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Abstract

We present Neural Attention Search (NAtS), an end-to-end learnable sparse trans-
former that automatically evaluates the importance of each token within a sequence
and determines if the corresponding token can be dropped after several steps. To
this end, we design a search space that contains three token types: (i) Global
Tokens will be preserved and queried by all the following tokens; (ii) Local Tokens
survive until the next global token appears; and (iii) Sliding Window Tokens have
an impact on the inference of a fixed size of the next following tokens. Similar to
the One-Shot Neural Architecture Search approach, this token-type information
can be learned jointly with the architecture weights via a learnable attention mask.
Experiments on both training a new transformer from scratch and fine-tuning exist-
ing large language models show that NAtS can efficiently reduce the KV cache size
and the inference costs for the models while maintaining the models’ performance.

1 Introduction

The ability to understand and infer from long-context information is crucial for many tasks such
as long document summarization [94] and question answering [20, 48], code generation [35, 56]
or multi-round dialogues [91]. Thanks to the ability to query the information from any position of
the historical sequence, transformer-based large language models [11, 14, 32, 34, 42] extend their
context length up to millions of tokens.

However, querying information from historical sequences requires a complexity of O(L2) w.r.t. the
input sequence length L. KV caching could reduce this time complexity to O(L) by storing all the
historical KV values. Nevertheless, with the increasing model size of recent LLMs, even the O(L)
time-wise and memory-wise complexity could become a bottleneck during inference time.

Indeed, not all the tokens in a sequence are equally important [46]. Many of them are redundant and
do not contribute to the final output. Humans can recognize this information without pre-defined fixed
rules and summarize or discard the context information into much smaller content. Transformers
could also learn this ability implicitly: Many tokens in the attention map might only have very low
weights [96] and only have little influence on the final predictions. However, as the transformer learns
this information implicitly, we might not know how the important tokens would be distributed in the
context. Selecting these tokens and recognizing the attention distributions might require extra human
experts’ knowledge by either looking at the attention maps [27, 58, 95, 96] or applying specific fixed
rules [13, 16, 17, 31, 84]. Since this knowledge is already contained in the transformer models, we
could also ask the model to evaluate the importance of each token and learn to predict the optimal
type for the given input tokens automatically.

Unlike prior works that rely on human expertise or predefined rules to identify important tokens [15,
27, 28, 31, 54, 84, 85, 96], we propose a novel approach to evaluate the importance of each token
by assigning different roles to each of the tokens. For example, some tokens will be preserved until
the end, while other tokens might only survive for a short amount of time. These roles measure
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the importance of each token and determine if it would survive within the next few tokens. Rather
than pre-defining a set of fixed rules for each token, we ask the model to learn this information
automatically. Finding the optimal role for each token is similar to the process of neural architecture
search [23, 81], where an optimal architecture is searched by the optimizer for a given task. Thereby,
in this work, we jointly optimize the choice of each token and the model weights by constructing a
learnable attention mask. Our approach is implicitly motivated by the one-shot neural architecture
search approach [22, 55, 68], where the model parameters and architecture parameters are jointly
optimized during the search process. However, our approach, Neural Attention Search (NAtS),
searches for the optimal token roles jointly with the attention weights.

Our contributions are as follows:

1. We propose Neural Attention Search (NAtS), an end-to-end learnable sparse attention
framework that automatically searches for the optimal roles for each token in the input
sequence.

2. We introduce different token roles in our search space that can be later combined to construct
a learnable attention mask and then jointly optimized with the model weights in NAtS.

3. We show that NAtS could efficiently reduce the KV cache required during inference time
while maintaining most of the models’ performance.

By automatically learning to focus on the most relevant information, NAtS paves the way for more
efficient and scalable inference with LLMs in long-context applications.

2 Background and Related Work

2.1 Attention maps for transformers

Transformers [79] computes the correlation between different tokens by mapping the input sequences
into three variables, Q, K, and V . An attention map A is first computed by pairing Q and K and
then scaled and normalized with a softmax function. Finally, this attention map A is multiplied by V .
Additionally, a mask M is attached to the Attention Map to guide the attention to focus only on
certain tokens. This can be expressed as

A =
QKT

√
dhead

, O = softmax(A+Madd)V (1)

The additive attention mask Madd
i,j ∈ {− inf, 0} controls if the transformer needs to construct

the correlation between Qi and Kj . A widely used mask Madd used in transformers is a causal
mask [79], where the upper parts of the mask are filled with − inf; each token can only query the
token information before it.

Computing the attention map of a sequence with length L requires a complexity of O(L2) for both
time and memory. This complexity can be lowered to O(Lcache) during inference time, with Lcache
being the length of the KV cache. However, as an expense, the cost of storing the KV cache gradually
becomes unnegligible with the increasing size of large language models and the context length they
could handle. Therefore, lots of work has been proposed to reduce the storage and computation
overheads during the inference time [52].

To reduce the computational costs of an LLM on long context information, LLMLingua [66] trains
another smaller model to compress the input texts. Many other studies work on reducing the KV
cache size by deciding which tokens to evict or preserve with the past attention maps. Recent works
such as H2O [96], Scissorhand [58], FastGen [31], KeyFormer [6], SnapKV [54], PyramidKV [15],
AadaKV [27], ChunkKV [57], and CriticalKV [28] all apply different rules to identify the importance
of each token and remove all the remaining tokens. Additionally, instead of simply removing the
unimportant tokens, we can also merge them into the existing tokens [80, 95].

Other works do not aim at reducing the KV cache size, but only select a subset of KV caches to
compute the attention outputs, including Quest [76], TokenButler [9], AttentionPredictor [87], and
XAttention [86]. However, these works still need to maintain the entire KV cache in the GPUs. This
still results in a huge GPU memory usage overhead. To alleviate this issue, some other works like
InfLLM [83], HIP [51], and ShodwKV [75] offload the KV cache to CPUs and only load the KV
caches that are relevant for the current token predictions to GPUs.
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While these existing methods offer various ways to reduce KV cache size, they often rely on inflexible
predefined rules and potentially inaccurate heuristics based on past attention maps. NAtS, in contrast,
introduces a novel approach that learns to dynamically assign token roles during inference, enabling a
more adaptive and efficient use of the KV cache. By treating token role assignment as an optimization
problem, NAtS leverages principles from neural architecture search to jointly optimize token roles
and model weights, leading to a more flexible and powerful attention mechanism.

2.2 Sparse Attention

Sparse attention works on computing only a fraction of the attention map to reduce the computation
costs and KV cache sizes with either pre-defined fixed patterns, including Sparse Transformers [17],
Longformer [13], StreamingLLM [84], and DuoAttention [85]. Alternatively, this can be adjusted
by special embedding tokens such as Longcoder [35] and SepLLM [16]. Additionally, one can
also determine the types of sparse attention with a set of proxy values, including MInference [43],
FlexPrefill [50], SeerAttention [30], SpargeAttention [93], and XAttention [86]. However, these
approaches aim to approximate the attention output of each layer from a pre-trained dense transformer
that only involves the QK matrices. In contrast, NAtS learns the token roles directly from the final
loss function and does not necessarily need to approximate the existing attention output. Hence,
NAtS can be applied to both training from scratch or approximating the outputs from an existing
model. Additionally, the existing approaches can only be applied to approximating the attention maps
during the pre-filling stages and still need to preserve the entire KV cache during the decoding stage,
making them less profitable for reasoning models where the model needs to generate lots of tokens
during the decoding stage [21]. In contrast, NAtS only checks the roles for each token and does not
necessarily need to link to the actual attention map values. Hence, it can be applied to both pre-filling
and decoding stages while keeping the KV cache sizes to a low level.

In contrast to the fine-tuning-free approaches above, we can also fine-tune the target model to
achieve the desired sparsity. This includes Adaptively Sparse Attention [10] and Dynamic Memory
Compression [64]. However, both approaches rely on expensive cumulative productions during
training time, making their approach less applicable to long-context scenarios. LLMLingua2 [66]
trains another model to compress the target texts. Additionally, Kim et al. [46] asks the model
to learn to drop the tokens with lower attention scores. Landmark Attention [63] inserts landmark
tokens after certain time steps and applies these landmark tokens to summarize the information of the
tokens before that landmark token and recover. SPARSEK [60] only selects a constant number of
KV pairs for each query by introducing a differentiable SparseK operator. Mixture-of-Depth [72]
only passes a limited number of tokens to each transformer layer. Native Sparse Attention [92] and
MoBA [61] all select a subset of the KV values to compute the attention masks and therefore reduce
the computational overhead. However, these approaches still require preserving the entire KV cache
values and only reducing computational costs during decoding stages.

MoA [29] proposes to search for the optimal sparse attention for different heads, which share similar
ideas to NAtS. However, MoA’s search space only contains streaming LLM.This head-level search
space of MoA is much smaller than our token-level search space, which might restrict the model’s
expressibility under even smaller budgets.

2.3 Neural Architecture Search

Designing a neural architecture for a specific task might require a lot of trial and error. Neural
Architecture Search (NAS) automates this process by searching in a pre-defined search space [24].
Previous work on NAS mainly focused on searching within a discrete search space by sampling a new
architecture from the search space, evaluating its performance, and updating the optimizers [98, 99].
One-Shot NAS [68] approaches instead share the same weights of the operators with respect to all
the architectures in the search space. This allows to jointly optimize the architectures and weights.
DARTS [55] and GDAS [22] further relax the discrete search space into continuous values to optimize
the architecture parameters with gradient descent. The One-Shot NAS approach allows the optimizers
to efficiently search for the optimal architecture within a huge search space. Similarly, NAtS has
multiple options for each token as the search space and is able to search for the optimal token
types jointly with the model weights. However, unlike One-Shot NAS approaches that consider
the optimization problem as a bilevel optimization problem and optimize the model weights and
architecture weights alternatively, we optimize the token state information and model weights within
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one forward and backward pass. This is similar to a mixture-of-experts (MOE) model [26, 73].
However, instead of distributing data across all experts uniformly, we only select one expert for each
token and assign all data to that expert.

