any number of objects in the en-



Figure 1: SayNav example: The robot uses LLM-based planner to efficiently find one target object (laptop) in a new house.

vironment.
The key innovation of SayNav is to incrementally build

and expand a 3D scene graph of the new environment90

using perceived information during exploration. It then
grounds feasible and contextually appropriate knowledge
from LLMs which is used by the agent for navigation. This
new grounding mechanism ensures that LLMs adhere to the
physical constraints in the new environment, including the95

spatial layouts and geometric relationships among perceived
entities. 3D scene graphs (Armeni et al. 2019; Kim et al.
2019; Rosinol et al. 2021; Hughes et al. 2022; Wald et al.
2020; Wu et al. 2021) have recently emerged as powerful
high-level representations of 3D large-scale environments to100

support real-time decisions in robotics. A 3D scene graph is
a layered graph which represents spatial concepts (nodes)
at multiple levels of abstraction (such as objects, places,
rooms, and buildings) with their relations (edges). We uti-
lize this 3D scene graph representation to ground LLMs in105

the current environment, which is used to continuously build
and refine the search plan for the agent during navigation.

Specifically, SayNav utilizes LLMs to generate step-by-
step instructions on the fly, for locating target objects dur-
ing navigation. To ensure feasible and effective planning in110

a dynamic manner, SayNav continuously extracts and con-
verts a subgraph (from the current 3D scene graph) into a
textual prompt to be fed to the LLMs. This extracted sub-
graph includes spatial concepts in the local region centered
around the current position of the agent. The LLM then plans115

next steps based on this subgraph, such as inferring likely
locations for the target object and prioritizing them. This
plan also includes conditional statements and fallback op-
tions when any of the steps is unable to achieve the goal.
For example, if the agent is not able to find the laptop on the120

desk, it will go to a next likely location (bed) in a bedroom.
SayNav also leverages LLMs to augment and refine the

scene graph during navigation, such as annotating the room
type based on current perceived objects. This improves the
hierarchical organization of semantic information in the125

scene graph, that can support better planning. SayNav com-
putes the feasibility of completing the current goal based on
the room type which helps in better optimization of plan. For
example, it can skip the restroom when looking for a spoon,

but can come back later if needed. 130

SayNav only requires a few examples via in-context learn-
ing (Brown et al. 2020a; Ouyang et al. 2022) for configur-
ing LLMs to conduct high-level dynamic planning to com-
plicated multi-object navigation tasks in new environments.
The LLM-generated plan is then executed by a pre-trained 135

low-level planner that treats each planned step as a short-
distance point-goal navigation sub-task (such as moving to
perceived object A). This decomposition reduces the plan-
ning complexity of the navigation task, because the sub-
tasks planned by LLMs are simple enough for low-level 140

planners to execute successfully.
Figure 1 illustrates an example of SayNav utilizing LLMs

to efficiently explore a new environment and locate one (lap-
top) of the three target objects. The agent first looks around
(i.e., observes to build the scene graph) and identifies what 145

type of room it starts from. After checking potential loca-
tions of the target objects in the room, the agent does not
find any target. Then it decides to go through the door to
move to another room. The agent continuously expands the
scene graph during exploration and realizes that the neigh- 150

bor room is a living room. There, it finds one target on the
table and continues searching for other two objects.

The main contributions are summarized as follows.

1. We present, to the best of our knowledge, the first
LLM-based high-level planner specifically for naviga- 155

tion tasks in large-scale unknown photo-realistic environ-
ments. The proposed LLM planner incrementally gener-
ates step-by-step instructions in a dynamic manner dur-
ing navigation. The instructions generated from LLMs
during navigation are consistent and non-redundant. 160

2. We propose a novel grounding mechanism to LLMs for
navigation in new large-scale environments. SayNav in-
crementally builds and expands a 3D scene graph during
exploration. Next-step plans are generated from LLMs,
by utilizing text prompts based on a selected portion 165

(subgraph) of the scene graph. Parts of the scene graph
are also continuously refined and updated by LLMs.

3. We introduce a benchmark dataset for MultiON task
across different houses for our evaluation and future use
by researchers. 170



2 Related Work
In this section, we provide a brief review on related works
in visual navigation, high-level planning with LLMs for au-
tonomous agents and MultiON.

Visual Navigation in New Environments is a fundamen-175

tal capability for many applications for autonomous agents.
Recent learning-based approaches with DRL methods have
shown great potential to outperform classical approaches
based on SLAM (simultaneous localization and mapping)
and path planning techniques, on different visual naviga-180

tion tasks (Mishkin et al. 2019). These navigation tasks in-
clude point-goal navigation (Wijmans et al. 2019), image-
goal navigation (Zhu et al. 2017), and object-goal navigation
(Chaplot et al. 2020).

