

000 001 002 003 004 005 006 007 008 009 010 011 012 K-GEN: UNLOCKING LARGE-SCALE DATA-FREE 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 279 280 281 282 283 284 285 286 287 288 289 289 290 291 292 293 294 295 296 297 298 299 299 300 301 302 303 304 305 306 307 308 309 309 310 311 312 313 314 315 316 317 318 319 319 320 321 322 323 324 325 326 327 328 329 329 330 331 332 333 334 335 336 337 338 339 339 340 341 342 343 344 345 346 347 348 349 349 350 351 352 353 354 355 356 357 358 359 359 360 361 362 363 364 365 366 367 368 369 369 370 371 372 373 374 375 376 377 378 379 379 380 381 382 383 384 385 386 387 388 389 389 390 391 392 393 394 395 396 397 398 399 399 400 401 402 403 404 405 406 407 408 409 409 410 411 412 413 414 415 416 417 418 419 419 420 421 422 423 424 425 426 427 428 429 429 430 431 432 433 434 435 436 437 438 439 439 440 441 442 443 444 445 446 447 448 449 449 450 451 452 453 454 455 456 457 458 459 459 460 461 462 463 464 465 466 467 468 469 469 470 471 472 473 474 475 476 477 478 479 479 480 481 482 483 484 485 486 487 488 489 489 490 491 492 493 494 495 496 497 498 499 499 500 501 502 503 504 505 506 507 508 509 509 510 511 512 513 514 515 516 517 518 519 519 520 521 522 523 524 525 526 527 528 529 529 530 531 532 533 534 535 536 537 538 539 539 540 541 542 543 544 545 546 547 548 549 549 550 551 552 553 554 555 556 557 558 559 559 560 561 562 563 564 565 566 567 568 569 569 570 571 572 573 574 575 576 577 578 579 579 580 581 582 583 584 585 586 587 588 589 589 590 591 592 593 594 595 596 597 598 599 599 600 601 602 603 604 605 606 607 608 609 609 610 611 612 613 614 615 616 617 618 619 619 620 621 622 623 624 625 626 627 628 629 629 630 631 632 633 634 635 636 637 638 639 639 640 641 642 643 644 645 646 647 648 649 649 650 651 652 653 654 655 656 657 658 659 659 660 661 662 663 664 665 666 667 668 669 669 670 671 672 673 674 675 676 677 678 679 679 680 681 682 683 684 685 686 687 688 689 689 690 691 692 693 694 695 696 697 698 699 699 700 701 702 703 704 705 706 707 708 709 709 710 711 712 713 714 715 716 717 718 719 719 720 721 722 723 724 725 726 727 728 729 729 730 731 732 733 734 735 736 737 738 739 739 740 741 742 743 744 745 746 747 748 749 749 750 751 752 753 754 755 756 757 758 759 759 760 761 762 763 764 765 766 767 768 769 769 770 771 772 773 774 775 776 777 778 779 779 780 781 782 783 784 785 786 787 788 789 789 790 791 792 793 794 795 796 797 798 799 799 800 801 802 803 804 805 806 807 808 809 809 810 811 812 813 814 815 816 817 818 819 819 820 821 822 823 824 825 826 827 828 829 829 830 831 832 833 834 835 836 837 838 839 839 840 841 842 843 844 845 846 847 848 849 849 850 851 852 853 854 855 856 857 858 859 859 860 861 862 863 864 865 866 867 868 869 869 870 871 872 873 874 875 876 877 878 879 879 880 881 882 883 884 885 886 887 888 889 889 890 891 892 893 894 895 896 897 898 899 899 900 901 902 903 904 905 906 907 908 909 909 910 911 912 913 914 915 916 917 918 919 919 920 921 922 923 924 925 926 927 928 929 929 930 931 932 933 934 935 936 937 938 939 939 940 941 942 943 944 945 946 947 948 949 949 950 951 952 953 954 955 956 957 958 959 959 960 961 962 963 964 965 966 967 968 969 969 970 971 972 973 974 975 976 977 978 979 979 980 981 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995 996 997 998 999 999 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 054 055 056 057 058 059 060 061 062 063 064 065 066 067 068 069 070 071 072 073 074 075 076 077 078 079 080 081 082 083 084 085 086 087 088 089 090 091 092 093 094 095 096 097 098 099 0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 0110 0111 0112 0113 0114 0115 0116 0117 0118 0119 0119 0120 0121 0122 0123 0124 0125 0126 0127 0128 0129 0129 0130 0131 0132 0133 0134 0135 0136 0137 0138 0139 0139 0140 0141 0142 0143 0144 0145 0146 0147 0148 0149 0149 0150 0151 0152 0153 0154 0155 0156 0157 0158 0159 0159 0160 0161 0162 0163 0164 0165 0166 0167 0168 0169 0169 0170 0171 0172 0173 0174 0175 0176 0177 0178 0179 0179 0180 0181 0182 0183 0184 0185 0186 0187 0188 0189 0189 0190 0191 0192 0193 0194 0195 0196 0197 0198 0199 0199 0200 0201 0202 0203 0204 0205 0206 0207 0208 0209 0209 0210 0211 0212 0213 0214 0215 0216 0217 0218 0219 0219 0220 0221 0222 0223 0224 0225 0226 0227 0228 0229 0229 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 0239 0240 0241 0242 0243 0244 0245 0246 0247 0248 0249 0249 0250 0251 0252 0253 0254 0255 0256 0257 0258 0259 0259 0260 0261 0262 0263 0264 0265 0266 0267 0268 0269 0269 0270 0271 0272 0273 0274 0275 0276 0277 0278 0278 0279 0279 0280 0281 0282 0283 0284 0285 0286 0287 0288 0289 0289 0290 0291 0292 0293 0294 0295 0296 0297 0298 0299 0299 0300 0301 0302 0303 0304 0305 0306 0307 0308 0309 0309 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 0319 0320 0321 0322 0323 0324 0325 0326 0327 0328 0329 0329 0330 0331 0332 0333 0334 0335 0336 0337 0338 0339 0339 0340 0341 0342 0343 0344 0345 0346 0347 0348 0349 0349 0350 0351 0352 0353 0354 0355 0356 0357 0358 0359 0359 0360 0361 0362 0363 0364 0365 0366 0367 0368 0369 0369 0370 0371 0372 0373 0374 0375 0376 0377 0378 0378 0379 0379 0380 0381 0382 0383 0384 0385 0386 0387 0388 0389 0389 0390 0391 0392 0393 0394 0395 0396 0397 0398 0399 0399 0400 0401 0402 0403 0404 0405 0406 0407 0408 0409 0409 0410 0411 0412 0413 0414 0415 0416 0417 0418 0419 0419 0420 0421 0422 0423 0424 0425 0426 0427 0428 0429 0429 0430 0431 0432 0433 0434 0435 0436 0437 0438 0439 0439 0440 0441 0442 0443 0444 0445 0446 0447 0448 0449 0449 0450 0451 0452 0453 0454 0455 0456 0457 0458 0459 0459 0460 0461 0462 0463 0464 0465 0466 0467 0468 0469 0469 0470 0471 0472 0473 0474 0475 0476 0477 0478 0478 0479 0479 0480 0481 0482 0483 0484 0485 0486 0487 0488 0489 0489 0490 0491 0492 0493 0494 0495 0496 0497 0498 0499 0499 0500 0501 0502 0503 0504 0505 0506 0507 0508 0509 0509 0510 0511 0512 0513 0514 0515 0516 0517 0518 0519 0519 0520 0521 0522 0523 0524 0525 0526 0527 0528 0529 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0539 0540 0541 0542 0543 0544 0545 0546 0547 0548 0549 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559 0559 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0569 0570 0571 0572 0573 0574 0575 0576 0577 0578 0578 0579 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0589 0590 0591 0592 0593 0594 0595 0596 0597 0598 0599 0599 0600 0601 0602 0603 0604 0605 0606 0607 0608 0609 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0619 0620 0621 0622 0623 0624 0625 0626 0627 0628 0629 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639 0639 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0649 0650 0651 0652 0653 0654 0655 0656 0657 0658 0659 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0669 0670 0671 0672 0673 0674 0675 0676 0677 0678 0678 0679 0679 0680 0681 0682 0683 0684 0685 0686 0687 0688 0689 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0699 0700 0701 0702 0703 0704 0705 0706 0707 0708 0709 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719 0719 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0729 0730 0731 0732 0733 0734 0735 0736 0737 0738 0739 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0749 0750 0751 0752 0753 0754 0755 0756 0757 0758 0759 0759 0760 0761 0762 0763 0764 0765 0766 0767 0768 0769 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0778 0779 0779 0780 0781 0782 0783 0784 0785 0786 0787 0788 0789 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799 0799 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0809 0810 0811 0812 0813 0814 0815 0816 0817 0818 0819 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0829 0830 0831 0832 0833 0834 0835 0836 0837 0838 0839 0839 0840 0841 0842 0843 0844 0845 0846 0847 0848 0849 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0859 0860 0861 0862 0863 0864 0865 0866 0867 0868 0869 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0878 0879 0879 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0889 0890 0891 0892 0893 0894 0895 0896 0897 0898 0899 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 090

Figure 1: (a) The previous model fails to capture class-specific features and contains a lot of noisy pixels. (b) The visualization demonstrates that only a small set of key features is important for classifiers. (c) Our model generates synthetic images at lower resolutions and leverages CAM to generate pixels in key region, which contains important information. Comparison of K-Gen and SOTA methods on ImageNet1K: (d) performance vs. training time and data memory ratio (note that the training time is positively correlated with the data memory ratio); (e) Performance of K-Gen and NAYER Tran et al. (2024b) with the same image-per-class constraints.

low-resolution datasets like CIFAR10 and CIFAR100 Tran et al. (2024b); Fang et al. (2022). However, these approaches face significant challenges when applied to larger, high-resolution datasets such as ImageNet. A primary issue with previous methods is their generation of synthetic images at high resolutions (e.g., 224×224) without incorporating information from real images, leading to substantial noise and a lack of nuanced, class-specific features critical for effective knowledge transfer. Additionally, the computational cost of generating the large volumes of synthetic data required for knowledge transfer can be prohibitively high. For instance, previous methods Yin et al. (2020) have demanded over 3,000 GPU hours to train on ImageNet1k, yet have achieved only moderate results. As a result, while DFKD methods perform well on smaller datasets, they encounter substantial limitations when scaled to real-world, large-scale applications.

In this paper, we introduce Key Region Data-free Generation (K-Gen) to tackle the limitations of traditional DFKD methods. Inspired by the observation that only a small but crucial region of real images is essential for effective classifier training Zhu et al. (2020); Selvaraju et al. (2017), K-Gen introduces a strategy that synthesizes lower-resolution images while leveraging Class Activation Scores Zhou et al. (2016) to focus on the most informative pixels. By concentrating on the most relevant areas, K-Gen ensures that the generated images retain critical class-specific features, thereby improving the efficiency of knowledge transfer. Additionally, this approach helps reduce computational costs, enhancing both the scalability and performance of DFKD, especially for large, high-resolution datasets.

