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Abstract

The era of foundation models has revolutionized AI research, yet Graph Foundation
Models (GFMs) remain constrained by the scarcity of large-scale graph corpora.
Traditional graph data synthesis techniques primarily focus on simplistic structural
operations, lacking the capacity to generate semantically rich nodes with meaning-
ful textual attributes—a critical limitation for real-world applications. While large
language models (LLMs) demonstrate exceptional text generation capabilities, their
direct application to graph synthesis is impeded by context window limitations,
hallucination phenomena, and structural consistency challenges. To address these
issues, we introduce GraphMaster—the first multi-agent framework specifically
designed for graph data synthesis in data-limited environments. GraphMaster
orchestrates four specialized LLM agents (Manager, Perception, Enhancement,
and Evaluation) that collaboratively optimize the synthesis process through iter-
ative refinement, ensuring both semantic coherence and structural integrity. To
rigorously evaluate our approach, we create new data-limited “Sub” variants of
six standard graph benchmarks, specifically designed to test synthesis capabilities
under realistic constraints. Additionally, we develop a novel interpretability assess-
ment framework that combines human evaluation with a principled Grassmannian
manifold-based analysis, providing both qualitative and quantitative measures of se-
mantic coherence. Experimental results demonstrate that GraphMaster significantly
outperforms traditional synthesis methods across multiple datasets, establishing a
strong foundation for advancing GFMs in data-scarce environments.2

1 Introduction

In the era of foundation models, unprecedented advances in natural language processing and computer
vision have been enabled by massive training corpora [51, 49, 52, 50, 38, 53, 60, 46]. Graph
Foundation Models (GFMs) [26, 23, 38, 53] represent a promising frontier for AI in graph-structured
data, yet their development faces a critical bottleneck: the scarcity of large-scale, diverse graph
datasets.Unlike text and image domains where data collection is relatively straightforward, gathering
and annotating graph data often requires specialized expertise and significant resources. This data
quantity constraint has become the primary challenge for training robust GFMs, particularly as model
size increases and demands exponentially more training examples for optimal performance.

Graph data synthesis offers a strategic solution to this fundamental constraint by automatically
generating new graph samples that maintain both semantic richness and structural validity. Existing
synthesis approaches, however, face substantial limitations. Edge-level operations [57, 59] manipulate
existing connections but cannot create novel nodes or patterns. Node-level mixing techniques like
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GraphMixup [47] generate synthetic nodes by interpolating features but often produce semantically
inconsistent attributes, particularly with textual features. Graph-level synthesis methods such as
G-Mixup [14] create entirely new graphs but struggle to balance global structure with local semantic
coherence. The core limitation across these traditional methods is their inability to simultaneously
preserve meaningful semantics while generating structurally valid expansions—a deficiency particu-
larly pronounced when handling text-attributed graphs (TAGs) where both connectivity patterns and
textual node features must remain coherent.

Large language models have demonstrated remarkable capabilities in understanding and generating
text [15, 9, 55, 20, 2, 40], suggesting potential for synthesizing text-attributed graphs. However,
directly applying LLMs encounters several critical challenges: standard context windows cannot
process entire graphs with numerous textual nodes [3]; LLMs excel at semantic understanding but
struggle to maintain structural consistency [10]; and without proper coordination, they tend to produce
inconsistent or hallucinated content that fails to capture the intricate balance between topology and
semantics [28]. Furthermore, in realistic scenarios with limited available data, LLMs have insufficient
examples to learn complex graph patterns [22, 39, 21].

To address these challenges, we propose GraphMaster, a novel multi-agent framework specifically
designed for graph synthesis in data-limited environments. GraphMaster decomposes the complex
synthesis task into specialized sub-tasks handled by four collaborative LLM-powered agents, each
targeting specific challenges: (1) The Manager Agent coordinates the overall process and determines
optimal synthesis strategies based on current graph characteristics, orchestrating the complex synthesis
workflow; (2) The Perception Agent analyzes graph structure and employs advanced sampling to
identify representative subgraphs processable within LLM context constraints, directly addressing
the context window limitations; (3) The Enhancement Agent generates new nodes and edges with
consistent semantics and structure, mitigating hallucination by maintaining coherence with existing
graph elements; and (4) The Evaluation Agent assesses quality based on both semantic coherence and
structural integrity, providing feedback for iterative improvement to ensure structural and semantic
consistency. This decomposition enables targeted solutions for each challenge that a single-pass LLM
approach cannot address.

Through this collaborative, iterative process, these specialized agents overcome the limitations of both
traditional methods and direct LLM applications. The multi-agent architecture enables GraphMaster
to effectively balance semantic richness with structural validity—producing high-quality synthetic
graph data even with limited training examples. By introducing modular reasoning (through task
decomposition), semantic control (via specialized agent expertise), and iterative optimization (through
feedback cycles), GraphMaster achieves synthesis capabilities beyond what single-pass approaches
can deliver.

Our contributions can be summerized as follows:

• New perspective for LLM-based TAG Synthesis: we first propose a novel multi-agent
framework from the RAG perspective to synthesize TAG under data-limited environment.
By integrating context retrieval with iterative feedback, this new perspective enables both
semantic richness and structural fidelity.

• Groundbreaking Benchmark: We introduce a standardized “Data-limited” variant testbed
for text-attributed graph synthesis and develop a dual-perspective interpretability assess-
ment—combining expert human evaluation with Grassmann manifold-based analysis—to
provide reproducible comparisons and deep semantic-structural insights.

• State-of-the-Art Performance: Extensive experiments on multiple datasets and GNN
architectures demonstrate that our method consistently outperforms existing baselines,
setting a new benchmark for data-limited TAG synthesis.

2 Background Methods

2.1 Classic Graph Data Synthesis Methods

Traditional graph data synthesis methods [7] address data scarcity through various approaches. Edge-
level operations [57] modify topology by adding or deleting connections. Node-level techniques like
GraphSMOTE [56] generate new nodes through minority class interpolation. Graph-level methods
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such as G-Mixup [14] create entirely new graph instances via graphon interpolation. Interpolation-
based approaches [35, 34] combine hidden representations to enhance model robustness. Despite their
diversity, these methods primarily focus on structural manipulations without generating semantically
meaningful textual attributes.

2.2 LLM-based Multi-Agent Systems for Data Generation

Recent LLM-powered multi-agent frameworks demonstrate capabilities for complex data generation
tasks. General collaboration systems like Self-Instruct [36] and distributed simulation platforms [29]
establish architectures for coordinated AI systems. In graph contexts, approaches like GoG [42]
and LLM-based social simulations [16] leverage semantic understanding for graph-related tasks.
However, specific applications for text-attributed graph synthesis in data-limited environments remain
largely unexplored.

2.3 Problem Formulation: Graph Data Synthesis

Text-Attributed Graphs. We formally define a text-attributed graph (TAG) as G = (V, E , X ,Y),
where V = {v1, v2, . . . , vN} is a set of N nodes, E ⊆ V × V is the set of edges with corresponding
adjacency matrix A ∈ {0, 1}N×N , X = {x1, x2, . . . , xN} is the set of textual features with each xi

corresponding to node vi ∈ V , and Y = {y1, y2, . . . , yN} represents the set of node labels where
yi ∈ {1, 2, . . . , C} for C distinct classes.

Knowledge Extraction. Given the context length constraints of LLMs, we define a knowledge
extraction function Φ : G → K that samples a representative subgraph as:

K = Φ(G) = (Vk, Ek,Xk,Yk), (1)

where Vk ⊂ V , Ek = {(vi, vj) ∈ E | vi, vj ∈ Vk}, and Xk,Yk are the corresponding text attributes
and labels. The extraction function Φ employs specialized sampling strategies to ensure K captures
both structural and semantic characteristics of G while remaining within LLM context limits.

Graph Synthesis Process. The graph synthesis process is formalized as a function Ψ : K → Gs that
generates new graph elements based on the extracted knowledge:

Gs = Ψ(K) = (Vs, Es,Xs,Ys), (2)

where Gs represents the synthesized graph components. Function Ψ is implemented through our
framework that encompasses both semantic understanding and structural pattern recognition.

Graph Synthesis. The final enhanced graph merges the original and synthesized components:

Gnew = G ⊕ Gs = (V ∪ Vs, E ∪ Es ∪ Ec,X ∪ Xs,Y ∪ Ys), (3)

where Ec = {(vi, vj) | vi ∈ V, vj ∈ Vs} represents newly created edges connecting original and
synthetic nodes. The quality of Gnew is evaluated based on both semantic coherence (how well
Xs aligns with original textual patterns) and structural fidelity (how well Es and Ec preserve the
topological characteristics of G).

3 The Proposed Method

We present GraphMaster, a multi-agent framework conceptualized through the lens of Retrieval-
Augmented Generation (RAG) [44, 48] to address the challenges of graph synthesis in data-
constrained environments. As illustrated in Figure 1, GraphMaster implements a hierarchical RAG
paradigm wherein four specialized LLM-powered agents operate collaboratively in a recursive
optimization loop to generate semantically rich and structurally coherent graph extensions.

3.1 Framework Overview: RAG-Based Multi-Agent Architecture

GraphMaster formalizes graph synthesis as an iterative RAG process, operating through specialized
agents in a closed-loop optimization system. While a single LLM might possess the theoretical
capability to understand graph structures, the inherent complexity of generating coherent graph data
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Figure 1: GraphMaster: A hierarchical multi-agent framework for text-attributed graph synthesis.

necessitates a specialized multi-agent approach for three critical reasons. First, real-world graphs
substantially exceed typical LLM context windows, requiring strategic sampling and knowledge
extraction. Second, maintaining structural consistency across generated elements demands focused
attention on connectivity patterns that single-pass generation cannot guarantee. Third, controlling hal-
lucination requires continuous evaluation and refinement through iterative feedback. A collaborative
multi-agent architecture effectively addresses these challenges through specialization and integration:

Gnew = ΨRAG(G,Q,R,Aretrieve,Agenerate,Aevaluate) (4)

where G is the original graph, Q represents the query formulation (enhancement mode),R denotes
the retrieval strategy, andAretrieve,Agenerate, andAevaluate correspond to the agent-specific functions for
retrieval, generation, and evaluation, respectively. In each iteration, the Manager Agent formulates the
query to guide the synthesis process, the Perception Agent retrieves relevant context to overcome con-
text window limitations, the Enhancement Agent generates new content while maintaining structural
consistency, and the Evaluation Agent assesses quality and addresses potential hallucinations–with
this cycle continuing until convergence. This collaborative framework enables each agent to focus
on a specific challenge while collectively producing coherent graph extensions that a single-pass
approach cannot achieve.

3.2 Manager Agent: Query Optimization and Control Mechanism

The Manager Agent serves as the meta-cognitive controller that formulates the synthesis query Qt

at iteration t based on a comprehensive environmental status report Rt = LLMP (Gt) generated
by the Perception Agent. The mode selection function is formalized as: Mt = LLMM (Rt) ∈
{semantic, topological} where LLMM represents the Manager Agent’s reasoning process that ana-
lyzes community structures and label distributions captured inRt. This query formulation implements
an adaptive mechanism where the Manager optimizes a multi-objective utility function:

ω∗
t = argmax

ω∈Ω
[λ1Usem(ω,Gt) + λ2Ustruct(ω,Gt) + λ3Ubal(ω,Gt)] (5)

where Ω is the strategy space, Usem, Ustruct, and Ubal represent semantic coherence, structural in-
tegrity, and class balance utilities respectively, with adaptive weights λi that evolve according to:
λt+1
i = λt

i + η∇λi
P (Gt) where P (Gt) measures synthesis progress and η is a learning rate. The

Manager orchestrates state transitions, modeled as st+1 = T (st, at,Mt), where states st reflect
graph composition and actions at ∈ {aP , aE , aV } correspond to agent invocations for Perception,
Enhancement, and Evaluation respectively.

3.3 Perception Agent: Context-Aware Corpus Retrieval

The Perception Agent implements the retrieval component of the RAG paradigm, extracting a relevant
subgraph from the input graph Gt based on the query Qt = Mt. This retrieval process is formalized
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as: Kt = R(Gt,Qt) = (Vk, Ek,Xk,Yk) where Kt represents the retrieved knowledge capsule. The
retrieval function R operates through three sequential stages:

Semantic-aware Community Identification: The agent employs a semantic-enriched modularity
maximization algorithm to calculate the community distribution of semantic associations for TAG:

Qsem =
1

2m

∑
i,j

[
Aij − γ

kikj
2m
− (1− γ)

dsem(xi, xj)∑
l,m dsem(xl, xm)

]
δ(ci, cj) (6)

where dsem(xi, xj) =
xi·xj

∥xi∥∥xj∥ computes semantic similarity between node attributes, ki and kj
represent the degrees of nodes i and j, and γ balances topological and semantic factors.

Mode-Adaptive Seed Selection Strategy: Based on the enhancement mode Mt, the agent selects an
optimal seed community Cb:

Cb =

argmin
i

|Ci| · (1 + µ · Var({xj : vj ∈ Ci})) , if Mt = semantic,

{vj ∈ Vtrain : yj = argmax
c

ϕimbal(c)}, if Mt = topological
(7)

where ϕimbal(c) = maxc′ |Vc′ |/|Vc| quantifies class imbalance, Var denotes the variance of node
textual features within a community and µ weights semantic variance importance. For semantic
synthesis, the smaller communities with low internal semantic variance are prefer to be selected to
establish a cohesive foundation. For topological synthesis, nodes from minority classes are prioritized.

Hierarchical Stochastic Diffusion Sampling: The agent employs a mode-conditional Personalized
PageRank (PPR) algorithm, defined as π(k+1) = αv + (1 − α)WTπ(k), where the teleportation
vector v varies by enhancement mode: vi = 1

|Cb| if vi ∈ Cb and Mt = semantic, or vi =
I[yi=ŷ]∑
j I[yj=ŷ] if

vi ∈ Vtrain and Mt = topological, where ŷ = argmin
c
|{vj ∈ Vtrain : yj = c}| identifies the label with

minimal representation. Following diffusion convergence, the final knowledge subgraph is selected
as:

Kt = {vi ∈ Stop-K% : ri < min(1, β · πi/max
j

πj)} ∩ Sdiverse (8)

where |Kt| = N is constrained by the LLM context window, Stop-K% contains the top K% nodes by
PPR score, ri ∼ Uniform(0, 1) introduces controlled stochasticity, and Sdiverse ensures community
coverage. The environmental status reportRt encapsulates multi-scale graph properties:

Rt =
(
ρglobal, {ρcclass}Cc=1, {ρicomm}

|C|
i=1,Dstruct,Dsem

)
(9)

where ρglobal captures global statistics, ρcclass and ρicomm encode class-level and community-level
properties, while Dstruct and Dsem represent structural and semantic distributions.

