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Abstract

Videos, with their unique temporal dimension, demand precise grounded under-
standing, where answers are directly linked to visual, interpretable evidence. De-
spite significant breakthroughs in text-based reasoning with large language models,
multi-modal reasoning – especially for videos – remains limited. In this work,
we fill this gap by introducing VideoMind, a novel video-language agent for
temporal-grounded video reasoning. Our method involves two key innovations:
(1) We identify four essential capabilities for grounded video reasoning and pro-
pose a role-based agentic workflow, comprising a planner to coordinate roles, a
grounder for temporal event localization, a verifier to assess event candidates,
and an answerer for question answering. (2) To efficiently integrate these roles
during inference, we propose a novel Chain-of-LoRA mechanism, where a unified
base model with multiple LoRA adapters is leveraged to enable seamless role
switching, balancing efficiency and flexibility. Extensive experiments on 14 bench-
marks across 3 tasks, including Grounded VideoQA, Video Temporal Grounding,
and General VideoQA, demonstrate the effectiveness of the proposed scheme in
advancing video agent, test-time scaling, and long-form video reasoning.

1 Introduction

Recent advancements in large language models (LLMs) have demonstrated remarkable success
in text-based reasoning [72, 82, 57], significantly improving both accuracy and interpretability in
complex problem-solving scenarios [83]. Following these breakthroughs, efforts have been devoted
to extending these reasoning capabilities to multi-modal domains [92, 76, 63] such as vision-centric
science [39] and math [42] understanding.

Compared with images or text, videos pose a unique challenge due to their temporal dimension.
Effective video reasoning requires not only recognizing visual appearances but also understanding how
they evolve over time [75, 7, 4]. While recent visual Chain-of-Thought (CoT) methods [92, 76, 63]
excel at generating detailed thoughts for static images, they struggle with long videos as they cannot
explicitly localize or revisit earlier parts of the sequence. Humans, by contrast, can reason over long
videos with ease: they break down complex problems, identify relevant moments, revisit them to
confirm details, and synthesize their observations into coherent answers. This natural proficiency
motivates the development of an AI agent that emulates this process – flexibly coordinating multiple
capabilities to achieve advanced, vision-centric reasoning.

In this work, we introduce VideoMind, a video-language agent with enhanced temporal-grounded
reasoning capabilities. To meet the demands of diverse tasks, we define four essential roles for
understanding complex long-form videos: (1) a planner to decompose tasks and coordinate other
roles, (2) a grounder for precise moment localization, (3) a verifier for moment candidates
assessment, and (4) an answerer for moment-aware response generation. Each role is carefully
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Figure 1: Illustration of VideoMind’s Chain-of-LoRA reasoning strategy. The problem is decomposed
by the planner and distributed to grounder, verifier, and answerer.

designed to deliver strong performance. To enable efficient integration of these roles, we also propose
a novel Chain-of-LoRA mechanism, where all the roles are implemented based on the same base
MLLM but with different LoRA adapters [16]. During inference, all the LoRA parameters are cached
into the memory, so that each role could be activated by simply switching to the corresponding LoRA,
as shown in Figure 1 (right). This approach facilitates seamless transitions and interactions among
roles without incurring the memory overhead of maintaining multiple full models.

We conduct extensive experiments on 14 public benchmarks, including 3 on Grounded VideoQA,
6 on Video Temporal Grounding, and 5 on General VideoQA, to evaluate the effectiveness of our
approach. VideoMind exhibits strong adaptability in addressing diverse reasoning tasks by jointly
providing accurate responses and temporal-grounded evidence. Notably, our 2B model surpasses
GPT-4o [48] and Gemini-1.5-Pro [54] on several long video benchmarks [4, 94, 66].

2 Method

Figure 2 provides an overview of VideoMind. It derives from Qwen2-VL [65]. Given a video input V
and a text query Q, the model adaptively performs step-by-step reasoning by calling individual roles.

2.1 Planner

An agent should be flexible enough to meet various demands and determine efficiently which function
to call. To this end, we introduce the Planner, which dynamically coordinates all other roles for each
query. We utilize a JSON-style object {"type": "<role>", "value": "<argument>"} to trigger
a function call. In this way, a sequence of roles can be succinctly represented as a list of such objects.
We define three reasoning plans illustrated below.

(1) Grounding & Verifying & Answering: This plan requires the agent to generate both a response
and a temporal moment for grounded question-answering tasks [74] such as “What is the boy doing
when the baby is crying?”. (2) Grounding & Verifying: Designed for tasks focusing solely on
grounding such as moment retrieval like “When does the woman go downstairs?”. (3) Answering
Only: When the question is straightforward (e.g., “Summarize this video”), the model may not need
to localize moments. Instead, it can watch the entire video and answer the question directly.

2.2 Grounder

Timestamp Decoder Rather than directly predicting timestamps through language modeling [55]
or special tokens [17, 38], we develop a timestamp decoder on top of the LMM. We introduce a
<REG> token to facilitate the timestamp decoding process. When this token is generated, the last-layer
hidden states of <REG> and all the visual tokens will be sent into the decoder for timestamp prediction,
obtaining a tuple [tstart, tend] representing the normalized start and end timestamps.