3 The NAtS Approach

In this section, we first introduce all the candidate token types in our search space. We then show
that we can construct a learnable attention mask with the choice of each token type. Finally, we can
efficiently reduce the KV cache size by dropping the unnecessary tokens during inference.

3.1 Search Space Design

Not all the tokens in a sequence are equally important. Just like a paragraph is composed of multiple
sentences, a sequence can be divided into multiple sub-sequences containing different information;
some tokens might only be required within these sub-sequences. Hence, we design a search space for
each token’s role within the sequence and ask the model to automatically learn the optimal role for
each token in the sequence.

We first define Global Tokens as tokens containing important information that need to be preserved
for the following predictions. Liu et al. [58] and Zhang et al. [96] showed that only a small fraction
of the tokens contribute to most of the attention scores for self-attention computation. These tokens
need to be preserved for models to recall the global information that helps to predict the next token.
In vanilla transformer models, all the tokens are Global Tokens.

Global Tokens will not be evicted during inference time. Therefore, we should maintain as few
Global Tokens as possible to ensure inference efficiency. Each Global Token should not only preserve
the information within that position. Ideally, it should also be able to summarize the information
from previous sequences [16, 35]. Hence, we split the entire sequence with the Global Tokens into
multiple sub-sequences, with each sub-sequence ending with one Global Token. Each Global Token
only needs to summarize the information from its sub-sequences and the previous Global Tokens.

Local Tokens only survive until the next Global Token appears. Therefore, models will have the full
attention within each sub-sequence to summarize the local sub-sequence information into the Global
Token which is located at the end of the sub-sequence. Meanwhile, the model will be sparse within
the input sequence. Local Tokens are considered as tokens that only provide lower-level information
that helps the model to understand the local context information, but might not help further outside
this context. This provides the model with a flexible interface to control its sparsity based on the
input context information.

Only the Global Tokens and Local Tokens might control the sparsity at a low granularity level. E.g.,
assuming that one input sequence is highly localized, each token only has a high correlation with
itself or a few neighboring tokens. In this case, they are all similar and are assigned with the same
token type. However, none of the Global Token and Local Token could sparsify this attention map
efficiently: if all the tokens are classified as Local Tokens, the input sequence will only be considered
as one single subsequence, and all the Local Tokens will be equivalent to the Global Tokens.

Hence, we introduce Sliding Window Token. Sliding Window Tokens will only be preserved for
the next W time steps and were previously considered as one of the most popular sparse attention
approaches [17, 31, 84, 96].

In contrast to other causal attention maps, Figure 1(d) illustrates an exemplary attention mask
constructed by the choices of different token types. In this case, we define the sliding window size
as 4. Token 1, 4, 10 act as Global Tokens; Tokens 2, 6, 7, 8, 11 are Local Tokens; Token 3, 5, 9, 11
are Sliding Window Tokens. The Global Tokens splits the entire sequence into three subsequences
that end at 4, 10, and the last index, respectively. Hence, Token 2 will only be required by Token
3 and 4. This rule applies the same for Token 6, 7, and 8, where they only interact with the tokens
within the same subsequence. For the sliding window tokens, only the next three tokens could query
their information, regardless of whether these tokens belong to the same sub-sequence. Only 6 out of
12 tokens are involved during inference time to make the next token prediction.

Combining different token types could already cover most of the sparse attention variables. For
instance, assigning Global Tokens to the first few tokens and Sliding Window Tokens to all the other
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(a) (b) (c) (d)

Figure 1: A comparison between different casual attention maps. 1(a): The full attention map, where
each token is connected to the tokens before it. 1(b): the local attention with sliding windows 3, every
token will only get access to the information of the 3 tokens ahead. 1(c) Longformer, besides the
local attention, the first, 6th and 9th tokens are the pre-defined global tokens. 1(d): NAtS dynamically
learns the optimal role for each token and constructs a learnable mask based on the tokens’ roles.

tokens results in streaming LLMs [84] and MoA [29]. If we further set all the tokens in some heads
as Global Tokens, we will get DuoAttention [83]. Assigning different tokens as Global Tokens results
in the Vertical patterns [43] that appear in many Token eviction strategies [54, 58]. Since different
layers or heads might have different numbers of global tokens, patterns like pyramidkv [15] and
adakv [27] can be easily derived from our search space. For a transformer network with N layers
and H attention heads that needs to process one sequence of length L, given the three token types
defined above, there are 3L×H×N possible configurations in our search space. It is prohibitive to
check all the combinations in such a huge search space, with the increasing sequence length that
a model receives. Here, we propose an end-to-end approach to search for the optimal token types
together with the network weights jointly.

3.2 Searching for the Optimal Token Types

Searching for the optimal token types within a sequence is similar to searching for the optimal
architectures for a given task in neural architecture search [24, 81]. Following GDAS [22], we apply
the Gumbel-Softmax trick [41, 62] to sample from the discrete search space. The Gumbel-Softmax
trick allows the gradient to be backpropagated through the discrete choice of the token types.

Specifically, we first use a linear layer (which we call Attention Score Layer) that maps each the input
tensor for an attention layer X ∈ Rd to the likelihood for each option: α ∈ R(H∗Nopts) = Linear(x),
where H is the number of KV heads and Nopts is the number of options in the search space. The type
α for each token is then sampled from a Gumble-Softmax function based on the likelihood values.
Given that the number of options Nopts is normally much smaller than the model head dimensions,
this linear layer only introduces minimal overhead compared to the QKV linear layers.

We now construct a learnable attention mask M with a series of sampled token states. However, the
additive mask in Eq. 1 will take − inf values, resulting in invalid gradient information. Hence, we
use the token information to construct a multiplicative attention mask Mmul ∈ {0, 1} [71]1:

O =
eA ⊙Mmul∑
j e

A.,j ⊙Mmul
.,j

V (2)

The attention mask columns for Global Tokens and Sliding Window Tokens can be directly constructed
since they will survive for a fixed number of steps. However, the mask for Local Tokens ML

i,j is
controlled by both the distribution from Local Tokens and Global Tokens as Local Tokens will survive
until the next Global Token appears. In other words, to make ML

i,j(j > i) a valid value, no Global
Token should appear between i and j.

1For the sake of brevity, we will use M instead of Mmul in the following part of this paper.
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Formally, the attention masks can be created as follows:

MG
i,j = 1 (3)

MSW
i,j =

{
1 if j ≤ i+ W
0 if j > i+ W

(4)

ML
i,j =

i−1∏
n=j+1

(1−Gn) (5)

where W is the sliding window size and Gn a Global Token at Position n. We then construct the
attention masks based on the type of each token. After that, we mask out the upper triangular part of
the mask to ensure its causality.

In practice, we first collect the index of the next global token IGnext
i := min({k|k >= i ∧Gk = 1})

and rewrite Eq. 5 as:

ML
i,j =

{
1 if j ≤ IGnext

i

0 if j > IGnext
i

(6)

During the backward process, we collect the column-wise gradient values from our attention masks
and apply these gradients to update the parameters from our Attention Score Layer. Different
from other approaches that approximate the attention maps or attention outputs from an existing
model [9, 29, 87], NAtS can be learned directly from the target labels, and thus, can be applied for
both pre-training a new sparse transformer from scratch or fine-tuning an existing transformer. To
control the attention map’s sparsity, we introduce a small regularization value λ that is directly applied
to the gradient for Global Token and Local Tokens to encourage more Sliding Window Tokens. This
regularization value λ can be considered as a value similar to a soft threshold, pushing the tokens
whose contributions in the attention maps outside the scope of the sliding window sizes with lower
levels towards Sliding Window Tokens. Hence, we could efficiently reduce the corresponding overall
computational costs.

We show how the backward gradients are computed and how the λ values control the attention map
sparsity in the appendix C.

These rules are then integrated in FlashAttention [18, 19] to avoid explicitly computing the attention
masks during the forward pass. In addition to the transformer computation, we only need to collect
the next Global Token indices IGnext (with a complexity of O(N)) and then mask out the attention
map values with the masks defined above. At the same time, we also skip all the computation blocks
that do not contain any valid values (i.e., all the items in the mask of that block are 0) during the
online attention process. Further details can be found in the appendix D

3.3 Efficient Inference with Different Token Types

NAtS can be applied to both pre-filling and decoding stages. During the pre-filling stage, we first
compute the attention values for all the global and local tokens. We then compute attention map
values for the sliding window tokens separately to fully utilize the parallelism of GPU architectures.

During the decoding stage, we dynamically map the input feature maps to the corresponding token
types and discard the tokens no longer required by the following tokens once a new token arrives.
The Sliding Window Tokens only survive for a fixed number of time steps. We preserve a queue in
the KV cache space that only stores the most recent W tokens and mask out the non-Sliding Window
Tokens: when new tokens come, we place them after the tail of the queue to replace the tokens older
than W.

