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Abstract
Modern recurrent layers are emerging as a promis-
ing path toward edge deployment of foundation
models, especially in the context of large language
models (LLMs). Compressing the whole input
sequence in a finite-dimensional representation
enables recurrent layers to model long-range de-
pendencies while maintaining a constant infer-
ence cost for each token and a fixed memory re-
quirement. However, the practical deployment
of LLMs in resource-limited environments often
requires further model compression, such as quan-
tization and pruning. While these techniques are
well-established for attention-based models, their
effects on recurrent layers remain underexplored.

In this preliminary work, we focus on post-
training quantization for recurrent LLMs and
show that Mamba models exhibit the same pattern
of outlier channels observed in attention-based
LLMs. We show that the reason for difficulty of
quantizing SSMs is caused by activation outliers,
similar to those observed in transformer-based
LLMs. We report baseline results for post-training
quantization of Mamba that do not take into ac-
count the activation outliers and suggest first steps
for outlier-aware quantization.

1. Introduction
Attention-based models, also known as Transformers
(Vaswani et al., 2023), constitute the current state-of-the-
art backbone for large language models (LLMs) (Brown
et al., 2020). However, their powerful modeling capabilities
come with significant computational requirements, result-
ing in high inference costs and limiting the deployment
on edge and low-power devices. Novel recurrent neural
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network (RNN) architectures, informed mainly by recent
work on state space models (SSMs) (Gu et al., 2020; 2022),
are now emerging as promising alternatives for sequence
modeling tasks, either in isolation (Poli et al., 2023; Gu
& Dao, 2023; Peng et al., 2023) or as hybrid models in-
terleaving recurrent and attention blocks (De et al., 2024;
Lieber et al., 2024; Botev et al., 2024). In particular, RNNs
compress the input sequence into a finite-dimensional repre-
sentation, decoupling the computational and memory cost
of each token’s forward pass from the sequence’s length.
Hence, they provide better scalability to long context sce-
narios than vanilla self-attention, which scales quadratically
with sequence length.

However, similarly to Transformers, deploying recurrence-
based LLMs at scale or in resource-constrained environ-
ments requires advanced model optimization techniques,
such as quantization, pruning, and knowledge distillation.
While applying these techniques starts to be well understood
in the context of attention-based LLMs, model optimization
for recurrent and hybrid architectures remains an important
yet underexplored topic. In this paper, we focus on quanti-
zation and analyze its impact on Mamba (Gu & Dao, 2023)
model family, drawing connections to previous work on
quantized LLMs.

2. Quantization and outlier channels in LLMs
Quantization is a compression technique that reduces the
numerical precision of a model’s weights and activations to
integer datatypes in order to facilitate inference (Jacob et al.,
2017). We adopt symmetric per-tensor quantization: given
a tensor x and a bit precision n, its quantized representation
is computed as:

x̄n =

⌊
(2n−1 − 1)x

max |x|

⌉
= ⌊sxx⌉ (1)

where the quantization scale sx is a scalar. The benefits of
quantization for inference efficiency are twofold. Firstly,
weight quantization reduces the memory footprint of the
model, which is especially beneficial in the memory-bound
regime of autoregressive generation. Secondly, when both
weights and activations are quantized, matrix multiplica-
tions can be offloaded to the integer processing units, which
typically offer higher throughput and energy efficiency than
floating point units.
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Figure 1: Architecture diagram of the Mamba block and details on the absolute maximum activation (on the y-axis) across
channels (x-axis), measured on a subset of WikiText-2 (Merity et al., 2016) for Mamba-130m. Shaded regions account for
six standard deviations.

Most state-of-the-art techniques for quantizing LLMs are
based on the empirical observation of outlier channels (Bon-
darenko et al., 2021), a small percentage of model dimen-
sions with a dynamic range that is consistently larger than
the rest. This phenomenon complicates activation quan-
tization since the large abs max values from the outlier
channels deteriorate the effective bit precision of the remain-
ing channels. A possible solution would be maintaining a
different quantization scale for each channel, which is not
hardware-friendly on current GPU architectures (Xiao et al.,
2024). Various strategies have been proposed to circum-
vent this issue. For instance, some methods treat outlier
channels separately, either by maintaining them in floating
point format (Dettmers et al., 2022) or by representing them
with two integer channels each (Zhang et al., 2024). Other
approaches modify the transformer architecture to prevent
the emergence of outliers (Bondarenko et al., 2023), while
some partially shift the quantization difficulty to the weights,
thereby mitigating the impact of outliers (Xiao et al., 2024).