The decoder accepts hidden states of the visual tokens hv ∈ R(T×H×W )×DL and the <REG> token
hr ∈ R1×DL as inputs, where T , H , W , DL are the down-sampled number of frames, height, width,
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Figure 2: The overall workflow of VideoMind. Given a video and a query, it adaptively activates
different roles and performs step-by-step reasoning by calling individual modules.

and hidden dimensions of the LLM, respectively. We apply a 1D average pooling to compress
the visual tokens to one token per frame, denoted as h′

v. Then, h′
v and hr are projected by two

linear layers Ev and Er to reduce the hidden dimension to D. The resulting ev and er serve as
consolidated representations of the video frames and the query, respectively. To effectively integrate
their information, we add them with learnable modality embeddings, concatenate them along the
sequence dimension, and encode them with a transformer encoder. The output sequence is split into
e′v and e′r, indicating the contextualized frame and query embeddings, respectively. We then map e′v
into a four-level temporal feature pyramid to enhance its adaptability to varying moment lengths.

Prediction Heads (1) A classification head is adopted for frame-level foreground-background
classification. This is instantiated by a two-layer Conv1D module (kernel size=3, padding=1)
followed by a Sigmoid activation. (2) A boundary regression head is utilized to predict the 1D
offset with the temporal boundaries {[b̂si , b̂ei ]}Li=0 for each frame. This is a two-layer convolution
block, with an output dimension of 2 and an exponential function as activation.

2.3 Verifier

A key moment is crucial for providing visual cues, yet it may be imprecise due to its sensitivity. We
let the grounder generate top-5 predictions, then apply the verifier to select the most reliable one.

Recap by Zoom-in For each candidate moment, we apply a zoom-in strategy by expanding the
boundaries by 50% on both sides, cropping, and enlarging the resolution. The resulting video
segment, together with the original text query, is then sent to the verifier to assess whether the queried
event occurs within the segment. To enhance boundary awareness, we introduce two special tokens,
<SEG_START> and <SEG_END>, to explicitly mark the beginning and end of the moment. These
tokens are inserted among the visual tokens at the corresponding frames.

Boolean Judgement The verifier’s responses are designed to be binary – either “Yes” or “No”. To
train the verifier, we sample predictions from the grounder on its training datasets and assign binary
labels based on an IoU threshold of 0.5. The model is then fine-tuned via SFT to predict these labels.
During inference, for each candidate moment, we employ teacher forcing to obtain the likelihoods of
the <Yes> and <No> tokens, denoted as Ly and Ln, respectively. The confidence score for a moment
is defined as Sigmoid(Ly − Ln). We select the moment with the highest confidence score.

2.4 Answerer

The answerer is responsible for answering the given question based on the cropped video segment.
Since the objective of this role is strictly aligned with existing LMMs, we employ the pre-trained
model directly without any fine-tuning or architectural modifications.

To meet the diverse demands of different roles, we introduce a Chain-of-LoRA strategy to enable
flexible switching. All the roles are built on top of the same backbone LMM and augmented with
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Table 1: Performance comparison on Grounded
VideoQA on CG-Bench [4].

Method Size long-acc. mIoU rec.@IoU acc.@IoU

GPT-4o [48] – 45.2 5.62 8.30 4.38
Gemini-1.5-Pro [54] – 37.2 3.95 5.81 2.53

Video-LLaVA [29] 7B 16.2 1.13 1.96 0.59
VILA [30] 8B 28.7 1.56 2.89 1.35
LongVA [90] 7B 28.7 2.94 3.86 1.78
LLaVA-OV [24] 7B 31.1 1.63 1.78 1.08
VITA [10] 8×7B 33.3 3.06 3.53 2.06
Qwen2-VL [65] 72B 41.3 3.58 5.32 3.31
InternVL2 [61] 78B 42.2 3.91 5.05 2.64

VideoMind (Ours) 2B 31.0 5.94 8.50 4.02
VideoMind (Ours) 7B 38.4 7.10 9.93 4.67

Table 2: VideoQA performance on Video-
MME [9], MLVU [94], and LVBench [66].

Method Size
Video-MME MLVU LVBench

All Long M-Avg Overall

Gemini-1.5-Pro [54] – 75.0 67.4 – 33.1
GPT-4o [48] – 71.9 65.3 54.5 30.8
Video-LLaVA [29] 7B 41.1 37.8 29.3 –
TimeChat [55] 7B 34.3 32.1 30.9 22.3
MovieChat [59] 7B 38.2 33.4 25.8 22.5
PLLaVA [77] 34B 40.0 34.7 53.6 26.1
VideoChat-TPO [79] 7B 48.8 41.0 54.7 –
LongVA [90] 7B 52.6 46.2 56.3 –

VideoMind (Ours) 2B 53.6 45.4 58.7 35.4
VideoMind (Ours) 7B 58.2 49.2 64.4 40.8

Table 3: Comparison with different test-time scal-
ing strategies. Mem means peak GPU memory.

Method Mem
NExT-GQA Charades-STA Video-MME

mIoU Acc R@0.5 mIoU All Long

Qwen2-VL-2B 4.1G – 69.6 – – 49.7 43.1
+ CoT [72] 4.1G – 69.7 – – 49.6 43.2

+ All-in-One 4.2G 28.0 70.5 47.8 42.1 52.8 44.6
+ All-Distributed 16.6G 28.6 71.4 51.1 45.2 53.6 45.4
+ Chain-of-LoRA 4.2G 28.6 71.4 51.1 45.2 53.6 45.4

Table 4: Effects of individual roles. G% is the
percentage of samples processed by grounder.