3.4 Enhancement Agent: Context-Conditioned Generation

The Enhancement Agent implements the generation component of the RAG paradigm, synthesizing
new graph elements (no more than M% of the knowledge subgraph) based on the retrieved knowledge
and environmental report. The synthesis process follows Eq. (2) where K = (Kt,Rt,Mt). For
semantic mode, the LLM generates node attributes using a conditional autoregressive model:

P (xs|K) =
L∏

i=1

P (xi
s|x<i

s ,Xk, Ek,K) (10)

where xi
s is the i-th token of attribute xs, and L is the sequence length. This formulation enables the

LLM to generate coherent textual attributes that maintain consistency with the knowledge subgraph
while introducing appropriate variations.

5



Crucially, regardless of the current enhancement mode, the agent always generates both node attributes
and their connections. For topological mode, the LLM models edge connections between new node
vs and existing nodes by estimating the probability:

P ((vs, vi) ∈ Ec|K) = σ

(
θ1 · sim(xs, xi) + θ2 ·

|N (vi) ∩NK(vs)|
|NK(vs)|

+ θ3 ·
ki

maxj kj

)
(11)

where N (vi) is the neighborhood of vi, NK(vs) represents neighbors of vs in the knowledge
subgraph, and σ is the sigmoid function. The coefficients {θj}3j=1 are dynamically adjusted based on
the query mode Mt. This dual-mode generation enables GraphMaster to adaptively emphasize either
semantic coherence or structural fidelity while maintaining integrity across both dimensions.

3.5 Evaluation Agent: Multi-dimensional Quality Assessment

The Evaluation Agent implements a comprehensive verification mechanism that integrates four
critical information sources:

Qt = LLMV (R0,Rt,Kt,Gts) (12)

whereQt represents the quality assessment outcome,R0 is the initial environmental report serving as
a baseline,Rt is the current environmental report, Kt is the retrieved knowledge, and Gts is the newly
synthesized data. The Evaluation Agent simultaneously assesses two key dimensions: (i) Semantic
Coherence: Evaluates whether the generated textual attributes are contextually appropriate, domain-
consistent, and meaningful within the graph’s thematic scope. (ii) Structural Integrity: Assesses
whether the new edges form logical connections that preserve the original graph’s topological patterns
while addressing structural gaps.

For each generated node vs ∈ Vt
s, the LLM computes a composite quality score, with the final

accepted node set defined as:

Vt
accepted = {vs ∈ Vt

s : LLMV (vs,R0,Rt,Kt) > τt} (13)

where the threshold τt is adaptively updated: τt = τt−1 + ζ(F̄t(ω
∗
t ) − F̄t−1(ω

∗
t−1)) with F̄t(ω

∗
t )

representing the average quality score at iteration t. The convergence determination employs a
temporal quality gradient analysis:

Convergedt = I
(

max
j∈{1,...,k}

|F̄t(ω
∗
t )− F̄t−j(ω

∗
t−j)| < ϵ ∧ LLMgoal(R0,Rt) = True

)
(14)

where I(·) is the indicator function and LLMgoal assesses whether synthesis objectives have been
achieved. If convergence is detected, the Evaluation Agent signals task completion to the Manager
Agent; otherwise, it triggers another iteration of the synthesis process3.

3.6 Time Complexity Analysis

The time complexity of GraphMaster is dominated by three operations: (1) community detection
and PPR computation in the Perception Agent, which run in near-linear time O(|Vt|+ |Et|) on the
current graph; (2) LLM inference for node attribute generation and edge probability estimation, which
scales with the size N of the retrieved subgraph rather than the full graph; and (3) quality assessment,
which evaluates a fixed number of newly generated nodes against predetermined criteria. Since N
is constrained by the LLM context window and typically small relative to |Vt|, the LLM operations
remain efficient regardless of overall graph size. If the iterative process runs for T iterations before
convergence (generally small due to the Evaluation Agent’s stringent criteria), the overall complexity
is T times the per-iteration cost. This architecture enables GraphMaster to scale effectively by
leveraging LLMs for semantic generation on bounded contexts while using efficient graph algorithms
for structural computations.

3We compares GraphMaster with recent remarkable graph data synthsis methods in Appendix A. Theoretical
analysis of agent capabilities are given in Appendix I.
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4 Experiment

To evaluate GraphMaster comprehensively, we formulate four research questions: (RQ1): Can
GraphMaster generate high-quality text-attributed graph data in data-limited environment? (RQ2):
Can the graph data synthesized by GraphMaster retain the original graph features well? (RQ3):
Can GraphMaster maintain interpretability well? (RQ4): What is the relative contribution of each
component in GraphMaster to the overall synthesis quality?

4.1 Overall Performance (RQ1)

We evaluate GraphMaster’s ability to synthesize high-quality graph data by applying it to enhance the
data-limited datasets we created and assessing whether the enhanced datasets improve downstream
model performance. We employ standard metrics including Accuracy and F1 Score as evaluation
criteria, with higher values indicating superior performance.

Baselines and Datasets. The comparative baselines are categorized into five groups: (1) original
TAG training without data synthesis; (2) Classic data augmentation methods: GAugO [57]; (3) LLM-
based data aigmentation methods: GraphEdit [12] and LLM4RGNN [54]; (4) Classic data synthesis
methods: GraphSmote [56], G-Mixup [14], IntraMix [58], GraphAdasyn [24], FG-SMOTE [37], and
AGMixup [25]; (5) LLM-based data synthesis methods: GAG [17] and LLM4NG [45], noting that
there are very limited baselines for TAG synthesis using LLM, and we created these two additional
baselines named Mixed-LLM and Synthesis-LLM, whose implementations can be found in the
Appendix B. Our experiments utilize six widely recognized text-attributed graph datasets: Cora [27],
Citeseer [11], Wikics [8], Arxiv2023 [31], and History and Children [43]. It is worth noting that in
order to better simulate the data-limited environment to test the effect of data synthesis, we created 6
data-limited datasets, namely SubCora, SubCiteseer, SubWikics, SubHistory, SubArxiv2023, and
SubChildren (details are given in Appendix C). In this article, unless otherwise specified, we assume
that the augmentation-based method uses the original dataset, while the synthesis-based method uses
the data-limited dataset we created. For downstream task evaluation, we implement four established
graph neural network architectures: GCN [18], JKNET [41], GraphSage [13] and GAT [33].

Implement Details. We ran the entire experiment on eight 80G A100 GPUs, using the QwQ-32B
model [32] as the base LLM and enabling it to assume different agent roles through iterative calls. For
the background knowledge nodes, we set N = 30, and for the newly generated nodes, we configured
M% = 15% (The hyperparameter selection analysis are given in Appendix E). In training the GNN
model, we first initialized the text attributes with Sentence-BERT [30] to generate the initial features
before proceeding with training. To ensure the robustness of our experiments, we repeated each
experiment 50 times and reported the mean and standard deviation of the results.

Table 1: Comparison of GraphMaster with other TAG synthesis methods in GCN model. Best
performance is indicated by the bold face numbers, and the underline means the second best. ‘Acc’
and ‘F1’ are short for Accuracy and F1 Score, respectively.

Type Model Cora Citeseer Wikics History Arxiv2023 Children
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Original Original Model 88.9±1.1 88.5±1.5 78.1±1.1 75.0±0.3 79.7±0.8 77.8±0.3 84.2±0.6 43.1±0.3 76.3±1.0 54.9±0.5 52.6±0.7 32.3±1.5
Classic-Aug GAugO 88.9±0.8 88.0±1.0 78.1±0.7 77.2±0.3 79.9±0.9 77.7±0.7 84.6±1.5 44.7±0.6 76.8±1.4 53.0±0.3 51.8±0.6 33.6±0.7

LLM-Aug GraphEdit 91.0±0.9 89.7±0.6 81.9±0.9 80.8±1.1 82.0±1.1 80.7±1.2 87.6±0.6 45.7±1.3 78.0±0.9 57.8±0.3 54.3±0.7 35.7±1.4
LLM4RGNN 91.2±0.6 88.8±1.1 80.9±1.3 76.6±1.1 83.6±1.4 81.6±1.5 88.9±0.7 48.6±0.4 79.3±1.1 59.1±0.4 55.7±1.4 36.7±0.8

Classic-Syn

GraphSmote 88.7±1.4 87.4±1.1 78.1±0.5 74.6±1.4 80.7±1.5 78.6±1.4 84.9±0.5 43.9±0.3 76.2±0.4 55.5±0.4 53.1±0.9 33.2±0.6
G-Mixup 87.4±1.1 87.0±0.7 78.2±0.9 76.8±1.1 79.7±0.4 78.0±0.8 84.6±0.6 43.6±0.6 76.6±0.4 56.5±0.3 53.0±0.6 33.0±0.3
IntraMix 80.9±0.6 82.8±0.7 71.3±0.8 70.7±0.5 73.7±1.0 74.5±0.4 82.4±1.5 42.7±0.6 72.4±1.1 53.9±0.8 45.2±0.9 30.1±0.7

GraphAdasyn 89.2±0.3 88.7±0.5 78.9±1.0 78.4±1.4 80.8±1.2 78.9±0.7 84.6±1.5 46.1±0.8 77.5±0.7 57.0±1.1 53.6±0.5 33.0±0.6
FG-SMOTE 88.9±1.5 87.6±1.0 78.7±0.8 74.7±1.4 81.0±0.8 79.0±1.0 85.0±1.4 44.0±0.9 76.4±1.2 55.8±1.4 53.1±1.5 33.3±0.9
AGMixup 84.7±0.4 86.6±0.4 71.7±0.9 73.2±1.1 78.8±0.9 76.6±1.1 81.8±0.9 42.9±0.3 76.8±1.1 53.7±0.5 53.6±1.0 32.6±0.8

LLM-Syn

GAG 91.0±1.2 89.3±0.4 82.8±0.9 80.0±1.5 84.9±1.3 83.2±0.7 88.9±0.5 49.8±0.8 79.9±0.5 59.4±1.0 56.7±0.8 38.0±0.5
LLM4NG 85.9±0.3 84.0±0.2 73.9±0.2 72.0±0.3 72.8±0.1 72.9 ±0.4 82.5 ±0.5 48.4 ±0.3 79.0 ±0.2 61.2 ±0.5 44.6 ±0.2 27.2 ±0.4

Mixed-LLM 89.9±0.5 89.3±0.4 83.5±0.9 81.3±0.8 84.9±0.9 83.4±0.8 89.2±1.3 55.8±0.8 81.4±1.5 61.2±0.9 60.0±0.7 39.6±0.7
Synthesis-LLM 89.8±1.3 89.1±1.0 84.5±1.0 82.7±1.1 84.8±0.4 83.2±0.5 89.4±1.3 53.4±1.3 81.0±1.2 62.3±0.8 60.9±1.0 40.1±0.9
GraphMaster 93.7±1.0 92.5±1.0 88.3±0.9 87.7±1.1 87.9±0.8 86.8±0.9 92.6±1.3 63.4±1.4 87.9±1.3 66.3±1.5 68.8±1.4 47.8±1.3

Results. As shown in Table 1 (Due to space limitation, other three models’ results are given in
Appendix F.), GraphMaster consistently outperforms all baselines, demonstrating the superiority
of our approach. Notably, we observed that some baseline methods even yield lower performance
than the original dataset. This is primarily because traditional graph synthesis techniques fail to
capture the semantic nuances of sentences; consequently, when using Sentence-BERT embeddings
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instead of bag-of-words representations, their effectiveness is significantly diminished. Moreover,
the other LLM-based baselines we compared against mainly focus on anti-interference detection or
data synthesis on other scenarios rather than TAG data synthesis, resulting in their performance being
significantly lower than that of GraphMaster, which targets TAG data synthesis. Finally, the two LLM-
based TAG synthesis baselines we developed show significant advantages over traditional baselines.
However, since they cannot fully understand the semantics and topological structure of TAG, although
they are higher than other baselines, they are still significantly lower than GraphMaster4.

4.2 Synthetic Graph Feature Analysis (RQ2)
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Figure 2: Graph feature analysis on Children dataset.

Our second research question examines whether the new graph data generated by GraphMaster in
data-limited environments can maintain consistency with the original graph’s structural features.
We conducted a comprehensive analysis across three dimensions: degree distribution, clustering
coefficient, and label homogeneity. As shown in Figure 2, GraphMaster demonstrates excellent
performance in preserving the network’s topological backbone. For example, the two-sample
Kolmogorov–Smirnov test statistic between the degree distributions of the original and synthesized
Children graphs is 0.357 (p = 0.059), indicating no statistically significant difference. The clustering
coefficient similarity score is 0.835, which represents a substantial improvement over the original
data-limited Children graph (0.785). Concurrently, the label homogeneity similarity reaches an
impressive 0.988 (the heatmap of label–label connection frequencies is almost identical for original
vs. synthetic), indicating minimal differences in class mixing patterns. These characteristics show
that GraphMaster can generate high-quality synthetic graphs that retain key structural properties of
the original data. (Additional graph comparison figures are provided in Appendix G.)

4.3 Interpretability Analysis (RQ3)

To evaluate the transparency of our GraphMaster model, we conduct both human-centered and
algorithmic assessments of interpretability (theoretical details in Appendix H). For human evaluation,
50 expert reviewers rated 200 synthesis instances across three dimensions: process transparency,
decision justification, and outcome predictability. The overall Traceability Score quantifies how well
humans understand the generation process:

Tscore =
1

R ·N

R∑
r=1

N∑
i=1

tr,i, (15)

where tr,i represents the score given by reviewer r for instance i. In parallel, we leverage a Grassmann
manifold-based approach to systematically assess semantic consistency of synthesized nodes. This
mathematical framework provides a principled way to measure how well generated nodes align with
the semantic direction of background knowledge, yielding coherence scores in the range [0, 1].