However, these methods generally require at least hun-185

dreds of millions of iterations (Wijmans et al. 2019) for
training agents to generalize in new environments. This en-
tails high cost in terms of both data collection and computa-
tion. In addition, it hinders the development of autonomous
agents that can conduct more complex navigation tasks, such190

as multi-object navigation and cordon and search, that re-
quires the ability to exploit common-sense knowledge and
plan dynamically in novel environments.

Leveraging common-sense knowledge from LLMs allows
us to avoid the high cost of training as in the previous195

learning-based methods. By effectively grounding LLMs
(such as ChatGPT) via text prompting, our approach en-
ables efficient high-level planning for visual navigation in
unknown environments. To better demonstrate and evalu-
ate our proposed method, we use multi-object navigation,200

which is more complex than previous navigation tasks such
as object-goal navigation. The multi-object navigation task
demands common-sense knowledge, as humans do, to ef-
ficiently search for multiple different objects in large-scale
unknown environments.205

High-Level Planning with LLMs has become an emer-
gent trend in the robotics field. LLMs by virtue of both train-
ing on internet scale data and instruction tuning have demon-
strated excellent capabilities to perform zero/few shot learn-
ing for unseen tasks (Zhao et al. 2023; Brown et al. 2020b).210

Recent instruction tuned models such as ChatGPT have fur-
ther shown strong capabilities to follow natural instructions
expressed as prompts (Chung et al. 2022; Peng et al. 2023).

Recent works in autonomy have used LLMs and demon-
strated significant progress (Ahn et al. 2022; Song et al.215

2022; Huang et al. 2022; Liu et al. 2023; Driess et al.
2023; Brown et al. 2020a; Ouyang et al. 2022) in incorpo-
rating human knowledge, that enables efficient training of
autonomous agents for tasks such as mobile manipulation.
These works reduce the learning complexity by using a two-220

level planning architecture. For each assigned task, they uti-
lize LLMs to generate a high-level step-by-step plan. Each
planned step, formulated as a much simpler sub-task, can be
executed by an oracle (ground truth) or a pre-trained low-
level planner that maps one step into a sequence of primitive225

actions. Agents with these LLM-based planners are able to
perform a new task with only a few training examples via in-
context learning (Brown et al. 2020a; Ouyang et al. 2022).

However, these LLM-based planners have two major lim-
itations for visual navigation tasks in new large-scale envi- 230

ronments. First, the grounding mechanisms in these meth-
ods (Ahn et al. 2022; Song et al. 2022; Huang et al. 2022;
Liu et al. 2023) are designed for small-scale environments.
For example, works such as (Song et al. 2022; Singh et al.
2023) have focused on the AI-THOR based environment 235

that consists of only a single room. Moreover, these meth-
ods only rely on detection of specific objects. They do not
consider room layout and the topological arrangement of
perceived entities inside the room, which are important to
ground LLMs in the physical environment for visual naviga- 240

tion tasks. Therefore, knowledge extracted from LLMs us-
ing these methods might not be contextually appropriate to
an agent for navigation in large-scale settings, such as multi-
room houses.

Second, some of these LLM-based planners typically gen- 245

erate a multi-step long-horizon plan in the beginning for
the assigned task, which is not feasible for navigating in
unknown environments. They also lack the capability to
change the plan during task execution. In contrast, an effec-
tive search plan for navigation in new places is required to 250

be incrementally generated and updated during exploration.
Future actions are decided based on current perceived scenes
with the memory of previously-visited regions.

SayPlan (Rana et al. 2023) addresses the first issue by
using a pre-built ground-truth 3D scene graph of a known 255

large-scale place, to ground LLMs for high-level task plan-
ning. However, the planning complexity for SayPlan is sim-
plified due to the availability of the entire ground-truth scene
graph prior to task execution. In other words, SayPlan can-
not be used for task planning in unknown environments. 260

Our approach, SayNav, is designed to leverage LLMs
specifically for visual navigation in unknown large-scale en-
vironments. We propose a new grounding mechanism that
incrementally builds a 3D scene graph of the explored en-
vironment as inputs to LLMs, for generating the high-level 265

plans. SayNav also dynamically generates step-by-step in-
structions during navigation. It continuously refines future
steps based on newly perceived information via LLMs.