VideoMind Roles ReXTime Charades-STA

Ans Gnd Ver Pla G% mIoU Acc R@0.5 R@0.7 mIoU

✓ 0% – 68.0 – – –
✓ ✓ 100% 24.5 68.8 – – –
✓ ✓ ✓ 100% 24.8 69.1 – – –
✓ ✓ ✓ ✓ 100% 24.7 69.2 – – –
✓ ✓ ✓ ✓ 40% 26.7 70.0 – – –

✓ – – 47.2 21.7 42.0
✓ ✓ – – 51.1 26.0 45.2

additional LoRA adapters [16] and a lightweight timestamp decoder (for grounder only). The model
dynamically activates role-specific LoRA adapters during inference via self-calling, allowing for
maximizing role-specific capabilities while minimizing architectural modifications.

3 Experiments

We conduct experiments across various benchmarks. Some key results are presented here. Details
about implementation, training data, benchmarks, and discussions are in the supplementary material.

Grounded Video Question-Answering In Table 1, we report results on CG-Bench [4], a chal-
lenging benchmark with an average duration of 27 minutes. In grounding metrics, our lightweight
2B model outperforms all compared models (including InternVL2-78B [61] and most closed-source
models such as Gemini-1.5-Pro [54]), with the exception of GPT-4o [48], while our 7B model
surpasses it and achieves competitive overall performance.

General Video Question-Answering We are also interested in whether our temporally augmented
design can improve general VideoQA tasks. In Table 2, we evaluate our model on three widely used
benchmarks to determine if the Chain-of-LoRA design generalizes to common settings. Our designs
effectively help the model localize cue segments before answering the question.

Ablation Study We summarize some ablation study results in Table 3 and Table 4. (1) Naive text-
based CoT does not improve the base model, highlighting the need for vision-centric reasoning. (2)
Chain-of-LoRA achieves identical performance as all-distributed, but without multiple copies
(4×) of the model weights. (3) All roles contribute to the final performance, where the grounder
is crucial on long videos and the verifier consistently enhances temporal grounding accuracy. (4)
Coordinating roles through the planner enables the model to flexibly adaptive to different context –
performing grounding on only 40% samples yields higher accuracy but with less compute.

4 Conclusion

We introduced VideoMind, a novel video-language agent designed for temporal grounded video
reasoning. Our approach employs an agentic workflow consisting of a Planner, Grounder, Verifier, and
Answerer, along with a Chain-of-LoRA strategy to efficiently switch among these roles. Extensive
experiments demonstrate the effectiveness and significance of VideoMind, particularly in long-form
video reasoning tasks by providing precise, evidence-based answers. We hope this work inspires
future advancements in multi-modal video agents and reasoning.
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Appendix

A Related Work

A.1 Temporal-grounded Video Understanding

Significant advances in video understanding have propelled tasks such as video captioning [93, 33], video
question answering [74, 86], and video-text retrieval [45, 31], which emphasize instance-level understanding, yet
these models often lack visual-grounded correspondence and interpretability, particularly for long-form video
streams. The task of Video Temporal Grounding [13, 21] tackles this by requiring precise temporal localization
for diverse queries, though regression-based models [37, 36] excel at localization but fall short in providing
textual interpretability. Recent benchmarks [75, 4] intensify this challenge, demanding both reasoning for
complex questions and fine-grained temporal correspondence. Previous baselines for these tasks typically rely
on multi-task objectives or modular agents composed of distinct components [86, 84, 67, 8], often yielding sub-
optimal performance (e.g., LLM-based approaches for temporal grounding) or overly complex systems, which
constrain their efficiency and flexibility. In this work, our proposed VideoMind introduces an agentic workflow
built upon a unified backbone, seamlessly integrating multiple functionalities while enhancing localization and
interpretability, thus surpassing the limitations of prior methods.

A.2 Multi-modal Reasoning

Large Multi-modal Models [34], trained with supervised instruction-tuning (SFT), exhibit generalized capabilities
such as free-form dialogue and question answering; however, they fall short in addressing complex challenges
that often require the reasoning abilities of LLMs [72]. One approach to overcome this is to develop agent-based
interfaces [86, 20], which integrates textual outputs from multiple visual tools to enable language reasoning via
LLMs. Advanced methods [60, 81, 12] leverage strategies like Codex or ReAct [83] to invoke visual APIs (e.g.,
detectors, captioners) through progressive execution and reasoning. Alternatively, pure text-based reasoning
[49, 15] has been a dominant paradigm in LLMs [72, 86], exemplified by training with long CoT processes
using Reinforcement Learning, which provides detailed, step-by-step readable reasoning, with some works
[92? ] extending this to the visual domain for complex mathematical or scientific problems. Despite these
advances, extending reasoning to videos across temporal dimensions remains an open challenge. Given the
long-context nature of informative videos, we think that a video-centric CoT should incorporate a human-like
re-watch strategy and self-validation of intermediate observations, leading us to introduce a novel Chain-of-LoRA
framework for video reasoning.