Similar to the vanilla transformer forward process, when new tokens arrive, we concatenate them with
the existing KV caches, generating new masks and computing the attention output. After that, we start
our post-update process: we first check the state of each token to decide if we can remove them or
keep them in the cached values. Since different heads might disagree on the types of the same token,
we record both the sizes for Global Tokens (SizeG) and Local Tokens (SizeL) for all the heads.
New Sliding Window Tokens do not change these sizes since they will always be placed separately.
However, when a new Global Token for any head arrives, we remove all the Local Tokens from the
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corresponding heads and place the new Global Token right after the existing Global Tokens and then
update our SizeG and SizeL accordingly. The same strategy is applied when new LocalTokens
arrive: we place them at the end of the Local Tokens and increase the number for Local Tokens. A
detailed updating process can be found under Appendix E.

Figure 2: An example of how caches are up-
dated within NAtS when new tokens arrive
with a model containing two heads. The two
rows represent different heads.

Figure 2 illustrates an exemplary case to update the
KV caches in NAtS with a sliding window size of
3. The first two places store the most recent tokens
and use a mask to mask out the non-Sliding Window
Tokens (yellow tokens). Since Token 8 for Head 1 is
Sliding Window Token and Global Token for Head
2. We first move both tokens to the beginning of our
cache to replace the old one. After that, we drop
Token 8 in Head 1 since it has already moved to
the sliding window caches. Then, since Token 8 in
Head 2 is a Global Token, we drop all local tokens
after the last Global Token (Token 1). Hence, we place Token 8 after Token 1 and remove Tokens 4
and 6. The SizeG is then updated from [5, 3] to [5, 4] and the SizeL is updated from [0, 2] to [0, 0]:
both new tokens are merged into the existing tokens, we do not need the extra space to store them.

4 Experiments

We implement NAtS based on the Flash Attention 2 [18] implementation on triton. In our experiments,
we first train NAtS parameters jointly within a transformer model from scratch. We then apply NAtS to
fine-tune a large language model to show that NAtS could efficiently reduce the KV cache size required
while maintaining the model performance. The codes for NAtS implementation and experimental
designs can be found under: https://github.com/automl/NeuralAttentionSearch

4.1 Training a Transformer From Scratch

We first apply NAtS to train a GPT2 small style [69] transformer model with 128M parameters from
scratch on the PG-19 Language Modeling Benchmark [70] with four Nvidia H100-PCIe GPUs and
evaluate it on the test sets of PG19 with a context length of 1024. Further details can be found under
the appendix F.1.

As a baseline, we train another dense transformer model under the same hyperparameter setting.
During inference time, we compare NAtS with the following baselines besides the full Transformer:
(i) Streaming LLM [84] only preserves the first few starting and the most recent few tokens for future
prediction. (ii) H2O [96] first computes the attention map and only preserves the tokens with the
top-k attention scores. H2O and Streaming LLM are training-free approaches that control the sparsity
with pre-defined hyperparameters during inference time. In contrast, NAtS controls this sparsity by
the sparsity hyperparameter value λ. Hence, we train multiple models with different λ. However, in
our experiments, we observe that the attention map sparsity values converge much faster than the
model loss. We could quickly estimate the attention map sparsity within the first 10,000 iterations to
check if this sparsity value satisfies the required sparsity and early-stop the runs that do not satisfy
the requirements [40].

Figure 3: Perplexity vs KV Cache size under dif-
ferent sparsity settings λ on the PG19 dataset.

We provide different hyperparameters for H2O
and Streaming LLM for different sparsity (with
the sliding window size of 32, 64, 128, 256,
plus the same number of HH for H2O and 64,
128, 256, 512, plus 8 Sink tokens for Stream-
ing LLM). This results in a corresponding KV
budget fraction ranging from 6.25% to 50%.
Meanwhile, we train NAtS with the following λ:
0, 1e − 9, 5e − 9, 1e − 8, 1e − 7. We run each
experiment with three different seeds.

Figure 3 shows the perplexity and the corre-
sponding standard deviation (as error bars) of
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the PG19 test sets from different model settings across different seeds. The x-axis indicates the
fraction of KV caches applied to generate the last token in the input sequence. As expected, a larger
λ results in a smaller KV cache fraction, while the performance is relatively stable across different
seeds. Interestingly, even if λ is set as 0, the KV cache budget can still be reduced to around 35%
with slightly lower perplexity compared to the full attention. This might indicate that the model also
tends to sparsify the input information to focus more on the relevant parts from the input data [89].

H2O maintains nearly lossless perplexity with a budget of 50%. However, as the available budget
decreases, NAtS’s perplexity remains nearly the same until a KV cache size of around 10%. In
contrast, H2O and Streaming LLM start to degenerate their performance starting from a 25% budget
allocation. The most sparse model in NAtS family only contains roughly 3% of the KV cache size
(meaning roughly 30 cached tokens per layer on average) and achieves a lower perplexity compared
to H2O with 12.5% of the KV caches.

4.2 Fine-Tune a Large Language Model

We now apply NAtS to fine-tune an existing large language model [34, 42] in the long context
scenario. We construct a new training dataset that follows the construction rules of LongBench as a
training set to fine-tune LLM models with NAtS. Some of LongBench’s tasks are collected from the
test sets of the previous benchmarks. Hence, we first collect the training sets from these benchmarks
and construct these datasets following the data structure in LongBench. Additionally, we also add
the passkey-retrieval dataset introduced in DuoAttention [83]. Overall, this dataset contains 7 000
instances with a maximal context length of 16 000. Further details can be found in Appendix F.2.

We only fine-tune the Attention Score Layer while keeping all the other parameters in the network
fixed to approximate the original output from the corresponding base LLM. This approach is similar
to DuoAttention [85]. However, since we want the model to capture the overall context information,
we update Attention Score Layer with all the output from the full attention layer:

Ldistill =
1

B

B∑
i=1

L∑
j=1

(H
(i)
full[j]−H

(i)
NAtS [j])

2 (7)

where B is the Batch Size. We only use the context information from the real-world dataset to ensure
that the token information does not rely on specific prompts. However, the synthetic dataset might
contain duplicated contexts, and hence, we only optimize the synthetic dataset with its corresponding
labels [85]. Additionally, we control the sparsity with the regularization value λ instead of the
additional loss item defined in DuoAttention, and therefore, only optimize NAtS with Ldistill as the
loss function. We fine-tune two long-context models (Llama-3.1-8B-Instruct [34] and Mistral-7B-
v0.3-Instruct [42]) on two Nvidia H100 PCIe GPUs for one epoch using AdamW [47, 59] with a
learning rate of 2e-3 with a warm-up from 2e-4 in the first 20% steps and reducing back to 2e-4 in
the last 20% steps. We apply different λ to allow for different sparsity. For a fair comparison, we set
the sliding window size W as 256, the same as DuoAttention.

In addition to the baselines in Section 4.1, we also evaluate other state-of-the-art KV eviction
strategies, including SnapKV [54], AdaKV [27], ChunkKV [57], PyramidKV [15], CriticalKV [28].
These approaches rely on a sliding window from the query matrix during the pre-filling stage to
identify the important tokens. Unlike NAtS and the other approaches listed above that update the
KV caches on the fly, these approaches only evict the KV cache once after the prefilling stage.
Additionally, we evaluate DuoAttention [85] and MoA [29]. Both approaches extend the existing
streaming LLMs approach to provide different budgets for different attention heads. These two
methods share the same idea as NAtS, where the importance of different KV caches should be learned
instead of the pre-defined rules. However, instead of learning the importance of the head level, we
aim at learning this information directly on the token level.

Since we only optimize the Attention Score Layer, the number of learnable parameters is nlayers ·
dmodel · nheads · noptions, where noptions is the number of options in our search space (in our case, it
is 3). Hence, the size of the parameters that need to be stored is negligible (i.e., it only takes roughly
13MB on disk for each set of Attention Score Layer) compared to the weights of the LLM. Hence,
users could pre-collect all these weights and apply the one that fits their compression requirement.

We evaluate all the baseline results on the RULER [38] and LongBench [12]. RULER is a synthetic
benchmark that evaluates a model’s long-context capabilities across 4 task categories. LongBench
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evaluates the model’s capacity to understand information in different long context scenarios. Fol-
lowing the setting from KV Press [65], we ask all the one-time KV eviction approaches to evict the
KV cache once the model receives all the context information before the question-related informa-
tion arrives. For the other approaches, we evict the KV caches dynamically when new tokens are
generated.

Full Duo SLLM H2O Snap Ada Chunk Critical Pyradmid MoA NAtS

4k 95.06 94.25 59.37 83.03 54.90 70.03 69.19 87.52 56.41 44.63 95.32 (51%)
8k 93.22 92.42 48.58 81.51 54.10 71.43 67.20 89.01 54.55 19.80 93.30 (45%)
16k 90.53 88.24 50.97 65.55 54.38 76.32 67.07 88.03 58.17 15.16 90.01 (42%)
32k 85.95 84.65 45.68 11.48 47.13 72.48 55.88 82.88 48.05 12.79 86.16 (41%)
64k 84.01 83.54 51.40 0.07 69.61 78.10 71.05 81.93 70.49 10.86 84.09 (41%)
128k 73.83 73.11 46.95 0.00 39.26 64.49 41.61 70.53 40.02 11.05 74.77 (44%)

Full Duo SLLM H2O Snap Ada Chunk Critical Pyradmid MoA NAtS

4k 95.06 73.18 37.30 71.95 35.67 44.34 51.59 57.73 35.60 35.60 93.93 (24%)
8k 93.22 62.83 28.29 65.34 33.92 41.46 45.87 62.83 35.17 25.69 90.29 (19%)
16k 90.53 52.01 28.19 47.82 32.74 41.61 49.40 67.08 34.35 23.94 88.87 (16%)
32k 85.95 53.50 30.54 9.71 32.17 40.24 39.19 64.41 32.49 20.17 84.40 (15%)
64k 84.01 65.57 31.42 0.04 57.36 65.98 57.01 70.85 58.02 19.29 79.36 (15%)
128k 73.83 53.05 31.41 0.00 27.36 34.33 37.35 56.51 27.34 13.40 64.26 (16%)

Table 1: Ruler results with 50% KV budgets (top) and 25% KV budget (bottom) on LLama 3.1. All
Full models use the 100% KV budgets. We mark the actual KV budgets used by NAtS in the bracket.
Models with the best performance besides the base Full Attention Models are bold

The results on the Ruler Benchmark with LLama 3.1 are shown in Table 1. NAtS uses λ = 3e− 7
for the 25% KV size level and λ = 5e− 8 for the 50% KV size level. NAtS achieves nearly lossless
scores across different input context lengths. When the KV budget drops to 25%, NAtS achieves 96%
of the full attention scores with much smaller KV budget sizes, while the other baselines could no
longer keep their performance with the decreased KV budgets. Results with Mistral-7B-Instruct-v0.3
can be found under Appendix G.