The only work we found to leverage LLMs specifically
for navigation tasks in unknown environments is L3MVN 270

(Yu et al. 2023). It uses LLMs to find the nearby semantic
frontier based on detected objects, for expanding the explo-
ration area to eventually find the target object. For exam-
ple, moving to the (sofa, table) region which is more likely
to have TV. In other words, it utilizes LLMs to hint to the 275

next exploration direction. It does not use LLMs as a full
high-level planner, that generates step-by-step instructions.
In contrast, our SayNav uses the 3D scene graph to ground
LLMs as a high-level planner. Our LLM-based planner gen-
erates the instructions in a dynamic manner, and considers 280

its prior planned steps to generate better future plans.
MultiON task has attracted attention of researchers in the

last few years. As already mentioned, most of them (Chen
et al. 2022; Zeng et al. 2023; Marza et al. 2022, 2023) have
considered pre-defined sequence of objects to be localized 285

which simplifies the task by a great extent. Moreover, they
employ pure DRL-based approaches and hence suffer from



Figure 2: The overview of our SayNav framework.

issues discussed before. (Gireesh et al. 2023) is the only
work to consider MultiON without any sequence of objects
but again makes use of a DRL-based approach.290

3 SayNav
We now describe SayNav’s framework as well as the multi-
object navigation task.

3.1 Task Definition
We choose Multi-Object Navigation task, to validate Say-295

Nav. The goal of this task is to navigate the agent in a
large-scale unknown environment in order to find an in-
stance for each of three predefined object categories (such
as ”laptop”, ”tomato”, and ”bread”). The agent is initialized
at a random location in the environment and receives the300

goal object categories (oi, oj , ok) as input. At each time
step t during navigation, the agent receives environment
observations et and takes control actions at. The observa-
tions include RGBD images, semantic segmentation maps,
and the agent’s pose (location and orientation). The action305

space includes five control commands: turn-left, turn-
right, move-forward, stop, and look-around. Both turn-
left and turn-right actions rotate the agent by 90 degrees.
The move-forward action moves the agent by 25 centime-
ters. The task execution is successful if the agent locates (by310

detection) all three objects within a time period.
Note that multi-object navigation task poses much larger

planning challenges and task complexities than previous
navigation tasks, which either look for a single object (Chap-
lot et al. 2020) or reach a single target point (Wijmans et al.315

2019). For example, the agent needs to dynamically set up
the search plan based on the prioritized order among three
different objects. This plan can also be changed during ex-
ploration in a new house with unknown layouts. As shown
in Figure 1, the agent first realizes that it is in the bedroom320

and then decides to prioritize places (such as the table) to
locate the laptop inside this room. On the other hand, if the
agent had started in the kitchen, it would have been more
efficient to search for the fork and spoon first. Therefore,
this new task requires extensive semantic reasoning and dy-325

namic planning capabilities, as what humans possess, for an

autonomous agent to explore in large-scale unknown envi-
ronments.

3.2 Overview
SayNav’s framework is illustrated in Figure 2. The cor- 330

responding pseudo-code is in Algorithm 1. It includes
three modules: (1) Incremental Scene Graph Generation,
(2) High-Level LLM-based Dynamic Planner, and (3) Low-
Level Planner. The Incremental Scene Graph Generation
module accumulates observations received by the agent to 335

build and expand a scene graph, which encodes semantic en-
tities (such as objects and furniture) from the areas the agent
has explored. The High-Level LLM-based Dynamic Planner
continuously converts relevant information from the scene
graph into text prompts to a pre-trained LLM, for dynam- 340

ically generating short-term high-level plans. Each LLM-
planned step is executed by the Low-Level Planner to gen-
erate a series of control commands for execution.

3.3 Incremental Scene Graph Generation
This module continuously builds and expands a 3D scene 345

graph of the environment being explored. A 3D scene graph
is a layered graph which represents spatial concepts (nodes)
at multiple levels of abstraction with their relations (edges).
This representation has recently emerged as a powerful
high-level abstraction for 3D large-scale environments in 350

robotics. Here we define four levels in the 3D scene graph:
small objects, large objects, rooms, and house. Each object
node is associated with its 3D coordinate and room node is
associated with its bounds. Every door is treated as an edge
between two rooms, which also has an associated 3D coor- 355

dinate. All other edges reveal the topological relationships
among semantic concepts across different levels. Figure 3
shows one example of our scene graph. Mathematically, our
scene graph can be represented as a set of 4 kinds of triplets:

{(sh, ‘near’, li), (li, ‘in’, rj), (rj , djk, rk), (rj , ‘in’, H)}

where, sh: small object, li: large object, rj , rk: rooms (i ̸= 360

j), djk: door between rj & rk, H: house (root node).
The scene graph is built using environmental observations

received by the agent during exploration. The depth of each
segmented object can be obtained based on RGBD images
and semantic segmentation images. The 3D coordinate of 365

each perceived object can then be estimated by combining
its depth information at multiple timestamps and the corre-
sponding agent’s poses.