A.3 Inference-time Searching

Inference-time searching has emerged as a critical technique for tackling complex reasoning and planning
challenges in domains like robotics [69], games [58], and navigation [62], distinct from training-time strategies
as it optimizes model behavior during inference rather than model parameters during training. The advent of
OpenAI o1 [49] has advanced these inference-time techniques within LLMs by integrating sampling strategies
such as controlled decoding [3, 78], Best-of-N sampling [28], and Monte Carlo Tree Search (MCTS) [68, 87, 64],
allowing LLMs to iteratively refine outputs and achieve superior performance without altering their underlying
weights. However, the potential of inference-time searching remains largely untapped in video understanding,
where temporal reasoning introduces unique challenges. In our framework, we explore how MCTS can be
tailored for video temporal reasoning, observing that models are highly sensitive to the selection of temporal
segments, often producing unreliable predictions when segment choices are sub-optimal. To address this, we
propose a moment-level searching approach where a grounder generates multiple candidates, followed by a
verifier that evaluates and determines the correct correspondence. This strategy significantly enhances temporal
grounding accuracy and robustness across diverse scenarios.

B Model Details

B.1 Query Rephrasing

When the user query lacks sufficient detail for accurate localization, the planner is allowed to rephrase the
question into a more descriptive version. For instance, the question “What is the person sitting on the bed doing
as the baby plays?” might confuse the grounder as it contains multiple instances (person and baby). It can be
rephrased to “the baby is playing” for accurate scene description. We leverage GPT-4o mini [48] generated
question-query pairs for training.
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Table 5: Training datasets for different roles. The planning dataset is repurposed from NExT-QA [74]
and QVHighlights [23]. Verify datasets are generated from the pre-trained grounder’s predictions. mr
and step denote the moment retrieval and step localization subsets of HiREST [85], respectively.

Role #Samples Datasets

Planner 39K NeXT-QA-Plan (34K), QVHighlights-Plan (5K)

Grounder 210K QVHighlights (5K), DiDeMo (33K), TACoS (9K), InternVid-VTime (54K),
CosMo-Cap (87K), QuerYD (19K), HiRESTmr (8K), HiRESTstep (4K)

Verifier 232K DiDeMo-Verify (165K), TACoS-Verify (43K), QVHighlights-Verify (24K)

B.2 Temporal Feature Pyramid

To enhance adaptability to varying lengths of videos and moments, we map e′
v into a four-level temporal feature

pyramid with multiple temporal resolutions. This is achieved by applying Conv1D→ LayerNorm→ SiLU
blocks for each pyramid level, where the Conv1D employs a kernel size and stride of 2 (down-sampling the
sequence by 1/2 along the temporal dimension). In practice, the four levels retain 1, 1/2, 1/4, and 1/8 of the
original sequence length, respectively. They can be denoted as pn

v ∈ R(T/n2)×D where n ∈ [1, 4] is the index
of the pyramid level. To accelerate the prediction process, we concatenate the sequences from all pyramid levels
along the temporal dimension into pv with length L = T + T/2 + T/4 + T/8, such that the prediction can be
made in parallel.

C Experiments

We conduct extensive experiments across various benchmarks to evaluate our VideoMind. Specifically, we study
the following research questions.

Q1. Whether VideoMind is flexible and effective on different video temporal reasoning tasks compared to
baselines with task-specific designs?

Q2. Compared with training a single agent on multiple tasks, what advantages does Chain-of-LoRA offer?
Q3. What effects does each individual design contribute?

C.1 Benchmarks and Settings

The experiments are extensively designed across 14 diverse benchmarks, where the statistics are listed in Table 6.
We mainly evaluate VideoMind on grounded VideoQA and video temporal grounding scenarios, and also
study its generalizability on general long VideoQA benchmarks. The information about major benchmarks is
introduced below.
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Table 6: Statistics of evaluation benchmarks. The datasets encompass three representative tasks
– Grounded VideoQA, Video Temporal Grounding, and General VideoQA, with video durations
ranging from several seconds to more than 1 hour.

Dataset Duration Domain Main Metrics

Grounded Video Question-Answering (Grounding + QA)

CG-Bench [4] 1624.4s Diverse rec.@IoU, acc.@IoU
ReXTime [5] 141.1s Vlog, News, Activity mIoU, Acc (IoU⩾ 0.5)
NExT-GQA [75] 39.5s Reasoning mIoP, Acc@GQA

Video Temporal Grounding (Grounding only)

Charades-STA [13] 30.1s Indoor R@{0.3∼ 0.7}, mIoU
ActivityNet-Captions [21] 111.4s Activity R@{0.3∼ 0.7}, mIoU
QVHighlights [23] 150s Vlog, News R@{0.5, 0.7}, mAP
TACoS [53] 358.2s Cooking R@{0.3∼ 0.7}, mIoU
Ego4D-NLQ [14] 379.0s Egocentric R@{0.3∼ 0.7}, mIoU
ActivityNet-RTL [18] 111.4s Reasoning P@0.5, mIoU

General Video Question-Answering (QA only)

Video-MME [9] 1017.9s Diverse Acc (w/o subs)
MLVU [94] 930s Diverse Acc
LVBench [66] 4101s Diverse Acc
MVBench [26] 15s Diverse Acc
LongVideoBench [73] 473s Diverse Acc

Table 7: Performance comparison on Grounded VideoQA on ReXTime [5]. FT indicates whether
fine-tuned on the downstream training set.