As shown in Figure 1a-c, the previous DFKD model generates 224×224 resolution images, which are often noisy and provide limited information for training the classifier. In contrast, our method produces lower-resolution images that leverage a key region loss to retain discriminative features. Moreover, as illustrated in Figure 1d-e, our method not only significantly speeds up training time but also achieves improved accuracy. Specifically, under the same images-per-class setting and despite generating lower-resolution images, our K-GEN still achieves better performance, demonstrating both its efficiency and effectiveness.

Although using lower-resolution synthetic images improves training efficiency, it may limit the model's capacity to capture diverse and detailed feature representations, as lower resolutions constrain the available representational space. To overcome this limitation, we propose a **Multi-Resolution Data Generation** strategy, in which images are generated at multiple resolutions to capture both coarse and fine-grained features. In addition, we introduce an **Embedding Diversity Loss** to preserve distinctiveness within the latent space, ensuring that rich feature representations are

108 maintained even at lower resolutions. Together, these mechanisms enable the model to retain critical
 109 features across different levels of granularity, leading to enhanced performance and robustness
 110 across a variety of tasks.

111 Our major contributions are summarized as follows:
 112

- 113 • We propose Key Region Data-free Generation (K-Gen), which generates synthetic images at
 114 lower resolutions, using Class Activation Maps to focus on critical regions, improving compu-
 115 tational efficiency without sacrificing essential class-specific features.
- 116 • We also extend this to use for Vision Transformer architecture.
- 117 • We introduce Multi-Resolution Data Generation to capture both coarse and fine features and
 118 Embedding Diversity Loss to maintain distinct embeddings at lower resolutions, boosting fea-
 119 ture diversity and performance.
- 120 • K-Gen achieves state-of-the-art performance on both low- and high-resolution datasets, includ-
 121 ing CIFAR10, CIFAR100, TinyImageNet, ImageNet, ImageNet subsets. Our method demon-
 122 strates performance gains of up to two digits in nearly all experiments on ImageNet and its
 123 subsets.
- 124 • K-Gen exhibits high performance on mega-resolution datasets (images >1M pixels), signifi-
 125 cantly expanding the applicability of DFKD methods to ultra-high-resolution domains.

126 2 RELATED WORK

127 **Data-Free Knowledge Distillation.** DFKD methods Yin et al. (2020); Fang et al. (2021); Yu et al.
 128 (2023); Do et al. (2022); Patel et al. (2023) generate synthetic images to facilitate knowledge transfer
 129 from a pre-trained teacher model to a student model. These synthetic data are used to jointly train
 130 the generator and the student in an adversarial manner Micaelli & Storkey (2019). Specifically, the
 131 student aims to make predictions that closely align with the teacher’s on the synthetic data, while the
 132 generator strives to create samples that match the teacher’s confidence while also maximizing the
 133 mismatch between the student’s and teacher’s predictions. This adversarial process fosters a rapid
 134 exploration of synthetic distributions that are valuable for knowledge transfer between the teacher
 135 and the student.

136 **Data-Free Knowledge Distillation for High-Resolution Dataset.** Data-free knowledge distillation
 137 methods face significant challenges when scaled to larger, high-resolution datasets like ImageNet.
 138 For instance, DeepInv Yin et al. (2020) required over 3000 NVIDIA V100 GPU hours to train on Im-
 139 ageNet1k, highlighting the substantial computational demands. Although more recent methods Tran
 140 et al. (2024b); Fang et al. (2022) provide faster solutions, they cannot achieve competitive perfor-
 141 mance when training models from scratch without the pretrained data used by DeepInv. Therefore,
 142 there is an urgent need for novel methods that can efficiently and effectively enable data-free transfer
 143 on high-resolution datasets like ImageNet.

144 3 PROPOSED METHOD

145 3.1 PRELIMINARIES: DFKD FRAMEWORK

146 Consider a training dataset $D = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m$, where each $\mathbf{x}_i \in \mathbb{R}^{c \times h \times w}$ is an input sample and
 147 $\mathbf{y}_i \in \{1, 2, \dots, K\}$ denotes its label. Each pair $(\mathbf{x}_i, \mathbf{y}_i)$ in D serves as a training example with
 148 its corresponding label. Let \mathcal{T} with parameters $\theta_{\mathcal{T}}$ represent a pre-trained teacher network on D .
 149 The objective of DFKD is to train a student network, $\mathcal{S} = \mathcal{S}_{\theta_{\mathcal{S}}}$, to match the teacher’s performance
 150 without access to the original dataset D .

151 To achieve this, inspired by Tran et al. (2024b), we begin by sampling a batch of random pseudo-
 152 labels $\hat{\mathbf{y}} \sim \{1, \dots, K\}$. We then obtain their corresponding text embeddings using a pre-trained
 153 language model \mathcal{C} , i.e., $\mathbf{f}_{\hat{\mathbf{y}}} = \mathcal{C}(\hat{\mathbf{y}})$. These embeddings $\mathbf{f}_{\hat{\mathbf{y}}}$ are passed through a noisy layer \mathcal{Z} ,
 154 which is a single linear layer re-initialized at each iteration to introduce randomness and promote
 155 diverse image generation. The output is then fed into a lightweight generator \mathcal{G} to produce synthetic
 156 images $\hat{\mathbf{x}}$.

$$157 \hat{\mathbf{x}} = \mathcal{G}_{l \times l}(\mathcal{Z}(\mathbf{f}_{\hat{\mathbf{y}}}), \quad (1)$$

Figure 2: (a) Overview of the K-Gen architecture, illustrating the two-phase training process: generator training and student training. The model generates lower-resolution images and enhances their quality using Key Region Loss, while also promoting diversity through Embedding Diversity Loss (\mathcal{L}_{ed} and \mathcal{L}_{aed}). (b) \mathcal{L}_{ed} (Eq. 9) aims to learn the embedding in \mathcal{S} of all old data, bringing it closer to \mathbf{f}_y , while (c) \mathcal{L}_{aed} (Eq. 11) guides the generator \mathcal{G} to produce new data that is distant from \mathbf{f}_y , thus enhancing the model’s diversity.

where $\hat{\mathbf{x}} \in \mathbb{R}^{3 \times l \times l}$, with l representing the resolution of the training data (e.g., 224×224 for ImageNet or 32×32 for CIFAR10/CIFAR100). Note that we use $\mathcal{G}_{l \times l}$ to specify the generator that produces $l \times l$ resolution images. Subsequently, $\hat{\mathbf{x}}$ is stored in a memory pool \mathcal{M} and used to jointly train both the generator and the student network in an adversarial setup Micaelli & Storkey (2019). In this setup, the student is trained to approximate the teacher’s predictions on synthetic data by minimizing the Kullback-Leibler (KL) divergence loss between $\mathcal{T}(\hat{\mathbf{x}})$ and $\mathcal{S}(\hat{\mathbf{x}})$.

$$\begin{aligned} \hat{\mathbf{y}}_{\mathcal{S}} &= \mathcal{S}(\hat{\mathbf{x}}); \quad \hat{\mathbf{y}}_{\mathcal{T}} = \mathcal{T}(\hat{\mathbf{x}}), \\ \mathcal{L}_{\mathcal{S}} &= \mathcal{L}_{KL} = KL(\hat{\mathbf{y}}_{\mathcal{T}}, \hat{\mathbf{y}}_{\mathcal{S}}), \end{aligned} \quad (2)$$

while the generator aims to produce samples that not only align with the teacher’s confidence but also maximize the discrepancy between the student’s and teacher’s predictions.

$$\mathcal{L}_{\mathcal{G}} = \alpha_{ce} \mathcal{L}_{CE}(\hat{\mathbf{y}}_{\mathcal{T}}, \hat{\mathbf{y}}) - \alpha_{adv} KL(\hat{\mathbf{y}}_{\mathcal{T}}, \hat{\mathbf{y}}_{\mathcal{S}}) + \alpha_{bn} \mathcal{L}_{BN}(\mathcal{T}(\hat{\mathbf{x}})). \quad (3)$$

In this framework, \mathcal{L}_{CE} represents the Cross-Entropy loss, training the student on images within the teacher’s high-confidence regions. In contrast, the negative \mathcal{L}_{adv} term encourages exploration of synthetic distributions, enhancing knowledge transfer from the teacher to the student. Here, the student network acts like a discriminator in GANs, guiding the generator to produce images that the teacher has mastered but the student has yet to learn, thereby focusing the student’s development on areas where it lags behind the teacher. Additionally, we apply batch norm regularization (\mathcal{L}_{BN}) Yin et al. (2020); Fang et al. (2022), a standard DFKD loss, to align the mean and variance at the BatchNorm layer with its running mean and variance. This adversarial setup facilitates the efficient exploration of synthetic distributions for effective knowledge transfer between the teacher and the student.

In comparison with previous works, our method first proposes generating key region data generation at a lower resolution, which synthesize data with high class activation score (Section 3.2). Next, we introduce two techniques to further improve the diversity of our models (Section 3.4). Finally, the overall process is summarized in Section 3.5.

3.2 KEY REGION DATA-FREE GENERATION AT LOWER-RESOLUTION

A major limitation of previous approaches is their generation of synthetic images at high resolutions (224×224) without incorporating information from real images. This leads to images with significant noise, lacking the class-specific features essential for effective knowledge transfer, as illustrated in Figure 1a-c.

Key Region Lower-Resolution Data Generation. To address these limitations, we propose generating synthetic images at lower resolutions.

$$\hat{\mathbf{x}} = \mathcal{G}_{3 \times e \times e}(\mathcal{Z}(\mathbf{f}_y)), \quad (4)$$

where $\hat{\mathbf{x}} \in \mathbb{R}^{3 \times e \times e}$ and e is the target resolution (i.e., $e \ll l$).

To ensure that the synthetic images \hat{x} capture important information, we propose maximizing their CAM with the target map, which contains high values of class activation. First, we use the classic CAM method Zhou et al. (2016) to generate the matrix $M(\hat{x}, \hat{y})$ for the image \hat{x} and class \hat{y} :

$$M(\hat{x}, \hat{y}) = \sum_k \mathbf{w}_k^{\hat{y}} \mathcal{T}_k(\hat{x}, \hat{y}), \quad (5)$$

where $\mathbf{w}_k^{\hat{y}}$ is the k^{th} weight in the final classification head for class \hat{y} , and \mathcal{T}_k is the k^{th} feature map in the final layers of the model. Note that we only use the latent matrix of CAM, which is before the normalization and interpolation into full-resolution images. Then, the loss function \mathcal{L}_G is modified with additional key region loss (\mathcal{L}_{kr}) as follows:

$$\begin{aligned} \mathcal{L}_G &= \alpha_{ce} \mathcal{L}_{ce} + \alpha_{adv} \mathcal{L}_{adv} + \alpha_{bn} \mathcal{L}_{bn} + \alpha_{kr} \mathcal{L}_{kr}, \\ \mathcal{L}_{kr} &= \sum_{h, w \in M} (\max\{0, M_{\text{target}} - M(\hat{x}, \hat{y})\}). \end{aligned} \quad (6)$$

In this context, M_{target} is a predefined mask with high values at the center and lower values at the borders, it like a Gaussian centered on the image, guiding the generator to produce the desired activation map $M(\hat{x}, \hat{y})$. We conducted an ablation study in the appendix G demonstrating that the Gaussian mask with maximum value at 1 and a standard deviation of 2 yield the best results.