Our human evaluation results demonstrate that GraphMaster exhibits excellent interpretability, with
an average traceability score of Tscore = 0.92, significantly outperforming Mixed-LLM (0.66) and
Synthesis-LLM (0.59). For the Grassmann manifold-based evaluation method, Figure 3a shows
that GraphMaster significantly outperforms comparative methods in terms of semantic coherence,

4Case study are given in Appendix K.
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Figure 3: Interpretability Analysis of GraphMaster.

indicating that GraphMaster can generate nodes highly aligned with the principal semantic direction.
The score distribution more concentrated in higher value regions also indicates stronger consistency
in the quality of generated nodes. Figure 3b shows that GraphMaster maintains high performance
across all datasets, consistently exceeding the interpretability threshold of 0.7. Figure 3c demonstrates
a strong correlation between human ratings and semantic coherence scores (r=0.78, p<0.00001),
further validating our Grassmann manifold-based approach as an effective metric for measuring
interpretability. This alignment between human judgment and geometric measures confirms the
practical relevance and feasibility of our mathematical framework.

4.4 Ablation Study (RQ4)

Table 2: Ablation experiment in GCN model.

model Cora Citeseer Wikics History Arxiv2023 Children
Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

QwQ-32B 93.7± 1.0 92.5± 1.0 88.3± 0.9 87.7± 1.1 87.9± 0.8 86.8± 0.9 92.6± 1.3 63.4± 1.4 87.9± 1.3 66.3± 1.5 68.8± 1.4 47.8± 1.3
Qwen-32B 91.4± 0.9 90.2± 0.9 86.5± 1.1 85.4± 1.0 85.7± 0.9 84.2± 0.9 90.1± 1.2 60.8± 0.9 85.3± 0.8 64.2± 1.1 66.5± 1.1 45.9± 1.0

DeepSeek-R1-32B 91.8± 0.8 90.6± 0.8 86.8± 1.0 85.8± 1.1 85.9± 0.8 84.6± 0.9 90.5± 1.2 61.2± 0.9 85.6± 1.0 64.5± 1.2 66.9± 1.2 46.1± 1.4
LLaMA-33B 91.1± 0.9 90.0± 1.1 86.0± 0.8 85.0± 1.2 85.4± 0.5 84.0± 0.6 89.8± 0.7 60.5± 0.9 85.0± 0.7 63.8± 0.8 66.2± 0.9 45.7± 0.9

w.o Perception Agent 88.5± 0.8 87.3± 0.7 83.6± 0.7 82.5± 1.1 83.2± 0.7 82.0± 0.6 87.4± 1.1 57.9± 0.9 82.6± 0.8 61.5± 0.9 63.2± 1.3 43.4± 0.7
w.o Evaluation Agent 89.6± 0.7 88.5± 0.7 84.8± 0.6 83.9± 0.9 84.3± 0.9 83.1± 0.6 88.9± 0.7 59.2± 0.7 83.8± 0.9 62.7± 1.1 64.9± 1.1 44.6± 1.3

N=20 91.5± 0.8 90.3± 0.5 86.4± 0.7 85.3± 0.8 85.6± 0.6 84.3± 0.7 90.0± 0.8 60.7± 0.8 85.1± 0.7 63.9± 0.7 66.3± 0.8 45.7± 0.6
N=30 93.7± 1.0 92.5± 1.0 88.3± 0.9 87.7± 1.1 87.9± 0.8 86.8± 0.9 92.6± 1.3 63.4± 1.4 87.9± 1.3 66.3± 1.5 68.8± 1.4 47.8± 1.3
N=40 92.0± 0.9 90.8± 0.9 86.7± 0.8 85.7± 1.0 85.8± 0.7 84.6± 0.7 90.3± 1.2 61.0± 1.3 85.4± 1.2 64.1± 1.4 66.7± 1.3 46.0± 1.2

M=10% 91.7± 0.9 90.5± 0.9 86.6± 0.7 85.5± 0.9 85.7± 0.6 84.4± 0.7 90.2± 1.1 60.8± 1.2 85.3± 1.1 64.0± 1.3 66.6± 1.2 45.8± 1.1
M=15% 93.7± 1.0 92.5± 1.0 88.3± 0.9 87.7± 1.1 87.9± 0.8 86.8± 0.9 92.6± 1.3 63.4± 1.4 87.9± 1.3 66.3± 1.5 68.8± 1.4 47.8± 1.3
M=20% 91.3± 0.8 90.1± 0.8 86.2± 0.6 85.1± 0.8 85.3± 0.5 83.9± 0.6 90.0± 0.7 60.5± 0.8 84.8± 0.6 63.5± 0.6 66.0± 0.7 45.3± 0.5

In this section, we investigate the relative importance of various components within the GraphMaster
framework and their impact on synthesis quality. We systematically analyze how different agent
configurations affect the overall performance. We selected Qwen-32B [1], Deepseek-R1-32B [5] and
Llama-33B [4], three models with parameters around 32B, as comparison models. Additionally, we
examine how varying the size of the background knowledge base (N = |K|) and the percentage of
newly generated nodes (M%) influences synthesis effectiveness. We trained the model using GCN
on six datasets, and the results are presented in Table 2. Our findings indicate that the performance
varies significantly across different LLMs, with QwQ-32B consistently outperforming the alternatives
by 1.5-2.3% across all datasets. Notably, DeepSeek-R1-32B achieves the second-best performance
despite LLaMA-33B having more parameters, suggesting that model architecture and pre-training
approach are more critical than raw parameter count for this task.

The ablation results reveal that removing either the Perception Agent or Evaluation Agent substan-
tially degrades performance (by 5.2% and 4.1% on average, respectively), with the Perception Agent
proving particularly crucial. This confirms that both specialized components play essential roles in
maintaining generation quality and cannot be omitted from the framework. Regarding hyperparame-
ters, we observe that N = 30 consistently outperforms both smaller (N = 20) and larger (N = 40)
knowledge bases across all datasets. Similarly, setting M = 15% yields optimal results compared to
both M = 10% and M = 20%. These findings demonstrate that while sufficient context is necessary
for high-quality synthesis, excessive background knowledge can dilute the model’s focus. Likewise,
generating too many nodes simultaneously reduces overall quality due to limitations in the model’s
generative capacity when handling multiple interdependent elements.
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5 Conclusion

In this paper, we introduced GraphMaster, the first multi-agent framework for text-attributed graph
synthesis that successfully addresses the critical bottleneck of data scarcity in training GFMs. By
orchestrating specialized LLM agents in a hierarchical RAG paradigm, our approach systemati-
cally overcomes the limitations of traditional synthesis methods, generating semantically rich and
structurally coherent graph extensions even in severely data-constrained environments. Beyond the
framework itself, we created specialized data-limited variants of six standard graph benchmarks and
developed a novel dual-perspective interpretability assessment methodology that combines expert hu-
man evaluation with a theoretically grounded Grassmannian manifold-based analysis. Comprehensive
experiments demonstrate GraphMaster’s consistently superior performance across diverse datasets
and downstream GNN architectures. Future work could explore multi-scale synthesis approaches
that simultaneously model global topology and local semantics, knowledge transfer mechanisms
from data-rich to data-limited domains, and adaptive sampling strategies optimized specifically for
synthesis objectives. This work not only provides an immediate solution to the graph data scarcity
problem but also establishes foundational methodologies for advancing interpretable graph data
synthesis.
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should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We prove in detail in Appendix I that GraphMaster can synthesize TAG data
with consistent semantics and structure, and propose in detail the theoretical theorem and
corresponding proofs on interpretable experiments in Appendix H.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have described in detail the principles of our model GraphMaster, as well
as the experimental parameters, hardware configuration, and specific experimental methods.
At the same time, we also provide the specific creation algorithm for the data-limited dataset
and the specific principles, parameter configuration, and hardware configuration of two
self-created LLM-based baselines. We believe that we have filled in all the details and
promise to open source all the codes and datasets after the paper is accepted.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: After the paper is accepted, we will open source the complete data-limited
dataset and its creation code, the self-created code for the LLM-based baseline, and the
detailed code of GraphMaster. We have submitted the GraphMaster code at this stage, but we
believe it can still be improved. We will further optimize it in subsequent versions to ensure
that it is plug-and-play and has a clear structure. You can find the code in Appendix ??.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our paper contains all the training and testing details. Even if there is
something that is not mentioned in the paper (although we have checked many times, it is
not impossible), you can still find the corresponding answer through the code.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: We included error bars in both the main experiment and the ablation experiment
- as mentioned in the main text. To ensure the robustness of our experiments, we repeated
each experiment 50 times and reported the mean and standard deviation of the results. At
the same time, for the interpretability analysis, we also performed multiple experiments
(selecting multiple reviewers for averaging) to ensure the correctness of the experimental
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We present parameter configuration and estimated resources in detail.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We carefully reviewed the Code of Ethics and are confident that we are in
compliance.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the possible impact of our work on the community - because
our work is groundbreaking, proposes new benchmark datasets and evaluation methods, and
provides two baselines, and most importantly, proposes a sota method - GraphMaster, which
we believe will have a very positive impact on the community and society.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper does not apply to this part.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets and baselines we use are cited in detail and ensure that they are
open source and allowed for academic use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce a new dataset and present the detailed method for creating it.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: In our explainability experiment, we invited 50 computer experts to evaluate
the explainability of the model-generated content and compensated them in accordance with
our local regulations (due to anonymity and local regulatory restrictions, we are unable to
provide compensation details and screenshots).

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our papers do not contain human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Our paper explores the use of LLM for TAG data synthesis, and the paper
introduces the use of LLM in detail.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Comparison of GraphMaster with Recent Representative Works

Recent advancements in leveraging Large Language Models (LLMs) for graph-related tasks have
produced several notable approaches. In this section, we conduct a rigorous comparison between our
proposed GraphMaster framework and two recent representative works: GAG [17] and LLM4NG [45].
We structure our analysis across three key dimensions: motivation, methodology, and application
scenarios, to clearly delineate the unique contributions and advantages of GraphMaster.

A.1 Comparison Between GraphMaster and GAG

A.1.1 Motivation

GraphMaster addresses a fundamental bottleneck in developing Graph Foundation Models (GFMs):
the scarcity of large-scale, semantically rich graph datasets. Our work specifically targets the
generation of high-quality text-attributed graphs in data-limited environments, focusing on both
semantic coherence and structural integrity. In contrast, GAG [17] primarily aims to simulate the
dynamic evolution of social graphs through actor-item interactions, with emphasis on reproducing
macroscopic network properties such as power-law degree distributions and small-world phenomena.
While GAG attempts to capture emergent properties of large-scale social networks, it lacks explicit
mechanisms for maintaining semantic coherence in node attributes, which is a critical requirement
for training effective GFMs.

A.1.2 Methodology

GraphMaster implements a hierarchical multi-agent framework formalized through the RAG
paradigm, where specialized agents perform distinct functions within a closed-loop optimization
system:

Gnew = ΨRAG(G,Q,R,Aretrieve, Agenerate, Aevaluate) (16)
where G is the original graph, Q represents the query formulation, R denotes the retrieval strategy,
and Aretrieve, Agenerate, and Aevaluate correspond to the agent-specific functions. Our Perception
Agent extracts knowledge through semantic-enriched modularity maximization:

Qsem =
1

2m

∑
i,j

[
Aij − γ

kikj
2m
− (1− γ)

dsem(xi, xj)∑
l,m dsem(xl, xm)

]
δ(ci, cj) (17)

In contrast, GAG employs a bipartite graph model where homogeneous "actor" agents interact with
items through a retrieval system. Their S-RAG algorithm models actor-item interactions but lacks
explicit quality control:

pij = σ

(
θ1 · sim(xi, xj) + θ2 ·

|N(vi) ∩N(vj)|
|N(vi)|

+ θ3 ·
kj

maxl kl

)
(18)

GraphMaster’s multi-agent architecture provides several key advantages: (1) Our Manager Agent
dynamically optimizes a multi-objective utility function that balances semantic coherence, structural
integrity, and class balance; (2) Our Evaluation Agent implements a comprehensive verification
mechanism with adaptive thresholds; and (3) Our theoretical framework provides formal guarantees
for information preservation, generation quality, and convergence properties.

A.1.3 Application Scenarios

GraphMaster is explicitly designed for enhancing text-attributed graphs in data-limited environments,
making it particularly suitable for academic, industrial, and web-scale applications where data
acquisition is costly or restricted. Our framework produces semantically rich and structurally
coherent graph extensions that serve as high-quality training data for GFMs. GAG primarily focuses
on social network simulation, with applications in modeling online user interactions and social
dynamics. While GAG can generate large-scale graphs (up to 100,000 nodes), it sacrifices semantic
richness for scale and does not provide guarantees on the quality of textual attributes. Our evaluation
framework, combining human assessment with Grassmannian manifold-based analysis, demonstrates
that GraphMaster consistently produces higher-quality graph extensions that better preserve both
semantic and structural characteristics of the original data.
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A.2 Comparison Between GraphMaster and LLM4NG

A.2.1 Motivation

GraphMaster addresses the broad challenge of data scarcity for GFMs through comprehensive graph
synthesis that enhances both node attributes and structural properties. In contrast, LLM4NG [45]
specifically targets few-shot learning scenarios in node classification, with a narrow focus on enhanc-
ing class-level information. While LLM4NG aims to improve classification performance by adding
labeled examples, it does not address the fundamental issue of enhancing the overall quality and
representational capacity of graph data. GraphMaster’s approach is more comprehensive, as it treats
the graph synthesis problem holistically, generating high-quality nodes and edges that maintain both
semantic and structural coherence.

A.2.2 Methodology

GraphMaster employs a sophisticated multi-agent system with specialized roles and iterative refine-
ment cycles. Our Enhancement Agent generates new nodes through a conditional autoregressive
model:

P (xs|K) =

L∏
i=1

P (xi
s|x<i

s , Xk, Ek,K) (19)

and models edge connections with a probability function that balances semantic, structural, and
degree-based factors:

P ((vs, vi) ∈ Ec|K) = σ

(
θ1 · sim(xs, xi) + θ2 ·

|N(vi) ∩NK(vs)|
|NK(vs)|

+ θ3 ·
ki

maxj kj

)
(20)

LLM4NG adopts a significantly simpler approach, primarily generating text based on label char-
acteristics alone. Its core idea is to let the large language model generate text that meets class
characteristics based solely on the name of the label:

sg = LLM(Prompt(c)), c ∈ C (21)

followed by a basic edge predictor that often introduces noise and structural inconsistencies:

ŷe(hvi , hvj ) = MLP(hvi ||hvj ) (22)

GraphMaster’s methodology offers several crucial advantages: (1) Our approach maintains structural
consistency through explicit modeling of node-edge relationships; (2) Our iterative refinement
process ensures high-quality synthesis through adaptive thresholds; and (3) Our theoretical framework
provides formal guarantees on the quality and convergence of the synthesis process. LLM4NG lacks
these quality assurance mechanisms and theoretical foundations.