Method Size FT R@0.3 R@0.5 mIoU Acc Acc@IoU

VTimeLLM [17] 7B 28.84 17.41 20.14 36.16 –
TimeChat [55] 7B 14.42 7.61 11.65 40.04 –
LITA [18] 13B 29.49 16.29 21.49 34.44 –

VTimeLLM [17] 7B ✓ 43.69 26.13 29.92 57.58 17.13
TimeChat [55] 7B ✓ 40.13 21.42 26.29 49.46 10.92

VideoMind (Ours) 2B 34.31 22.69 24.83 69.06 17.26
VideoMind (Ours) 7B 38.22 25.52 27.61 74.59 20.20

Table 8: Performance comparison on Grounded VideoQA on NExT-GQA [75].

Method Size
IoU IoP

Acc@GQA
R@0.3 R@0.5 mIoU R@0.3 R@0.5 mIoP

FrozenBiLM NG+ [80] 890M 13.5 6.1 9.6 28.5 23.7 24.2 17.5
VIOLETv2 [11] – 4.3 1.3 3.1 25.1 23.3 23.6 12.8
SeViLA [84] 4B 29.2 13.8 21.7 34.7 22.9 29.5 16.6
LangRepo [20] 8×7B – 12.2 18.5 – 28.7 31.3 17.1
VideoStreaming [51] 8.3B – 13.3 19.3 – 31.0 32.2 17.8
LLoVi [86] 1.8T – 15.3 20.0 – 36.9 37.3 24.3
HawkEye [70] 7B 37.0 19.5 25.7 – – – –
VideoChat-TPO [79] 7B 41.2 23.4 27.7 47.5 32.8 35.6 25.5

VideoMind (Ours) 2B 45.2 23.2 28.6 51.3 32.6 36.4 25.2
VideoMind (Ours) 7B 50.2 25.8 31.4 56.0 35.3 39.0 28.2

CG-Bench [4] is designed for long video grounded question-answering, featuring a diverse domain and various
evaluation metrics. It includes 1.2K manually curated videos, ranging from 10 to 80 minutes, with a total of 12K
QA pairs. The dataset is categorized into perception, reasoning, and hallucination question types, and introduces
clue-based evaluation methods like white box and black box assessments to ensure models provide answers
based on accurate video reasoning.

ReXTime [5] tests models on complex temporal reasoning, using an automated pipeline for QA pair generation,
significantly reducing manual effort. It includes 921 validation and 2,1K test samples, each manually curated for
accuracy, and highlights a 14.3% accuracy gap between SoTA models and human performance. This benchmark
is crucial for evaluating models on cause-and-effect relationships across video segments, driving advancements
in video understanding research.

NExT-GQA [75] aims to challenge models to reason about causal and temporal actions, supporting both
multi-choice and open-ended tasks. This is an extension of NExT-QA [74] comprising 10.5K manually labeled
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Table 9: Performance of video temporal ground-
ing on Charades-STA [13].

Method Size FT R@0.3 R@0.5 R@0.7 mIoU

Moment-DETR [23] – ✓ 65.8 52.1 30.6 45.5
UniVTG [32] – ✓ 70.8 58.1 35.6 50.1
R2-Tuning [36] – ✓ 70.9 59.8 37.0 50.9

VTimeLLM [17] 13B 55.3 34.3 14.7 34.6
TimeChat [55] 7B 51.5 32.2 13.4 –
Momentor [50] 7B 42.6 26.6 11.6 28.5
HawkEye [70] 7B 50.6 31.4 14.5 33.7
ChatVTG [52] 7B 52.7 33.0 15.9 34.9
VideoChat-TPO [79] 7B 58.3 40.2 18.4 38.1
E.T. Chat [38] 4B 65.7 45.9 20.0 42.3

VideoMind (Ours) 2B 67.6 51.1 26.0 45.2
VideoMind (Ours) 7B 73.5 59.1 31.2 50.2

Table 10: Performance of video temporal ground-
ing on ANet-Captions [21].

Method Size FT R@0.3 R@0.5 R@0.7 mIoU

2D-TAN [91] – ✓ 60.4 43.4 25.0 42.5
MMN [71] – ✓ 64.5 48.2 29.4 46.6
VDI [40] – ✓ – 48.1 28.8 –

VideoChat [25] 7B 8.8 3.7 1.5 7.2
Video-LLaMA [88] 7B 6.9 2.1 0.8 6.5
Video-ChatGPT [44] 7B 26.4 13.6 6.1 18.9
Valley [41] 7B 30.6 13.7 8.1 21.9
ChatVTG [52] 7B 40.7 22.5 9.4 27.2
Momentor [50] 7B 42.9 23.0 12.4 29.3
E.T. Chat [38] 4B 24.1 12.8 6.1 18.9

VideoMind (Ours) 2B 44.0 26.5 12.6 30.1
VideoMind (Ours) 7B 48.4 30.3 15.7 33.3

Table 11: Video temporal grounding on TACoS
[53]. Note that our method was co-trained on this
dataset during pre-training.

Method Size FT R@0.3 R@0.5 R@0.7 mIoU

Non-LLM-based Specialists

2D-TAN [91] – ✓ 40.0 28.0 12.9 27.2
Moment-DETR [23] – ✓ 38.0 24.7 12.0 25.5
UniVTG [32] – ✓ 51.4 35.0 17.4 33.6
R2-Tuning [36] – ✓ 49.7 38.7 25.1 35.9

LLM-based Models

VideoMind (Ours) 2B ✓ 38.6 26.9 15.5 27.4
VideoMind (Ours) 7B ✓ 49.5 36.2 21.4 34.4

Table 12: Performance of video temporal ground-
ing on Ego4D-NLQ [14].