By using a margin loss to define \mathcal{L}_{kr} , we encourage the values in $M(\hat{x}, \hat{y})$ to *only sufficiently exceed* those in M_{target} , avoiding excessively high values that could negatively impact image quality while concentrating the important values of $M(\hat{x}, \hat{y})$ near the center. Finally, the sum of all pixel values in the tensor is used as \mathcal{L}_{kr} .

Thanks to the use of lower-resolution images with key region loss, as shown in Figure 1c, generating lower-resolution images improves accuracy by enabling the generator to capture critical features more effectively. Figure 1d further illustrates the substantial reduction in training time, highlighting the efficiency gains of this approach. Together, these findings underscore the advantages of low-resolution synthetic images in enhancing both performance and computational efficiency in DFKD for high-resolution datasets. For example, with only 9 hours of training, our K-Gen achieves 24.25% accuracy, significantly outperforming DeepInv, which reaches only 3.15% after 61.2 hours of training.

3.3 KEY REGION GENERATION FOR VISION TRANSFORMER

A key challenge in our approach is training the student model with lower-resolution images, which are then tested on full-resolution data. This is particularly challenging for patch-based models, such as Vision Transformer (ViT) and its variants Dosovitskiy (2020); Tovvron et al. (2021), that do not rely on CNN architectures. Furthermore, the Class-Activation Map also cannot be extracted for ViT-based model. To address this, we propose reducing the number of patches input into the Vision Transformer. With the standard patch size of 16×16 used by ViT and our chosen image resolution of 112×112 , we generate a 7×7 grid of patches instead of the original 14×14 . Details of this technique are provided in the **Appendix A.1**.

3.4 IMPROVED MODEL DIVERSITY

While lower-resolution synthetic images enhance computational efficiency, they can also limit the model’s ability to capture diverse and detailed features, as lower resolutions reduce the space available for representing such diversity.

Multi-resolution Data Generation. To overcome this challenge, we propose a multi-resolution generation strategy that synthesizes images at various resolutions, effectively capturing both coarse and fine-grained features. Given a set of resolutions E , the synthetic data \hat{x} is generated from each resolution $e \sim E$:

$$\hat{x} = \mathcal{G}_{e \times e, e \in E}(\mathcal{Z}(\mathbf{f}_y)), \quad (7)$$

Embedding Diversity Loss. Additionally, we introduce embedding diversity techniques to preserve distinct representations within the latent space, ensuring that rich feature representations are maintained even at lower resolutions. These techniques consist of two loss functions, which are used for training the generator \mathcal{G} and the student \mathcal{S} , respectively.

270

Algorithm 1: K-Gen

271

272 **Input:** pre-trained teacher \mathcal{T}_{θ_T} , student \mathcal{S}_{θ_S} , generator \mathcal{G}_{θ_G} , text encoder \mathcal{C}_{θ_C} , list of labels \mathbf{y} and list of
273 text of these labels $Y_{\mathbf{y}}$;

274 1 Initializing $\mathcal{P} = \{\}$, $\mathcal{M} = \{\}$;
275 2 Store all embeddings $\mathbf{f}_{\mathbf{y}} = \mathcal{C}(Y_{\mathbf{y}})$ into \mathcal{P} ;
276 3 **for** \mathcal{E} epochs **do**
277 4 **for** I iterations **do**
278 5 Randomly reinitializing noisy layers \mathcal{Z}_{θ_Z} and pseudo-label $\hat{\mathbf{y}}$ for each iteration;
279 6 Query $\mathbf{f}_{\hat{\mathbf{y}}} \sim \mathcal{P}$;
280 7 **for** g steps **do**
281 8 Sampling $\hat{\mathbf{x}} = \mathcal{G}_{\mathbf{e} \times \mathbf{e}, \mathbf{e} \in E}(\mathcal{Z}(\mathbf{f}_{\mathbf{y}}))$ and update θ_G, θ_Z by minimizing \mathcal{L}_G Eq. 10;
282 9 $\mathcal{M} \leftarrow \mathcal{M} \cup \hat{\mathbf{x}}$;
283 10 **for** S iterations **do**
284 11 Sampling $\hat{\mathbf{x}} \sim \mathcal{M}$ and update θ_S by minimizing \mathcal{L}_S (Eq. 8);
285

286

In the student training phase, given a pool of synthetic data $\hat{\mathbf{x}} \sim \mathcal{M}$, the student network \mathcal{S} is trained using the following loss function:

287

$$\mathcal{L}_S = \mathcal{L}_{KL} + \alpha_{ed} \mathcal{L}_{ed}, \quad (8)$$

288

$$\mathcal{L}_{ed} = \max\{0, \text{MSE}(\hat{\mathbf{f}}_S, \mathbf{f}_{\mathbf{y}}) - r_i\}, \quad (9)$$

289

290 where α_{ed} is a scaling factor, \mathcal{L}_{KL} is computed by Eq. 2, $\hat{\mathbf{f}}_S$ is the latent embedding of $\hat{\mathbf{x}}$ in the
291 student model \mathcal{S} , and $\mathbf{f}_{\mathbf{y}}$ is the class-specific embedding representative. The purpose of the margin
292 term is to learn embeddings from the synthetic data pool \mathcal{M} that are close to the class representative
293 embedding $\mathbf{f}_{\mathbf{y}}$ of the original data. Inspired by Tran et al. (2024a), we use the margin loss to
294 encourage $\hat{\mathbf{f}}_S$ to stay within an inner radius r_i , while preserving its intrinsic distance characteristics.

295

In the generator training phase, on the other hand, the generator aims to produce a new batch of
296 synthetic data that is positioned far from the class embedding $\mathbf{f}_{\mathbf{y}}$. Similar to \mathcal{L}_{kr} , we apply a margin
297 loss to ensure that the embedding of $\hat{\mathbf{x}}$ in the teacher model \mathcal{T} does not deviate excessively from the
298 desired distribution.

299

$$\mathcal{L}_G = \alpha_{ce} \mathcal{L}_{ce} + \alpha_{adv} \mathcal{L}_{adv} + \alpha_{bn} \mathcal{L}_{bn} + \alpha_{kr} \mathcal{L}_{kr} + \alpha_{aed} \mathcal{L}_{aed} \quad (10)$$

300

$$\mathcal{L}_{aed} = \max\{0, r_o - \text{MSE}(\hat{\mathbf{f}}_S, \mathbf{f}_{\mathbf{y}})\} \quad (11)$$

301

302 where $r_o > r_i$ represents the outer radius, and α are scaling parameters.

303

We now explain how the cooperation between the generator and student in the *embedding in-out game*, achieved by minimizing \mathcal{L}_S and \mathcal{L}_G , promotes embedding diversity. Specifically, by minimizing \mathcal{L}_{ed} during student training, the model learns to keep the latent embeddings of all previous
304 data within an inner radius around $\mathbf{f}_{\mathbf{y}}$, positioning them closer to $\mathbf{f}_{\mathbf{y}}$ (Figure 2 (b)). In contrast,
305 \mathcal{L}_{aed} guides the generator \mathcal{G} to produce new data with latent embeddings that are distant from $\mathbf{f}_{\mathbf{y}}$
306 (Figure 2 (c)). This setup encourages the new data to differ from the old data in latent space, thereby
307 enhancing the diversity of the latent embeddings.

308

Choosing Class Representative Embedding $\mathbf{f}_{\mathbf{y}}$. The embedding $\mathbf{f}_{\mathbf{y}}$ plays a crucial role in promoting
309 embedding diversity, and we consider two options for selecting $\mathbf{f}_{\mathbf{y}}$. First, since we use
310 the generator from NAYER Tran et al. (2024b) as our baseline, we propose using the label text
311 embedding as $\mathbf{f}_{\mathbf{y}}$. Second, when the label text embedding is unavailable, we use the mean of the
312 embeddings in \mathcal{T} from the first batch as $\mathbf{f}_{\mathbf{y}}$. Both options serve as class representative embeddings.
313 We conducted an ablation study Appendix G showing that both methods are comparable, with the
314 label text embedding yielding slightly better performance.

315

3.5 OVERALL ARCHITECTURE

316

The overall architecture of K-Gen is shown in Figure 2, and the pseudo code can be found in Algorithm
317 1. First, K-Gen embeds all label text using either via text encoder or as the mean of \mathcal{T} . Then,
318 our method undergoes training for \mathcal{E} epochs. Each epoch consists of two distinct phases:

319

- (i) The first phase involves training the generator. In each iteration I , as described in Algorithm
320 1, the noisy layer \mathcal{Z} is reinitialized (line 5) before being used to learn the label text embedding

324 Table 1: Distillation results of our K-Gen (multi-resolution) and K-Gen-S (single-resolution) are compared
 325 with SOTA DFKD methods—NAYER Tran et al. (2024b), Fast100 Fang et al. (2022) (100 generation steps),
 326 and DeepInv Yin et al. (2020)—across datasets (Imagenette, Imagewoof, ImageNet1k) at various data memory
 327 ratios. Evaluations cover two common distillation pairs: ResNet50 to MobileNetV2 and ResNet34 to ResNet18.
 328 Bold and underlined numbers denote the highest and second-highest accuracies, respectively. Results report
 329 the mean accuracy over 3 runs.