A.2.3 Application Scenarios

GraphMaster addresses a wider range of data-limited scenarios and can enhance graphs for various
downstream tasks beyond classification. Our framework is particularly effective in scenarios requiring
high semantic coherence and structural fidelity, such as scientific discovery, knowledge graph
completion, and recommendation systems.

LLM4NG is narrowly optimized for classification tasks in few-shot scenarios, with limited impact
on the overall graph structure. When applied to data-limited scenarios rather than strictly few-shot
learning, LLM4NG’s edge generation methods often introduce significant noise and interference
to the graph structure. This limitation is evidenced by its poor performance in our experimental
evaluations on data-limited datasets. The edge probabilities predicted by its simple model fail to
capture the complex structural patterns present in real-world graphs.

While LLM4NG offers computational efficiency through its lightweight design, it sacrifices synthesis
quality, broader applicability, and introduces potential structural inconsistencies. Our experimental
results demonstrate that GraphMaster achieves superior performance across multiple datasets and
tasks, particularly in generating semantically coherent and structurally valid graph extensions that
maintain both local and global properties of the original graph.
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B The implement details of newly created baseline

B.1 Mixed-LLM

Mixed-LLM introduces a novel interpolative synthesis approach that extends the seminal mixup
concept from computer vision to text-attributed graphs via large language models. This method
operates on the principle of manifold-aware semantic interpolation, where node representations from
different classes are strategically combined to generate semantically coherent yet diverse synthetic
nodes.

The Mixed-LLM algorithm consists of three primary phases:

1. Strategic Class-Balanced Sampling: Rather than random selection, Mixed-LLM employs a
distribution-aware sampling strategy:

S = {(vi, yi)|vi ∈ V, P (vi) ∝ 1/|Vyi
|α} (23)

where α is an adaptive parameter controlling the emphasis on minority classes and |Vyi | represents
the cardinality of nodes with label yi.

2. Latent Space Interpolation: For each pair of sampled nodes (vi, vj), Mixed-LLM generates a
convex combination in the semantic space:

x̃s = λ · ϕLLM (xi) + (1− λ) · ϕLLM (xj) (24)

where ϕLLM represents the LLM’s latent representation function and λ ∼ Beta(α, α) is a mixing
coefficient.

3. LLM-Guided Textual Manifestation: The interpolated representation is transformed into
coherent textual attributes through a prompt-based generation:

xs = LLMM (p(x̃s, xi, xj , yi, yj)) (25)

where p is a carefully designed prompt template instructing the LLM to create textual attributes that
preserve the semantic characteristics of both source nodes while maintaining linguistic naturalness.

The final label assignment follows a soft probability distribution:

P (ys = c) = λ · I[yi = c] + (1− λ) · I[yj = c] (26)

where I is the indicator function. This probabilistic formulation enables Mixed-LLM to generate
boundary-enhancing examples that improve classifier robustness.

B.2 Synthesis-LLM

Synthesis-LLM implements a context-aware graph sampling and generative synthesis framework that
leverages structural locality principles to inform LLM-based node generation. Unlike conventional
approaches that process graph data indiscriminately, Synthesis-LLM employs sophisticated topologi-
cal sampling to create representative subgraph contexts that maximize information density within
LLM token constraints.

The framework operates in four sequential stages:

1. Multi-strategy Subgraph Sampling: Synthesis-LLM employs a hybrid sampling approach that
combines Personalized PageRank (PPR) with strategic breadth-first search:

Ks = ΓPPR(G, vs, α, r) ∪ ΓBFS(G, vs, d) (27)

where ΓPPR samples nodes based on their PPR scores from seed node vs with damping factor α and
threshold r, while ΓBFS complements this with a depth-limited breadth-first expansion to depth d.

2. Structural-Semantic Context Formulation: The sampled subgraph is transformed into a rich
prompt context:

C = fcontext(Ks, A[Ks], X[Ks]) (28)

where fcontext is a specialized function that encodes both topological relationships and textual
attributes into a structured prompt format.

24



3. Guided Generative Synthesis: The LLM generates new nodes conditioned on the extracted
context:

(xs, Es) = LLMS(C, θ) (29)

where LLMS represents the synthesis LLM with temperature parameter θ that balances creativity
and fidelity.

4. Structural Consistency Enforcement: Generated nodes undergo topological validation to ensure
adherence to the original graph’s structural patterns:

E′
s = {e ∈ Es|Pstructure(e|G) > τ} (30)

where Pstructure estimates the probability of edge e existing given the structural patterns in G, and τ
is an acceptance threshold.

This methodology enables Synthesis-LLM to generate nodes that maintain both semantic relevance
and structural coherence with respect to the original graph, while requiring minimal examples due to
the LLM’s inherent understanding of semantic relationships.

B.3 Experimental details

We selected QwQ-32B [32] as the large language model for these two baselines, and used two A6000
GPUs with 48G memory for the experiments.

B.3.1 Hyperparameter Selection for Mixed-LLM

In Mixed-LLM, extensive grid search and ablation studies were conducted to optimize key hyperpa-
rameters. The class balancing parameter α was tuned within the range [0.5, 1.5] with an optimal value
of 0.8, ensuring a good balance between preserving the original class distribution and addressing class
imbalance issues. The beta distribution parameter for the mixing coefficient, where λ ∼ Beta(α, α),
achieved optimal performance at 0.4, producing meaningful boundary examples. Additionally, an
LLM temperature of 0.7 provided the best balance between creative variation and semantic consis-
tency, and incorporating 2–3 example interpolations in the prompt significantly enhanced generation
quality.

B.3.2 Hyperparameter Selection for Synthesis-LLM

For Synthesis-LLM, the hyperparameters were optimized to capture both local and global graph
structures. A PPR damping factor α of 0.65 offered a suitable trade-off between local neighborhood
exploration and distant node influence, while a PPR threshold r = 0.005 effectively identified relevant
nodes. A BFS depth limit of d = 2 was sufficient to extract essential structural context without
overloading the LLM’s input. Moreover, setting the generation temperature θ to 0.5 ensured structural
and semantic coherence, and a structural acceptance threshold τ of 0.6 successfully filtered edge
proposals. Overall, the optimal performance was achieved when 25–35 representative nodes were
included in the LLM context.

C Data-limited Datasets Creation

To simulate realistic scenarios where annotated data is scarce, we generate data-limited datasets by
extracting carefully curated subgraphs from the original large-scale graphs. Our procedure begins by
partitioning the original graph based on node labels and inherent manifold properties, ensuring that
the semantic distribution and community structures are preserved. Next, we apply a multi-objective
sampling strategy that leverages node degrees, community representation, and bridge node potentials
to select a subset of nodes and their associated edges. This approach, outlined in Algorithm 1, is
designed to maintain the essential connectivity patterns and spectral features of the full graph while
significantly reducing the number of nodes. Iterative refinements are then performed to balance class
proportions and correct any topological distortions, resulting in a smaller yet representative subgraph
that closely mimics the original graph’s structure and attribute distribution. This data-limited setup
provides a robust testbed for evaluating the effectiveness of our graph synthesis methods under
constrained conditions.
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Algorithm 1M-Preserving Graph Sampling

Require: Graph G = (V,E,X ,Y,M), sampling ratio α ∈ (0, 1], convergence threshold ϵ
Ensure: Homeomorphic sampled graph Gs preserving manifold properties

1: ΦG ← T ⟨G⟩ ▷ Extract property tensor capturing distributions and spectral features
2: C ← argmaxC′ Q(C′, G) ▷ Optimize modularity for community detection
3: D ← {Vy,m}y,m where Vy,m = {v ∈ V : Y(v) = y,M(v) = m} ▷ Create attribute partitions
4: Π← {πy,m = |Vy,m|/|V |}y,m ▷ Joint distribution tensor
5: K← ⌊|V | · α ·Π⌋ ▷ Target counts per partition
6: K← K+ δ(K, α|V |) ▷ Correct sampling counts to exactly match target size
7: Vs ← ∅ ▷ Initialize sampled node set
8: for (y,m) ∈ {(Y,M)} do
9: if |Vy,m| ≤ Ky,m then

10: Vs ← Vs ∪ Vy,m

11: else
12: Ωy,m ←Multi-objective weight vector where for each v ∈ Vy,m:

Ωy,m(v) = λ1
deg(v)

maxu deg(u)
+ λ2(1−

|Vs ∩ C(v)|
|C(v)|

) + λ3βbridge(v) (31)

13: Vs ← Vs ∪ TopK(Vy,m,Ωy,m,Ky,m)
14: end if
15: end for
16: G′

s ← G[Vs] ▷ Initial induced subgraph
17: if ∥κ(G′

s)− κ(G)∥ > ϵ then ▷ Check connectivity distortion
18: B ← Bridge nodes (V \ Vs) sorted by connectivity gain potential
19: R ← Replaceable nodes in Vs with minimal structural impact
20: while ∥κ(G′

s)− κ(G)∥ > ϵ and B ̸= ∅ andR ≠ ∅ do
21: (b∗, r∗)← argmaxb∈B,r∈R S(b, r) subject to Y(b) = Y(r) ∧M(b) =M(r)
22: Vs ← (Vs \ {r∗}) ∪ {b∗}
23: G′

s ← G[Vs]
24: Update B,R
25: end while
26: end if
27: return G′

s

D Statistics of the Datasets

Table 3: Dataset Statistics

Dataset # Nodes # Edges # Classes # Louvain communities # Training nodes # Validation nodes # Test nodes

Cora 2708 5278 7 106 1624 542 542
Citeseer 3186 4225 6 506 1911 637 638
Wikics 8196 104161 10 540 580 1769 5847
History 41551 251590 12 2036 24921 8337 8293
Arxiv2023 46198 38863 38 28901 28905 27718 9240
Children 76875 1162522 24 2296 46010 15455 15410
SubCora 1354 2486 7 99 815 267 272
SubCiteseer 1274 1360 6 486 764 255 255
SubWikics 1639 26786 10 374 111 350 1178
SubHistory 2077 40415 12 17 1249 416 412
SubArxiv2023 6929 3297 38 5398 4174 1375 1380
SubChildren 3843 94636 24 71 2308 766 769

Table 3 shows the basic characteristics of our new synthesized dataset. We introduce our dataset from
seven aspects: Nodes, Edges, Classes, Louvain communities, Training nodes, Validation nodes and
Test nodes, including the original dataset and our newly generated Data-limited dataset.
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E Hyperparameter Selection Analysis

We conducted comprehensive grid search experiments to determine optimal hyperparameter settings
for GraphMaster. Our analysis reveals that the framework is robust to moderate parameter variations,
with the following configuration yielding consistently strong performance across datasets:

• Knowledge extraction: Sample size N = 30 nodes provides sufficient context without
introducing noise

• Node generation: Setting M% = 15% of knowledge nodes balances quantity and quality

• Community detection: Parameters µ = 0.5 and γ = 0.5 effectively balance semantic and
structural factors

• Stochastic sampling: β = 2.0 maintains appropriate exploration-exploitation balance

• Edge formation: For semantic mode, (θ1, θ2, θ3) = (0.6, 0.3, 0.1); for topological mode,
(0.2, 0.5, 0.3)

• Quality assessment: Initial threshold τ0 = 7.0 with adaptive update rate ζ = 0.1

• Convergence criteria: ϵ = 0.05 provides sufficient refinement iterations

• Objective weights: Initialize λsem = λstruct = λbal = 0.33 with learning rate η = 0.05

Among tested LLMs (QwQ-32B, Qwen-32B, DeepSeek-R1-32B, and LLaMA-33B), QwQ-32B
consistently delivered superior performance. We limited synthesis to a maximum of 15 iterations, as
additional iterations yielded diminishing returns..

F Detailed Experimental Results

Table 4: Comparison of GraphMaster with other TAG synthesis methods in JKNet model.

Type Model
Cora Citeseer Wikics History Arxiv2023 Children

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Original Origin 88.9±1.1 87.9±0.7 78.3±0.9 75.7±1.2 79.7±0.6 77.9±1.1 84.2±0.3 43.1±1.3 76.3±0.8 54.9±1.2 52.6±0.5 31.9±0.9
Classic-Aug GAugO 88.9±0.4 88.2±1.2 78.3±1.4 77.0±0.8 80.0±0.7 77.8±1.0 84.6±1.2 44.7±1.4 76.8±1.0 53.0±1.2 51.8±0.8 33.6±1.4

LLM-Aug
GraphEdit 91.0±1.3 89.4±1.0 81.4±0.7 80.2±0.8 82.0±0.9 80.6±0.7 87.6±1.0 45.7±1.1 78.0±0.4 57.8±1.1 54.3±1.3 35.7±0.4

LLM4RGNN 91.4±0.9 88.8±0.5 81.0±1.4 76.7±0.7 83.6±0.3 81.4±0.5 88.9±0.8 48.6±1.4 79.3±1.2 59.1±1.4 55.7±0.7 36.7±1.1

Classic-Syn

GraphSmote 88.7±0.4 87.4±0.8 78.2±1.4 74.8±0.9 80.7±0.3 78.5±0.8 84.9±0.8 43.9±1.4 76.2±1.0 55.5±1.3 53.1±0.7 33.2±0.5
G-Mixup 87.4±1.0 87.0±0.5 78.4±0.3 76.9±1.0 79.7±1.0 78.0±1.3 84.6±1.1 43.6±1.2 76.6±1.2 56.5±0.8 53.0±1.1 33.0±0.3
IntraMix 80.9±1.4 82.9±1.0 71.4±0.4 70.7±1.4 73.7±1.3 74.4±0.5 82.4±1.3 42.7±0.4 72.4±1.0 53.9±1.2 45.2±1.0 30.1±0.5

GraphAdasyn 89.2±1.3 88.8±1.2 78.7±1.1 78.2±1.3 80.8±0.6 78.8±1.1 84.6±1.3 46.1±0.3 77.5±1.4 57.0±1.3 53.6±0.5 33.0±1.2
FG-SMOTE 88.9±0.6 87.6±0.5 78.6±0.7 74.7±0.4 81.0±1.4 79.0±1.1 85.0±0.9 44.0±0.8 76.4±0.8 55.8±0.7 53.1±1.3 33.3±0.9
AGMixup 84.7±0.7 86.6±1.3 71.6±1.2 73.2±1.3 78.8±1.2 76.6±0.4 81.8±0.9 42.9±1.4 76.8±1.2 53.7±1.3 53.6±1.1 32.6±1.0

LLM-Syn

GAG 91.0±1.4 89.3±1.1 82.8±0.7 80.0±0.5 84.9±1.1 83.2±1.2 88.9±0.9 49.8±1.3 79.9±1.4 59.4±1.2 56.7±1.0 38.0±1.3
LLM4NG 80.9 ±0.4 79.7 ±0.3 87.1 ±0.6 85.6 ±0.3 75.0 ±0.3 74.5 ±0.5 84.2 ±0.6 52.4 ±0.4 81.3 ±0.2 62.5 ±0.4 49.3 ±0.6 37.0 ±0.8

Mixed-LLM 89.9±0.3 89.3±1.0 83.4±1.3 81.3±1.2 84.9±1.1 83.4±1.3 89.2±1.1 55.8±0.9 81.4±1.3 61.2±0.9 60.0±1.3 39.6±0.8
Synthesis-LLM 89.8±1.1 89.1±0.5 84.5±1.2 82.7±0.5 84.8±0.8 83.2±1.4 89.4±0.4 53.4±0.8 81.0±1.3 62.3±1.1 60.9±1.3 40.1±0.4
GraphMaster 93.9±1.2 93.6±0.8 89.0±1.3 87.8±1.2 87.9±0.9 86.4±1.3 92.5±0.7 64.1±1.1 87.8±1.0 66.4±1.4 68.9±1.4 47.7±0.5

Table 5: Comparison of GraphMaster with other TAG synthesis methods in GraphSage model.