For the LongBench tasks, we evaluate all the baselines with 50% and 25% of the KV cache sizes.
We show the result with KV cache size of 25% for LLama3.1-8B in Table 2. The model that is used
in this task is a model with λ = 3e− 7. NAtS achieves the best performance on most of the datasets
with (in many cases) smaller KV cache values. We provide further results, including results with
Mistral-7B and NAtS trained with other parameters, in Appendix G.

Full Duo SLLM H2O Snap Ada Chunk Critical Pyradmid MoA NAtS

NarrativeQA 31.35 22.62 27.83 21.07 27.08 29.02 26.27 30.48 28.02 19.19 30.53(13%)
Qasper 24.73 18.99 14.53 15.00 14.24 14.84 12.71 15.79 13.43 18.57 23.76(27%)
MultiFieldQA-en 29.46 25.36 16.47 18.24 17.72 19.31 17.44 21.74 17.72 14.75 28.94(24%)
MultiFieldQA-zh 60.01 54.95 33.94 29.14 33.77 35.34 33.49 36.30 32.76 21.23 61.18(22%)
HotpotQA 17.06 16.06 13.95 16.47 15.58 16.12 16.50 16.73 14.23 10.18 16.06(20%)
2WikiQA 16.64 16.18 13.53 11.28 13.45 13.17 13.41 13.89 12.36 11.42 17.05(23%)
Musique 11.59 8.41 8.96 11.13 10.81 10.68 11.05 11.25 9.40 5.93 11.42(18%)
DuReader (zh) 35.56 32.18 18.64 24.77 23.57 24.57 24.24 24.68 23.56 22.33 34.28(17%)
GovReport 34.30 27.63 28.20 26.90 28.51 28.28 28.86 29.58 27.53 25.24 33.82(19%)
QMSum 23.30 22.28 20.67 20.39 21.41 22.05 21.27 22.27 21.98 19.59 23.11(17%)
MultiNews 27.13 24.58 21.76 22.80 23.14 23.50 22.72 24.03 23.00 23.30 26.72(33%)
VCSUM (zh) 16.36 14.97 14.26 14.85 14.80 15.18 14.92 15.46 15.21 14.58 15.61(14%)
TREC 72.50 58.50 66.00 55.00 53.50 59.00 54.50 62.00 48.50 60.50 72.00(26%)
TriviaQA 91.15 82.81 90.69 89.98 91.00 91.55 90.72 90.97 90.92 71.51 91.61(22%)
SAMSum 43.72 40.14 41.97 41.98 43.59 43.11 42.32 43.79 43.15 42.30 44.21(16%)
LSHT 46.50 35.00 35.50 27.50 45.00 44.00 43.50 46.00 45.00 22.00 47.50(16%)
Passage Count 6.63 4.50 7.22 3.40 5.52 5.14 4.11 5.90 4.70 3.79 7.12(20%)
PassageRetrieval-en 97.98 91.65 94.81 72.25 90.36 90.70 90.38 94.70 88.32 28.21 95.81(19%)
PassageRetrieval-zh 77.99 55.22 28.97 52.13 73.06 78.74 55.95 80.15 74.66 24.78 78.5(20%)
LCC 54.10 54.27 52.38 54.52 55.40 54.93 54.12 54.26 54.90 54.14 53.54(38%)
RepoBench-P 51.39 57.26 49.65 55.54 51.80 52.44 52.87 52.57 52.41 53.35 53.48(28%)

Table 2: LongBench Results with 25% Budget Allocation. The Full model uses the 100% KV budgets.
The numbers in the brackets for NAtS are the used value KV cache sizes. We bold the models with
the best performance besides the base Full Attention Models .
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Figure 4: Memory and latency usage during pre-filling (left) and decoding (right)

4.3 Latency Evaluation

We evaluate the latency and memory usage with the full attention Llama 3.1 with NAtS (a λ = 3e−7)
during both pre-filling and decoding phases with different context lengths. The experiments are
implemented on a single Nvidia H100 PCIe GPU, and the model is stored as Bfloat16. We adapted
RoPE [74] and RMSNorm kernel from FlashInfer [90] to accelerate the forward process. We apply
chunked-prefilling [7, 49] with a chunk size of 10 000 by dividing the input contexts into multiple
smaller chunks to reduce the peak memory usage from the intermediate activation values in the FFN
layers. The full attention transformer quickly runs out of the GPU memory with a context length of
around 200 000, while NAtS could efficiently reduce the pre-filling and decoding latency and memory
usage, allowing NAtS to do inference to a context length up to 700 000, 3.5 times larger than the full
attention transformer. For the context length of 200 000, NAtS consumes 2.24× less memory with a
3.0× latency speed up during pre-filling and 2.6× less memory with a 1.38 × decoding speed up.

5 Conclusion and Future Work

Efficiently managing the KV cache is crucial for deploying large language models in long-context
applications. In this work, we propose NAtS, an approach that automatically optimizes the optimal
roles of each token to determine how long they should survive. By constructing a learnable mask,
NAtS learns to sparsify the attention map end-to-end. Our experiments show that NAtS uses much
less KV caches compared to the State-of-the-art KV caching reduction approach. While NAtS shows
promising results, future work could include exploration of further token roles and structured search
spaces with hierarchies. Overall, we believe that NAtS paves the way towards more efficient and
scalable inference with LLMs.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way,
we acknowledge that the true answer is often more nuanced, so please just use your best judgment
and write a justification to elaborate. All supporting evidence can appear either in the main paper
or the supplemental material, provided in the appendix. If you answer [Yes] to a question, in the
justification please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper, we present NAtS in Section 3. The experimental results in
Section 4 show that its strong performance and efficiency in different benchmarks.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, we discuss the limitations in Section A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper does not include theoretical results
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed experiments set up and hyperparameter configurations are de-
scribed in Section 4 and F. The search space is described in Section 3 and the algorithm is
described in Section D. We also provide the codes under https://github.com/automl/
NeuralAttentionSearch

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, all the datasets used in this paper are open-sourced. We further provide
a script on how to generate the training set for fine-tuning an LLM with NAtS under:
https://github.com/automl/NeuralAttentionSearch

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we provide the detailed experiments setup and hyperparemter configura-
tions in Section 4 and F

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: All the experiments in this paper run only once with a fixed random seed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we report the hardware and resources we used to train (4 Nvidia H100
PCIe GPUs for 18 hours) /fine-tune the model (2 Nvidia H100 PCIe GPUs in 8 hours) in
Section 4 and F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we have reviewed the NeurIPS Code of Ethics. NAtS is a methodology
paper and does not have ethical concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, we have discussed the broader impact in Section B
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, the data set and models used in our paper are open sourced and we cite
the original paper/github that provides the data and model in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
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Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The experiments parts involve fine tuning an existing LLM model. We used
NAtS to fine tune a Meta-Llama-3.1-8b-Instruct and Mistral-7B-Instruct-v0.3 model.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Limitations

While NAtS shows promising results that efficiently reduce the KV cache sizes and our search space
already contains most of the KV cache eviction strategies. However, the construction of the attention
mask is still column-wise oriented and mostly focuses on the vertical style sparse attention [43].
Hence, this work does not involve the block-sparse attention and slash attention that are widely
observed in other frameworks [43, 50]. Which in turn might result in a more sophisticated searching
and inference process, as we can no longer easily drop the desired tokens since they can also be
related to the value of the Q matrix. One potential future direction would be to introduce a more
structured search space that allows for the construction of more sparse attention types.

B Broader Impact

LLMs are widely applied to different fields nowadays. However, the cost for LLM to store the KV
cache and predict the next token is still huge, given the O(L) computation and memory costs of full
Attention Models. This prevents further adaptation of LLMs (and other transformer-based foundation
models with properties similar to those described before) because of high energy consumption and
limited context windows. NAtS achieves a substantial reduction in KV cache size with minimal impact
on model performance, outperforming existing state-of-the-art approaches. This increased efficiency
can enable the deployment of larger, more powerful language models on resource-constrained devices
and facilitate the development of new applications that rely on long-context understanding, such as
advanced conversational AI, comprehensive document summarization, and complex code generation.
By making long-context processing more accessible, NAtS has the potential to accelerate progress in
natural language processing and related fields. Nevertheless, it does not solve other inherent problems
of LLMs such as hallucinations.

