Under review as a conference paper at ICLR 2026

K-GEN: UNLOCKING LARGE-SCALE DATA-FREE
KNOWLEDGE DISTILLATION VIA KEY REGION GEN-
ERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Data-Free Knowledge Distillation (DFKD) is an advanced technique that en-
ables knowledge transfer from a teacher model to a student model without re-
lying on original training data. While DFKD methods have achieved success
on smaller datasets like CIFAR10 and CIFAR100, they encounter challenges on
larger, high-resolution datasets such as ImageNet. A primary issue with previ-
ous approaches is their generation of synthetic images at high resolutions (e.g.,
224 x 224) without leveraging information from real images, often resulting in
noisy images that lack essential class-specific features in large datasets. Addi-
tionally, the computational cost of generating the extensive data needed for ef-
fective knowledge transfer can be prohibitive. In this paper, we introduce Key
Region Data-free Generation (K-Gen) to address these limitations. K-Gen gen-
erates only key region of images at lower resolutions while using class-activation
score to ensure that the generated images retain critical, class-specific features.
To further enhance model diversity, we propose multi-resolution generation and
embedding diversity techniques that strengthen latent space representations, lead-
ing to significant performance improvements. Experimental results demonstrate
that K-Gen achieves state-of-the-art performance across both small-, high- and
mega-resolution datasets, with notable performance gains of up to two digits
in nearly all ImageNet and subset experiments. Code is available at https:
//anonymous .4open.science/r/K-Gen—-DFKD.

1 INTRODUCTION

Knowledge distillation (KD) Hinton et al.|(2015));[Zhao et al.|(2022) is a technique aimed at training
a student model to replicate the capabilities of a pre-trained teacher model. Over the past decade,
KD has been applied across various domains, including image recognition [Q1u et al.| (2022), speech
recognition [Yoon et al|(2021), and natural language processing [Sanh et al.|(2019). Traditional KD
methods typically assume that the student model has access to all or part of the teacher’s training
data. However, in many real-world scenarios, particularly in privacy-sensitive fields like healthcare,
accessing the original training data is not feasible due to legal, ethical, or proprietary constraints. In
such cases, conventional KD methods become impractical, necessitating alternative approaches that
do not rely on direct access to the original data.

To address this challenge, Data-Free Knowledge Distillation (DFKD) |Yin et al.| (2020); |[Fang et al.
(2021);|Yu et al.|(2023)); 'Tran et al.|(2024a); [Patel et al.| (2023)); Do et al.|(2022); Binici1 et al.| (2022a)
has emerged as a promising solution. DFKD transfers knowledge from a teacher neural network (7)
to a student neural network (S) by generating synthetic data instead of using the original training
data. This synthetic data enables adversarial training between the generator and the student |[Nayak:
et al.|(2019); Micaelli & Storkey|(2019), where the student aims to match the teacher’s predictions on
the synthetic data, while the generator’s objective is to create samples that maximize the discrepancy
between the teacher’s and student’s predictions.

Previous works |Yin et al.| (2020); |[Fang et al.| (2021); [Yu et al.| (2023); [Tran et al.| (2024a)); [Patel
et al.| (2023); Tran et al| (2024b)) typically generate synthetic data at the same resolution as the
images used to train the teacher model, a technique that has proven effective on small-scale and
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Figure 1: (a) The previous model fails to capture class-specific features and contains a lot of noisy pixels. (b)
The visualization demonstrates that only a small set of key features is important for classifiers. (c) Our model
generates synthetic images at lower resolutions and leverages CAM to generate pixels in key region, which
contains important information. Comparison of K-Gen and SOTA methods on ImageNet1K: (d) performance
vs. training time and data memory ratio (note that the training time is positively correlated with the data memory
ratio); (e) Performance of K-Gen and NAYER with the same image-per-class constraints.