Method Size FT R@0.3 R@0.5 R@0.7 mIoU

Non-LLM-based Specialists

2D-TAN [91] – ✓ 4.3 1.8 0.6 3.4
VSLNet [89] – ✓ 4.5 2.4 1.0 3.5
Moment-DETR [23] – ✓ 4.3 1.8 0.7 3.5
UniVTG [32] – ✓ 7.3 4.0 1.3 4.9
R2-Tuning [36] – ✓ 7.2 4.5 2.1 4.9
UniVTG [32] – 6.5 3.5 1.2 4.6

LLM-based Models

VideoMind (Ours) 2B 5.9 2.9 1.2 4.7
VideoMind (Ours) 7B 7.2 3.7 1.7 5.4

video QA pairs with temporal segments. The samples in this benchmark are from “causal” and “temporal”
classes, while the “descriptive” questions in NExT-QA are discarded.

Charades-STA [13] contains 10K in-door videos, averaging 30.1 seconds each, with 16K temporal annotations
spanning daily activity, alongside free-text descriptions. These rich annotations make Charades-STA particularly
suitable for evaluating temporal grounding models under indoor environments.

ActivityNet-Captions [21] is a large-scale benchmark with 20K untrimmed YouTube videos totaling 849
hours, covering diverse activities from personal care to sports. This dataset contains high-quality dense video
captioning annotations (3.65 temporally localized sentences per video), which we use as queries for video
temporal grounding. Each query has an average length of 13.5 words.

C.2 Implementation Details

We leverage the 2B and 7B versions of Qwen2-VL [65] as our base model, and apply LoRA adapters with rank
64 and alpha 64 to planner, grounder, and verifier. The hidden size of the timestamp decoder in the grounder
is 256. The maximum number of tokens per frame and maximum number of frames for planner, grounder,
verifier, and answerer are set as [64, 100], [64, 150], [64, 64], and [256, 32], respectively. We train different roles
separately on different datasets (listed in Table 5) and load them together by setting different names for LoRA
adapters, so that the model can efficiently switch roles by actively setting different LoRAs. During training, we
set the global batch size as 32, and utilize the AdamW optimizer with learning rates of 2e-5, 1e-4, and 5e-5 for
planner, grounder, and verifier, respectively. All the roles were trained for 1 epoch on their specific datasets,
with a linear warmup in the first 3% steps. During inference, we apply NMS with an IoU threshold of 0.75 to
reduce duplicated moments from the grounder.

C.3 Q1: Comparison with State-of-the-Arts

Grounded Video Question-Answering In Table 7, we show the results on ReXTime [5]. Despite the
challenge posed by the temporal and causal event relationships, our model successfully identifies the correct
event and zooms in on the relevant moment. Notably, our zero-shot model outperforms all zero-shot baselines by
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Table 13: Fine-tuned video temporal grounding results
on QVHighlights [23].

Method Size
R1 mAP

@0.5 @0.7 @0.5 @0.75 Avg.

Non-LLM-based Specialists

Moment-DETR [23] – 59.78 40.33 60.51 35.36 36.14
UMT [37] – 60.83 43.26 57.33 39.12 38.08
MomentDiff [27] – 58.21 41.48 54.57 37.21 36.84
QD-DETR [46] – 62.40 44.98 62.52 39.88 39.86
UniVTG [32] – 65.43 50.06 64.06 45.02 43.63
R2-Tuning [36] – 68.03 49.35 69.04 47.56 46.17

LLM-based Models

VideoMind (Ours) 2B 75.42 59.35 74.11 55.15 51.60
VideoMind (Ours) 7B 78.53 61.09 76.07 58.17 54.19

Table 14: Performance of reasoning tempo-
ral localization on ActivityNet-RTL [18].
Our zero-shot 7B model outperforms the
fine-tuned baseline LITA [18] by a consid-
erable margin.

Method Size FT P@0.5 mIoU

LITA [18] 7B ✓ 21.2 24.1
LITA [18] 13B ✓ 25.9 28.6

VideoMind (Ours) 2B 20.1 22.7
VideoMind (Ours) 7B 28.0 31.3

Table 15: Performance of VideoQA on LongVideoBench [73] val split.

Method Size Acc
Acc @ Duration Groups

(8, 15] (15, 60] (180, 600] (900, 3600]

GPT-4o [48] – 66.7 71.4 76.7 69.1 60.9
GPT-4 Turbo [2] – 59.0 65.2 68.2 62.4 50.5
Gemini-1.5-Pro [54] – 64.0 67.4 75.1 65.3 58.6
Gemini-1.5-Flash [54] – 61.6 68.3 76.2 62.6 54.0
Idefics2 [22] 8B 49.7 59.8 65.7 47.8 42.7
Phi-3-Vision [1] 4B 49.6 59.3 61.6 46.8 44.7
Mantis-Idefics2 [19] 8B 47.0 56.6 55.8 45.6 42.2
Mantis-BakLLaVA [19] 7B 43.7 53.4 57.6 40.3 38.7

VideoMind (Ours) 2B 48.8 59.3 59.3 49.3 41.7
VideoMind (Ours) 7B 56.3 67.7 67.4 56.8 48.6

a significant margin and yields comparable performance to several fine-tuned variants in grounding, while also
achieving higher accuracy. This demonstrates its strong generalization capability.