C Details on Backward Propagation

C.1 Gradients for Attention Masks

To compute the gradients for M, we set g(A,M) = eA ⊙M ; then the gradient for M is:

∂O

∂M
=

∂O

∂g

∂g

∂M
(8)

∂g

∂M
= eA (9)

∂g

∂A
= eA ⊙M (10)

In Eq. 9 and 10, we show the gradient for M is the same as the value that ∂O/∂A is supposed to be
if no mask is applied. Since we have gi,j = eAi,j ⊙Mi,j . Let’s set Si :=

∑
j gi,j and Pi,j :=

gi,j
Si

.
Then we have dP = dOVT . Therefore,

dgi: = (diag(
1

Si:
)− 1

Si:
PT
i: )dPi: (11)

Combining Eq. 11 with Eq. 10 and Eq. 9 provides the same gradients as the vanilla softmax function
with additive masks:

dMi: = (diag(
eAi:

Si:
)− eAi:

Si:
PT
i: )dPi: (12)

dA = dM ⊙M

= (diag(Pi:)− Pi:P
T
i: )dPi: (13)

Since dgi: is required to compute the gradient for Ai: and always needs to be computed. We can
directly use this information to compute the gradients for the attention Mask M .
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Following FlashAttention [19], we define Di = doTi oi, then

dMi,j =
eAi,j

Si:
(dPij −Di) (14)

dAi,j = Pi,j(dPij −Di) (15)

and dA is computed by Eq. 13. After that, we can backpropagate dA to dq and dv. Since M
needs to be recomputed anyway in the flash attention’s backward process, this only results in little
computational overhead.

However, in practice, we cannot guarantee an upper bound for eAi,j

Si
with Mi,j = 0 since Si :=∑

j e
Ai,j ⊙Mi,j . As a result, lim

e(Ai,j)→∞( e
(Ai,j)

Si
) =∞ when Mi,j = 0. Hence, we first clip eAi,j

Si

within (0, 1) and then compute dM with the clipped value:

P ′
i,j = min(

eAi,j

Si
, 1) (16)

dMi,j = P ′
i,j(dPij −Di) (17)

C.2 Details on computing the gradients for computing the token gradients info dα

The gradients towards each token are collected through the column sum of each value weighted by
the corresponding attention masks:

dαi =
∑
j

dMi,j ×Mα
i,j (18)

Where α ∈ {G,L, SW} is the discretized token type. Intuitively, this shows the model’s preference
over short-range or long-range correlations: If i is quite close to j, then all the α will receive the same
gradient information. However, if the model wants to create a long-range correlation with i≫ j, only
Global Tokens will receive the gradient information. The network will therefore prefer to classify the
corresponding tokens as global tokens.

Eq. 5 shows that the Global Token controls the local mask size. Therefore, the gradients for Global
Token i should also be regularized by the gradient information from the previous tokens:

∂ML
i,j

∂Gk
= −

i−1∏
n=j+1
n ̸=k

(1−Gn) (19)

In cases where Gk is 0, Equation 19 is the negative value of Equation 5. However, for the case where
Gk = 1, this is equivalent to the local mask values where k is no longer set as a Global Token. This
requires us to find the index of the next global token IGnext

k+1 and the last global token IGnext
k−l where l is

the length of the local sequence that ends at k.

This gradient information will then be collected and subtracted from the computed Global Tokens
gradient values:

dαG−
i =



∑
m≥i

i>n≥I
Gnext
k−l

ML
m,n × dMm,n if Gi = 0,

∑
I
Gnext
i+1 ≥m>=i

i>n≥I
Gnext
k−l

dMm,n if Gi = 1, (20)

dαG
i = dαG

i − dαG−
i (21)

Intuitively, this gradient term dαG−
i checks if the new Global Token needs to be inserted into the

current sub-sequence (when G is 0) or we should remove the current Global Token to enlarge the
current sub-sequence (when G is 1). We further illustrate this process in the appendix.

Figure 5 illustrates an example of this. Token 4 is a global token, and we search for its next Global
Token (which is Token 10 in this example). Assuming that we want to change Token 4 to another
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role, the regions within the boundary (orange ones) are those tokens that are influenced by this
swtching: given that Token 4 no longer becomes Global Token, Token 2 and 3 will be part of a larger
subsequence that ranges from 1 to 10, and the attention maps within the orange region should not be
masked out. Intuitively, this gradient measures the regret that we made in order to switch one Global
Token into a Local Token. A similar idea can be found in the red region. Assuming that we want to
switch Token 7 to a Global Token, then Tokens 5,6 will be split into a new subsequence and we will
no longer connect them with Tokens 8, 9, 10 since they belong to two different sub-sequences after
the switch. Hence, this value in the red regions measures the regret if we mistakenly classify a Global
Token as non-Global Tokens.

Figure 5: The gradient term dαG−
i for Token

4 and 7

In practice, the dαG−
i values for Global Token can

be easily collected by looking at the last and next G
index with a scan function to collect the gradients
to the corresponding positions. However, computing
dαG−

i with Gi = 0 requires the gradient information
from all the past token mask information. This might
be computationally prohibitive in practice, since the
valid values contained in Equation 20 are sparse, we
ignore the cases for Gi = 0 and only compute the
dense gradients for the case where Gi = 1.

C.3 Optimizing for sparser Attention Maps

The sparse regularization term λ is directly applied to the corresponding gradients for the Global
Tokens and Local Tokens. Intuitively, if the column-wise sum of the gradients for each iteration is
smaller than λ, the attention maps of that column would require no further update or gradients updates
towards a sparser transformer, they will be push the projection layer to classify those tokens as sliding
window tokens. This ensures that the global tokens and local tokens actually require a certain amount
of column-wise attention map values to keep them activated. Hence, the sparse regularization term
λ could also be considered as a soft threshold for the attention map values, where attention map
values smaller than that will be encouraged to be filtered out. This value should therefore penalize the
number of unmasked tokens for each row. While the number of unmasked tokens for Global Token
and Local Tokens in column i are L− i and IGnext

i − i with IGnext
i defined in Section 3.2. Hence, we

have:

dG
Gsparse

i = λ× L− i

L
(22)

dG
Lsparse

i = λ× IGnext
i − i

L
(23)

Combining Eq. 18, 20, 22 and Eq. 23, we have:

dαG
i =

∑
j

dMi,j ×MG
i,j ×M casual

i,j + dG
Gsparse

i − dαG−
i (24)

dαL
i =

∑
j

dMi,j ×ML
i,j ×M casual

i,j + dG
Lsparse

i (25)

dαSW
i =

∑
j

dMi,j ×MSW
i,j ×M casual

i,j (26)

with MG
i,j ,M

SW
i,j ,ML

i,j defined in Eq. 3, 6 and 4 and M casual
i,j is a casual attention mask.

D Integrating NAtS into FlashAttention

Flashattention [18] continuously loads Q, K, V values to the SRAM and only computes the attention
maps within the loaded blocks. NAtS loads the corresponding token states information α and con-
struct the masks M dynamically with Equation 3, 5, 4. During the backward process, Flashattention
collects the row-wise gradients for computing dQ and column-wise gradients to compute dK and dV.
Hence, the gradients dα can be computed together with dK and dV. We show how NAtS can be
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Algorithm 1 NAtS forward pass on FlashAttention2, we mark the NAtS related operations with blue

Require: Matrices Q,K,V ∈ RL×d, token states α ∈ RL×Nopts , indices of the next token states
IGnext ∈ RN in HBM, block sizes Bc, Br, sliding window size W

1: Divide Q into Tr =
⌈

N
Br

⌉
blocks Q1, . . . ,QTr of size Br × d each, and divide K,V, α, IGnext

into Tc =
⌈

N
Bc

⌉
blocks K1, . . . ,KTc

, V1, . . . ,VTc
, of size Bc × d, α1, . . . , αTc

of size Br ×
Nopts , and IGnext

1, . . . , I
Gnext
Tc

of size Br each.
2: Divide the output O ∈ RN×d into Tr blocks Oi, . . . ,OTr of size Br × d each, and divide the

logsumexp L into Tr blocks Li, . . . , LTr of size Br each.
3: for 1 ≤ i ≤ Tr do
4: Load Qi from HBM to on-chip SRAM.
5: On chip, initialize O

(0)
i = (0)Br×d ∈ RBr×d, ℓ

(0)
i = (0)Br

∈ RBr ,m
(0)
i = (−∞)Br

∈ RBr .

6: for 1 ≤ j ≤ Tc do
7: Load αj and IGnext

j to SRAM and check if the current block contain any valid values
according to Equations 3,4,6,

8: if Do Compute then
9: Construct attention mask Mi,j with αj , IGnext

j , and W with Equations 3,4,6
10: Load Kj ,Vj from HBM to on-chip SRAM.
11: On chip, compute S

(j)
i = QiK

T
j ∈ RBr×Bc .

12: On chip, compute m
(j)
i = max(m

(j−1)
i , rowmax(S

(j)
i )) ∈ RBr , P̃(j)

i = exp(S
(j)
i −

m
(j)
i )⊙Mi,j ∈ RBr×Bc (pointwise), ℓ(j)i = em

j−1
i −m

(j)
i ℓ

(j−1)
i +rowsum(P̃

(j)
i ) ∈ RBr .

13: On chip, compute O
(j)
i = diag(em

(j−1)
i −m

(j)
i )−1O

(j−1)
i + P̃

(j)
i Vj .

14: end if
15: end for
16: On chip, compute Oi = diag(ℓ

(Tc)
i )−1O

(Tc)
i .

17: On chip, compute Li = m
(Tc)
i + log(ℓ

(Tc)
i ).