We make the first steps towards post-training quantization
for recurrent LLMs, focusing on the Mamba (Gu & Dao,
2023) model family. We analyse the activation patterns of
Mamba to assess the presence of outliers, which we define
as those channels having an absolute maximum activation
beyond six standard deviations from the layer mean, fol-
lowing prior practice (Bondarenko et al., 2021). Figure 1
reports the pre-activations of the linear block of a layer from
Mamba-130m (similar results were observed for the other

model sizes), measured running the model on a subset of
WikiText-2 (Merity et al., 2016). We observe distinct out-
lier patterns. The pre-activations of the three largest linear
layers (in, x, and out), consistently with what was observed
for attention-based LLMs, show outliers accounting for less
than 1% of channels. However, while the outliers of the first
linear block are mostly consistent across layers, the remain-
ing two blocks exhibit no regular behavior. The linear layer
projecting the SSM’s time steps (dt) shows almost no out-
liers. Similarly to (Dettmers et al., 2022), we further assess
the importance of the outlier channels for the model’s pre-
dictions by evaluating the impact of zeroing out the outliers
on downstream accuracy. For Mamba-130m and Mamba-
2.8b, we observe a drop in average accuracy of 12.61% and
17.49%, respectively, suggesting that these channels play a
significant role in the model dynamics. Extended results are
available in the Appendix in Table 2.

3. Method
3.1. Mamba model

Existing state space models are described by the following
dynamics:

xk = Axk−1 +Buk (2)

yk = Cxk +Duk (3)

where A is the recurrent matrix, B is the input matrix, C
is the output matrix, and D is the residual matrix from

2



Mamba-PTQ: Outlier Channels in Recurrent Large Language Models

the input to the output. State space models of this form
must treat every input token equally, as the input matrix
B is fixed, such that the SSM cannot focus on or ignore
specific tokens. This is a major shortcoming compared
to transformer architectures, whose attention mechanism
allows for such interactions and thus limits the performance
of SSMs, especially on language tasks.

The key innovation of Mamba over previous SSMs is its
ability to perform such content-based reasoning. By letting
Mamba’s parameters depend on the input, the model effec-
tively gains the ability to filter out irrelevant information
so that the relevant context can be compressed more effi-
ciently into the hidden state. Specifically, the parameters for
Mamba’s SSM block are obtained by:

Bt,∆t, Ct = W projut (4)

∆t = σ+(W dt∆t) (5)

At = exp
(
− exp

(
Alog∆t

))
(6)

Bt = ∆t ⊙Bt (7)

where ut is the input to the SSM block, W proj , Alog and
W dt are time-invariant weight matrices, σ+ denotes the soft-
plus function and ⊙ denotes element-wise multiplication.
The weight matrices Bt and Ct are thus directly depen-
dent on the input ut, whereas the recurrent matrix At is
dependent on the input ut only through the input-dependent
timescale parameter ∆t. The hidden state ht and output yt
of the SSM block is then computed as:

ht = At ⊙ ht−1 +Bt ⊙ ut (8)
yt = Ctht +Dt ⊙ ut (9)

As shown in Figure 1, each layer in the Mamba architecture
also includes additional gating, nonlinearities, normaliza-
tion, causal convolution, and linear blocks.

3.2. Baseline quantization

In order to quantize Mamba, we distinguish between
Mamba’s pre-trained weights and its activations. Impor-
tantly, due to the input-dependent parameterization, we con-
sider only input-independent parameters as weights, such
as Alog , while we consider input-dependent parameters like
At as activations.

We adopt symmetric, per-tensor quantization for weights
and activations as described in section 2, using the absolute
maximum (absmax) of the tensor for calibration.

For our experiments using naive quantization on the acti-
vations, we quantize the output from all linear layers (in-
cluding the matrices Bt, ∆t, Ct from Equation 4), but we
do not quantize the effective weight matrices At,∆t, Bt.
We further do not quantize the output from the SSM block

yt but only quantize the output from the downstream out
projection linear layer.

We use standard notation to denote quantization with n-
bit integers for weights as Wn and quantization with n-bit
integers for activations as An. For example, 8-bit weight
quantization and 4-bit activation quantization is denoted by
W8A8.

3.3. Outlier-aware quantization (e.g., SmoothQuant)

The naive absmax quantization is sensitive to outliers. A
large value in the tensor x will yield a small scale sx =
2n−1−1
max |x| , thus leading to larger rounding errors for the same
n-bit quantization precision. As discussed in section 2, out-
liers (particularly in activations) are the subject of research
in LLM quantization.