Dataset		Imagenette							
Teacher - Student		ResNet50 (92.86) - MobileNetV2 (90.42)				ResNet34 (94.06) - ResNet18 (93.53)			
Data Memory Ratio		1%	5%	10%	20%	1%	5%	10%	20%
DeepInv Yin et al. (2020)	6.71 (4.8h)	26.02 (6.1h)	35.31 (8.7h)	47.02 (13.6h)	6.03 (3.2h)	25.08 (4.9h)	34.04 (6.4h)	44.65 (9.5h)	
Fast100 Fang et al. (2022)	8.92 (0.5h)	29.18 (0.5h)	39.12 (0.8h)	51.43 (1.4h)	8.51 (0.3h)	28.32 (0.5h)	38.25 (0.6h)	49.11 (1.0h)	
NAYER Tran et al. (2024b)	9.54 (0.5h)	31.28 (0.5h)	42.24 (0.8h)	54.26 (1.4h)	9.35 (0.3h)	32.17 (0.5h)	42.57 (0.6h)	52.72 (1.0h)	
K-Gen-S (Ours)	35.32 (0.5h)	80.11 (0.5h)	87.21 (0.8h)	88.53 (1.4h)	34.52 (0.3h)	80.32 (0.5h)	86.67 (0.6h)	88.25 (1.0h)	
K-Gen (Ours)	36.16 (0.8h)	<u>81.21 (0.8h)</u>	<u>88.12 (1.2h)</u>	<u>89.21 (2.1h)</u>	<u>35.21 (0.5h)</u>	<u>82.21 (0.8h)</u>	<u>87.21 (1.1h)</u>	<u>88.72 (1.5h)</u>	
Dataset		Imagewoof							
Teacher - Student		ResNet50 (86.84) - MobileNetV2 (82.69)				ResNet34 (83.02) - ResNet18 (82.59)			
Data Memory Ratio		1%	5%	10%	20%	1%	5%	10%	20%
DeepInv Yin et al. (2020)	3.68 (2.7h)	13.26 (5.4h)	21.34 (7.9h)	36.01 (14.9h)	3.42 (2.8h)	12.62 (5.1h)	20.97 (7.8h)	32.42 (10.8h)	
Fast100 Fang et al. (2022)	5.42 (0.3h)	15.11 (0.5h)	23.45 (0.8h)	38.92 (1.4h)	5.21 (0.3h)	14.24 (0.5h)	23.54 (0.8h)	35.72 (1.1h)	
NAYER Tran et al. (2024b)	6.99 (0.3h)	16.72 (0.5h)	27.43 (0.8h)	40.21 (1.4h)	6.72 (0.3h)	15.62 (0.5h)	25.27 (0.8h)	38.25 (1.1h)	
K-Gen-S (Ours)	21.25 (0.3h)	36.24 (0.5h)	71.42 (0.8h)	74.53 (1.4h)	20.52 (0.3h)	36.25 (0.5h)	59.85 (0.8h)	73.74 (1.1h)	
K-Gen (Ours)	22.43 (0.5h)	<u>37.51 (0.8h)</u>	<u>72.11 (1.2h)</u>	<u>75.12 (2.1h)</u>	<u>21.12 (0.5h)</u>	<u>37.31 (0.8h)</u>	<u>60.04 (1.2h)</u>	<u>74.52 (1.5h)</u>	
Dataset		ImageNet1k							
Teacher - Student		ResNet50 (80.86) - MobileNetV2 (71.88)				ResNet34 (73.31) - ResNet18 (69.76)			
Data Memory Ratio		1%	5%	10%	20%	1%	5%	10%	20%
DeepInv Yin et al. (2020)	3.15 (61.2h)	14.07 (226.3h)	19.01 (385.0h)	22.17 (642.7h)	1.84 (49.6h)	13.06 (183.1h)	17.41 (308.3h)	23.03 (517.9h)	
Fast100 Fang et al. (2022)	4.78 (6.3h)	16.58 (23.5h)	22.12 (39.2h)	25.25 (65.6h)	3.63 (5.1h)	15.52 (18.8h)	20.12 (31.4h)	25.96 (52.5h)	
NAYER Tran et al. (2024b)	6.32 (6.3h)	19.78 (23.5h)	25.43 (39.2h)	28.12 (65.6h)	5.81 (5.1h)	18.86 (18.8h)	23.98 (31.4h)	28.11 (52.5h)	
K-Gen-S (Ours)	22.41 (6.3h)	40.63 (23.5h)	46.25 (39.2h)	53.24 (65.6h)	22.32 (5.1h)	40.82 (18.8h)	45.95 (31.4h)	53.96 (52.5h)	
K-Gen (Ours)	24.25 (9.3h)	<u>42.24 (30.1h)</u>	<u>47.12 (58.5h)</u>	<u>54.41 (80.4h)</u>	<u>24.16 (7.5h)</u>	<u>42.84 (24.1h)</u>	<u>47.13 (46.8h)</u>	<u>54.98 (64.3h)</u>	

345 f_y . The generator and noisy layer are then trained over g steps using Eq. 10 to optimize their
 346 performance (line 8).

347 (ii) The second phase involves training the student network. To mitigate the *risk of forgetting*—which arises in prior DFKD methods like MAD and KAKR that generate, use, and
 348 discard synthetic data in each iteration—all generated samples are stored in the memory module \mathcal{M} (line 9), following the strategy proposed in Fang et al. (2022). The student model is
 349 then trained using Eq. 8 over S iterations, utilizing samples from \mathcal{M} (lines 10 and 11).
 350

352 3.6 DATA MEMORY RATIO AND COMPARISON FAIRNESS IN DFKD

354 Training on high-resolution datasets like ImageNet is computationally intensive, particularly with
 355 synthetic data generation Yin et al. (2020); Tran et al. (2024b). To manage this, we cap the amount
 356 of synthetic data used to train the student model Liu et al. (2024), following practices in Continual
 357 Learning Li et al. (2023a;b) and Federated Learning Tran et al. (2024a); Zhu et al. (2021). We
 358 evaluate various data memory ratios on ImageNet1k and its subsets; for instance, a 10% ratio yields
 359 100k samples over 1 million training samples at 224×224 resolution.

360 **Lower-Resolution Images for Efficiency.** We propose generating lower-resolution images (e.g.,
 361 112×112 , 96×96), which reduces storage and computation. For example, one 224×224 image is
 362 equivalent to four 112×112 or five 96×96 images in terms of resource usage. This allows K-Gen
 363 to generate more samples, for example, 40k 112×112 images in a 10% ratio, without increasing
 364 memory or training time.

365 **Single vs. Multi-Resolution Variants.** K-Gen can use mixed resolutions (e.g., 25k 96×96 +
 366 20k 112×112) at the same compute cost as 40k 112×112 images. However, due to PyTorch
 367 inefficiencies, multi-resolution training is slower. Thus, we report both K-Gen (multi-resolution) and
 368 K-Gen-S (single-resolution) results. Further details and ablation studies are provided in Appendix.

369 **Is Using More Labels and Lower-Resolution Images in DFKD Fair?** We argue that utilizing a
 370 larger number of lower-resolution images and labels, while keeping the total Data Memory Ratio
 371 constant, is entirely fair. For example, using 40k synthetic images at 112×112 resolution instead of
 372 10k images at 224×224 maintains equivalent memory usage and computational cost. This is because
 373 the image generation process operates at the pixel level, and generating four 112×112 images
 374 involves similar time, training effort, and memory consumption as generating one 224×224 image.
 375 Furthermore, **all data and labels are synthetically generated by our model**, without requiring
 376 any external data collection or manual annotation. The increase in the number of labels does not
 377 translate to additional supervision or unfair advantage. Indeed, several prior works have employed
 378 significantly more labels—up to ten times as many—with such concerns being raised Yu et al.

378 Table 2: The distillation results for the CIFAR10, CIFAR100 and TinyImageNet datasets compare various
 379 methods, following the setup of Tran et al. (2024b). The table presents the accuracy achieved by different
 380 student models with various architectures, such as ResNet (R) He et al. (2016), VGG (V) Simonyan & Zisser-
 381 man (2014), and WideResNet (W) Zagoruyko & Komodakis (2016). The results from compared methods are
 382 collected at Tran et al. (2024b).

Method	CIFAR10						CIFAR100						TinyImageNet							
	R34		W402		W402		W402		V11		R34		W402		W402		V11		R34	
	R18	W162	W162	W161	W401	W401	R18	W162	W161	W401	R18	W162	W161	W401	R18	W162	W161	W401	R18	
Teacher	95.70	94.87	94.87	94.87	92.25	77.94	77.83	75.83	75.83	71.32	66.44									
Student	95.20	93.95	91.12	93.94	95.20	77.10	73.56	65.31	72.19	77.10	64.87									
DeepInv Yin et al. (2020)	93.26	89.72	83.04	86.85	90.36	61.32	61.34	53.77	68.58	54.13	-									
DFQ Choi et al. (2020)	94.61	92.01	86.14	91.69	90.84	77.01	64.79	51.27	54.43	66.21	-									
ZSKT Micaelli & Storkey (2019)	93.32	89.66	83.74	86.07	89.46	67.74	54.59	36.60	53.60	54.31	-									
CMI Fang et al. (2021)	94.84	92.52	90.01	92.78	91.13	77.04	68.75	57.91	68.88	70.56	64.01									
PREKD Binici et al. (2022b)	93.41	-	-	-	-	76.93	-	-	-	-	49.94									
MBDFKD Binici et al. (2022c)	93.03	-	-	-	-	76.14	-	-	-	-	47.96									
FM Fang et al. (2022)	94.05	92.45	89.29	92.51	90.53	74.34	65.12	54.02	63.91	67.44	-									
MAD Do et al. (2022)	94.90	92.64	-	-	-	77.31	64.05	-	-	-	62.32									
KAKR_MD Patel et al. (2023)	93.73	-	-	-	-	77.11	-	-	-	-	47.96									
KAKR_GR Patel et al. (2023)	94.02	-	-	-	-	77.21	-	-	-	-	49.88									
SpaceshipNet Yu et al. (2023)	95.39	93.25	90.38	93.56	92.27	77.41	69.95	58.06	68.78	71.41	64.04									
NAYER Tran et al. (2024b)	95.21	94.07	91.94	94.15	92.37	77.54	71.72	62.23	71.80	71.75	64.17									
K-Gen-S	95.36	94.35	92.27	94.37	93.02	77.64	72.21	62.87	72.01	71.94	64.41									
K-Gen	95.41	94.39	92.32	94.44	93.20	77.78	72.31	62.92	72.13	72.11	64.54									

(2023); Patel et al. (2023). Hence, we affirm that our comparison adheres to fair and consistent evaluation standards.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

For high-resolution datasets, we evaluated our method using two commonly used backbone pairs: ResNet34/ResNet18 He et al. (2016) and ResNet50/MobileNetV2 Sandler et al. (2018), on ImageNet1k Deng et al. (2009), which comprises 1,000 object categories and over 1.2 million labeled training images. We also included its subsets, ImageNette and ImageWoof Howard (2019b), each consisting of 10 specific subclasses. For low-resolution datasets, we conducted experiments using ResNet, VGG Simonyan & Zisserman (2014), and WideResNet (WRN) Zagoruyko & Komodakis (2016) across CIFAR-10, CIFAR-100 Krizhevsky et al. (2009), and Tiny ImageNet Le & Yang (2015). Additional details on all datasets used in this paper, the architectures, parameter settings, parameter sensitivity and further analysis can be found in the **Appendix C**.

4.2 RESULTS AND ANALYSIS

Comparison on High-resolution Datasets (> 100k Pixels). Table 1 presents the distillation results across multiple datasets, including Imagenette, Imagewoof, and ImageNet1k ($3 \times 224 \times 224$ pixels), comparing the performance of K-Gen-S and K-Gen with existing methods such as DeepInv Yin et al. (2020), Fast100 Fang et al. (2022), and NAYER Tran et al. (2024b) at varying data memory ratios. Overall, both K-Gen and K-Gen-S consistently achieve superior performance, with at least a two-digit improvement in all comparison cases, while still maintaining low training time. This performance gain can be attributed to the use of multi-resolution strategies and key region generation techniques, which are particularly beneficial for high-resolution datasets like ImageNet1k and its subsets. These results clearly demonstrate the effectiveness of our proposed approach.