18: Write Oi to HBM as the i-th block of O.
19: Write Li to HBM as the i-th block of L.
20: end for
21: Return the output O and the logsumexp L.

integrated into Flashattention2 [18] in Algorithms 1 and 2. We highlight the difference between the
vanilla Flashattention2 and Flashattention2 with NAtS in blue. Compared with vanilla Flashattention
models, NAtS adaptively skips the blocks that do not have valid mask values to avoid unnecessary
computation. These invalid blocks will only be applied to update the gradients for dα.

E Detailed Inference Process

In Section 3.3, we showed that NAtS could efficiently update the KV cache values and drop the
unnecessary tokens. Here we provide a detailed pseudocode for this updating process.

As shown in Algorithm 3, once we receive a new KV cache pair, we first check its corresponding
type. Depending on the new token type, we either: 1. append the new KV values after the next global
tokens and remove the remaining local tokens 2. append the new KV values after the existing tokens
3. put the new KV values to the tail of the sliding window token queues (located at the beginning of
the KV cache values)

F Experiments Details

Here we discuss further details in our experiments. The codes for NAtS can be found under
https://github.com/automl/NeuralAttentionSearch
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Algorithm 2 NAtS backward pass on FlashAttention2, we mark the NAtS related operations with blue

Require: Matrices Q,K,V,O,dO ∈ RL×d, token states α ∈ RL×Nopts , indices of the next token
states IGnext ∈ RL in HBM, vector L ∈ RN in HBM, block sizes Bc, Br, sliding window size W.

1: Divide Q into Tr =
⌈

N
Br

⌉
blocks Q1, . . . ,QTr

of size Br × d each, and divide K,V, α, IGnext

in to Tc =
⌈

N
Bc

⌉
blocks K1, . . . ,KTc

and V1, . . . ,VTc
, of size Bc × d, α1, . . . , αTc

of size

Br ×Nopts , and IGnext
1, . . . , I

Gnext
Tc

of size Br each.
2: Divide O into Tr blocks Oi, . . . ,OTr of size Br × d each, divide dO into Tr blocks

dOi, . . . ,dOTr
of size Br × d each, and divide L into Tr blocks Li, . . . , LTr

of size Br

each.
3: Initialize dQ = (0)N×d in HBM and divide it into Tr blocks dQ1, . . . ,dQTr

of size Br × d

each. Divide dK,dV ∈ RN×d in to Tc blocks dK1, . . . ,dKTc
and dV1, . . . ,dVTc

, of size
Bc × d each. Divide dα ∈ RNopts in to dα1, . . . , dαTc

of size Br ×Nopts each.
4: Compute D = rowsum(dO ⊙O) ∈ Rd (pointwise multiply), write D to HBM and divide it

into Tr blocks D1, . . . , DTr
of size Br each.

5: for 1 ≤ j ≤ Tc do
6: Load Kj ,Vj , αj and IGnext

j from HBM to on-chip SRAM.
7: Initialize dKj = (0)Bc×d,dVj = (0)Bc×d, dαj = (0)Bc×Nopts on SRAM.
8: for 1 ≤ i ≤ Tr do
9: Load Qi,Oi,dOi,dQi, Li, Di from HBM to on-chip SRAM.

10: On chip, compute S
(j)
i = QiK

T
j ∈ RBr×Bc .

11: On chip, Construct attention mask Mi,j with αj , IGnext
j , and W with Equations 3,4,6

12: On chip, compute P′(j)
i = exp(Sij − Li) ∈ RBr×Bc and P

(j)
i = P′(j)

i ⊙Mi,j .
13: Check if the current block contains any valid value
14: if Do compute then
15: On chip, compute dVj ← dVj + (P

(j)
i )⊤dOi ∈ RBc×d.

16: On chip, compute dP
(j)
i = dOiV

⊤
j ∈ RBr×Bc .

17: On chip, compute dS
(j)
i = P

(j)
i ⊙ (dP

(j)
i −Di) ∈ RBr×Bc .

18: Load dQi from HBM to SRAM, then on chip, update dQi ← dQi+dS
(j)
i Kj ∈ RBr×d,

and write back to HBM.
19: On chip, compute dKj ← dKj + dS

(j)
i

⊤
Qi ∈ RBc×d.

20: end if
21: On chip, clip P′(j)

i to (0,1) and compute dS′(j)
i = P′(j)

i ⊙ (dP
(j)
i −Di) ∈ RBr×Bc

22: On chip, update dαj with Equations 24, 25, 26
23: end for
24: Write dKj ,dVj , and dαj to HBM.
25: end for
26: Return dQ,dK,dV.

F.1 Detailed Hyperparameter Setting for GPT2-small Training

Following the setting from NanoGPT [45], the GPT-2 style small has 12 layers and 12 heads with a
hidden dimension of 768. Instead of the learnable position encoding, we apply rotary embeddings [74]
to each transformer layer. The PG-19 dataset contains books extracted from Project Gutenberg [67]
with about 2B tokens in the training sets. We train all models with a context length of 1024 and a
batch size of 480 (using gradient accumulation). We train them for 600 000 iterations evaluate them
on the test sets of PG19 with a context length of 1024. Training one model can be finished in 16
hours with 4 Nvidia H100 PCEi GPUs.

F.2 Collecting the Fine-tune Training Set

To fine-tune NAtS on LLMs, we collect the training datasets from different tasks for real-world tasks:
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Algorithm 3 NAtS KV Cache Updating Process

Require: KV values K,V ∈ RN×H×dhead , sliding window size W, α ∈ RL×Nopts . Existing KV
cache KCache,VCache ∈ RW×H×dheads , number of global tokens nglobal ∈ RH , number of
local tokens nlocal ∈ RH , current tail of the sliding window queue t

1: for 0 ≤ i ≤ L do
2: for 0 ≤ h ≤ H do
3: remove the tail of the sliding window queue: KCache

t = 0,VCache
t = 0

4: if αi is GlobalToken then
5: move Ki,h,Vi,h to the (nglobal

h )th position of the KV cache values: KCache
nglobal
h ,h

=

Ki,h,V
Cache
nglobal
h ,h

= Vi,h,.

6: update number of global and local tokens nglobal
h = nglobal

h + 1, nlocal
h = 0

7: remove all the KV cache values after nglobal
h : KCache

j,h = 0,VCache
j,h = 0, for j > nglobal

h

8: else if αi is LocalToken then
9: move Ki,h,Vi,h to the (nglobal

h + nlocal
h )th position of the KV cache values:

KCache
nglobal
h +nlocal

h ,h
= Ki,h,V

Cache
nglobal
h +nlocal

h ,h
= Vi,h,.

10: update number of local tokens nlocal
h = nlocal

h + 1
11: else
12: move Ki,h,Vi,h to the (t)th position of the KV cache values: KCache

t,h =

Ki,h,V
Cache
th+nlocal

h ,h
= Vi,h,.

13: end if
14: generate masks for the corresponding valid values
15: move the queue tail to the next value: t = (t+ 1) mod W
16: end for
17: end for

• Multi-Document QA: HotPotQA [88], 2WikiMultihopQA [37], MuSiQue [78], and
DuReader (zh) [36]

• Single-Document QA: NarrativeQA [48] and Qasper [20]
• Summarization: GovReport [39], QMSum [97], MultiNews [25], and VCSUM (zh) [82]
• Few-shot Leraning: TREC [53], TriviaQA [44], and SAMSum [33]
• Code Completion: LCC [35] and RepoBench-P [56]

We also construct the synthetic passkey-retrieval dataset introduced in DuoAttention [85]. This
dataset is generated by embedding multiple random passkeys in different locations with a long
context. The model will then be asked to recall this passkey information.

For all the few-shot learning datasets, following Bai et al. [12], we randomly concatenate multiple
question-answer pairs into one single extended context as one piece of data. The number of con-
catenated samples for the TREC dataset ranges from [10, 100]. This value is [2, 6] for TriviaQA and
[10, 50] for SAMSum. Additionally, for the datasets that do not have enough context length (e.g., the
DuReader dataset), we also merge multiple documents into one piece of data (in our case, this value
is 4).

We do not collect all the data whose length goes beyond a threshold to ensure that the context can
be fitted into our model. Additionally, we collect at most 500 instances in each dataset since some
datasets might not contain data. In the end, the real-world dataset contains 6436 data instances. We
add another 564 instances from the synthetic dataset. In the end, our dataset contains 7000 instances.
Finetuning a model on this dataset for one epoch takes roughly 8 hours with 2 Nvidia H100 PCIe
GPUs.

30



Full Duo SLLM H2O Snap Ada Chunk Critical Pyradmid MoA NAtS

4k 93.68 92.63 58.89 5.60 46.50 57.92 59.33 74.06 44.00 55.73 93.68 (49%)
8k 91.29 89.94 59.21 2.82 38.12 49.30 53.53 83.12 37.66 41.98 90.76 (43%)
16k 89.85 87.51 55.18 3.00 38.59 52.80 63.46 82.83 38.05 34.31 89.09 (41%)
32k 81.24 78.81 47.63 2.70 49.32 66.20 71.91 76.23 46.16 27.92 80.39 (42%)

Full Duo SLLM H2O Snap Ada Chunk Critical Pyradmid MoA NAtS

4k 93.68 52.44 42.96 3.26 33.72 38.79 42.74 46.11 33.66 33.26 93.18 (29%)
8k 91.29 40.96 36.54 2.37 31.36 36.67 42.01 46.73 28.64 25.47 89.97 (24%)
16k 89.85 35.42 33.38 1.92 30.30 37.48 42.84 57.17 28.17 25.55 87.69 (21%)
32k 81.24 40.00 32.76 1.70 35.17 44.46 60.56 61.55 31.84 24.88 78.60 (21%)

Table 3: Ruler results with 50% KV budgets (top) and 25% KV budget (bottom) on Mistral-7B-
Instruct-v0.3. All Full models use the 100% KV budgets. We mark the actual KV budgets used by
NAtS in the bracket.