low-resolution datasets like CIFAR10 and CIFAR100[Tran et al.| (2024D); [Fang et al.| (2022). How-
ever, these approaches face significant challenges when applied to larger, high-resolution datasets
such as ImageNet. A primary issue with previous methods is their generation of synthetic images
at high resolutions (e.g., 224 x 224) without incorporating information from real images, leading
to substantial noise and a lack of nuanced, class-specific features critical for effective knowledge
transfer. Additionally, the computational cost of generating the large volumes of synthetic data re-
quired for knowledge transfer can be prohibitively high. For instance, previous methods [Yin et al|
(2020) have demanded over 3,000 GPU hours to train on ImageNet1k, yet have achieved only mod-
erate results. As a result, while DFKD methods perform well on smaller datasets, they encounter
substantial limitations when scaled to real-world, large-scale applications.

In this paper, we introduce Key Region Data-free Generation (K-Gen) to tackle the limitations of
traditional DFKD methods. Inspired by the observation that only a small but crucial region of
real images is essential for effective classifier training [Zhu et al.| (2020); [Selvaraju et al.| (2017),
K-Gen introduces a strategy that synthesizes lower-resolution images while leveraging Class Acti-
vation Scores to focus on the most informative pixels. By concentrating on the
most relevant areas, K-Gen ensures that the generated images retain critical class-specific features,
thereby improving the efficiency of knowledge transfer. Additionally, this approach helps reduce
computational costs, enhancing both the scalability and performance of DFKD, especially for large,
high-resolution datasets.

As shown in Figure [Tp-c, the previous DFKD model generates 224 x 224 resolution images, which
are often noisy and provide limited information for training the classifier. In contrast, our method
produces lower-resolution images that leverage a key region loss to retain discriminative features.
Moreover, as illustrated in Figure[Id-e, our method not only significantly speeds up training time but
also achieves improved accuracy. Specifically, under the same images-per-class setting and despite
generating lower-resolution images, our K-GEN still achieves better performance, demonstrating
both its efficiency and effectiveness.

Although using lower-resolution synthetic images improves training efficiency, it may limit the
model’s capacity to capture diverse and detailed feature representations, as lower resolutions con-
strain the available representational space. To overcome this limitation, we propose a Multi-
Resolution Data Generation strategy, in which images are generated at multiple resolutions to
capture both coarse and fine-grained features. In addition, we introduce an Embedding Diversity
Loss to preserve distinctiveness within the latent space, ensuring that rich feature representations are
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maintained even at lower resolutions. Together, these mechanisms enable the model to retain criti-
cal features across different levels of granularity, leading to enhanced performance and robustness
across a variety of tasks.

Our major contributions are summarized as follows:

* We propose Key Region Data-free Generation (K-Gen), which generates synthetic images at
lower resolutions, using Class Activation Maps to focus on critical regions, improving compu-
tational efficiency without sacrificing essential class-specific features.

* We also extend this to use for Vision Transformer architecture.

* We introduce Multi-Resolution Data Generation to capture both coarse and fine features and
Embedding Diversity Loss to maintain distinct embeddings at lower resolutions, boosting fea-
ture diversity and performance.

» K-Gen achieves state-of-the-art performance on both low- and high-resolution datasets, includ-
ing CIFAR10, CIFAR100, TinyImageNet, ImageNet, ImageNet subsets. Our method demon-
strates performance gains of up to two digits in nearly all experiments on ImageNet and its
subsets.

* K-Gen exhibits high performance on mega-resolution datasets (images >1M pixels), signifi-
cantly expanding the applicability of DFKD methods to ultra-high-resolution domains.

2 RELATED WORK

Data-Free Knowledge Distillation. DFKD methods |Yin et al.| (2020); Fang et al.|(2021); |Yu et al.
(2023)); Do et al.|(2022); Patel et al.|(2023) generate synthetic images to facilitate knowledge transfer
from a pre-trained teacher model to a student model. These synthetic data are used to jointly train
the generator and the student in an adversarial manner Micaelli & Storkey| (2019). Specifically, the
student aims to make predictions that closely align with the teacher’s on the synthetic data, while the
generator strives to create samples that match the teacher’s confidence while also maximizing the
mismatch between the student’s and teacher’s predictions. This adversarial process fosters a rapid
exploration of synthetic distributions that are valuable for knowledge transfer between the teacher
and the student.