We further present results on NExT-GQA [75] in Table 8. Compared to text-rich, agent-based solutions such as
LLoVi [86] and LangRepo [20] – which leverage additional tools and chain-of-thought, and SeViLA [84] – a
self-chained video agent with a similar design, our 2B model matches the performance of state-of-the-art 7B
models across both agent-based and end-to-end approaches. Moreover, our 7B model significantly outperforms
all other models.

Video Temporal Grounding Since the performance of the grounder and verifier is essential for VideoMind,
we evaluate these modules on temporal grounding datasets. In Table 9 and Table 10, we validate the zero-shot
grounding capabilities of VideoMind. Benefiting from (1) the timestamp decoder design of the grounder, and
(2) a verifier that refines the results by focusing on critical segments, our model achieves significant zero-shot
performance – surpassing all LLM-based temporal grounding methods and yielding competitive results compared
to fine-tuned temporal grounding experts.

We additionally compare VideoMind with representative methods on the challenging TACoS [53], Ego4D-NLQ
[14], and QVHighlights [23] datasets in Table 11, Table 12, and Table 13, respectively. Our model performs better
than the strong task-specific baseline UniVTG [32] on TACoS but slightly worse than it on Ego4D-NLQ, because
UniVTG was originally pre-trained on egocentric videos. Even without egocentric pre-training, VideoMind can
still produce comparable results on Ego4D-NLQ. To our best knowledge, VideoMind is the first LLM-based
grounding model that supports multi-moment outputs, thereby being able to be evaluated on QVHighlights.
Compared with task-specific experts, our VideoMind-2B significantly outperforms all previous methods on this
challenging dataset.

Reasoning Temporal Localization. We also evaluate the generalization ability of grounder and verifier on
the more challenging reasoning temporal localization [18] task, which is similar to video temporal grounding,
but the queries are not directly describing the moment. The models are required to infer the actual event using
their world knowledge. The results in Table 14 show that VideoMind can successfully generalize its strong
zero-shot grounding capability to complex scenarios.

General Video Question-Answering For long VideoQA, we provide evaluations on LongVideoBench [73] in
Table 15, which further verifies the effectiveness of VideoMind on videos scaling to one-hour long. Table 16
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Table 16: Performance comparison on general VideoQA on MVBench [26].

Model Size AS AP AA FA UA OE OI OS MD AL ST AC MC MA SC FP CO EN ER CI Avg.

GPT-4V [47] – 55.5 63.5 72.0 46.5 73.5 18.5 59.0 29.5 12.0 40.5 83.5 39.0 12.0 22.5 45.0 47.5 52.0 31.0 59.0 11.0 43.5

Video-ChatGPT [44] 7B 23.5 26.0 62.0 22.5 26.5 54.0 28.0 40.0 23.0 20.0 31.0 30.5 25.5 39.5 48.5 29.0 33.0 29.5 26.0 35.5 32.7
Video-LLaMA [88] 7B 27.5 25.5 51.0 29.0 39.0 48.0 40.5 38.0 22.5 22.5 43.0 34.0 22.5 32.5 45.5 32.5 40.0 30.0 21.0 37.0 34.1
VideoChat [25] 7B 33.5 26.5 56.0 33.5 40.5 53.0 40.5 30.0 25.5 27.0 48.5 35.0 20.5 42.5 46.0 26.5 41.0 23.5 23.5 36.0 35.5
Video-LLaVA [29] 7B 46.0 42.5 56.5 39.0 53.5 53.0 48.0 41.0 29.0 31.5 82.5 45.0 26.0 53.0 41.5 33.5 41.5 27.5 38.5 31.5 43.0
TimeChat [55] 7B 40.5 36.0 61.0 32.5 53.0 53.5 41.5 29.0 19.5 26.5 66.5 34.0 20.0 43.5 42.0 36.5 36.0 29.0 35.0 35.0 38.5
PLLaVA [77] 7B 58.0 49.0 55.5 41.0 61.0 56.0 61.0 36.0 23.5 26.0 82.0 39.5 42.0 52.0 45.0 42.0 53.5 30.5 48.0 31.0 46.6
ShareGPT4Video [6] 7B 49.5 39.5 79.5 40.0 54.5 82.5 54.5 32.5 50.5 41.5 84.5 35.5 62.5 75.0 51.0 25.5 46.5 28.5 39.0 51.5 51.2
ST-LLM [35] 7B 66.0 53.5 84.0 44.0 58.5 80.5 73.5 38.5 42.5 31.0 86.5 36.5 56.5 78.5 43.0 44.5 46.5 34.5 41.5 58.5 54.9
VideoGPT+ [43] 3.8B 69.0 60.0 83.0 48.5 66.5 85.5 75.5 36.0 44.0 34.0 89.5 39.5 71.0 90.5 45.0 53.0 50.0 29.5 44.0 60.0 58.7
VideoChat2 [26] 7B 75.5 58.0 83.5 50.5 60.5 87.5 74.5 45.0 47.5 44.0 82.5 37.0 64.5 87.5 51.0 66.5 47.0 35.0 37.0 72.5 60.4

VideoMind (Ours) 2B 77.0 78.0 77.0 46.5 70.5 87.0 71.5 33.0 48.0 39.5 91.0 53.0 78.0 89.0 43.5 53.5 61.5 37.5 49.5 53.0 61.9
VideoMind (Ours) 7B 74.0 71.5 81.0 50.0 77.0 93.0 75.0 38.0 48.5 46.0 91.0 39.0 80.0 94.5 49.5 55.5 70.0 40.5 57.0 61.0 64.6

Table 17: Effect of the temporal feature pyramid
on Charades-STA [13].