Comparison on Low-resolution Datasets (≈ 1 k Pixels). We also conducted experiments on low-resolution datasets such as CIFAR-10, CIFAR-100, and TinyImageNet, in Table 2. The results demonstrate the strong performance of both K-Gen and K-Gen-S compared to existing methods. However, the performance gains in these tasks are less pronounced than those observed on high-resolution datasets. This can be attributed to two main factors: (1) the current accuracy on these low-resolution datasets is already close to the upper bound defined by the teacher model, and (2) our proposed techniques are primarily designed to enhance distillation performance on high-resolution data, making them less effective for lower-resolution datasets like CIFAR-10.

Comparison on Mega-resolution Datasets (> 1M Pixels). To further assess the generalizability of our method, we evaluate K-Gen on two additional mega-resolution datasets: Traffic Sign

432
433 Table 3: Additional results on mega-resolution
434 datasets. K-Gen outperforms NAYER across all set-
435 tings under varying data memory ratios.

Method	Traffic Sign Recognition (1200 × 1600 pixels)		Megapixel MNIST (1500 × 1500 pixels)	
	10%	20%	10%	20%
Teacher/Student	CNN (84.1) / CNN (84.1)		CNN (91.9) / CNN (91.9)	
Fast100	41.67	54.12	49.12	58.21
NAYER	48.23	57.32	52.47	63.91
K-Gen	72.43	77.56	78.24	84.12

436
437 Table 4: Ablation studies for all combinations of the
438 proposed components with the Data Memory Ratio at
439 5%.

Method	Imagenette	Imagewoof	ImageNet1k
NAYER	32.17	15.62	18.86
+SRG	41.13	19.71	23.87
+SRG+KR	77.62	33.22	37.41
+SRG+KR+ED (K-Gen-S)	80.32	36.25	40.82
+MRG	46.25	22.14	24.95
+MRG+KR	79.92	36.92	39.81
+MSG+KR+ED (K-Gen)	82.21	37.31	42.84

440
441 Recognition (3 × 1200 × 1600 pixels) Katharopoulos & Fleuret (2019) and Megapixel MNIST
442 (1 × 1500 × 1500 pixels) Katharopoulos & Fleuret (2019). As shown in Table 3, K-Gen consistently
443 outperforms the baseline method NAYER across both datasets and under varying data memory ratios
444 (10% and 20%). On the Traffic Sign Recognition task, K-Gen achieves notable improvements
445 of over 20% in nearly all cases. These results demonstrate that K-Gen scales effectively to complex,
446 mega-resolution visual tasks, opening the door to broader applications of the field in high-resolution
447 vision domains.

448 449 4.3 FURTHER ANALYSIS

450
451 **Ablation Study: Components Analysis.** To better understand the contribution of each component
452 in our proposed method, we conduct a comprehensive ablation study under a consistent Data Mem-
453 ory Ratio of 5%, as shown in Table 4. Starting from the baseline (NAYER), we incrementally add
454 our proposed modules: SRG (Smaller-Resolution Generation) which only generate smaller resolu-
455 tion image with KR loss, KR (Key Region Data Generation, Section 3.2), ED (Embedding Diversity
456 Loss, Section 3.4), and MSG (Multi-Resolution Data Generation, Section 3.4). The experiment
457 demonstrate that: (1) each component individually enhances performance across all datasets. (2)
458 the Key Region module plays a crucial role, significantly boosting performance—for example, from
459 41.13% (+SRG) to 77.62% (+SRG+KR), and from 46.25% (+MRG) to 79.92% (+MRG+KR).

460
461 **Comparison for ViT Model.** To demonstrate the effectiveness of our approach on ViT-based
462 models, we conducted experiments comparing our K-Gen with NAYER, using DeiT-B (Teacher)
463 and DeiT-Tiny (Student) on ImageNet1K. As shown in Table 5, K-Gen outperforms the original
464 NAYER training, achieving double-digit improvements.

465
466 Table 5: Performance Comparison Our K-Gen and NAYER in DeiT-B (Teacher) and DeiT-Tiny (Student) on
467 ImageNet-1K.

Data Memory Ratio	1%		5%	
	Metric (Accuracy)	Top 1 (%)	Top 5 (%)	Top 1 (%)
NAYER		4.52	19.45	16.24
K-Gen		15.24	36.52	28.24

470 471 5 CONCLUSION

472
473 In this paper, we propose K-Gen, a novel approach to overcome the limitations of traditional DFKD
474 methods on high-resolution datasets. K-Gen synthesizes lower-resolution images guided by Class
475 Activation Maps to preserve class-specific features, reducing noise and computational cost, partic-
476 ularly on large-scale datasets like ImageNet1K. Through multi-resolution synthesis and embedding
477 diversity, K-Gen enriches learned representations and boosts student model performance. Experi-
478 ments show that K-Gen achieves state-of-the-art results with double-digit gains on ImageNet1K and
479 remains effective on mega-resolution datasets (over one million pixels), enabling broader applica-
480 tions in vision field.

481
482 **Limitation and Future work:** Our paper employs a customized version of the classic CAM, de-
483 signed to facilitate backpropagation in obtaining the activation matrix. This approach opens the
484 door to exploring other techniques, such as Grad-CAM Selvaraju et al. (2017) or attention-based
485 scores Leem & Seo (2024), to further enhance the task. Additionally, optimizing multi-resolution
486 techniques for faster processing times presents another promising direction for improvement.

486 REFERENCES
487

488 Kuluhan Binici, Shivam Aggarwal, Nam Trung Pham, Karianto Leman, and Tulika Mitra. Robust
489 and resource-efficient data-free knowledge distillation by generative pseudo replay. In *Proceed-
490 ings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 6089–6096, 2022a.

491 Kuluhan Binici, Shivam Aggarwal, Nam Trung Pham, Karianto Leman, and Tulika Mitra. Robust
492 and resource-efficient data-free knowledge distillation by generative pseudo replay. In *Proceed-
493 ings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 6089–6096, 2022b.

494 Kuluhan Binici, Nam Trung Pham, Tulika Mitra, and Karianto Leman. Preventing catastrophic
495 forgetting and distribution mismatch in knowledge distillation via synthetic data. In *Proceedings
496 of the IEEE/CVF winter conference on applications of computer vision*, pp. 663–671, 2022c.

497 Yoojin Choi, Jihwan Choi, Mostafa El-Khamy, and Jungwon Lee. Data-free network quantization
498 with adversarial knowledge distillation. In *Proceedings of the IEEE/CVF Conference on Com-
499 puter Vision and Pattern Recognition Workshops*, pp. 710–711, 2020.

500 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
501 hierarchical image database. In *Proceedings of the IEEE Conference on Computer Vision and
502 Pattern Recognition (CVPR)*, 2009.

503 Kien Do, Thai Hung Le, Dung Nguyen, Dang Nguyen, Haripriya Harikumar, Truyen Tran, Santu
504 Rana, and Svetha Venkatesh. Momentum adversarial distillation: Handling large distribution
505 shifts in data-free knowledge distillation. *Advances in Neural Information Processing Systems*,
506 35:10055–10067, 2022.

507 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
508 *arXiv preprint arXiv:2010.11929*, 2020.

509 Gongfan Fang, Jie Song, Xinchao Wang, Chengchao Shen, Xingen Wang, and Mingli Song. Con-
510 trastive model inversion for data-free knowledge distillation. *arXiv preprint arXiv:2105.08584*,
511 2021.

512 Gongfan Fang, Kanya Mo, Xinchao Wang, Jie Song, Shitao Bei, Haofei Zhang, and Mingli Song.
513 Up to 100x faster data-free knowledge distillation. In *Proceedings of the AAAI Conference on
514 Artificial Intelligence*, volume 36, pp. 6597–6604, 2022.

515 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
516 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
517 770–778, 2016.

518 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. *arXiv
519 preprint arXiv:1503.02531*, 2015.

520 Jeremy Howard. Imagenette: A smaller subset of 10 easily classified classes from imagenet, March
521 2019a. URL <https://github.com/fastai/imagenette>.

522 Jeremy Howard. Imagewoof: a subset of 10 classes from imagenet that aren't so easy to classify,
523 March 2019b. URL <https://github.com/fastai/imagenette#imagewoof>.

524 Alexandros Karargyris, Satyananda Kashyap, Ismini Lourentzou, Joy T Wu, Arjun Sharma,
525 Matthew Tong, Shafiq Abedin, David Beymer, Vandana Mukherjee, Elizabeth A Krupinski, et al.
526 Creation and validation of a chest x-ray dataset with eye-tracking and report dictation for ai de-
527 velopment. *Scientific data*, 8(1):92, 2021.

528 Angelos Katharopoulos and François Fleuret. Processing megapixel images with deep attention-
529 sampling models. In *International Conference on Machine Learning*, pp. 3282–3291. PMLR,
530 2019.

531 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
532 2009.

533 Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. *CS 231N*, 7(7):3, 2015.

540 Saebom Leem and Hyunseok Seo. Attention guided cam: Visual explanations of vision transformer
 541 guided by self-attention. In *Proceedings of the AAAI Conference on Artificial Intelligence*, vol-
 542 ume 38, pp. 2956–2964, 2024.

543

544 Xiaorong Li, Shipeng Wang, Jian Sun, and Zongben Xu. Memory efficient data-free distillation for
 545 continual learning. *Pattern Recognition*, 144:109875, 2023a.

546 Xiaorong Li, Shipeng Wang, Jian Sun, and Zongben Xu. Variational data-free knowledge distillation
 547 for continual learning. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 45(10):
 548 12618–12634, 2023b.

549

550 He Liu, Yikai Wang, Huaping Liu, Fuchun Sun, and Anbang Yao. Small scale data-free knowl-
 551 edge distillation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 552 *Recognition*, pp. 6008–6016, 2024.

553 Paul Micaelli and Amos J Storkey. Zero-shot knowledge transfer via adversarial belief matching.
 554 *Advances in Neural Information Processing Systems*, 32, 2019.

555

556 Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, Venkatesh Babu Radhakrishnan, and
 557 Anirban Chakraborty. Zero-shot knowledge distillation in deep networks. In *International Con-
 558 ference on Machine Learning*, pp. 4743–4751. PMLR, 2019.

559

560 Gaurav Patel, Konda Reddy Mopuri, and Qiang Qiu. Learning to retain while acquiring: Combating
 561 distribution-shift in adversarial data-free knowledge distillation. In *Proceedings of the IEEE/CVF*
 562 *Conference on Computer Vision and Pattern Recognition*, pp. 7786–7794, 2023.

563

564 Zengyu Qiu, Xinzhu Ma, Kunlin Yang, Chunya Liu, Jun Hou, Shuai Yi, and Wanli Ouyang. Bet-
 565 ter teacher better student: Dynamic prior knowledge for knowledge distillation. *arXiv preprint*
 566 *arXiv:2206.06067*, 2022.

567

568 Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
 569 bilenetv2: Inverted residuals and linear bottlenecks. In *Proceedings of the IEEE Conference on*
 570 *Computer Vision and Pattern Recognition (CVPR)*, pp. 4510–4520, 2018.

571

572 Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
 573 bert: smaller, faster, cheaper and lighter. *arXiv preprint arXiv:1910.01108*, 2019.

574

575 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 576 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
 577 ization. In *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 578 2017.