We also utilize LLMs to augment and refine high-level
abstractions of the scene graph. For example, we use LLMs 370

to annotate and identify the spatial entity (room type) at the
room level of the graph based on its connected objects at
lower levels. For instance, a room is probably a bedroom if
it includes a bed. The bounds of a room are calculated based
on the detection of walls and floor of the room. 375

SayNav also uses the 3D scene graph to support mem-
ory for future planning. For example, it automatically anno-
tates the rooms that have been investigated. Therefore, it will
not generate repeated plans when the agent revisits the same
room during exploration. 380



Algorithm 1: SayNav
Input : Start location of robot start location

house ID house id
Target Objects target objects

1 unfound objects← target objects
2 spawn robot(start location)
3 SceneGraph←

create scene graph(house id)
4 while len(unfound objects) > 0 do
5 objs found, observations←

look around()
6 update unfound objects(objs found)
7 room type←

identify room type(observations)
8 SceneGraph.update(room type, observations)
9 plan needed← is feasible(room type)

10 if plan needed then
11 subgraph← SceneGraph.
12 extract subgraph(room type)
13 plan←

query llm for plan(subgraph,
unfound objects)

14 for action in plan do
15 if action.type = ’navigate’ then
16 navigate to(action.target location)
17 end
18 else if action.type = ’look’ then
19 objs found, observations←

look around()
20 SceneGraph.update(observations)
21 update unfound objects(objs found)
22 end
23 end
24 end
25 if len(unfound objects) > 0 then
26 if SceneGraph.all doors explored() then
27 return ’Task Failed’
28 end
29 door ←

find next unexplored door()
navigate to(door)

30 end
31 end
32 return ’Success’

3.4 High-Level LLM-based Dynamic Planner

Similar to previous works in LLM-based planning, SayNav
utilizes a two-level planning architecture to reduce the learn-
ing complexity of the assigned task. However, instead of
generating a complete high-level plan for the entire task in385

the beginning, SayNav utilizes LLMs to incrementally gen-
erate a short-term plan regularly, based on current obser-
vations and the memory of previously-visited regions. This
high-level planner can be set-up using only a few training
examples via typical in-context learning procedures (Brown390

et al. 2020a; Ouyang et al. 2022) (as shown in Figure 4).

Figure 3: An example of our scene graph.

Our high-level LLM-based dynamic planner extracts a
subgraph from the full 3D scene graph and converts it into
text prompts, which are fed to an LLM. The extracted sub-
graph includes spatial concepts in the local region centered 395

around the current position of the agent. We implemented
the LLM prompts similar to (Singh et al. 2023), which con-
structs programming language prompts based on the text la-
bels in the extracted subgraph. Once prompts are received,
the LLM planner outputs short-term step-by-step instruc- 400

tions, as pseudo code. The generated plan provides an effi-
cient search strategy within the current perceived area based
on human knowledge, prioritizing locations to visit inside
the room based on the likelihoods of target objects being
discovered. For example, LLM may provide a plan to first 405

check the desk and then the bed to find the laptop in the
bedroom. Figure 4 shows the prompt structure used to gen-
erate the plan. We provide two in-context examples inside
the prompt to constrain the LLM-generated plans. For in-
stance, we constrain each step to generate a navigate or look 410

function call with arguments and a high-level comment.
The LLM-based planner also extends and updates the plan

when the previous plan fails or the task goal (finding three
objects) is not achieved after the previous short-term plan
executes. 415

3.5 Low-Level Planner
The Low-Level Planner converts each LLM-planned step
into a series of control commands for execution. To inte-
grate two planners, SayNav formulates each LLM-planned
step as a short-distance point-goal navigation (POINTNAV) 420

sub-task for the low-level planner. The target point for each
sub-task, such as moving from the current position to the ta-
ble in the current room, is assigned by the 3D coordinate of
the object (e.g. table) described in each planned step.

SayNav’s low-level planner takes the RGBD images (res- 425

olution 320 × 240) and the agent’s pose (location and
orientation) as inputs, and it outputs move forward,
turn left and turn right actions to control the robot
following standard POINTNAV settings. Note that large-
scale DRL approaches typically take 108 to 109 simula- 430

tion steps during training to solve POINTNAV tasks in sim-
ulation environments (Wijmans et al. 2019; Weihs et al.
2020), which poses serious training requirements and com-
putation demands. In SayNav, however, the two-level plan-
ning architecture simplifies the job of the low-level planner. 435

The low-level planner mostly outputs control commands for



Figure 4: Prompt used to create the search plan for a partic-
ular room

short-range movements. The LLM-based high-level planner
is also robust to failures in the low-level planner, by making
regular plan updates. In this way, the training load required
on the low-level planner can be greatly reduced.440