Type Model
Cora Citeseer Wikics History Arxiv2023 Children

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Original Origin 88.4±0.9 87.4±1.2 78.4±0.8 74.7±0.7 80.2±1.3 77.6±0.5 84.1±0.4 42.6±1.1 76.2±0.6 53.7±0.9 52.6±1.2 30.9±0.7
Classic-Aug GAugO 87.9±1.0 87.9±0.5 79.1±1.3 76.0±0.8 79.6±0.7 77.4±1.1 83.7±0.9 43.6±0.6 76.8±1.4 55.3±0.4 52.4±0.8 30.9±1.0

LLM-Aug
GraphEdit 91.6±0.6 91.0±1.2 83.0±0.9 80.9±0.3 83.8±1.1 80.5±0.6 87.6±1.3 48.7±0.5 78.2±0.4 56.8±1.0 56.1±0.7 34.6±1.2

LLM4RGNN 88.8±0.3 87.3±1.4 79.5±0.5 78.7±1.0 83.6±0.9 80.5±0.7 87.0±0.8 47.6±1.3 77.9±1.1 56.2±0.5 55.4±1.4 33.7±0.9

Classic-Syn

GraphSmote 87.9±1.1 87.6±0.8 79.6±1.2 76.6±0.5 80.0±0.6 77.7±0.9 83.7±1.0 44.7±0.4 77.3±1.3 55.8±1.2 53.8±0.7 33.5±0.6
G-Mixup 87.7±0.5 87.8±1.3 78.2±0.7 75.3±1.1 79.9±1.2 77.5±0.4 85.4±0.9 44.2±1.1 76.4±0.7 54.9±0.8 53.6±1.2 33.3±0.9
IntraMix 81.1±0.8 81.6±0.4 71.1±1.1 70.2±0.9 73.8±0.5 74.2±1.3 82.2±0.7 42.2±0.8 72.2±1.0 53.3±0.3 45.0±0.9 31.7±1.0

GraphAdasyn 90.0±1.3 90.1±0.5 79.4±0.9 77.4±1.3 84.3±0.4 81.6±0.8 86.7±1.2 45.4±0.6 77.8±0.8 56.3±1.1 56.4±0.3 35.1±0.5
FG-SMOTE 88.0±0.6 88.0±1.0 79.8±0.4 76.8±0.7 80.3±1.3 77.8±0.5 85.8±0.9 44.8±1.2 77.6±0.6 56.2±0.8 54.3±1.1 33.6±0.4
AGMixup 87.7±0.9 87.3±0.3 78.1±1.3 74.5±0.8 81.5±0.7 78.6±1.1 84.3±0.5 42.5±0.7 74.9±1.2 52.1±0.9 53.5±0.4 31.5±1.1

LLM-Syn

GAG 91.2±0.7 90.5±1.1 81.4±0.8 80.6±0.5 85.9±1.0 82.4±0.6 88.9±1.3 48.7±0.9 78.7±0.3 57.2±1.4 57.7±0.8 36.9±0.5
LLM4NG 82.0 ±0.2 81.2 ±0.4 84.3 ±0.5 83.1 ±0.5 80.0 ±0.3 77.5 ±0.5 81.8 ±0.6 45.6 ±0.7 85.0 ±0.2 62.1 ±0.1 46.2 ±0.5 26.4 ±0.9

Mixed-LLM 91.4±1.2 90.7±0.6 84.1±0.9 84.7±1.3 83.7±0.4 81.0±0.8 90.2±0.7 58.3±1.1 82.7±1.0 59.6±0.4 62.3±1.3 42.5±0.7
Synthesis-LLM 91.3±0.4 90.2±1.0 84.3±1.2 85.2±0.7 84.8±0.9 82.1±0.5 90.5±0.6 57.4±1.4 83.2±0.8 58.5±1.2 63.4±0.5 43.1±0.9
GraphMaster 93.9±0.5 92.7±1.1 88.9±0.7 87.9±0.9 87.5±1.2 86.4±0.6 92.9±0.8 62.3±1.0 87.4±0.5 66.2±1.3 66.9±0.7 47.1±1.1

Table 1 presents the experimental results using the GCN model, Table 4 shows results using the JKNet
model, Table 5 displays results using the GraphSage model, and Table 6 demonstrates results using
the GAT model. Our findings indicate that GraphMaster consistently outperforms other approaches
across all GNN architectures, strongly validating the universality of our proposed model. Furthermore,
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Table 6: Comparison of GraphMaster with other TAG synthesis methods in GAT model.

Type Model
Cora Citeseer Wikics History Arxiv2023 Children

Acc F1 Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Original Origin 85.9±0.8 85.0±0.8 75.9±0.8 72.6±0.9 77.9±0.6 75.9±0.7 81.8±0.9 46.7±0.8 74.3±0.6 52.1±1.0 51.0±0.7 30.0±0.9
Classic-Aug GAugO 85.6±0.7 84.7±0.6 76.1±0.7 73.8±0.7 78.6±1.0 75.3±1.1 82.1±0.7 42.6±0.6 75.3±1.0 53.7±0.6 51.8±1.1 30.0±0.6

LLM-Aug
GraphEdit 88.2±0.6 87.0±0.9 79.8±0.9 78.4±1.1 81.4±0.8 78.3±0.6 85.1±1.0 47.3±1.1 76.0±0.7 55.0±0.9 54.6±0.6 33.5±1.0

LLM4RGNN 87.8±0.5 85.3±0.7 79.3±0.6 76.4±0.6 81.2±0.5 78.1±0.9 85.3±0.6 46.2±0.7 76.3±1.2 54.4±0.7 54.0±0.9 32.7±0.7

Classic-Syn

GraphSmote 85.8±0.7 84.4±0.5 76.9±1.2 74.3±0.8 78.3±1.1 75.6±0.5 82.3±1.2 43.6±0.9 75.5±0.5 54.3±1.1 52.2±0.5 32.5±1.1
G-Mixup 84.8±0.6 84.3±0.8 76.1±0.8 73.2±1.2 77.5±0.7 75.4±1.0 82.5±0.8 43.4±0.5 74.0±0.9 53.4±0.5 51.9±1.2 31.9±0.5
IntraMix 78.4±0.9 79.5±0.6 69.0±0.5 68.3±0.5 71.9±0.9 72.1±0.7 79.9±0.5 41.3±1.2 71.5±0.7 51.9±0.8 43.9±0.7 30.7±0.8

GraphAdasyn 86.8±0.8 86.3±0.9 77.3±1.0 75.1±0.9 82.0±0.6 78.0±1.2 83.7±1.1 44.3±0.7 75.6±1.1 54.7±1.2 54.8±1.0 34.0±1.2
FG-SMOTE 85.9±0.5 84.6±0.7 77.2±0.7 74.2±0.7 78.9±1.2 76.0±0.5 83.3±0.7 43.8±1.0 75.5±0.6 54.8±0.6 52.8±0.6 32.5±0.7
AGMixup 83.0±0.7 83.7±0.5 75.0±1.1 72.6±1.0 79.6±0.5 77.0±0.9 82.3±0.9 41.6±0.6 73.7±0.8 51.5±0.9 51.8±0.9 30.5±0.9

LLM-Syn

GAG 88.3±0.8 87.0±0.8 80.5±0.6 78.3±0.8 83.5±0.9 80.0±0.7 86.3±0.6 47.3±0.9 77.1±1.2 55.7±0.7 56.2±0.7 35.8±0.6
LLM4NG 77.6 ±0.2 76.3 ±0.4 69.4 ±0.7 67.9 ±0.5 77.9 ±0.3 76.6 ±0.5 82.0 ±0.4 41.7 ±0.7 61.2 ±0.4 51.4 ±0.7 46.9 ±0.4 27.2 ±0.5

Mixed-LLM 88.2±0.6 87.2±0.7 81.4±0.9 81.8±0.6 81.9±0.7 78.7±1.1 87.6±1.0 57.0±0.7 80.1±0.5 57.9±1.0 60.7±1.1 41.2±1.0
Synthesis-LLM 88.1±0.9 87.0±0.6 81.6±0.7 82.3±1.1 82.3±1.0 79.5±0.6 87.8±0.5 55.7±1.1 80.8±0.9 56.8±0.5 61.9±0.5 41.8±0.8
GraphMaster 89.9±0.7 88.6±0.9 85.0±1.0 84.3±0.7 84.2±0.8 82.7±0.8 89.0±0.9 59.1±0.8 83.7±0.7 63.0±0.9 63.9±0.8 44.5±0.6

we observe that our two novel baselines frequently achieve second-place rankings, which substantiates
the significant potential of Large Language Models (LLMs) in text-attributed graph data synthesis.
As the first work leveraging LLMs for text-attributed graph synthesis, GraphMaster exhibits both
efficient resource utilization and remarkable capabilities for TAG data generation.

G Detailed Graph Feature Analysis
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Figure 4: Graph feature analysis on Cora dataset. The top three rows of pictures are the results of the
original data-limited dataset, and the bottom three rows are the results after TAG data synthesis using
GraphMaster.

To rigorously evaluate the structural fidelity of our synthesized graphs, we conduct a comprehensive
feature analysis across three critical topological and semantic dimensions. Figure 4, Figure 5, Figure 6,
Figure 7, Figure 8 and Figure 9 present comparative analyses of the original graphs versus those
synthesized by GraphMaster on Cora, Citeseer, Wikics, History, Arxiv2023, and Children datasets,
respectively.

Each figure displays a comparative analysis between the original data-limited datasets (top row) and
the GraphMaster-synthesized datasets (bottom row) across three key metrics:

• Degree Distribution (left column): Characterizes the probability distribution of node
connectivity patterns. We employ the Kolmogorov-Smirnov (KS) test to quantify statistical
similarity, with lower KS statistics and higher p-values indicating stronger preservation
of connectivity patterns. Our results demonstrate that GraphMaster consistently improves
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Figure 5: Graph feature analysis on Citeseer dataset. The top three rows of pictures are the results of
the original data-limited dataset, and the bottom three rows are the results after TAG data synthesis
using GraphMaster.
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Figure 6: Graph feature analysis on Wikics dataset. The top three rows of pictures are the results of
the original data-limited dataset, and the bottom three rows are the results after TAG data synthesis
using GraphMaster.

degree distribution similarity across all datasets, with Cora showing particularly strong
results (KS statistic of 0.022, p-value=0.709).

• Clustering Coefficient vs. Degree (middle column): Reveals how local neighborhood
connectivity varies across nodes of different degrees. We observe that GraphMaster substan-
tially improves clustering pattern similarity in most datasets, with notable improvements
in Wikics (from 0.728 to 0.777) and Children (from 0.785 to 0.835). This indicates that
our synthesis approach effectively captures the relationship between node importance and
community formation.

• Label Homogeneity (right column): Visualizes the connection probability between differ-
ent node classes, with lighter heatmap colors indicating smaller differences between original
and synthesized graphs. GraphMaster achieves remarkably high label homogeneity simi-
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Figure 7: Graph feature analysis on History dataset. The top three rows of pictures are the results of
the original data-limited dataset, and the bottom three rows are the results after TAG data synthesis
using GraphMaster.
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Figure 8: Graph feature analysis on Arxiv2023 dataset. The top three rows of pictures are the results
of the original data-limited dataset, and the bottom three rows are the results after TAG data synthesis
using GraphMaster.

larity scores (>0.96 across all datasets), demonstrating its ability to preserve label-to-label
connectivity patterns.

Notably, our approach shows significant structural improvements on citation networks (Cora, Citeseer,
Arxiv2023) where semantic relationships strongly influence topology. For instance, in Arxiv2023,
GraphMaster improves degree distribution similarity from 0.930 to 0.950 while maintaining consistent
label homogeneity (0.980). On larger and more complex datasets like Children, GraphMaster
effectively preserves clustering coefficients (similarity improvement from 0.785 to 0.835) while
maintaining degree distribution and label homogeneity.

These results collectively demonstrate that GraphMaster not only enhances semantic richness but also
successfully preserves—and in many cases improves—the critical structural characteristics of the
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Figure 9: Graph feature analysis on Children dataset. The top three rows of pictures are the results of
the original data-limited dataset, and the bottom three rows are the results after TAG data synthesis
using GraphMaster.

original graphs. This structural fidelity is essential for ensuring that downstream GNN applications
trained on synthesized data generalize effectively to real-world scenarios.

H Theoretical Analysis of Interpretable Experiments

Recent advances evaluation frameworks have emphasized the importance of interpretability when
evaluating language model outputs after knowledge edits [19] and other fields [6]. Inspired by this,
our interpretability analysis similarly integrates both human-centered and algorithmic assessments to
evaluate the semantic coherence of synthesized graph components.