Most notably, the SmoothQuant method proposed by Xiao
et al. (Xiao et al., 2024) exploits the fact that outliers exist
in activations but not in the weights. SmoothQuant smooths
the activation outliers by partially taking them into the pre-
ceding weights. Because activation outliers typically per-
sist in the same activation channels, a weight matrix with
per-channel quantization can absorb part of the quantiza-
tion difficulty from the subsequent activations. As such,
SmoothQuant introduces a per-channel smoothing factor
s ∈ RCi where Ci is the dimension of the activations X
and, equivalently, the number of output channels of the
weight matrix W . This smpoothing factor is used to scale
the weights and activations:

(Xdiag(s)−1) · (diag(s)W) = X̂Ŵ (10)

The aim is to choose a smoothing factor s so that X̂ =
Xdiag(s)−1 is easy to quantize. However, simply choosing
sj = max(|Xj |) where j = 1, . . . , Ci to minimize the
difficulty in quantization activations, will push all these
difficulties into the weights. On the other hand, we can
choose sj = 1/max(|Wj |) to move all the quantization
difficulty from the weights into the activations. The authors
propose a new hyperparameter, the migration strength α,
to control how much difficulty we want to migrate from
activations to weights, using the equation:

sj =
max(|Xj |)α

max(|Wj |)1−α
(11)

where a smaller α will leave more difficulty with the ac-
tivations, and a larger α will migrate more difficulty to
the weights. The authors suggest to use a default value of
α = 0.5 and a larger α for models where activation outliers
are more significant such that more quantization difficulty
is moved into the weights.
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Table 1: One-shot accuracy on downstream tasks for Mamba-1.4b across different quantization configurations.

LAMBADA HellaSwag PIQA WinoGrande RTE COPA

Baseline 64.95% 59.11% 74.16% 61.4% 48.01% 79%

W8 (mlp) 64.43% 44.91% 74.32% 60.06% 48.01% 77.00%
W8 (all) 63.01% 44.71% 73.07% 60.06% 51.62% 76.00%
W4 (mlp) 0.02% 25.70% 52.29% 51.54% 52.35% 56.00%
W4 (all) 0.00% 25.72% 52.39% 50.99% 55.23% 64.00%
W8A8 (mlp) 63.11% 44.42% 73.01% 60.06% 51.62% 76%
W8A8 (all) 55.35% 43.84% 70.24% 54.3% 52.71% 75%
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Figure 2: Average one-shot accuracy on downtream tasks
across model sizes for Mamba with different quantization
configurations. The accuracy is averaged over all tasks
shown in Table 1.

4. Experiments
4.1. Experimental setup

We assess the impact of different quantization configurations
on the zero-shot accuracy of six downstream tasks: LAM-
BADA (Paperno et al., 2016), HellaSwag (Zellers et al.,
2019), PIQA (Bisk et al., 2019), WinoGrande (Sakaguchi
et al., 2019), RTE (Wang et al., 2019), and COPA (Roem-
mele et al.). We explicitly neglect perplexity benchmarking,
since prior work noted how it may not be informative of the
actual task performance degradation (Sun et al., 2021).

We run three different experimental conditions:

1. To assess the importance of outlier channels, we ana-
lyze the impact of removing outlier channels on down-
stream task accuracy.

2. We then analyze the effect of naive quantization of only
the pre-trained weights on downstream task accuracy.

3. Finally, we analyze the effect of quantization on the
pre-trained weights, as well as the activations, without
accounting for activation outliers.

Full results for the effect of Experiment 1 for removing
outlier channels are found in Table 2 in the Appendix. We
present an overview of the findings from Experiment 2 and
3 in Table 1 on the Mamba-1.4b model, while results for all
other model sizes are presented in Table 3 in the Appendix.

5. Discussion
In this preliminary work, we make the first steps towards
post-training quantization of Mamba, in order to inform fu-
ture edge deployments of recurrent LLMs based on selective
state space models such as Mamba. We have shown that the
difficulty of quantizing Mamba is caused by activation out-
liers, similar to those observed in transformer-based LLMs.
We presented baseline results for post-training quantization
of Mamba that does not take into account the activation
outliers and a first proposal for outlier-aware quantization
of Mamba.

5.1. Future work

As this area is under rapid development, several opportu-
nities exist to extend this work. Firstly, a similar analysis
could be performed on other recurrent LLMs, such as the
RWKV family (Peng et al., 2023), the novel Mamba-2 archi-
tecture (Dao & Gu, 2024), or hybrid models such as Griffin
(De et al., 2024) and RecurrentGemma (Botev et al., 2024).
Secondly, additional work should be done to convert the
SSM dynamics fully to integer operations, as previously
demonstrated by (Blouw et al., 2021), and explore the use
of quantized activations. Lastly, it will be interesting to
see how quantized recurrent LLMs perform at the edge
in energy-constrained scenarios for real-time multimodal
processing (Shrestha et al., 2024), as the specific of the
hardware architecture could provide additional guidance on
model compression requirements.
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A. Additional results
Herein we present all additional experimental results from the experiments presented in this paper.