Encouraged by the success of imitation learning (IL)
on navigation tasks under resource constraints (Ramrakhya
et al. 2022, 2023; Shah et al. 2023), we investigate a sam-
ple efficient IL-based method to train the low-level planner
for the agent in SayNav. This low-level planner is trained445

from scratch (without pretraining) on only 2800 episodes or
7× 105 simulation steps. Specifically, the low-level planner
is trained using the DAGGER algorithm (Ross et al. 2011) to
follow a shortest path oracle as the expert. Despite the fact
that the shortest path oracle lacks the exploration behavior450

required to solve the POINTNAV task in complex environ-
ments (e.g. multiple rooms), we find that it helps the agent to
learn short-distance navigation skills very quickly, without
human-in-the-loop. More details about our low-level plan-
ner are available in the supplementary material.455

4 Experimental Results
Dataset: Most prior Embodied AI simulators such as AI2-
THOR (Kolve et al. 2017) or Habitat (Szot et al. 2021) are
either based on environments with single rooms or lack the
natural placement of objects within the environment or lack460

the ability to interact with the objects. For our experiments,
we opted for the recently introduced ProcTHOR framework
(Deitke et al. 2022), which is built on top of the AI2-THOR
simulator. ProcTHOR is capable of procedurally generating
full floor plans of a house given a room specification (ex: a465

house with 2 bedrooms, 1 kitchen and 1 bathroom). It also
populates each floorplan with 108 object types, with realis-
tic, physically plausible, and natural placements. The scenes
in ProcTHOR are interactive which allows to change the
state, lighting and texture of objects, posing a bigger chal-470

lenge for perception and a broader scope for future work.
We build a dataset of 132 houses with 3-10 rooms each and
select three objects for each house to conduct multi-object
navigation task. More details about our dataset are available
in the supplementary material. 475

Metrics: We report two standard metrics that are used for
evaluating navigation tasks: Success Rate (SR) and Success
Weighted by Path Length (SPL) (Anderson et al. 2018). SR
measures the percentage of cases where the agent is able to
find all the three objects successfully, while SPL normal- 480

izes the success by ratio of the shortest path to actual path
taken. We use the minimum of the shortest path from the
starting point to permutations of all the target objects. In ad-
dition to these two metrics, we measure the similarity be-
tween the object ordering obtained by the agent and that by 485

the ground-truth. The ground-truth object ordering gives an
idea of how a perfect agent would have explored the space
by first identifying objects that are highly probably in current
room/scene-graph and then exploring other rooms. We use
the Kendall distance metric (Lapata 2006), which computes 490

the distance between two rankings based on the number of
disagreeing pairs. We use the Kendall Tau that converts this
distance into a correlation coefficient, and report it over the
successful episodes (all three targets are located).

Implementation Details: We use the default robot with 495

head-mounted RGBD camera in the AI2-Thor simulator.
The camera has 320× 240 resolution with 90°field-of-view
(FoV). The details of the robot observations and actions can
be referred to the section 3.1.

We conduct experiments with 2 different LLMs: gpt-3.5- 500

turbo and gpt-4. For training the low-level planner, we used
the IL method, described in the section 3.5. It achieves
84.5% POINTNAV success rate (success radius 1.5m, max
300 steps) and 0.782 SPL in unseen ProcThor-10k-val
scenes with random start and goal locations. For short-range 505

movements within a single room, performance increases to
98.5% success rate and 0.930 SPL. More details are avail-
able in the supplementary material.

Note that SayNav consists of three modules– incremen-
tal scene graph generator, LLM-based planner, and a low- 510

level planner. The major goal of our experiments is to fully
validate and verify the LLM-based planning capabilities in
SayNav for MultiON. Therefore, for each of the other two
modules, we implemented an alternative option which uses
ground truth information to avoid any error within that mod- 515

ule. This allows us to conduct ablation study for determining
the impact of each module on the overall performance.

First, we allow the scene graph to be generated using
ground truth (GT) instead of visual observations (VO). We
have described the generation of scene graph using VO in 520

section 3.3. The GT option directly uses the ground truth in-
formation of surrounding objects, including 3D coordinates
and geometric relationships among objects, to incrementally
build the scene graph during exploration. This option avoids
any association and computation ambiguity from processing 525

on visual observations, such as computing 3D coordinates
for each object based on RGBD image and its segmentation.

Second, we use an oracle planner (OrNav) as the low-
level planner instead of our efficiently-trained IL agent



Scene LL SR SPL Kendall
Graph Planner (%) Tau

Baseline 56.06 0.49

GT OrNav 95.35 0.43 0.70
SayNav GT PNav 80.62 0.32 0.72
(gpt-3.5) VO OrNav 71.32 0.48 0.56

VO PNav 60.32 0.34 0.62
GT OrNav 93.93 0.46 0.76

SayNav GT PNav 84.09 0.36 0.78
(gpt-4) VO OrNav 69.80 0.47 0.76

VO PNav 64.34 0.33 0.78

Table 1: Results of SayNav on multi-object navigation task.
Baseline uses a PNav agent to navigate along the shortest
route among targets based on ground-truth positions; GT
and VO build the scene graph from ground-truth object/-
room locations and visual observations provided by the sim-
ulator respectively; OrNav and PNav use oracle and IL-
learned low-level (LL) planner respectively for navigating
between the points assigned by the high-level planner.