H.1 Human-Centered Interpretability Evaluation

The human evaluation protocol assesses GraphMaster’s interpretability through a structured multi-
dimensional analysis. We recruited R = 50 expert annotators with backgrounds in graph machine
learning, natural language processing, or data mining. Inclusion criteria required either (i) at least
two peer-reviewed publications in the past three years, or (ii) a minimum of two years of relevant
industrial R&D experience. All participants with potential conflicts of interest were excluded. The
final cohort consisted of 38 PhD students, 6 postdoctoral researchers or research assistants, 3 faculty
members, and 3 industry researchers. Geographical distribution included Asia (50%), Europe (20%),
North America (24%), and others (6%).

Each expert evaluated N = 200 synthesized instances sampled from six benchmark datasets. Each
instance was independently scored by three reviewers, resulting in 600 total annotations. The
evaluation covered three critical dimensions:

• Process Transparency: Measures how clearly the synthesis workflow can be understood,
from initial graph analysis to final node generation.

• Decision Justification: Evaluates whether the model’s choices (e.g., which nodes to sample,
what attributes to generate) have clear rationales.

• Outcome Predictability: Assesses whether the results of the synthesis process logically
follow from the inputs and intermediate steps.

Each dimension was rated using a 1–5 Likert scale, which was linearly normalized to [0, 1] for
scoring purposes. For each dimension d, reviewer r assigns a score tr,i,d ∈ [0, 1] for instance i. The
composite interpretability score for instance i by reviewer r is:
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tr,i =
1

3

3∑
d=1

tr,i,d (32)

To ensure annotation quality, reviewers completed a 30-minute training session followed by a 20-
item calibration phase. Only those achieving a Cohen’s κ ≥ 0.70 in the pilot study were retained.
During the main annotation phase, we adopted a double-blind setup with randomized item and order
presentation, applied a standardized rubric, and removed two raters who failed attention checks.
The average pairwise inter-rater agreement achieved was κ = 0.72± 0.05, indicating moderate to
substantial agreement.

To assess the statistical reliability of the aggregated Traceability Score, we compute a bootstrap
confidence interval:

CI(Tscore) =

[
Tscore − zα/2

√
σ2
T

R ·N
, Tscore + zα/2

√
σ2
T

R ·N

]
(33)

where σ2
T denotes the variance of individual instance-level ratings and zα/2 is the critical value

associated with the desired confidence level.

We provide complete details of the reviewer selection, demographic statistics, annotation procedures,
and inter-rater reliability metrics in the appendix.

H.2 Grassmannian Analysis of Semantic Consistency

H.2.1 Theoretical Foundation

Definition 1 (Grassmann Manifold). The Grassmann manifold G(p, d) is the set of all p-dimensional
linear subspaces of Rd. Each point on G(1, d) can be represented by a unit vector u ∈ Sd−1 (up to
sign).

Theorem 1 (Principal Semantic Direction). Given a set of semantically related unit-normalized text
embeddings {x1,x2, . . . ,xK} ⊂ Sd−1, there exists an optimal direction u∗ ∈ Sd−1 that minimizes
the sum of squared geodesic distances on the Grassmann manifold:

u∗ = argmin
u∈Sd−1

K∑
j=1

arccos2(|uTxj |) (34)

Proposition 1 (Semantic Coherence Metric). For a synthesized node with embedding xs, its semantic
coherence with respect to background knowledge is quantified by:

S(xs) = 1− 2

π
arccos(|xT

s u
∗|) (35)

where S(xs) ∈ [0, 1] with higher values indicating greater semantic coherence.

Proof of Theorem 1 (Principal Semantic Direction). Let us first establish that the geodesic distance
between two points on G(1, d) represented by unit vectors u and v is given by dG(u,v) =
arccos(|uTv|).

Consider the objective function f(u) =
∑K

j=1 arccos
2(|uTxj |). We need to show that:

1. This function has at least one global minimum on Sd−1

2. This minimum represents a semantically meaningful direction

For the first point, note that f is continuous on the compact set Sd−1, so by the extreme value theorem,
it attains both a maximum and minimum value.
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For the second point, let us analyze the critical points of f constrained to Sd−1. Using the method of
Lagrange multipliers, we seek critical points of:

L(u, λ) =
K∑
j=1

arccos2(|uTxj |)− λ(uTu− 1) (36)

Taking the gradient with respect to u:

∇uL =

K∑
j=1

−2 arccos(|uTxj |) ·
1√

1− (|uTxj |)2
· sgn(uTxj) · xj − 2λu = 0 (37)

Solving this system of equations is equivalent to finding u that balances the weighted contributions
of all xj vectors. The solution u∗ represents a direction that minimizes angular deviation from all
input embeddings.

To demonstrate semantic meaningfulness, let us decompose any embedding xj as:

xj = (xT
j u

∗)u∗ + x⊥
j (38)

where x⊥
j is orthogonal to u∗. The optimization objective minimizes the magnitude of these orthogo-

nal components across all embeddings, effectively capturing their common directional component in
the embedding space. Since semantically related concepts tend to cluster directionally in embedding
spaces, u∗ represents their central semantic direction.

Proof of Proposition 1 (Semantic Coherence Metric). The geodesic distance between xs and the
principal direction u∗ on G(1, d) is dG(xs,u

∗) = arccos(|xT
s u

∗|). This distance ranges from 0
(perfect alignment) to π/2 (orthogonality).

To normalize this to a similarity measure in [0, 1], we apply the transformation:

S(xs) = 1− dG(xs,u
∗)

π/2
= 1− 2

π
arccos(|xT

s u
∗|) (39)

This yields S(xs) = 1 when xs and u∗ are perfectly aligned (modulo sign), and S(xs) = 0 when
they are orthogonal.

The semantic interpretation follows from the properties of the embedding space: cosine similarity
is a standard measure of semantic relatedness in text embeddings, and our formulation extends this
concept to the Grassmann manifold, providing a geometrically principled approach to measuring
semantic coherence against a central concept.

Moreover, this metric satisfies several desirable properties:

• Invariance to sign: S(xs) = S(−xs), reflecting that oppositely directed vectors represent
the same point on G(1, d)

• Monotonicity: S(xs) increases as xs aligns more closely with u∗

• Bounded range: S(xs) ∈ [0, 1], facilitating interpretation

• Geometric meaning: Directly related to the principal angle between subspaces on the
Grassmann manifold

Theorem 2 (Computational Solution). The principal direction u∗ can be efficiently computed as the
principal eigenvector of the matrix:

33



M =

K∑
j=1

wjxjx
T
j (40)

where weights wj are iteratively updated based on angular distances.

Proof. While the original optimization problem involves the non-linear arccos function, we can
develop an iteratively reweighted least squares approach that converges to the optimal solution.

Consider a simplified objective function g(u) =
∑K

j=1 wj(1 − (uTxj)
2) where wj =

arccos(|uT
t xj |)/

√
1− (|uT

t xj |)2 at iteration t.

Expanding g(u):

g(u) =

K∑
j=1

wj −
K∑
j=1

wj(u
Txj)

2 (41)

=

K∑
j=1

wj − uT

 K∑
j=1

wjxjx
T
j

u (42)

=

K∑
j=1

wj − uTMu (43)

Since u is constrained to have unit norm, minimizing g(u) is equivalent to maximizing uTMu. By
the Rayleigh-Ritz theorem, this is maximized when u is the eigenvector corresponding to the largest
eigenvalue of M.

The algorithm proceeds as follows:

1. Initialize u0 as a random unit vector

2. At iteration t:

• Compute weights wj = arccos(|uT
t xj |)/

√
1− (|uT

t xj |)2

• Form matrix Mt =
∑K

j=1 wjxjx
T
j

• Update ut+1 as the principal eigenvector of Mt

3. Repeat until convergence

This approach is guaranteed to converge to a stationary point of the original objective function. Since
the objective function is well-behaved on Sd−1, this stationary point corresponds to the desired
minimizer u∗.

H.3 Statistical Analysis of Evaluation Results

The distribution of semantic coherence scores provides valuable insights into the model’s ability to
generate semantically consistent nodes. We analyze this distribution through statistical hypothesis
testing, comparing the mean coherence score S̄ against a null hypothesis of random semantic
alignment (H0 : S̄ = 0.5). The one-sample t-test yields a t-statistic:

t =
S̄ − 0.5

s/
√
M

(44)

where s is the sample standard deviation and M is the number of synthesized nodes. This allows us
to quantify the statistical significance of semantic coherence in our synthesized graph elements.
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Additionally, we compute the Pearson correlation coefficient between human interpretability ratings
and semantic coherence scores across matching instances to assess the alignment between human
judgment and our geometric approach:

ρ =

∑
i(ti − t̄)(Si − S̄)√∑

i(ti − t̄)2
∑

i(Si − S̄)2
(45)

where ti is the average human rating for instance i and Si is the corresponding semantic coher-
ence score. This correlation provides evidence for the validity of our dual-perspective evaluation
framework.

I Theoretical Analysis of Agent Capabilities

In this appendix, we present rigorous theoretical analyses validating the effectiveness of GraphMas-
ter’s agent components. We first develop a foundational mathematical framework for each agent’s
operations, then derive formal guarantees regarding their synthesis capabilities through a series of
interconnected theorems and propositions.

I.1 Information-Theoretic Analysis of the Perception Agent

We establish a theoretical framework for analyzing the information capture capabilities of the
Perception Agent through the lens of information theory and spectral graph theory.
Definition 2 (Topological Information Density). For a text attribute graph G = (V, E ,X ,Y), the
topological information density I(G) is defined as:

I(G) = 1

|V|
∑
vi∈V

H (pN (vi)

)
+

∑
vj∈N (vi)

KL(pvj |pG)

 (46)

where H(·) is the entropy function, pN (vi) is the probability distribution over the neighborhood of vi,
pvj is the local distribution at node vj , and pG is the global distribution over the graph.
Theorem 3 (Information Capture Properties of the Perception Agent). Given a text-attributed graph
G = (V, E ,X ,Y), the Perception Agent constructs:

1. An environment reportRt that preserves topological information with bounded distortion:

DKL(I(G)|I(Rt)) ≤ ϵt +O

(
log |V|
|V|

)
(47)

2. A knowledge encapsulation Kt that preserves semantic relationships with high fidelity:

P

(
sup

vi,vj∈V

∣∣∣S(xi, xj)− Ŝ(xi, xj ;Kt)
∣∣∣ > δ

)
≤ 2 exp

(
−2|Kt|δ2

C2
S

)
(48)

where S(·, ·) is a semantic similarity function, Ŝ(·, ·;Kt) is its empirical estimate based on Kt, and
CS is a problem-specific constant.

Proof. We decompose the proof into topological and semantic components.

Part 1: Topological Information Preservation

The environment reportRt = (ρglobal, {ρcclass}Cc=1, {ρicomm}
|C|
i=1,Dstruct,Dsem) encodes a compressed

representation of the graph’s topological properties. We establish information-theoretic bounds on
this compression.

For the degree distribution captured in Dstruct:

W2(P
G
deg, P

Rt

deg )
2 ≤ C1 log |V|

|V|
(49)
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where W2 is the 2-Wasserstein distance and C1 is a universal constant.

For spectral properties, the Laplacian spectrum satisfies:∣∣∣∣ λi(G)
λmax(G)

− ρi
ρmax

∣∣∣∣ ≤ C2

√
log |V|
|V|

(50)

where λi(G) is the i-th eigenvalue of the normalized Laplacian of G, and ρi is the corresponding
encoded value in ρglobal.

The community structure preservation follows from the Cheeger’s inequality:

Rt encodes hG(Si) such that
λ2(G)
2
≤ hG(Si) ≤

√
2λ2(G) (51)

where hG(Si) is the Cheeger constant for community Si.

By aggregating these bounds and applying the data processing inequality, we establish the KL-
divergence bound on topological information.

Part 2: Semantic Preservation

The knowledge encapsulation Kt is constructed via semantic-enriched modularity maximization and
personalized PageRank sampling:

Qsem =
1

2m

∑
i,j

[
Aij − γ

kikj
2m
− (1− γ)

dsem(xi, xj)∑
l,m dsem(xl, xm)

]
δ(ci, cj) (52)

For any semantic function S with Lipschitz constant LS , the ϵ-net covering number of the semantic
space is bounded by:

N (ϵ,X , dsem) ≤
(
D

ϵ

)d

(53)

where D is the diameter of the semantic space and d is its dimension.

The Personalized PageRank algorithm ensures that sampled nodes provide a δ-cover of the semantic
space with probability at least 1− δ when:

|Kt| ≥
1

δ

[
d log

(
D

ϵ

)
+ log

(
1

δ

)]
(54)

Applying the McDiarmid inequality to the empirical semantic distance estimates completes the proof
of the high-probability bound.

Corollary 1 (Spectral Approximation Guarantee). The knowledge encapsulation Kt provides a
(α, β)-spectral approximation of the original graph G with high probability, such that:

α · xTLGx ≤ xTLKtx ≤ β · xTLGx ∀x ∈ R|V| (55)

where LG and LKt are the respective graph Laplacians, and α, β depend on |Kt|, the spectral gap of
G, and the teleportation parameters of the PPR algorithm.

Proof. Follows from spectral perturbation theory applied to the effective resistance sampling frame-
work, combined with the properties of Personalized PageRank. The core insight lies in the fact that
PPR sampling approximates effective resistance sampling when the teleportation vector is properly
calibrated.

I.2 Semantic-Topological Coherence of the Enhancement Agent

We now establish theoretical guarantees for the Enhancement Agent’s generation capabilities, bridging
statistical learning theory, concentration inequalities, and manifold theory.
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Definition 3 (Semantic-Topological Coherence). For a generated node vs with attributes xs and
connections Es, the semantic-topological coherence is defined as:

Φ(vs;G) = α · Csem(xs,X ) + (1− α) · Ctopo(Es,G) (56)

where Csem is semantic coherence, Ctopo is topological coherence, and α ∈ [0, 1] is a weighting
parameter.
Theorem 4 (Generation Consistency with Concentration Bounds). The Enhancement Agent produces
node vs with attributes xs and edges Es that satisfy:

1. Semantic consistency with concentration bounds:

P (|Csem(xs,X )− E[Csem(xs,X )]| > t) ≤ 2 exp

(
−|Kt|t2

2σ2
sem

)
(57)

2. Topological consistency with respect to local and global network properties:

E[Ctopo(Es,G)] ≥ β · max
vj∈Vk

Ctopo(Ej ,G)−
CG

|Kt|1/3
(58)

3. The generative mechanism preserves manifold structure in the asymptotic limit:

lim
|Kt|→∞

P (dist(xs,MX ) > ϵ) = 0 (59)

whereMX is the manifold on which the original node attributes lie.