#Pyramid Levels
Charades-STA

R@0.3 R@0.5 R@0.7 mIoU

1 60.55 44.57 15.82 38.13
2 61.51 46.90 19.36 40.43
3 62.62 47.02 20.08 41.27
4 63.55 47.23 21.69 42.02

Table 18: Effect of different verifier styles on
Charades-STA [13].

Verifier Type
Charades-STA

R@0.3 R@0.5 R@0.7 mIoU

Direct 60.42 45.28 19.32 39.84
Expand 65.10 48.70 23.15 43.57
Textual 65.24 49.33 23.89 44.01

Special Token 67.63 51.05 25.99 45.22

presents more results of VideoMind on MVBench [26], which is a benchmark with very short videos (around
15s). Our model can still achieve good performance on these short video scenarios.

C.4 Q2: The Advantages of Chain-of-LoRA

Table 3 investigates the impact of integrating different modules. First, naive CoT does not improve the base
model, highlighting the need for a visual-centric test-time scaling strategy. Second, although the all-distributed
approach achieves the best performance, it requires multiple copies (4×) of the model weights. In contrast,
Chain-of-LoRA maintains top performance while being efficient.

C.5 Q3: Ablation Studies

Effect of Individual Roles The contribution of each roleis studies in Table 4. Our observations are as
follows: (1) Grounder: By identifying visual cues, the grounder can slightly improve QA Acc, indicating
that the grounder is especially effective on long videos. (2) Verifier: Selecting the best candidate with the
verifier improves grounded moments, yielding a consistent gain of 3.2 mIoU on the pure grounding metrics for
Charades-STA. (3) Planner: Coordinating roles via the planner – even when performing grounding on only 40%
samples (the remaining 60% are directly processed by the answerer) – boosts the accuracy from 69.2 to 70.0.
This highlights the model’s flexibility under different temporal contexts.

Effect of the Temporal Feature Pyramid Table 17 studies the effectiveness of the temporal feature pyramid.
Our baseline model directly makes predictions on the last-layer transformer outputs. When adding more pyramid
levels, the performance of video temporal grounding consistently improves under all metrics on the Charades-
STA [13] dataset under zero-shot setting, suggesting the effectiveness of improving the robustness of the model
when facing moments with different lengths.

Design Choices of Verifier In Table 18, we examine various design choices for the verifier. The term “Direct”
refers to the method where the grounded moment is directly sent into the model without any expansion. “Expand”
denotes expanding the temporal boundaries by 50%, while “Textual” involves adding supplementary textual
information to indicate the length of the target event. “Special Token” represents our final approach, utilizing
special tokens to denote the grounded start and end timestamps. The comparison demonstrates that expanding the
temporal boundaries effectively broadens the verifier’s perceptual range, and the use of special tokens enhances
the model’s awareness of precise moment boundaries.
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Options: (A) Want to hug child (B) Dancing (C) Doing squats (D) Want to hug dog (E) Stretching his arms
Question: Why did the adult squat down and opened his arm at the end of the video?

8s

VideoMind (Ours)
In the video, the adult is seen stretching his arms 
out while holding the child. This suggests that the 
adult is likely trying to catch the child or provide 

support. The other options do not seem to be 
relevant to the context of the video. Answer: (E)

Chain-​of-​Thought

The moment that CoT might refer to

VideoMind's Grounded Moment

Ground Truth Moment

Grounder Query: The adult squats down 
and opens his arm at the end of the video

1. Grounder
2. Verifier
3. Answerer

Action Plan:

[18.2, 26.6]

[24.5, 30.3]

[26.6, 30.9]

[21.9, 29.5]

Candidate Moments:

0.420.40

Best Option: (A) 
Want to hug child

0.490.41

Final Answer:Confidence:

Figure 5: Visualization of VideoMind’s reasoning process. Through chaining the grounder, verifier,
and answerer, our model accurately localizes the critical moment and selects the correct answer,
avoiding confusion from incorrect segments.

C.6 Visualization

In Figure 5, we illustrate how VideoMind applies all roles to progressively derive the correct answer while
avoiding potential mistakes or confusion. The Planner determines what roles are needed, then calls the grounder
to generate candidate moments. The verifier selects the most relevant segment (highlighted in yellow), which is
then zoomed in and passed to the answerer for further reasoning.

D Limitations & Future Work

The proposed framework represents our initial attempt at a multi-agent-based solution for interactive video
understanding. In this work, we identify two limitations that warrant deeper exploration. First, the current
planner design and role distribution are based on heuristic decisions, which might be sub-optimal and can
potentially be more flexible. For example, a possible enhancement of planner would be allowing it to call the
answerer for an initial answer generation, then generate the detailed plan based on the preliminary answer.
Second, the entire inference pipeline lacks an explicit reflection design. Therefore, the overall performance of
each role is largely affected by the previous role. Enabling the reflection capability is essential for building a real
interactive content understanding agent. To address these limitations, a promising direction for future work is to
integrate the planner and answerer into a unified agent that possesses reflection capabilities. This would allow
the model, upon detecting that a predicted answer may be incorrect, to re-trigger the grounder and/or verifier
dynamically for correction and improvement. Modern reinforcement learning training techniques such as PPO
[56] and GRPO [15] might also be utilized.
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