(PNav). We have described the implementation of PNav in530

the section 3.5. For OrNav, we use an A* planner which has
access to the map of the environment. Given a target loca-
tion, it can plan the shortest path from the agent’s current
location to the target.

Baseline: (Gireesh et al. 2023) didn’t release their source535

code or the dataset used by them, so it is not straightfor-
ward to compare our approach with them. Hence, we im-
plemented a strong baseline method that could potentially
reflect the upper bound of the performance of a learning-
based agent using the same amount of training data as ours.540

The baseline agent uses two privileged information that Say-
Nav doesn’t have access to. First, it has access to the opti-
mal order of target objects which achieves the shortest path.
This simplifies the MultiON task to become a series of Ob-
jectNav tasks. Second, as a PointNav policy performs bet-545

ter than an ObjectNav policy, we also provide the baseline
agent access to the ground truth coordinate of each target
object, which then simplifies the task to a series of Point-
Nav tasks. In other words, we implement a PointNav agent
to navigate through ground truth points of the objects in the550

optimal order. However, even with a reasonable PNav agent
(98.5% SR for short-distance navigation), SR decreases sub-
stantially for our task. It is because of the difficulty in suc-
cessful execution of multiple (sequential) point-goal naviga-
tion sub-tasks, including cross-room movements.555

4.1 Quantitative Results
Table 1 shows the results of the baseline along with differ-
ent implementation choices in SayNav. Note for the base-
line method, even after using ground-truth object locations
in optimal order, SR is only 56.06%, which indicates the dif-560

ficulty of multi-object navigation task. In comparison, Say-
Nav, without using any ground truth, achieves a higher SR
(60.32% and 64.34% with gpt-3.5-turbo and gpt-4 respec-
tively). This improvement highlights the superiority of Say-

Nav in navigating in large-scale unknown environments. 565

Figure 5: Visualization of an episode with SayNav (OrNav
+ GT) for multi-object object navigation task.

SR: With SayNav, we observe that the best performance
is achieved when using scene graph generated by ground-
truth object/room location from the simulator (GT) along
with OrNav. When we replaced GT with VO, we do ob-
serve a loss in performance. We found that the drop in SR 570

can be associated with various challenges encountered in
any perception based algorithms. The inaccurate estimation
of objects’ 3D positions due to partial observations can lead
to failures in detecting targets and navigation. In addition,
we remove objects less than 20 pixels on semantic segmen- 575

tation observations for more practical behavior. Therefore,
very small objects can also be missed-out while building the
scene graph from visual observations. We also observed a
specific challenge in VO associated with estimating the lo-
cation of glass doors. From the depth map, the depths of 580

visible objects behind the glass door represent the depths of
the actual physical door, which fails the estimation of the lo-
cation of the door. A similar trend can be found from results
with GT & PNav and with VO & PNav. When replacing
OrNav with PNav, we also observe a fall in performance. 585

This is obvious as PNav doesn’t access any ground truth in-
formation, as compared to OrNav.

However, even with all these challenges, SayNav out-
performs the oracle-based baseline and succeeds in multi-
object navigation tasks. We believe it is due to LLM-based 590

dynamic planning capabilities, with the grounding mecha-
nism based on incremental scene graph generation. It lever-
ages common-sense knowledge, as humans do, to efficiently



search multiple different objects in an unknown environ-
ment. It also refines or corrects the plan in case of any failure595

in a planned step.
SPL: Looking at the SPL metric, we see a drop in Say-

Nav as compared to the baseline. Note that SPL reflects the
length of the path taken by the agent as compared to the
shortest possible path. For example, SPL=1 for an episode600

would mean that the agent, starting from initial position,
goes straight to the targets along the shortest path in the op-
timal order with zero exploration which is practically im-
possible in an unknown environment. As a result of access
to the ground-truth object locations in optimal order, it be-605

comes obvious for the baseline to have higher SPL. From
the results, we also observe that the low-level planner has
the major impact on SPL. The system achieves higher SPL
with OrNav as compared to PNav.