A.1. Impact of removing outlier channels

Table 2 shows the accuracy on all evaluated tasks for the Mamba-130m model and Mamba-2.8B model, with different rows
indicating the outlier removal specific to particular layers, or across the entire model.

Table 2: Impact of removing outlier channels on downstream task accuracy.

Model LAMBADA HellaSwag PIQA WinoGrande RTE COPA Avg.

Mamba-130m
Baseline 44.25% 35.25% 64.47% 52% 54.87% 65% 52.64%
Linear(in) only 0% 25.61% 53.75% 51.14% 52.71% 53% 39.37%
Linear(x) only 26.88% 26.73% 58.49% 49.57% 55.6% 63% 46.71%
Linear(dt) only 44.25% 30.80% 64.47% 52.09% 54.87% 65% 51.91%
Linear(out) only 32.45% 30.42% 65.34% 53.35% 53.43% 70% 50.83%
All 0% 25.83% 54.52% 53.12% 52.71% 54% 40.03%

Mamba-2.8B
Baseline 69.24% 66.16% 75, 24% 63.46% 52.71% 84% 68.46%
All 7.45% 49.43% 66.92% 58.25% 53.79% 70% 50.97%
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A.2. Impact of quantization on downstream task accuracy

Table 3 shows the accuracy on all evaluated tasks for all Mamba models and all quantization configurations.

Table 3: One-shot accuracy on downstream tasks for the Mamba model family across different quantization configurations.

Model LAMBADA HellaSwag PIQA WinoGrande RTE COPA

Mamba-130m
Baseline 44.25% 35.25% 64.47% 52% 54.87% 65%
W8 (mlp) 42.48% 30.71% 64.09% 52.88% 52.71% 63.00%
W8 (all) 5.53% 28.03% 58.11% 50.59% 47.29% 64.00%
W4 (mlp) 0.00% 25.80% 51.74% 50.75% 49.82% 57.00%
W4 (all) 0.00% 25.34% 53.43% 50.36% 52.35% 53.00%
W8A8 (mlp) 5.72% 28.09% 57.83% 51.3% 47.65% 65%
W8A8 (all) 4.31% 27.72% 56.47% 51.07% 50.18% 65%

Mamba-370m
Baseline 55.62% 46.48% 69.48% 55.49% 53.07% 70%
W8 (mlp) 54.86% 37.17% 69.04% 55.80% 53.79% 70.00%
W8 (all) 16.61% 31.58% 61.37% 51.38% 49.10% 72.00%
W4 (mlp) 0.00% 25.23% 53.81% 50.28% 52.35% 55.00%
W4 (all) 0.00% 25.72% 53.10% 51.38% 52.71% 55.00%
W8A8 (mlp) 16.61% 36.87% 61.53% 51.22% 48.74% 70%
W8A8 (all) 10.29% 31.04% 58.76% 50.99% 45.49% 63%

Mamba-790m
Baseline 61.71% 55.07% 72.14% 55.96% 55.23% 72%
W8 (mlp) 2.64% 25.30% 54.13% 50.83% 53.07% 52.00%
W8 (all) 1.20% 25.84% 54.08% 51.07% 55.96% 53.00%
W4 (mlp) 0.00% 25.93% 53.05% 48.22% 46.21% 60.00%
W4 (all) 0.00% 25.29% 50.98% 47.67% 46.57% 56.00%
W8A8 (mlp) 1.44% 25.37% 54.30% 50.2% 53.43% 53%
W8A8 (all) 0.95% 25.77% 54.73% 50.99% 55.23% 57%

Mamba-1.4B
Baseline 64.95% 59.11% 74.16% 61.4% 48.01% 79%
W8 (mlp) 64.43% 44.91% 74.32% 60.06% 48.01% 77.00%
W8 (all) 63.01% 44.71% 73.07% 60.06% 51.62% 76.00%
W4 (mlp) 0.02% 25.70% 52.29% 51.54% 52.35% 56.00%
W4 (all) 0.00% 25.72% 52.39% 50.99% 55.23% 64.00%
W8A8 (mlp) 63.11% 44.42% 73.01% 60.06% 51.62% 76%
W8A8 (all) 55.35% 43.84% 70.24% 54.3% 52.71% 75%

Mamba-2.8B
Baseline 69.24% 66.16% 75.24% 63.46% 52.71% 84%
W8A8 (mlp) 64.64% 48.74% 73.72% 64.33% 56.32% 78%
W8A8 (all) 51.39% 47.64% 70.24% 57.62% 54.51% 79%
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