579

580 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 581 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

582

583 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 584 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 585 *International conference on machine learning*, pp. 10347–10357. PMLR, 2021.

586

587 Minh-Tuan Tran, Trung Le, Xuan-May Le, Mehrtash Harandi, and Dinh Phung. Text-enhanced
 588 data-free approach for federated class-incremental learning. In *Proceedings of the IEEE/CVF*
 589 *Conference on Computer Vision and Pattern Recognition*, pp. 23870–23880, 2024a.

590

591 Minh-Tuan Tran, Trung Le, Xuan-May Le, Mehrtash Harandi, Quan Hung Tran, and Dinh Phung.
 592 Nayer: Noisy layer data generation for efficient and effective data-free knowledge distillation.
 593 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 594 23860–23869, 2024b.

595

596 Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek Hoiem, Ni-
 597 raj K Jha, and Jan Kautz. Dreaming to distill: Data-free knowledge transfer via deepinversion.
 598 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 599 8715–8724, 2020.

594 Ji Won Yoon, Hyeonseung Lee, Hyung Yong Kim, Won Ik Cho, and Nam Soo Kim. TutorNet: To-
 595 wards flexible knowledge distillation for end-to-end speech recognition. *IEEE/ACM Transactions*
 596 *on Audio, Speech, and Language Processing*, 29:1626–1638, 2021.

597

598 Shikang Yu, Jiachen Chen, Hu Han, and Shuqiang Jiang. Data-free knowledge distillation via fea-
 599 ture exchange and activation region constraint. In *Proceedings of the IEEE/CVF Conference on*
 600 *Computer Vision and Pattern Recognition*, pp. 24266–24275, 2023.

601 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint*
 602 *arXiv:1605.07146*, 2016.

603

604 Borui Zhao, Quan Cui, Renjie Song, Yiyu Qiu, and Jiajun Liang. Decoupled knowledge distillation.
 605 In *Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition*, pp.
 606 11953–11962, 2022.

607

608 Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Learning deep
 609 features for discriminative localization. In *Proceedings of the IEEE conference on computer*
 610 *vision and pattern recognition*, pp. 2921–2929, 2016.

611

612 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
 613 Deformable transformers for end-to-end object detection. *arXiv preprint arXiv:2010.04159*, 2020.

614

615 Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
 616 federated learning. In *International conference on machine learning*, pp. 12878–12889. PMLR,
 617 2021.

618

A APPENDIX

A.1 LOWER-RESOLUTION IMAGE FOR VISION TRANSFORMER

622 A key challenge in our approach is training the student model with lower-resolution images, which
 623 are then tested on full-resolution data. This is particularly challenging for patch-based models, such
 624 as Vision Transformer (ViT) and its variants Dosovitskiy (2020); Touvron et al. (2021), that do
 625 not rely on CNN architectures. Furthermore, the Class-Activation Map also cannot be extracted
 626 for ViT-based model. To address this, we propose reducing the number of patches input into the
 627 Vision Transformer. With the standard patch size of 16×16 used by ViT and our chosen image
 628 resolution of 112×112 , we generate a 7×7 grid of patches instead of the original 14×14 .
 629 By focusing on the center position embedding, our method, as shown in Table 5, outperforms the
 630 original NAYER training, achieving improvements of over two percentage points. Details of this
 631 technique are provided in the Appendix A.1.

632 To illustrate the patch-reduction strategy mathematically, consider the input image resolution $H \times$
 633 W . The Vision Transformer (ViT) splits the image into patches of size $P \times P$, resulting in a grid
 634 of $\frac{H}{P} \times \frac{W}{P}$ patches. For the standard ViT, with $P = 16$, and full-resolution images $H = 224$ and
 635 $W = 224$, the number of patches is:

$$637 N_{\text{patches}} = \frac{H}{P} \cdot \frac{W}{P} = \frac{224}{16} \cdot \frac{224}{16} = 14 \cdot 14 = 196. \quad (12)$$

640 For our approach, we reduce the resolution to $H = 112$ and $W = 112$, while maintaining $P = 16$.
 641 This results in:

$$644 N_{\text{patches}} = \frac{H}{P} \cdot \frac{W}{P} = \frac{112}{16} \cdot \frac{112}{16} = 7 \cdot 7 = 49. \quad (13)$$

645 **Position Embedding.** Let the index matrix \mathcal{I} be a 10×10 grid, where both row and column values
 646 range from 2 to 12:

648
649
650

$$\mathcal{I} = \{(r, c) \mid 2 \leq r \leq 12, 2 \leq c \leq 12\}.$$

651 We randomly select the center index $p_{\text{center}} = (p_{\text{center}}^r, p_{\text{center}}^c)$ from this grid with a bias toward the
652 center, particularly around indices 7 and 8 for both rows and columns. The probability of selecting
653 the center index p_{center} is given by:

654
655
656

$$P(p_{\text{center}}) \propto \frac{1}{1 + \lambda \cdot (|p_{\text{center}}^r - 7|^2 + |p_{\text{center}}^c - 7|^2)},$$

657 where:
658

659
660
661
662
663
664

- $(p_{\text{center}}^r, p_{\text{center}}^c)$ are the indices in the grid,
- λ is a parameter that controls the steepness of the decay, influencing how strongly the selection is biased toward the center,
- $|p_{\text{center}}^r - 7|^2 + |p_{\text{center}}^c - 7|^2$ represents the squared Euclidean distance from the center index $(7, 7)$.

665 This formulation ensures that the selection probability decreases as the distance from the center
666 increases, making the center indices $(7, 7)$ and $(8, 8)$ more likely to be chosen.

667 **Patch Index Mapping.** After selecting the center index $p_{\text{center}} = (r, c)$, the synthetic image patches
668 are indexed relative to p_{center} . Let p_i represent the index of the patch. The patch indices p_i are
669 determined by an offset from p_{center} . For a patch size of $P \times P$, the patch index p_i is defined as:
670

671
672

$$p_i = (p_{\text{center}}^r + \Delta r, p_{\text{center}}^c + \Delta c),$$

673 where $\Delta r, \Delta c \in \{-P, 0, P\}$ and are the offsets applied to the center index p_{center} . This allows the
674 selection of patches in a surrounding area around the center index p_{center} . This approach ensures that
675 patch indices closer to the center are more likely to be selected, with the probability decreasing as
676 the distance from the center increases.

677 **Attention Map as a Replacement for CAM:** In ViT-based models, the attention map with respect
678 to the [CLS] token can serve as a substitute for Class Activation Maps (CAM), which typically
679 do not function effectively in ViT architectures. In fact, they share a similar ability to highlight
680 class-relevant regions, enabling effective visual explanations.
681

682
683

B DATASETS

684
685
686

Table 6 summarizes all the datasets used in our paper, including three low-resolution, three high-resolution, and two mega-resolution datasets.

Table 6: Overview of benchmark datasets categorized by resolution.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Dataset	Image Size	#Classes	#Train Images	#Test Images
Low-Resolution Datasets				
CIFAR-10 Krizhevsky et al. (2009)	32x32x3	10	50,000	10,000
CIFAR-100 Krizhevsky et al. (2009)	32x32x3	100	50,000	10,000
Tiny ImageNet Le & Yang (2015)	64x64x3	200	100,000	10,000
High-Resolution Datasets				
ImageNette Howard (2019a)	224x224x3	10	9,469	3,925
ImageWoof Howard (2019b)	224x224x3	10	9,902	3,926
ImageNet-1k Deng et al. (2009)	224x224x3	1,000	1,281,167	50,000
Mega-Resolution Datasets				
Traffic Sign Recognition Katharopoulos & Fleuret (2019)	1200x1600x3	4	747	684
Megapixel MNIST (Max Digit Recognition) Katharopoulos & Fleuret (2019)	1500x1500x1	10	5000	1000

C TRAINING DETAILS

702
703
704

In this section, we provide the details of model training for our methods, including Teacher Training, Generator, and Student Training.

702 C.1 TEACHER MODEL TRAINING DETAILS
703

704 In this work, we utilized the pretrained ResNet-50 and ResNet-34 models from PyTorch, trained
705 on ImageNet1k, and trained them from scratch on the ImageNette and ImageWoof datasets. For
706 CIFAR-10/CIFAR-100, we employed pretrained ResNet-34 and WideResNet-40-2 teacher models
707 from Fang et al. (2022); Tran et al. (2024b). The teacher models were trained using the SGD opti-
708 mizer with an initial learning rate of 0.1, momentum of 0.9, and weight decay of 5e-4, with a batch
709 size of 128 for 200 epochs. The learning rate decay followed a cosine annealing schedule.

710
711 C.2 GENERATOR TRAINING DETAILS
712

713 To ensure fair comparisons, we adopt the generator architecture outlined in Fang et al. (2022); Tran
714 et al. (2024b) and the Noisy Layer (BatchNorm1D, Linear) as described in Tran et al. (2024b)
715 for all experiments. This architecture has been proven effective in prior work and provides a solid
716 foundation for evaluating the performance of our model. The generator network is designed to learn
717 rich feature representations while maintaining computational efficiency. The details of the generator
718 architecture, including layer specifications and output sizes, are provided in Table 7. Additionally,
719 we use the Adam optimizer with a learning rate of 4e-3 to optimize the generator, ensuring stable
720 convergence during training.

721 Table 7: Architecture of the Generator Network (\mathcal{G}), detailing the sequence of operations and layer sizes from
722 input to output. The network includes linear transformations, spectral normalization in convolution layers,
723 batch normalization, leaky ReLU activations, upsampling, and a sigmoid activation for the output. Output
724 dimensions at each layer are shown in relation to the input height (h) and width (w), with intermediate feature
725 maps gradually upscaled to the final $3 \times h \times w$ generated image.

726	Output	727 Size Layers
727	1000	Input
728	$128 \times h/4 \times w/4$	Linear
729	$128 \times h/4 \times w/4$	BatchNorm1D
730	$128 \times h/4 \times w/4$	Reshape
731	$128 \times h/2 \times w/2$	SpectralNorm (Conv (3 × 3))
732	$128 \times h/2 \times w/2$	BatchNorm2D
733	$128 \times h/2 \times w/2$	LeakyReLU
734	$128 \times h/2 \times w/2$	UpSample (2×)
735	$64 \times h \times w$	SpectralNorm (Conv (3 × 3))
736	$64 \times h \times w$	BatchNorm2D
737	$64 \times h \times w$	LeakyReLU
738	$64 \times h \times w$	UpSample (2×)
739	$3 \times h \times w$	SpectralNorm (Conv (3 × 3))
740	$3 \times h \times w$	Sigmoid
741	$3 \times h \times w$	BatchNorm2D

742 C.3 STUDENT MODEL TRAINING DETAILS
743

744 In all experiments, we adopt a consistent approach for training the student model. The batch size is
745 set to match the Synthetic Batch Size, and the AdamW optimizer is used with a momentum of 0.9
746 and an initial learning rate of 1e-3. To further optimize training, a lambda scheduler is employed to
747 adjust the learning rate dynamically throughout the training process.