Proof. Part 1: Semantic Consistency Concentration

The Enhancement Agent generates node attributes via a conditional autoregressive model:

P (xs|Kt,Rt) =

L∏
i=1

P (xi
s|x<i

s ,Xk, Ek,Rt) (60)

Each token generation can be decomposed as:

P (xi
s|x<i

s ,Xk, Ek,Rt) ∝ exp

(
ϕ(xi

s)
Thi

τ

)
(61)

where hi is the contextualized representation and τ is a temperature parameter.

The contextualized representation integrates information from the knowledge encapsulation:

hi = W1 · f(x<i
s ) +W2 · g(Xk) +W3 · h(Ek) (62)

Let Csem(xs,X ) = maxxj∈X S(xs, xj). The semantic similarity function S satisfies the bounded
differences condition:

|S(xs, xj)− S(xs, xj′)| ≤ LS · |xj − xj′ | (63)

By applying McDiarmid’s inequality to the empirical semantic coherence, we establish the concentra-
tion bounds.

Part 2: Topological Consistency

The edge generation mechanism:

P ((vs, vi) ∈ Ec|Kt,Rt) = σ

(
θ1 · sim(xs, xi) + θ2 ·

|N (vi) ∩NK(vs)|
|NK(vs)|

+ θ3 ·
ki

maxj kj

)
(64)

We analyze the asymptotic properties using random graph theory. Let G(n, pij) be a random graph
model where edge (i, j) exists with probability pij .

The expected clustering coefficient:

E[CC(vs)] =

∑
i,j pis · pjs · pij∑

i,j pis · pjs
(65)
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For our model:

pij = σ

(
θ1 · sim(xi, xj) + θ2 ·

|N (vi) ∩N (vj)|
|N (vi)|

+ θ3 ·
kj

maxl kl

)
(66)

The local-global consistency emerges from the balance between the three terms:

• θ1 term preserves homophily (similar nodes connect)

• θ2 term ensures triadic closure (friends of friends connect)

• θ3 term maintains scale-free properties (preferential attachment)

Using graph limit theory, the topological consistency is governed by:

Ctopo(Es,G) ≈ 1− 1

2
|WEs −WG |□ (67)

where WEs and WG are graphons (limiting objects of graphs) and | · |□ is the cut norm.

Part 3: Manifold Preservation

LetMX ⊂ Rd be a compact r-dimensional manifold with condition number 1/τ and reach at least
τ > 0. The nodes X = x1, . . . , xN are sampled from a distribution supported onMX .

The language model learns a conditional distribution:

PLLM(x|Kt) =
1

Z(Kt)
exp

(
−dist(x,MX (Kt))

2

2σ2

)
· Pprior(x) (68)

As |Kt| → ∞, we have:

MX (Kt)→MX in the Hausdorff metric (69)

The manifold preservation follows from the consistency of kernel density estimators on manifolds
and the properties of autoregressive language models.

Proposition 2 (Latent Variable Interpretation). The Enhancement Agent’s generative process is
equivalent to a controlled stochastic differential equation on the graph manifold:

dxt = µ(xt,Kt)dt+ σ(xt,Kt)dWt (70)

where µ is a drift term aligning generation with the knowledge encapsulation, σ is a diffusion term
controlling diversity, and Wt is a Wiener process.

Proof. We establish the equivalence by showing that the discrete token generation process converges
to the SDE in the continuous limit. The proof uses techniques from the theory of diffusion models
and score-matching generative models.

I.3 Theoretical Properties of Quality Assessment and Convergence

We now establish rigorous guarantees for the Evaluation Agent’s quality assessment and convergence
determination capabilities.

Definition 4 (Marginal Quality Contribution). For a graph G = (V, E ,X ,Y) and a generated node
vs with attributes xs and connections Es, the marginal quality contribution is:

∆Q(vs,G) = Q(G ∪ {vs, Es})−Q(G) (71)

where Q is a quality functional measuring overall graph utility for the target task.

Theorem 5 (Quality Assessment with Statistical Guarantees). The Evaluation Agent implements a
quality assessment function that satisfies:
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1. Strong correlation with marginal quality contribution:

E[∆Q(vs,G)|LLMV (vs,R0,Rt,Kt) = q] = f(q) +O

(
1

|V|

)
(72)

where f is monotonically increasing and Lipschitz continuous.

2. Thresholding efficiency with probabilistic guarantees:

P(∆Q(vs,G) > 0|LLMV (vs,R0,Rt,Kt) > τt) ≥ 1− exp(−c · |Kt|) (73)

for some constant c > 0 and appropriately chosen threshold τt.

3. Convergence detection with statistical significance:

P(Convergedt = 1|E[∆Qt+1] < ϵ) ≥ 1− δ (74)

where δ decreases exponentially with the window size k in the convergence criterion.

Proof. Part 1: Correlation with Marginal Quality

The Evaluation Agent employs a multi-dimensional quality assessment:

LLMV (vs,R0,Rt,Kt) = g (Φsem(vs,Kt),Φtopo(vs,Gt),Φbal(vs,Yt)) (75)

The quality functional Q can be decomposed into semantic, topological, and balance components:

Q(G) = ω1Qsem(G) + ω2Qtopo(G) + ω3Qbal(G) (76)

For each component, we establish bounds on the approximation error:

|E [∆Qsem(vs,G) | Φsem(vs,Kt) = s]− fsem(s)| ≤
C1

|Kt|
(77)

|E [∆Qtopo(vs,G) | Φtopo(vs,Gt) = t]− ftopo(t)| ≤
C2

|V|
(78)

|E [∆Qbal(vs,G) | Φbal(vs,Yt) = b]− fbal(b)| ≤
C3√
|V|

(79)

By the properties of the LLM’s function approximation capabilities, we have:

|g − ω1fsem − ω2ftopo − ω3fbal|∞ ≤ ϵLLM (80)

Combining these bounds establishes the correlation with marginal quality.

Part 2: Thresholding Efficiency

The adaptive threshold mechanism:

τt = τt−1 + ζ(F̄t(ω
∗
t )− F̄t−1(ω

∗
t−1)) (81)

converges to an optimal threshold τ∗ that maximizes expected improvement:

τ∗ = argmax
τ

E[∆Q(Vaccepted(τ),G)] (82)

where Vaccepted(τ) = vs : LLMV (vs, ·) > τ .

By the properties of sub-Gaussian random variables and the Lipschitz continuity of f , we establish
the high-probability guarantee on positive quality contribution.

Part 3: Convergence Detection

The convergence criterion:

Convergedt = I
(

max
j∈1,...,k

|F̄t(ω
∗
t )− F̄t−j(ω

∗
t−j)| < ϵ ∧ LLMgoal(R0,Rt) = True

)
(83)
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implements a change-point detection algorithm with multiple hypothesis testing.

The probability of false convergence detection is bounded by:

P(Convergedt = 1|E[∆Qt+1] ≥ ϵ) ≤ k · exp

(
−2nϵ2

C2
Q

)
(84)

where n is the number of samples used to estimate F̄t and CQ is a bound on the quality range.

Likewise, the probability of missing convergence is bounded by:

P(Convergedt = 0|E[∆Qt+1] < ϵ/2) ≤ exp

(
− nϵ2

8C2
Q

)
(85)

The combined error probability decays exponentially with the sample size and window length.

Corollary 2 (Optimal Stopping Property). The Evaluation Agent’s convergence criterion implements
an approximately optimal stopping rule for the synthesis process, achieving a regret bound of:

Regret(T ) ≤ O
(√

T log T
)

(86)

where T is the maximum number of iterations.

Proof. We frame the convergence determination as a multi-armed bandit problem with non-stationary
rewards, where the arms correspond to continue/stop decisions. Applying results from optimal
stopping theory and the regret analysis of UCB algorithms yields the result.

I.4 Unified Multi-Agent System Dynamics

We now establish theoretical results concerning the collective behavior of the agent system, framing
it as optimization on a Riemannian manifold.

Definition 5 (Graph Configuration Manifold). The space of possible graph configurations forms a
Riemannian manifoldMG with metric tensor:

gij(G) = E
[
∂ log p(G|θ)

∂θi

∂ log p(G|θ)
∂θj

]
(87)

where p(G|θ) is a parametric model of graph distribution and θ are the parameters.

Theorem 6 (Manifold Optimization Dynamics). The multi-agent system in GraphMaster implements
natural gradient ascent on the graph configuration manifold MG , optimizing a multi-objective
function:

Ψ∗(G) = λ1Ψsem(G) + λ2Ψstruct(G) + λ3Ψbal(G) (88)

with adaptive weights λi that evolve according to:

λt+1
i = Π∆

[
λt
i + η∇λiP (Gt)

]
(89)

where Π∆ is projection onto the probability simplex.

The convergence rate is:

E[Ψ∗(G∗)−Ψ∗(GT )] ≤ O

(
1√
T

)
(90)

for a non-convex objective, and:

E[Ψ∗(G∗)−Ψ∗(GT )] ≤ O

(
log T

T

)
(91)

if the objective satisfies Polyak-Łojasiewicz conditions.
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Proof. Part 1: Natural Gradient Dynamics

At each iteration, the system performs:

Gt+ 1 = ΠMG
[
Gt + ηt · I−1(Gt) · ∇Ψ∗(Gt)

]
(92)

where I(Gt) is the Fisher information matrix and ΠMG is projection onto the manifold.

This update is implemented by the collaborative agent process:

Kt = Φ(Gt) (93)

Vt
s = LLME(Kt,Rt,Mt) (94)

Ets =
{
(vs, vi)

∣∣ P ((vs, vi) ∣∣Kt,Rt

)
> ηt

}
(95)

Vt
accepted =

{
vs ∈ Vt

s

∣∣ LLMV

(
vs,R0,Rt,Kt

)
> τt

}
(96)

Gt+1 = Gt ⊕
(
Vt

accepted, Ets
∣∣
Vt

accepted

)
(97)

Part 2: Adaptive Weight Dynamics

The Manager Agent implements online gradient-based multi-objective optimization:

λt+1
i = Π∆

[
λt
i + η∇λi

P (Gt)
]

(98)

where P (Gt) measures progress toward synthesis objectives.

This follows the Multiple Gradient Descent Algorithm (MGDA) for Pareto optimization:

∇λi
P (Gt) ≈ ∇λi

min
j

Ψj(Gt)−Ψj(G0)
Ψ∗

j −Ψj(G0)
(99)

Part 3: Convergence Analysis

For a general non-convex objective, we have:

E
[

min
t=0,1,...,T−1

|∇Ψ∗(Gt)|2
]
≤ 2[Ψ∗(G∗)−Ψ∗(G0)]

ηT
+

ηL

2
(100)

For appropriately chosen step size η = O(1/
√
T ), this yields the O(1/

√
T ) convergence rate.

If the objective satisfies the Polyak-Łojasiewicz condition:

|∇Ψ∗(G)|2 ≥ 2µ[Ψ∗(G∗)−Ψ∗(G)] (101)

for some µ > 0, then we obtain the improved O( log T
T ) rate.

Theorem 7 (Spectral Convergence of Synthesized Graphs). Let Gorig be the original graph and Gsynth
be the synthesized graph after convergence. Under appropriate conditions on the synthesis process,
the eigenvalue distributions of their normalized Laplacians converge:

lim
|V|→∞

dLP(ρGorig , ρGsynth) = 0 (102)

where dLP is the Lévy-Prokhorov metric between spectral distributions and ρG is the empirical
spectral distribution of graph G.

Proof. We establish this result by analyzing the perturbation of the graph spectrum under node
additions. The proof relies on matrix concentration inequalities and recent results in random matrix
theory concerning deformed Wigner matrices.

For graphs with bounded degree, the spectral distribution satisfies a semicircle law in the limit. The
synthesis process preserves this property through controlled edge formation that maintains degree
distribution and local clustering patterns.
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These theoretical results collectively establish the mathematical foundations underlying GraphMas-
ter’s effectiveness, providing formal guarantees for its information preservation, generation quality,
evaluation accuracy, and convergence properties. The integration of concepts from information
theory, statistical learning, manifold optimization, and spectral graph theory creates a comprehensive
theoretical framework that explains why our multi-agent approach succeeds in generating high-quality
text-attributed graphs in data-limited environments.

J Limitations and Future Work

While GraphMaster demonstrates significant advances in text-attributed graph synthesis, several
important limitations remain. The current background knowledge selection mechanism, while effec-
tive for moderate-sized graphs, faces challenges with very large or heterogeneous graph structures.
Specifically, our Personalized PageRank-based approach may prioritize structurally central nodes
while potentially undersampling semantically important but topologically peripheral communities.
This sampling bias can result in synthesis blind spots, particularly in graphs with highly skewed
degree distributions or multiple disconnected components with distinct semantic characteristics.
Additionally, the quality evaluation process relies on LLM capabilities that exhibit variance across dif-
ferent base models and parameter scales. This interdependence creates challenges for deployment in
resource-constrained environments where smaller models are preferable. Computational requirements
present another significant limitation. The multi-agent architecture, while theoretically elegant, incurs
substantial inference overhead as each agent performs multiple LLM calls per synthesis round. For
extremely large graphs, the current approach requires non-trivial batching strategies and optimization
techniques that may not be readily available in standard deployment scenarios.

For future work, we envision several promising research directions. First, hierarchical multi-
resolution synthesis could revolutionize the approach by simultaneously modeling graph characteris-
tics at multiple levels of abstraction–from global topological patterns to local semantic neighborhoods.
This layered perspective would enable more coherent synthesis that preserves both macro-structure
and micro-semantics while potentially reducing computational complexity through selective refine-
ment. Second, cross-domain knowledge transfer represents a frontier challenge, where synthesis
agents could leverage patterns learned from data-rich domains to enhance generation in data-scarce
domains without explicit domain adaptation. This would require fundamental advances in domain-
agnostic graph representations that capture universal structural and semantic patterns transferable
across vastly different graph types. Rather than relying on fixed sampling algorithms, the frame-
work could develop adaptive sampling policies optimized specifically for the synthesis objective.
Finally, exploring emergent graph properties from synthesis could yield insights into how lo-
cally generated elements collectively produce global graph characteristics that were never explicitly
modeled–potentially revealing new theoretical connections between local generation rules and emer-
gent network phenomena. These developments would not only address current limitations but
could fundamentally reshape our understanding of generative modeling for complex relational data
structures.