G Further Experimental Results

G.1 Results on Ruler Benchmark with Mistral

Table 3 shows the results of different optimizers on the Mistral-7B-Instruct-v0.3 model. In this case,
the λ for 25% and 50% budgets are 1e − 6 and 3e − 7 respectively. We found that to achieve the
same sparsity level, Mistral-7B requires a larger sparse regularization value λ compared to the Llama
3.1 model. This might indicate that the attention map values in Mistral are more evenly distributed,
and thus we need a larger λ to force more tokens to only focus on the local information. The maximal
context length of Mistral 7B is 32k. We only evaluate the models with a maximal length of 32k.
The result is consistent with the results shown in Table 1. NAtS consistently outperforms the other
baselines with smaller budgets.

G.2 Further results on LongBench

We show additional results on fine-tuning LLM on the LongBench dataset here. Table 4 shows the
results with 25% KV budgets on Mistral-7B-Instruct-v0.3 with λ = 3e− 6. The result confirms our
conclusion that NAtS outperforms the other baselines in most datasets under a similar budget level
(and many times with even smaller budgets).

Full Duo SLLM H2O Snap Ada Chunk Critical Pyradmid MoA NAtS

NarrativeQA 29.21 16.49 27.56 23.65 22.70 24.34 21.22 27.72 21.97 21.67 26.7(9%)
Qasper 41.34 14.58 29.16 18.95 23.08 22.99 21.21 28.85 23.54 19.72 41.46(21%)
MultiFieldQA-en 52.51 29.83 31.88 31.52 38.56 38.11 34.11 45.18 35.34 28.80 52.36(18%)
MultiFieldQA-zh 58.03 29.15 30.47 29.21 31.42 32.30 32.40 38.12 29.67 23.20 54.13(16%)
HotpotQA 49.62 34.85 46.07 42.10 46.37 48.83 46.93 47.48 45.94 39.64 51.45(15%)
2WikiQA 40.01 27.83 35.11 30.43 33.22 33.14 32.03 38.24 33.96 27.02 37.05(18%)
Musique 28.44 13.03 22.65 16.99 22.45 21.28 22.62 25.01 23.67 16.22 27.88(14%)
DuReader (zh) 34.87 26.51 18.69 20.66 25.34 27.55 28.45 27.04 24.82 19.11 35.25(12%)
GovReport 34.94 22.09 27.44 27.11 28.31 27.94 28.94 29.33 26.94 25.58 33.39(14%)
QMSum 25.67 17.25 22.11 20.84 21.43 21.95 21.95 22.77 22.39 19.53 24.70(13%)
MultiNews 27.85 23.41 22.01 23.03 23.77 23.62 23.34 24.37 23.89 22.55 27.35(28%)
VCSUM (zh) 16.34 13.58 15.41 15.13 15.28 15.38 14.69 16.10 14.96 14.87 16.06(11%)
TREC 75.50 52.00 70.50 61.50 58.50 59.00 57.00 67.50 58.00 63.00 73.50(20%)
TriviaQA 88.89 84.85 88.92 86.60 88.89 89.39 89.19 88.98 89.31 86.94 89.80(17%)
SAMSum 47.29 42.15 45.44 45.16 46.40 46.72 46.51 46.67 46.58 43.90 46.91(13%)
LSHT 39.75 17.50 29.00 22.00 38.50 39.00 39.50 39.25 37.50 17.25 38.5(11%)
Passage Count 5.50 3.50 6.00 6.00 6.00 8.00 5.50 6.00 6.50 5.00 4.5(14%)
PassageRetrieval-en 98.00 62.50 86.50 63.00 91.50 94.00 87.50 89.50 88.00 17.25 96.00(13%)
PassageRetrieval-zh 96.50 10.50 26.50 34.50 69.25 83.25 71.00 90.00 75.50 16.00 92.00(14%)
LCC 53.02 50.87 51.22 52.77 55.67 55.67 53.76 56.17 55.46 51.08 53.81(29%)
RepoBench-P 56.83 48.93 54.80 55.74 56.82 57.06 56.75 56.75 56.40 53.59 56.7(23%)

Table 4: LongBench Results with 25% Budget Size on Mistral-7B. .

Tables 5 and 6 show the evaluation results on LongBench with 50% budgets. Despite having fewer
KV cache budgets in all the datasets, NAtS still achieves comparable performance on the LLama3-8B
model and better results on the Mistral model and generally performs comparable to the results with
the full attention transformers.
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Full Duo SLLM H2O Snap Ada Chunk Critical Pyradmid MoA NAtS

NarrativeQA 31.35 29.40 28.18 20.15 30.37 30.04 29.49 32.03 29.18 13.92 31.39(29%)
Qasper 24.73 20.37 18.15 18.09 18.44 19.42 17.24 22.13 18.54 22.25 25.17(45%)
MultiFieldQA-en 29.46 26.70 17.89 22.50 23.21 24.62 22.55 26.30 22.95 14.24 28.94(41%)
MultiFieldQA-zh 60.01 60.31 42.19 38.88 47.66 50.23 44.54 56.22 46.50 23.91 61.27(37%)
HotpotQA 17.06 18.84 16.73 15.61 16.55 16.29 17.22 15.83 15.86 8.85 17.28(37%)
2WikiQA 16.64 16.30 14.28 11.71 15.82 15.38 14.67 17.01 14.81 10.58 16.84(41%)
Musique 11.59 13.77 10.75 10.12 10.78 11.19 10.63 12.85 10.64 5.03 11.89(36%)
DuReader (zh) 35.56 33.29 18.16 27.32 29.22 30.82 28.49 32.81 27.93 22.80 33.36(32%)
GovReport 34.30 32.99 30.84 29.46 31.34 31.51 31.92 33.09 30.54 25.45 34.23(36%)
QMSum 23.30 23.89 21.43 20.72 22.08 22.74 22.22 22.89 22.92 19.76 22.6(33%)
MultiNews 27.13 26.29 24.77 25.10 25.27 25.48 25.08 25.81 25.10 24.86 27.17(51%)
VCSUM (zh) 16.36 15.70 15.29 15.03 15.70 15.77 15.59 15.89 15.32 14.67 16.24(28%)
TREC 72.50 72.50 71.00 65.50 60.00 66.50 63.50 70.50 59.50 64.00 73.50(44%)
TriviaQA 91.15 90.41 91.44 90.25 91.47 90.97 91.63 91.14 90.98 81.17 92.14(40%)
SAMSum 43.72 42.68 43.41 42.57 44.21 43.44 43.00 43.41 43.91 39.64 42.61(30%)
LSHT 46.50 46.50 40.00 34.50 45.00 46.00 45.00 46.50 45.00 24.00 45.5(31%)
Passage Count 6.63 6.67 6.73 2.21 6.33 6.07 6.03 4.74 8.04 1.80 9.78(37%)
PassageRetrieval-en 97.98 98.55 96.67 93.54 95.98 97.88 95.83 98.12 96.10 17.96 97.32(36%)
PassageRetrieval-zh 77.99 75.58 43.61 67.83 79.66 78.27 72.38 78.22 79.48 19.72 78.17(34%)
LCC 54.10 56.22 53.10 55.61 54.08 53.13 54.23 52.33 51.87 52.28 53.27(57%)
RepoBench-P 51.39 57.54 50.80 55.17 52.49 51.59 52.32 52.38 51.59 48.46 52.68(47%)

Table 5: LongBench Results with 50% Budget Size on LLama 3.1 8B .

Full Duo SLLM H2O Snap Ada Chunk Critical Pyradmid MoA NAtS

NarrativeQA 29.21 26.95 28.76 24.00 24.65 25.40 25.66 28.20 24.41 23.58 28.1(31%)
Qasper 41.34 35.65 35.80 27.88 31.68 31.94 31.38 38.10 31.50 28.60 41.75(46%)
MultiFieldQA-en 52.51 52.50 37.35 40.15 46.12 48.52 44.73 52.20 45.70 35.52 52.79(42%)
MultiFieldQA-zh 58.03 55.37 36.43 39.43 40.55 40.92 43.70 47.93 38.24 27.48 56.75(38%)
HotpotQA 49.62 52.94 47.66 47.24 49.34 49.57 49.51 47.20 51.26 39.64 50.73(39%)
2WikiQA 40.01 39.26 38.44 38.09 37.27 36.75 40.24 38.13 37.49 31.42 40.77(42%)
Musique 28.44 29.45 27.24 20.61 26.43 25.77 27.28 28.54 25.85 16.84 28.64(38%)
DuReader (zh) 34.87 36.44 18.63 26.82 30.29 32.18 32.72 32.18 29.71 20.79 34.7(33%)
GovReport 34.94 32.07 30.79 30.58 31.43 31.55 32.16 32.39 29.63 25.80 34.23(38%)
QMSum 25.67 24.20 22.91 22.48 23.16 24.36 23.47 25.12 24.11 21.08 25.94(37%)
MultiNews 27.85 26.97 25.18 25.62 25.97 26.24 25.83 26.26 25.56 24.39 27.47(54%)
VCSUM (zh) 16.34 15.58 16.24 15.80 15.94 16.42 15.73 16.57 15.63 14.13 16.55(31%)
TREC 75.50 74.50 74.00 66.00 66.50 68.50 69.00 74.50 64.50 69.00 75.00(49%)
TriviaQA 88.89 87.37 89.06 88.36 88.71 88.81 88.69 88.08 89.55 87.05 89.3(41%)
SAMSum 47.29 44.85 47.30 45.82 47.19 47.30 46.77 47.31 46.85 45.29 46.87(35%)
LSHT 39.75 37.50 33.00 31.50 39.25 39.25 39.25 40.25 38.00 21.00 38.75(32%)
Passage Count 5.50 6.00 5.50 4.00 4.00 5.50 5.00 5.00 4.00 4.50 7.50(39%)
PassageRetrieval-en 98.00 99.00 89.50 81.00 97.50 98.50 97.00 98.00 98.50 33.00 98.0(35%)
PassageRetrieval-zh 96.50 96.50 51.50 76.00 89.75 95.50 92.00 97.00 96.50 17.50 96.0(35%)
LCC 53.02 53.22 52.94 54.40 54.50 54.14 53.79 54.63 53.78 52.04 53.66(56%)
RepoBench-P 56.83 55.89 55.47 57.55 56.76 57.05 55.68 56.38 56.36 54.67 57.38(52%)

Table 6: LongBench Results with 50% Budget Size on Mistral-7B. .