748
749 C.4 OTHER SETTINGS
750

751 We trained the model for \mathcal{E} epochs, incorporating a warm-up phase during the first 10% of \mathcal{E} , as
752 outlined in the settings defined in Fang et al. (2022); Tran et al. (2024b). This warm-up phase
753 gradually increases the learning rate to stabilize training early on. Additionally, the model was
754 trained with the specified batch size and other hyperparameters, which were carefully selected to
755 ensure optimal performance. Further details regarding these parameters, including their values and
any adjustments made during the training process, are provided in Table 8.

Table 8: The hyperparameters used in our methods across five different datasets are detailed below. **Image Resolution** and **Synthetic Batch Size** refer to the resolution and batch size of synthetic images generated by our methods. Notably, in the case of K-Gen, two different resolutions are used, and their batch sizes are adjusted based on their scales. Other key parameters include: S , the number of training steps for optimizing the student model, scaled based on the data memory ratio (d_r); I , the number of times a batch of images is generated per epoch; and g , the training steps for optimizing the generators. Additionally, the following hyperparameters were fixed for all experiments: $\alpha_{ce} = 0.5$, $\alpha_{bn} = 10$, $\alpha_{adv} = 1.3$ (as in Tran et al. (2024b)). Furthermore, in our paper, we propose the following parameters, which are also fixed for all experiments (their parameter sensitivity analysis can be found in Section D.7): $\alpha_{kr} = 0.1$ (for Key Region Loss); $\alpha_{ed} = 10$, $\alpha_{aed} = 5$, $r_i = 0.015$, and $r_o = 0.03$ (for Embedding Diversity).

	Method	Image Resolution	Synthetic Batch Size	S	I	g	Epoch \mathcal{E}
ImageNetee/ImageWoof	K-Gen-S	96×96	100	$50 \times d_r$	5	100	100
	K-Gen	[$96 \times 96, 112 \times 112$]	[50, 40]				
ImageNet1k	K-Gen-S	112×112	200	$200 \times d_r$	20	100	400
	K-Gen	[$112 \times 112, 128 \times 128$]	[200, 150]				
CIFAR10/CIFAR100	K-Gen-S	28×28	260	$2 \times d_r$	20	40	400
	K-Gen	[$28 \times 28, 32 \times 32$]	[130, 100]				
TinyImageNet	K-Gen-S	32×32	200	$50 \times d_r$	5	100	100
	K-Gen	[$32 \times 32, 48 \times 48$]	[200, 100]				
Traffic Sign Recognition/Megapixel MNIST	K-Gen-S	112×112	260	$50 \times d_r$	5	100	100
	K-Gen	[$112 \times 112, 128 \times 128$]	[200, 150]				

D FURTHER ABALATION STUDY

D.1 COMPARASION IN HIGHER DATA MEMORY RATIOS.

To further demonstrate the benefits of our methods, we also conducted experiments on higher data memory ratio settings, as shown in Figure 3a-b. The results indicate that our methods achieve higher accuracy across all ratio settings on both the Imagenette and Imagewoof datasets. Particularly at lower ratios, the difference is significant. For example, at a ratio of 20% on Imagenette, our K-Gen method achieves an accuracy approximately 40% higher than the compared methods. These results demonstrate the effectiveness of our models.

Figure 3: The accuracy at data ratios from 10% to 100% is shown for the teacher (ResNet34) and student (ResNet18) models.

D.2 TRAINING TIME FOR LOW-RESOLUTION DATASET

As shown in Table 9, while achieving SOTA accuracy, our K-Gen (9.45h) and K-Gen-S (6.84h) also have comparable runtimes to previous methods like NAYER (6.78h) and Fast10 (7.02h), while being significantly faster than DeepInv (31.24h) and CMI (24.01h).

Table 9: Comparing training times in hours using a single NVIDIA A100 for DFKD methods on CIFAR-10 and CIFAR-100 with the teacher/student models WRN40-2/WRN16-2.

	DeepInv	CMI	DFQ	ZSKT	MAD	SpaceshipNet	Fast10	NAYER	K-Gen-S	K-Gen
CIFAR10	89.72 (31.23h)	92.52 (24.01h)	92.01 (3.31h)	89.66 (3.44h)	92.64 (13.13h)	93.25 (14.48h)	92.31 (7.02h)	94.07 (6.78h)	94.15 (6.84h)	94.25 (9.45h)
CIFAR100	61.34 (31.23h)	68.75 (24.01h)	64.79 (3.31h)	54.59 (3.44h)	64.05 (26.45h)	69.95 (29.24h)	68.25 (7.56h)	71.72 (7.22h)	72.12 (7.25h)	72.32 (9.86h)
Averaging Speed Up	1.00 \times	1.30 \times	9.73 \times	9.08 \times	1.78 \times	14.17 \times	7.46 \times	4.29 \times	4.47 \times	3.17 \times

D.3 EFFECTIVENESS OF EMBEDDING DIVERSITY LOSS.

Figure 4a shows that K-Gen with Embedding Diversity Loss consistently outperforms without ED at all data memory ratios, especially at lower ratios (1% and 5%), emphasizing ED’s crucial role.

810 Additionally, Figure 4b illustrates that new data typically occupies a distinct region in latent space,
 811 enhancing model diversity.

813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823 Figure 4: (a) Accuracy of our K-Gen method with and without Embedding Diversity (ED) for ResNet34 and
 824 ResNet18. (b) t-SNE visualization of the embeddings: synthetic data from the \mathcal{M} pool (blue) and newly
 825 generated data (red).

826 D.4 EFFECTIVENESS OF LOWER-RESOLUTION.

827 In Table 10, we present the accuracy of our methods with different image resolutions. The results
 828 clearly show that the accuracy of models decreases significantly when the resolution is either too
 829 small (64×64) or too large (224×224), with the highest accuracy achieved at 96×96 . This
 830 illustrates the importance of selecting an appropriate resolution for synthetic data, balancing both
 831 computational efficiency and model performance.

Resolution ($R \times R$)	224	192	144	128	112	96	80	64
With \mathcal{L}_{kr}	37.27	40.65	65.25	70.21	78.21	80.32	77.21	40.21
Without \mathcal{L}_{kr}	32.17	34.26	58.21	65.21	72.25	75.12	71.23	34.91

833 Table 10: Performance comparison across multiple data resolutions in Imagenette (ResNet34/ResNet18 case)
 834 with the same Data Memory Ratio at 5%.

835 D.5 EFFECTIVENESS OF KEY REGION DATA GENERATION.

836 As shown in Table 10, adding the key region loss term, \mathcal{L}_{kr} , improves performance, particularly at
 837 intermediate resolutions like 128×128 and 112×112 . At these resolutions, the model achieves
 838 70.21% and 78.21% accuracy, outperforming settings without \mathcal{L}_{kr} by 5-6 percentage points, high-
 839 lighting its effectiveness, especially at lower resolutions.

840 D.6 EFFECTIVENESS OF MULTI-RESOLUTION DATA GENERATION.

841 Tables 1 and 2 demonstrate that K-Gen, using multi-scale data generation, outperforms other distilla-
 842 tion methods in both accuracy and efficiency across various datasets. For instance, on CIFAR10, K-
 843 Gen achieves 94.51% accuracy, surpassing NAYER and SSD-KD. Similarly, on CIFAR100, K-Gen
 844 reaches 75.21%, outperforming K-Gen-S and NAYER, while also delivering superior performance
 845 on Imagenette, showcasing its robustness.

846 D.7 PARAMETER SENSITIVITY ANALYSIS

847 All experiments in this section were conducted in ImageNette and ImageWoof (Resnet34/Resnet18)
 848 with ratios at 5% and 10%.

849 **Parameter α_{kr} .** In Table 11, we compare the impact of different scale factors on Key Region Loss.
 850 The results show that our methods perform well, achieving higher accuracy with smaller scaling
 851 factors, peaking at a scale factor of 0.1. This can be attributed to the fact that the value of the key
 852 region generation function is high due to direct subtract function, and a smaller scale factor is more
 853 effective for normalizing it.

854 **Parameters α_{ed} and α_{aed} .** Tables 12 and 13 compare the performance of different values of α_{ed}
 855 and α_{aed} on the ImageNette and ImageWoof datasets at 5% and 10% data memory ratio. In both

864 Table 11: Comparison of the impact of various scale factors on Key Region Loss, highlighting the optimal
 865 performance achieved with smaller scale factors, peaking at a scale factor of 0.1.

α_{kr}	0.05	0.1	0.2	0.5	1	2
ImageNette (5%)	79.77	80.32	80.2	79.69	78.26	78.63
ImageNette (10%)	86.32	86.67	86.18	85.64	85.16	85.41
ImageWoof (5%)	36.03	36.25	35.67	35.66	35.13	35.11
ImageWoof (10%)	59.83	59.85	59.75	59.75	58.17	57.92

872 tables, the highest accuracy is typically observed at intermediate values of α , with $\alpha_{ed} = 10$ and
 873 $\alpha_{aed} = 5$ yielding the best results in most cases. This can be attributed to the fact that at these values,
 874 the mean squared error (MSE) distance between embeddings is significantly small. For instance,
 875 the minimum distance between two label text embeddings is just 0.03, which necessitates a higher
 876 scaling factor to amplify the impact of this term.

877 Table 12: Performance comparison of different α_{ed} values on the ImageNette and ImageWoof datasets at 5%
 878 and 10% sampling rates. The highest accuracy is achieved at $\alpha_{ed} = 10$, highlighting the importance of balanc-
 879 ing the scaling factor to minimize MSE distance between embeddings.

α_{ed}	1	2	5	10	20	50
ImageNette (5%)	80.02	79.62	79.59	80.12	79.79	80.27
ImageNette (10%)	86.18	86.36	86.52	86.77	85.91	86.64
ImageWoof (5%)	35.77	35.69	36.12	36.31	35.37	36.13
ImageWoof (10%)	59.52	59.54	59.82	59.91	58.60	59.70

885 Table 13: Performance comparison of different α_{aed} values on the ImageNette and ImageWoof datasets at 5%
 886 and 10% sampling rates. Peak accuracy is observed at $\alpha_{aed} = 5$, emphasizing the role of scaling to optimize
 887 the MSE distance between embeddings.

α_{aed}	1	2	5	10	20	50
ImageNette (5%)	79.85	79.56	80.42	79.88	80.27	80.25
ImageNette (10%)	86.58	86.01	86.68	85.56	86.17	85.67
ImageWoof (5%)	35.72	35.28	36.31	35.83	35.04	35.96
ImageWoof (10%)	59.35	58.88	59.88	59.54	59.47	59.52

893 **Inner Radius r_i and Outer Radius r_o .** In this approach, we follow the method proposed in Tran
 894 et al. (2024a) to determine the most effective radius. Based on this, we found that the minimum
 895 distance between two label text embeddings is 0.03. Therefore, we define the inner and outer radii
 896 around this value. As shown in Table 14, the pair of 0.015 (r_i) for the inner radius and 0.03 (r_o) for
 897 the outer radius yields the highest accuracy. This demonstrates that half of the minimum distance is
 898 optimal for the inner radius of Bounding Loss, similar to Tran et al. (2024a), while the full minimum
 899 distance serves as the most effective outer radius.