K Case Study

In this study, we conducted a case study to track the entire synthesis framework and documented
the complete enhancement process. Table 7 presents the background knowledge possessed by
our Perception Agent prior to generating the environmental perception report, which serves as
a critical basis for the environmental status report generated in Table 8. In Table 8, not only
is the environmental status report produced, but the Manager Agent’s decision for the current
round—namely, semantic enhancement—is also provided. Subsequently, based on the information
from the semantic enhancement, the Perception Agent conducted a sampling of the background
knowledge nodes, as illustrated in Table 9 (for brevity, only two nodes are displayed). Following
this, Table 10 presents the node information generated by our Enhancement Agent (owing to space
limitations, the abstracts of some nodes have been omitted). Finally, Table 11 exhibits the quality
evaluation of the generated nodes by our Evaluation Agent. As indicated in the table, the newly
generated "new_node 5" was omitted due to substandard quality, and the table further demonstrates
that the Evaluation Agent judges the entire synthesis process as not yet converged, necessitating
continuation to the next round of enhancement.
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Table 7: Semantic Enhancement Case Study

Dataset: <SubCora>
Initial text attribute graph features:
"Graph": { "num_nodes": 1354,
"num_edges": 2486,
"avg_degree": 3.672082717872969,
"density": 0.002714030094510694,
"clustering_coefficient": 0.2296011350131079,
"avg_path_length": 6.52047030925269,
"connected_components": 78,
"largest_component_size": 1223,
"indices": [4, 2, 1, 3, 18, 11, 6, 15, 12, 9, 16, 10, 5, 13, 7, 17, 8, 20, 21, 24, 22, 23, 19, 36, 29,
27, 33, 47, 79, 25, 26, 30, 31, 34, 35, 37, 38, 40, 45, 50, 52, 53, 55, 56, 59, 62, 64, 66, 67, 73,
77, 80, 83, 28, 32, 39, 41, 42, 43, 44, 46, 48, 49, 51, 54, 57, 58, 60, 61, 63, 65, 68, 69, 70, 71,
72, 74, 75, 76, 78, 81, 82, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 0, 14],
"sizes": [192, 106, 97, 84, 78, 76, 74, 71, 65, 56, 55, 46, 42, 37, 35, 33, 18, 15, 14, 14, 10, 10,
9, 6, 5, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1],
"distribution": {"4": 192, "2": 106, "1": 97, "3": 84, "18": 78, "11": 76, "6": 74, "15": 71,
"12": 65, "9": 56, "16": 55, "10": 46, "5": 42, "13": 37, "7": 35, "17": 33, "8": 18, "20": 15,
"21": 14, "24": 14, "22": 10, "23": 10, "19": 9, "36": 6, "29": 5, "27": 3, "33": 3, "47": 3,
"79": 3, "25": 2, "26": 2, "30": 2, "31": 2, "34": 2, "35": 2, "37": 2, "38": 2, "40": 2, "45": 2,
"50": 2, "52": 2, "53": 2, "55": 2, "56": 2, "59": 2, "62": 2, "64": 2, "66": 2, "67": 2, "73": 2,
"77": 2, "80": 2, "83": 2, "28": 1, "32": 1, "39": 1, "41": 1, "42": 1, "43": 1, "44": 1, "46": 1,
"48": 1, "49": 1, "51": 1, "54": 1, "57": 1, "58": 1, "60": 1, "61": 1, "63": 1, "65": 1, "68": 1,
"69": 1, "70": 1, "71": 1, "72": 1, "74": 1, "75": 1, "76": 1, "78": 1, "81": 1, "82": 1, "84": 1,
"85": 1, "86": 1, "87": 1, "88": 1, "89": 1, "90": 1, "91": 1, "92": 1, "93": 1, "94": 1, "95": 1,
"96": 1, "97": 1, "98": 1, "0": 1, "14": 1},
"statistics": {
"4": {
"size": 192,
"internal_edges": 423,
"fraction_of_graph": 0.14180206794682423,
"modularity_contribution": 0.103009273492297
},
"2": {
"size": 106,
"internal_edges": 156,
"fraction_of_graph": 0.07828655834564253,
"modularity_contribution": 0.05272713033696666
},
.....
} "StructuralDistribution": { "degree_distribution": {"4": 233, "14": 4,"7": 33,"3": 273,"5":
127,"31": 1, ... ,
}
"SemanticDistribution": { "placeholder": "Semantic distribution analysis would go here" },
"LabelDistribution": { "2": 410, "4": 110, "6": 175, "1": 208, "3": 214, "5": 90, "0": 147 },
"ClassStatistics": { "2": { "count": 410, "fraction": 0.30280649926144754, "internal_edges":
518, "avg_degree": 2.526829268292683, "community_distribution": { "18": 26, "2": 20,} }
..., } }
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Table 8: Semantic Enhancement Case Study

Dataset: <SubCora>
Initial Environment Report:

Summary:{
The graph under analysis contains 1,354 nodes and 2,486 edges, resulting in a sparse but
structured topology with an average degree of 3.67 and an overall graph density of 0.0027.
Such characteristics are typical in real-world networks, where the number of edges scales
sub-quadratically with the number of nodes. The average shortest path length of 6.52 indicates
that the network is relatively well-connected in its largest component, despite the overall
sparsity.The clustering coefficient, a measure of local cohesiveness, is 0.23, suggesting
that nodes tend to form tight-knit neighborhoods—an important property for tasks that rely
on local structural features, such as label propagation and GNN-based message passing.
Structurally, the graph is partitioned into 78 connected components, but it is worth noting
that the largest connected component comprises 1,223 nodes, accounting for over 90% of the
entire graph. This makes the graph effectively connected for most practical purposes, enabling
global information diffusion across the majority of nodes. Community detection reveals
a complex and heterogeneous modular organization. There are several large communities,
such as those of size 200, 112, 97, and 96, indicating strong intra-community connectivity
in core regions. These large communities contribute significantly to the overall modularity,
with notable examples such as community “4” (size 200, modularity contribution ≈ 0.1052)
and “3” (size 112, contribution ≈ 0.0631). However, the long tail in the community size
distribution is striking:
1)Over 40 communities consist of only 1 or 2 nodes,
2)More than 60% of communities are smaller than size 10.
This imbalance in community sizes suggests that while the graph’s topology supports clear
structural groupings in dense areas, it also contains many fragmented or peripheral regions that
are less well-served by structural clustering alone. These small communities may represent
semantic outliers, conceptually related nodes that are not densely connected in the topology.
Overall, the graph structure is well-organized, with a solid backbone of connectivity and
modular clusters. The community detection result aligns with expectations in real-world data
but also reveals opportunities for further refinement—particularly in regions where structure
alone fails to form meaningful communities.
Given this context, incorporating semantic node features (e.g., textual content, embeddings,
or metadata) could greatly complement the topological view. Nodes in small or singleton
communities may be structurally isolated but semantically similar, and semantic enhancement
can help bridge this gap, improving community coherence, label consistency, and downstream
task performance such as classification, recommendation, and contrastive learning.
}
Manager Agent’s Decision: {Semantic Enhancement}
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Table 9: Semantic Enhancement Case Study

Dataset: <SubCora>
Perception Agent Knowledge Extraction:
GraphSub: {
{
"node_id": 536,
"label": 0,
"text": "Title: Dynamic Constraint Satisfaction using Case-Based Reasoning Techniques \n
Abstract: The Dynamic Constraint Satisfaction Problem (DCSP) formalism has been gaining
attention as a valuable and often necessary extension of the static CSP framework. Dynamic
Constraint Satisfaction enables CSP techniques to be applied more extensively, since it can
be applied in domains where the set of constraints and variables involved in the problem
evolves with time. At the same time, the Case-Based Reasoning (CBR) community has been
working on techniques by which to reuse existing solutions when solving new problems.
We have observed that dynamic constraint satisfaction matches very closely the case-based
reasoning process of case adaptation. These observations emerged from our previous work on
combining CBR and CSP to achieve a constraint-based adaptation. This paper summarizes
our previous results, describes the similarity of the challenges facing both DCSP and case
adaptation, and shows how CSP and CBR can together begin to address these chal lenges.",
"neighbors": [
639
],
"mask": "Train"
},
{
"node_id": 41,
"label": 0,
"text": "Title: A Memory Model for Case Retrieval by Activation Passing \n Abstract: We
present a tree-structured architecture for supervised learning. The statistical model underlying
the architecture is a hierarchical mixture model in which both the mixture coefficients and
the mixture components are generalized linear models (GLIM’s). Learning is treated as a
maximum likelihood problem; in particular, we present an Expectation-Maximization (EM)
algorithm for adjusting the parameters of the architecture. We also develop an on-line learning
algorithm in which the parameters are updated incrementally. Comparative simulation results
are presented in the robot dynamics domain. This report describes research done at the Dept.
of Brain and Cognitive Sciences, the Center for Biological and Computational Learning, and
the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology. Support
for CBCL is provided in part by a grant from the NSF (ASC-9217041). Support for the
laboratory’s artificial intelligence research is provided in part by the Advanced Research
Projects Agency of the Dept. of Defense. The authors were supported by a grant from the
McDonnell-Pew Foundation, by a grant from ATR Human Information Processing Research
Laboratories, by a grant from Siemens Corporation, by by grant IRI-9013991 from the
National Science Foundation, by grant N00014-90-J-1942 from the Office of Naval Research,
and by NSF grant ECS-9216531 to support an Initiative in Intelligent Control at MIT. Michael
I. Jordan is a NSF Presidential Young Investigator. ",
"neighbors": [
166,
637,
761,
1004,
1005,
1116,
1196
],
"mask": "Train"
},
...
}
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Table 10: Semantic Enhancement Case Study

Dataset: <SubCora>
Enhancement Agent generates high-quality nodes:
{
"node_id": "new_node 1",
"label": 0,
"text": "Title: Integrating Explanation-Based Learning with Case Adaptation Strategies\n
Abstract: This paper presents a novel approach to case adaptation in case-based reasoning
systems by integrating explanation-based learning techniques. Traditional case adaptation
relies heavily on domain-specific adaptation rules that are often difficult to acquire and main-
tain. Our approach uses explanations generated during problem-solving to identify adaptation
patterns and generalize them into reusable adaptation strategies. We demonstrate how these
strategies can be applied across different domains with minimal knowledge engineering effort.
Experimental results show that the integrated approach improves adaptation performance
in comparison to rule-based adaptation methods, especially in domains where adaptation
knowledge is incomplete or rapidly evolving. The paper presents a formal framework for the
approach and discusses its implementation in a case-based planning system.",
"neighbors": [337, 833, 639, 476],
"mask": "Train"
},
{
"node_id": "new_node 2",
"label": 1,
"text": "Title: Adaptive Parameter Control in Evolution Strategies for Dynamic
Environments\n Abstract: Omitted due to table size limitation.",
"neighbors": [462, 70, 1312],
"mask": "Train"
},
{
"node_id": "new_node 3",
"label": 0,
"text": "Title: Multi-Level Similarity Assessment for Case Retrieval in Heterogeneous
Domains\n Abstract: Omitted due to table size limitation.",
"neighbors": [637, 638, 825, 1004],
"mask": "Train"
},
{
"node_id": "new_node 4",
"label": 3,
"text": "Title: Hybrid Neural-Symbolic Architecture for Interpretable Knowledge
Extraction\n Abstract: Omitted due to table size limitation.",
"neighbors": [1290, 263],
"mask": "Train"
},
{
"node_id": "new_node 5",
"label": 0,
"text": "Title: Case-base Design for Knowledge Discovery\n Abstract: Case Based Rea-
soning has proven to be useful for AI systems. Our research introduces a new method
called KDD-CBR (Knowledge Discovery through Database Case-Based Reasoning) which
combines data mining with case bases for information retrieval and management. The system
works by analyzing patterns in large datasets and then applies unique non-traditional methods
for case storage. Unlike other approaches, we focus on pattern recognition instead of adapta-
tion or similarity, which makes our approach completely novel in the field. Tests show this
approach has better inference capability than other CBR techniques in some instances but
worse in others. The implications for future research directions are significant and should
be explored further with additional funding and more test cases. Additionally, we plan to
integrate KDD-CBR with deep neural networks to further enhance performance on arbitrary
datasets.",
"neighbors": [462, 70, 1017],
"mask": "Train"
}
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Table 11: Semantic Enhancement Case Study

Dataset: <SubCora>
Evaluation Agent evaluates node quality and determines whether it has converged.:
{
"node_id": "new_node 1",
"label": 0,
"text": "Title: Integrating Explanation-Based Learning with Case Adaptation Strategies\n
Abstract: This paper presents a novel approach to case adaptation in case-based reasoning
systems by integrating explanation-based learning techniques. Traditional case adaptation
relies heavily on domain-specific adaptation rules that are often difficult to acquire and
maintain. Our approach uses explanations generated during problem-solving to identify
adaptation patterns and generalize them into reusable adaptation strategies. We demonstrate
how these strategies can be applied across different domains with minimal knowledge
engineering effort. Experimental results show that the integrated approach improves
adaptation performance in comparison to rule-based adaptation methods, especially in
domains where adaptation knowledge is incomplete or rapidly evolving. The paper presents a
formal framework for the approach and discusses its implementation in a case-based planning
system.",
"neighbors": [337, 833, 639, 476],
"mask": "Train"
},
{
"node_id": "new_node 2",
"label": 1,
"text": "Title: Adaptive Parameter Control in Evolution Strategies for Dynamic Environments
\n Abstract: Omitted due to table size limitation.",
"neighbors": [462, 70, 1312],
"mask": "Train"
},
{
"node_id": "new_node 3",
"label": 0,
"text": "Title: Multi-Level Similarity Assessment for Case Retrieval in Heterogeneous
Domains \n Abstract: Omitted due to table size limitation.",
"neighbors": [637, 638, 825, 1004],
"mask": "Train"
},
{
"node_id": "new_node 4",
"label": 3,
"text": "Title: Hybrid Neural-Symbolic Architecture for Interpretable Knowledge Extraction
\n Abstract: Omitted due to table size limitation.",
"neighbors": [1290, 263],
"mask": "Train"
}

Summary: { After checking the node quality based on the background knowledge and
environment report, delete new_node 5.
According to the status check, the entire synthesis process has not converged and needs to
continue to the next round of enhancement. }
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