H Ablation Study

H.1 Sparse Regularization Term λ

We first study the impact of sparse regularization terms λ. This value controls the efficient KV values
cached in the model and thus the model performance. The result is shown in Table 7. We underline
the results that are better than the optimal baselines with 25% budgets, and bold the results that are
better than the optimal baselines with 50%. Despite that NAtS in Table 2 (NAtS 3e− 7) used more
than 25% overall KV budgets for some tasks, here we show NAtS could still outperform many of
the corresponding optimal baselines with an even smaller KV budget.

H.2 Sliding Window Length W

Another important hyperparameter for NAtS is the sliding window size W. We apply different sliding
window sizes W (64, 128, 256, 512) to fine-tune the Llama3-8B model (with λ = 3e− 7).

The result is shown in Table 8. Overall, all the approaches perform similarly. However, a smaller
sliding window size generally results in an overall larger KV cache size. A reduced sliding window
size would force the model to apply more Global Tokens and Local Tokens to construct the mid-range
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Full NAtS 1e-6 NAtS 5e-7 NAtS 3e-7 NAtS 1e-7 NAtS 5e-8

NarrativeQA 31.4 27.05(5%) 29.19(9%) 30.53(13%) 31.39(29%) 31.94(41%)
Qasper 24.7 31.39(15%) 28.6(21%) 23.76(27%) 25.17(45%) 26.97(58%)
MultiFieldQA-en 29.5 26.84(13%) 27.41(18%) 28.94(24%) 28.94(41%) 29.7(54%)
MultiFieldQA-zh 60.0 51.73(14%) 56.64(17%) 61.18(22%) 61.27(37%) 61.87(49%)
HotpotQA 17.1 15.47(10%) 17.44(15%) 16.06(20%) 17.28(37%) 16.65(49%)
2WikiQA 16.6 15.37(13%) 16.44(18%) 17.05(23%) 16.84(41%) 16.75(53%)
Musique 11.6 10.78(9%) 9.87(13%) 11.42(18%) 11.89(36%) 11.31(48%)
DuReader (zh) 35.6 30.06(9%) 33.63(13%) 34.28(17%) 33.36(32%) 34.41(45%)
GovReport 34.3 30.82(10%) 32.47(14%) 33.82(19%) 34.23(36%) 34.8(50%)
QMSum 23.3 23.37(8%) 23.09(12%) 23.11(17%) 22.6(33%) 22.74(45%)
MultiNews 27.1 26.45(22%) 26.57(28%) 26.72(33%) 27.17(51%) 27.11(64%)
VCSUM (zh) 16.4 15.56(7%) 15.61(10%) 15.61(14%) 16.24(28%) 15.99(39%)
TREC 72.5 68.0(14%) 70.5(20%) 72.0(26%) 73.5(44%) 73.0(56%)
TriviaQA 91.2 91.38(12%) 90.32(17%) 91.61(22%) 92.14(40%) 91.64(52%)
SAMSum 43.7 43.98(8%) 44.0(12%) 44.21(16%) 42.61(30%) 43.84(41%)
LSHT 46.5 46.0(8%) 44.0(12%) 47.5(16%) 45.5(31%) 45.5(43%)
Passage Count 6.6 2.56(10%) 6.88(14%) 7.12(20%) 9.78(37%) 8.82(50%)
PassageRetrieval-en 98.0 48.17(9%) 82.65(14%) 95.81(19%) 97.32(36%) 96.93(48%)
PassageRetrieval-zh 78.0 33.14(12%) 64.77(16%) 78.5(20%) 78.17(34%) 77.7(46%)
LCC 54.1 55.46(24%) 54.53(31%) 53.54(38%) 53.27(57%) 54.4(69%)
RepoBench-P 51.4 50.78(14%) 51.85(21%) 53.48(28%) 52.68(47%) 52.36(59%)

Table 7: Ablation Study of Sparse Regularization values λ for LLama3.1-8B

Full NAtS 64 NAtS 128 NAtS 256 NAtS 512

NarrativeQA 31.4 21.61(33%) 30.76(15%) 30.53(13%) 28.96(12%)
Qasper 24.7 17.92(34%) 24.1(28%) 23.76(27%) 28.24(29%)
MultiFieldQA-en 29.5 19.37(34%) 29.02(26%) 28.94(24%) 25.87(25%)
MultiFieldQA-zh 60.0 35.49(35%) 60.37(22%) 61.18(22%) 58.08(26%)
HotpotQA 17.1 13.99(33%) 16.41(23%) 16.06(20%) 17.44(18%)
2WikiQA 16.6 11.52(34%) 16.69(26%) 17.05(23%) 16.48(24%)
Musique 11.6 9.42(33%) 11.62(22%) 11.42(18%) 10.89(16%)
DuReader (zh) 35.6 22.26(34%) 35.75(19%) 34.28(17%) 33.91(16%)
GovReport 34.3 26.63(34%) 33.89(22%) 33.82(19%) 33.05(19%)
QMSum 23.3 20.46(33%) 23.52(19%) 23.11(17%) 22.66(16%)
MultiNews 27.1 23.78(36%) 26.73(33%) 26.72(33%) 26.46(40%)
VCSUM (zh) 16.4 13.8(34%) 16.1(15%) 15.61(14%) 15.9(15%)
TREC 72.5 46.5(34%) 73.0(31%) 72.0(26%) 70.5(25%)
TriviaQA 91.2 84.44(34%) 91.89(26%) 91.61(22%) 91.66(21%)
SAMSum 43.7 38.97(34%) 43.62(18%) 44.21(16%) 44.47(17%)
LSHT 46.5 26.5(34%) 47.0(18%) 47.5(16%) 45.5(15%)
Passage Count 6.6 0.0(34%) 5.75(23%) 7.12(20%) 5.66(18%)
PassageRetrieval-en 98.0 7.13(33%) 96.71(23%) 95.81(19%) 85.78(17%)
PassageRetrieval-zh 78.0 5.15(34%) 81.64(21%) 78.5(20%) 70.66(21%)
LCC 54.1 39.13(36%) 54.92(39%) 53.54(38%) 54.15(44%)
RepoBench-P 51.4 36.87(34%) 51.89(32%) 53.48(28%) 51.34(26%)

Table 8: Ablation Study of Sliding Window Length W for Llama3

correlation since this distance cannot be covered by the sliding window tokens. However, as the
number of sliding window sizes further increases, this compression rate might saturate since the
remaining tokens might always require a long-range correlation whose distance is much larger than
the sliding window size (e.g., these tokens might require the correlation between two tokens whose
distances are larger than 1k or even more).

I KV Size Distributions

Here, we provide more KV distribution results with different datasets and hyperparameters on the
longbench dataset.

Figures 6 and 7 show the KV cache size distributions for Llama 3.1 8B on the Narrative QA and
Multi News Datasets. The models tend to preserve more KV caches in the shallower layers and ignore
the KV caches in the intermediate layers. However, the model still preserves several KV caches near
the output layers. Additionally, even in the same layer, the distributions of the KV cache sizes are not
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Figure 6: KV size of LLama on Narrative QA Dataset

Figure 7: KV size of LLama on Multi-News Dataset

evenly distributed in each layer. Some heads are always preferred while the others might be dropped
as the context or λ changes.

Figure 8: KV size of Mistral on NarrativeQA Dataset

Figure 9: KV size of Mistral on Multi-News Dataset
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Figures 8 and 9 show the KV cache size distributions from the Mistral model. Although the two
models share some similar trends, e.g., both models tend to preserve more tokens in the shallower
and the last few layers. However, compared to Llama, the KV caches for the Mistral model are
more unevenly distributed and tend to gather towards some specific heads. Despite that, both Mistral
models and LLama models are GQA models [8] and share similar architectures, the preserved token
distributions can still be different. This shows that the KV importance distributions might not only
depend on the architectures, but are also closely related to the model weights. This highlights the
importance of adapting different KV eviction strategies to different models.

Figure 10: Number of Token Types for Multi-News Dataset

J Token Roles Distributions

Figure 11: Number of Token Types for NarrativeQA Dataset

We also illustrate the token roles distribution in Figure 10 and 11for the Multi-News and NarrativeQA
datasets. Generally, most tokens are classified as either Global Tokens or Sliding Window Tokens,
and only a few are considered Local Tokens. This might indicate that most attention operations still
focus on either long-range or short-term correlations.
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