Kendall-Tau: The Kendall-Tau (τ ) metric measures the610

similarity between the order of objects as located by the
agent and the optimal ordering based on the ground-truth.
It shows the importance of the knowledge provided by the
LLMs, for finding the optimal plan. We observe that the or-
dering of the objects is not affected much by the low-level615

planner. This is reasonable since the ordering should ma-
jorly depend on the plans generated by the high-level plan-
ner. As expected, the score drops when we replace GT with
VO since LLM uses scene-graph to generate the plan. The
considerable improvement in the score with gpt-4 (vs gtp-620

3.5-turbo) shows that using a better LLM enables an im-
provement in use of common-sense priors and yields more
optimal ordering. Also, note that Kendall Tau metric doesn’t
apply to the baseline since it already has access to the opti-
mal order of targets.625

4.2 Qualitative Results
We show an example of a typical episode in Figure 5 where
the agent is asked to locate an alarm-clock, a laptop, and a
cellphone in an unknown house. The agent happens to start
in the kitchen (determined by LLM based on perceived ob-630

jects). The planner reasons that it is unlikely to find either of
the objects there, so it decides to go to another room through
a door. Then, it comes to a living-room where it is able to lo-
cate the laptop and cellphone. The third object still remains
unfound, so it again decides to go to another room via a door.635

Eventually, it locates the alarm-clock in the final room. The
complete demo-video for this example can be found in the
supplementary material.

5 Limitations and Future Work
This section discusses the limitations of our work and some640

ideas to improve it in future. As mentioned before, our scene
graph generation faces various challenges encountered in
any perception-based algorithms. In addition to the glass
door issue that we described earlier, Figure 6 shows a fail-
ure case for another issue due to visual observations. Note,645

in our experiments, the agent is not equipped with arms to
open/close the door. Therefore, it only can go through open
doors to move to other rooms. In this episode, the agent from
most of the positions in the room cannot observe that the

Figure 6: A failure example: The left picture shows the RGB
image from the camera mounted on the agent and the right
picture shows the top-down view of the house. Due to ge-
ometry of the room, agent is unable to observe that the
door is open and hence, unable to navigate through the door
(marked with yellow rectangle).

door is open (which connects to the other room that has the 650

target object). The robot repeatedly tries to go towards the
center of the current room and refine the scene graph. How-
ever, it is still not able to identify the ”open” status for the
door, and therefore, it fails to achieve the goal in the end.

A better mechanism to verify attributes (open/close) as- 655

sociated with the object node (door) in the scene graph can
help to alleviate this case. For example, the agent can move
closer to the door, verify visual observations from all possi-
ble angles, and compare the depth observation from the door
to depth information from the wall (closed doors shall have 660

nearly identical depths as the connected wall).
In the future, we also plan to evaluate SayNav with an ac-

tual semantic segmentation network such as SAM (Ji et al.
2023). This will further study the impact of noise in the per-
ception sensor and the robustness of SayNav. We would also 665

like to deploy SayNav on a real robot for experiments. It
will help to validate the generalization capability of Say-
Nav from simulation to the real world. It will also be in-
teresting to explore the possibility of using an open-source
instruction-tuned LLM, such as Vicuna (Peng et al. 2023) 670

instead of GPT-4 and GPT-3.5 in SayNav. We believe that it
may generate more contextually-suitable plans for SayNav
using these custom tuned LLMs.

6 Conclusion

We present SayNav, a new approach for efficient general- 675

ization to complex navigation tasks in unknown large-scale
environments. SayNav incrementally builds and converts a
3D scene graph of the explored environment to LLMs, for
generating dynamic and contextually appropriate high-level
plans for navigation. We evaluate SayNav on the multi- 680

object navigation task, that requires the agent to efficiently
search multiple different objects in an unknown environ-
ment. Our results demonstrate that SayNav even outper-
forms a strong oracle based Point-nav baseline (64.34% vs
56.06%), for successfully locating objects in large-scale new 685

environments. The benchmark dataset and the source code
will be released upon the acceptance of the article.



References
Ahn, M.; et al. 2022. Do as i can, not as i say: Grounding
language in robotic affordances. In abs/2204.01691. ArXiv.690

Anderson, P.; et al. 2018. On evaluation of embodied navi-
gation agents. arXiv preprint arXiv:1807.06757.
Armeni, I.; et al. 2019. 3d scene graph: A structure for uni-
fied semantics, 3d space, and camera. In CVPR.
Brown, T.; et al. 2020a. Language models are few-shot695

learners. NeurIPS, 33: 1877–1901.
Brown, T.; et al. 2020b. Language models are few-shot
learners. NeurIPS, 33: 1877–1901.
Chaplot, D.; et al. 2020. Object goal navigation using goal-
oriented semantic exploration. NeurIPS, 33: 4247–4258.700

Chen, P.; et al. 2022. Learning Active Camera for Multi-
Object Navigation. In NeurIPS.
Chung, H. W.; et al. 2022. Scaling instruction-finetuned lan-
guage models. arXiv preprint arXiv:2210.11416.
Deitke, M.; et al. 2022. ProcTHOR: Large-Scale Embodied705

AI Using Procedural Generation. NeurIPS, 35: 5982–5994.
Driess, D.; et al. 2023. Palm-e: An embodied multimodal
language model. In abs/2303.03378. ArXiv.
Gireesh, N.; et al. 2023. Sequence-Agnostic Multi-Object
Navigation. arXiv preprint arXiv:2305.06178.710