900 Table 14: Comparison of different inner (r_i) and outer (r_o) radius pairs for Bounding Loss and Margin Loss
 901 for Embedding Diversity terms. The pair of 0.015 for the inner radius and 0.03 for the outer radius achieves
 902 the highest accuracy, demonstrating that half of the minimum distance between embeddings works best for the
 903 inner radius, while the full minimum distance is optimal for the outer radius.

$r_o \backslash r_i$	0.05	0.015	0.03	0.05	0.1
0.01	76.30	80.21	80.20	80.13	76.33
0.03	77.33	80.44	80.24	79.08	76.32
0.1	79.17	79.07	79.16	77.46	76.42
0.3	78.09	78.19	78.02	77.41	76.36
1	76.37	76.32	76.46	76.43	76.37

912 D.8 MIXED RESOLUTION ANALYSIS.

913
 914 To analyze the robustness of K-Gen under mixed-resolution training, we evaluate its performance
 915 across a wide range of resolution combinations on Imagenette and ImageNet1k with a fixed 5%
 916 data memory ratio, as reported in Tables 15 and 16. Each row corresponds to the base training
 917 resolution, while each column indicates the testing resolution. On Imagenette (Table 15), we ob-
 918 serve a consistent increase in accuracy as the training resolution decreases from 224 to 112, with

peak performance (**82.21%**) achieved at 112×112 . This suggests that training on moderately lower resolutions can enhance the generalization capability of K-Gen, particularly in data-scarce settings. Similarly, on ImageNet1k (Table 16), the model achieves its highest accuracy of **42.25%** when trained at 128×128 , demonstrating that K-Gen remains effective even when scaling to more complex and high-resolution datasets. These results highlight K-Gen’s adaptability and efficiency in handling resolution variability—an essential trait for practical deployment in resource-constrained or dynamically changing environments.

Table 15: Accuracy of K-Gen with ResNet34/ResNet18 on Imagenette (5% Data Ratio) across various mixed resolutions. Rows represent training resolution; columns represent testing resolution.

Resolution	192	144	128	112	96	80	64
224	39.86	42.15	50.60	56.18	68.58	58.64	39.32
192	—	44.99	58.16	65.17	77.55	68.95	44.52
144	—	—	65.37	68.78	78.32	72.27	48.67
128	—	—	—	70.71	80.32	71.75	53.92
112	—	—	—	—	82.21	81.67	62.42
96	—	—	—	—	—	78.18	55.45
80	—	—	—	—	—	—	40.99

Table 16: Accuracy of K-Gen with ResNet34/ResNet18 on ImageNet1k (5% Data Memory Ratio) across various mixed resolutions. Rows represent training resolution; columns represent testing resolution.

Resolution	192	144	128	112	96	80	64
224	19.25	22.80	32.16	30.76	29.27	27.76	21.67
192	—	23.38	37.46	35.73	34.90	32.09	27.91
144	—	—	41.11	38.35	37.73	34.86	33.99
128	—	—	—	42.25	40.75	37.93	35.60
112	—	—	—	—	38.19	36.88	33.73
96	—	—	—	—	—	34.76	28.65
80	—	—	—	—	—	—	22.40

E OTHER RESULTS

E.1 RESULTS ON SEMANTIC SEGMENTATION.

We further examine the generalization capability of K-Gen by conducting experiments on the NYUv2 dataset. Unlike prior DFKD methods that generate data at a resolution of 256×256 , K-Gen operates at a lower resolution of 128×128 . Despite this, it consistently delivers better semantic segmentation performance, as shown in Table 17.

Although segmentation is widely used to evaluate DFKD methods, its effectiveness is often limited by poor-quality synthetic data and the difficulty of generating reliable labels. Nevertheless, K-Gen achieves state-of-the-art results, demonstrating its ability to generalize well even under such challenging conditions.

Table 17: Performance comparison of K-Gen with existing DFKD methods on the NYUv2 dataset.

Method	DFAD	DAFL	Fast	NAYER	K-Gen
Synthetic Time	6.0h	3.99h	0.82h	0.82h	0.82h
mIoU	0.364	0.105	3.66	3.85	4.01

E.2 ERROR BAR

Table 18 show that our method consistently achieves higher accuracy across three runs with only minor standard deviation, demonstrating its robustness. Notably, most prior works (except NAYER) did not report such statistics, and due to their high computational cost, we were unable to reproduce their results.

972

Table 18: Averaging accuracy and standard deviation in three runs.

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

	CIFAR10			CIFAR100		
	R34/R18	W402/W162	W402/W161	R34/R18	W402/W162	W402/W161
SpaceshipNet	95.39	93.25	90.38	77.41	69.95	58.06
NAYER	95.21 \pm 0.15	94.11 \pm 0.18	91.94 \pm 0.15	77.56 \pm 0.12	71.72 \pm 0.14	62.23 \pm 0.21
K-Gen-S	95.25 \pm 0.12	94.12 \pm 0.13	92.11 \pm 0.09	77.58 \pm 0.10	72.01 \pm 0.16	62.78 \pm 0.17
K-Gen	95.28 \pm 0.11	94.19 \pm 0.11	92.20 \pm 0.14	77.70 \pm 0.09	72.15 \pm 0.18	62.84 \pm 0.20

F ADDITIONAL RESULTS ON X-RAY DATASET (3000 \times 3000 PIXELS)

To further assess the generalizability of K-Gen under large domain shift, we evaluate it on a chest X-ray classification task using a ResNet-18 teacher that attains 71.96% accuracy. In that we keep all hyperparameter as similar with the experiments in ImageNet. As reported in Table 19, K-Gen consistently outperforms both Fast100 and NAYER across 10% and 20% data memory ratios, substantially narrowing the gap to the full-data teacher despite using only a fraction of the original images. We also vary the distilled image resolution from 96×96 to 112×112 and 128×128 , and observe that K-Gen remains stable and competitive across these settings, without re-tuning the loss weights. These results indicate that K-Gen is robust not only to significant domain shift from natural images to medical X-rays, but also to moderate changes in spatial resolution, supporting its applicability to real-world medical imaging scenarios.

992

Table 19: Results on X-ray dataset (3000 \times 3000 pixels) Karargyris et al. (2021).

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

G FURTHER DISCUSSION

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

Choosing Target Mask M_{target} . In this section, we compared the performance of different target masks (M_{target}) across various sampling ratios (1%, 5%, 10%, and 20%). The target masks include Full(n), where the matrix is filled with the value n , and G(i, j), representing Gaussian matrices with a maximum value of i and a standard deviation of j . As shown in Table 20, the "G(1,2)" matrix consistently outperforms other configurations, achieving the highest accuracy at all sampling ratios. While the "Full(1)" and "G(1,3)" matrices exhibit similar performance, they are generally outperformed by "G(1,2)" at most ratios. This indicates that gaussian the matrix is the most effective approach for this task.

Table 20: Performance Comparison Between Different Target Mask M_{target} . In that, Full(n) indidate matrix is fill by n and G(i, j) mean the Gaussian Matrix with max value of i and $\sigma = j$

1015

1016

1017

1018

1019

1020

Ratio	G(1,2)	G(1,3)	G(2,2)	G(2,3)	G(3,2)	G(3,3)	Full(1)	Full(2)	Full(3)
1%	34.52	34.4	33.11	34.32	34.26	33.3	33.3	34.49	33.94
5%	80.32	79.99	78.68	80.11	79.39	79.52	78.6	79.67	79.96
10%	86.67	86.53	86.24	86.31	86.44	85.7	86.56	86.12	85.88
20%	88.25	88.11	87.63	88.25	87.38	87.45	88.07	87.84	87.85

1021

1022

1023

1024

1025

Choosing Class Representative Embedding f_y . We evaluate the impact of using Label Text Embedding (LTE) and Class Center (CC) as the Class Representative Embedding f_y . The results in Table 21 show that K-Gen consistently outperforms NAYER across all settings. Furthermore, the performance of LTE and CC is comparable, with LTE exhibiting a slight advantage in some cases. This demonstrates the effectiveness of both configurations, providing flexibility in selecting between Class Center and Label Text Embedding representations.

1026 Table 21: Performance comparison of K-Gen (using Class Center (CC) and Label Text Embedding (LTE)).

1027	Dataset	Imagenetee			Imagewoof		
1028	Teacher	Resnet34 (94.06)			Resnet34 (83.02)		
1029	Student	Resnet18 (93.53)			Resnet18 (82.59)		
1030	Ratio	1%	5%	10%	1%	5%	10%
1031	NAYER	9.35	32.17	42.57	6.72	15.62	25.27
1032	K-Gen (CC)	34.43	80.22	86.43	20.35	36.21	59.35
1033	K-Gen (LTE)	34.51	80.36	86.61	20.47	36.41	59.62

1035 H VISUALIZATION

1039 Figure 5 shows synthetic images generated by NAYER (a) at 224×224 and K-Gen (b) at 112×112 ,
 1040 both after 100 generator training steps on ImageNet using ResNet-50 as the teacher. While chal-
 1041 lenging for human recognition and differing from real datasets, K-Gen’s lower-resolution images
 1042 capture key class-level features, showing superior quality over NAYER Tran et al. (2024b). In (c),
 1043 the CAM for K-Gen’s images reveals high CAM ratios across most pixels, highlighting the benefit
 1044 of Key Region Loss.

1045 In addition, Figure 6 provides further qualitative examples of K-Gen on randomly selected ImageNet
 1046 classes at 112×112 resolution. Across a wide variety of object categories, the generated images
 1047 remain low-resolution and abstract, yet consistently preserve class-defining structures (e.g., charac-
 1048 teristic shapes, silhouettes, and textures), while backgrounds and non-discriminative regions vary
 1049 more freely. Together with Figure 5, these visualizations support our claim that K-Gen concentrates
 1050 generative capacity on key regions that are most relevant for the teacher, enabling compact synthetic
 1051 datasets that still convey rich class-level information.

1076 Figure 5: (a-b) Synthetic data generated from the ‘cassette player’, ‘tench’, ‘church’, and ‘English springer’
 1077 classes of ImageNet1k, with NAYER (at 224×224 resolution) and our K-Gen (at 112×112 resolution). (c)
 1078 Class activation map for our K-Gen’s images. Please note that the values of the class activation map are shown
 1079 before normalization.

Figure 6: Further visualizations of our K-Gen on randomly selected ImageNet classes at a resolution of 112×112 pixels.

I FUTURE WORK

Our paper employs a customized version of the classic CAM, designed to facilitate backpropagation in obtaining the activation matrix. This approach opens the door to exploring other techniques, such as Grad-CAM Selvaraju et al. (2017) or attention-based scores Leem & Seo (2024), to further enhance the task. Additionally, optimizing multi-resolution techniques for faster processing times presents another promising direction for improvement.

J THE USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) to help with editing this paper. It was only used for simple tasks such as fixing typos, rephrasing sentences for clarity, and improving word choice. All ideas, experiments, and analyses were done by the authors, and the use of LLMs does not affect the reproducibility of our work.

1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133