Huang, W.; et al. 2022. Inner monologue: Embodied
reasoning through planning with language models. In
abs/2207.05608. ArXiv.
Hughes, N.; et al. 2022. Hydra: A real-time spatial percep-
tion engine for 3d scene graph construction and optimiza-715

tion. In Robotics: Science and Systems.
Ji, W.; et al. 2023. Segment anything is not always perfect:
An investigation of sam on different real-world applications.
arXiv preprint arXiv:2304.05750.
Khandelwal, A.; et al. 2022. Simple but effective: Clip em-720

beddings for embodied ai. In CVPR, 14829–14838.
Kim, U.; et al. 2019. 3-d scene graph: A sparse and seman-
tic representation of physical environments for intelligent
agents. IEEE Transactions on cybernetics, 50(12): 4921–
4933.725

Kolve, E.; et al. 2017. Ai2-thor: An interactive 3d environ-
ment for visual ai. arXiv preprint arXiv:1712.05474.
Lapata, M. 2006. Automatic evaluation of information or-
dering: Kendall’s tau. Computational Linguistics, 32(4):
471–484.730

Liu, B.; et al. 2023. Llm+ p: Empowering large lan-
guage models with optimal planning proficiency. In
abs/2304.11477. ArXiv.
Marza, P.; et al. 2022. Teaching Agents how to Map: Spatial
Reasoning for Multi-Object Navigation. In IROS.735

Marza, P.; et al. 2023. Multi-Object Navigation with dynam-
ically learned neural implicit representations. In ICCV.
Mishkin, D.; et al. 2019. Benchmarking classic and learned
navigation in complex 3d environments. In abs/1901.10915.
ArXiv.740

Ouyang, L.; et al. 2022. Training language models to fol-
low instructions with human feedback. In abs/2203.02155.
ArXiv.
Peng, B.; et al. 2023. Instruction tuning with gpt-4. arXiv
preprint arXiv:2304.03277. 745

Ramrakhya, R.; et al. 2022. Habitat-web: Learning embod-
ied object-search strategies from human demonstrations at
scale. In CVPR, 5173–5183.
Ramrakhya, R.; et al. 2023. Pirlnav: Pretraining with imita-
tion and rl finetuning for objectnav. In CVPR, 17896–17906. 750

Rana, K.; et al. 2023. SayPlan: Grounding Large Language
Models using 3D Scene Graphs for Scalable Task Planning.
In abs/2307.06135. ArXiv.
Rosinol, A.; et al. 2021. Kimera: From slam to spatial per-
ception with 3d dynamic scene graphs. The International 755

Journal of Robotics Research, 40(12–14): 1510–1546.
Ross, S.; et al. 2011. A reduction of imitation learning and
structured prediction to no-regret online learning. In AIS-
TATS. JMLR Workshop and Conference Proceedings.
Shah, D.; et al. 2023. ViNT: A Foundation Model for Visual 760

Navigation. arXiv preprint arXiv:2306.14846.
Singh, I.; et al. 2023. Progprompt: Generating situated robot
task plans using large language models. In ICRA. IEEE.
Song, C. H.; et al. 2022. Llm-planner: Few-shot grounded
planning for embodied agents with large language models. 765

In abs/2212.04088. ArXiv.
Szot, A.; et al. 2021. Habitat 2.0: Training home assistants
to rearrange their habitat. NeurIPS, 34: 251–266.
Wald, J.; et al. 2020. Learning 3D semantic scene graphs
from 3D indoor reconstructions. In CVPR. 770

Wani, S.; et al. 2020. MultiON: Benchmarking Semantic
Map Memory using Multi-Object Navigation. In NeurIPS.
Weihs, L.; et al. 2020. Allenact: A framework for embodied
ai research. arXiv preprint arXiv:2008.12760.
Wijmans, E.; et al. 2019. Dd-ppo: Learning near- 775

perfect pointgoal navigators from 2.5 billion frames. In
abs/1911.00357. ArXiv.
Wu, S.; et al. 2021. SceneGraphFusion: Incremental 3D
scene graph prediction from RGB-D sequences. In CVPR.
Yu, B.; et al. 2023. Leveraging Large Language Models for 780

Visual Target Navigation. In abs/2304.05501. ArXiv.
Zeng, H.; et al. 2023. Multi-Object Navigation Using Poten-
tial Target Position Policy Function. IEEE Transactions on
Image Processing, 32: 2608 – 2619.
Zhao, W. X.; et al. 2023. A survey of large language models. 785

arXiv preprint arXiv:2303.18223.
Zhu, Y.; et al. 2017. Target-driven visual navigation in in-
door scenes using deep reinforcement learning. In ICRA.
IEEE.