Data-Free Knowledge Distillation for High-Resolution Dataset. Data-free knowledge distillation
methods face significant challenges when scaled to larger, high-resolution datasets like ImageNet.
For instance, Deeplnv|Yin et al.[(2020) required over 3000 NVIDIA V100 GPU hours to train on Im-
ageNetlk, highlighting the substantial computational demands. Although more recent methods Tran
et al.[ (2024b); |[Fang et al.| (2022) provide faster solutions, they cannot achieve competitive perfor-
mance when training models from scratch without the pretrained data used by Deeplnv. Therefore,
there is an urgent need for novel methods that can efficiently and effectively enable data-free transfer
on high-resolution datasets like ImageNet.

3 PROPOSED METHOD

3.1 PRELIMINARIES: DFKD FRAMEWORK

Consider a training dataset D = {(x;,y;)}", where each x; € R®*"*¥ is an input sample and
y; € {1,2,..., K} denotes its label. Each pair (x;,y;) in D serves as a training example with
its corresponding label. Let 7 with parameters 61 represent a pre-trained teacher network on D.
The objective of DFKD is to train a student network, S = Sy, to match the teacher’s performance
without access to the original dataset D.

To achieve this, inspired by [Tran et al.| (2024b), we begin by sampling a batch of random pseudo-
labels g ~ {1,..., K}. We then obtain their corresponding text embeddings using a pre-trained
language model C, i.e., f, = C(y). These embeddings f, are passed through a noisy layer Z,
which is a single linear layer re-initialized at each iteration to introduce randomness and promote
diverse image generation. The output is then fed into a lightweight generator G to produce synthetic
images .

& = Gixi1(Z2(fy)), (1)
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Figure 2: (a) Overview of the K-Gen architecture, illustrating the two-phase training process: generator training
and student training. The model generates lower-resolution images and enhances their quality using Key Region
Loss, while also promoting diversity through Embedding Diversity Loss (L4 and £aed) (b) Lea (Eq. @) aims
to learn the embedding in S of all old data, bringing it closer to fy, while (¢) Lqcq (Eq. [11)) guides the generator
G to produce new data that is distant from f, thus enhancing the model’s diversity.

where # € R3*!*! with [ representing the resolution of the training data (e.g., 224 x 224 for
ImageNet or 32 x 32 for CIFAR10/CIFAR100). Note that we use G;x; to specify the generator that
produces [ x [ resolution images. Subsequently, & is stored in a memory pool M and used to jointly
train both the generator and the student network in an adversarial setup Micaelli & Storkey| (2019).
In this setup, the student is trained to approximate the teacher’s predictions on synthetic data by
minimizing the Kullback-Leibler (KL) divergence loss between 7 (&) and S(&).

Us =S(2); yr=T(2),
Ls = Lxy = KL(Y7,9s). 2

while the generator aims to produce samples that not only align with the teacher’s confidence but
also maximize the discrepancy between the student’s and teacher’s predictions.

EQ = O‘ce‘CCE('gTa 'g) - aad'uKL(yTv 'gS) + O‘ImEBN(T(a}))' (3)

In this framework, Lcg represents the Cross-Entropy loss, training the student on images within
the teacher’s high-confidence regions. In contrast, the negative L,4,, term encourages exploration
of synthetic distributions, enhancing knowledge transfer from the teacher to the student. Here, the
student network acts like a discriminator in GANS, guiding the generator to produce images that the
teacher has mastered but the student has yet to learn, thereby focusing the student’s development
on areas where it lags behind the teacher. Additionally, we apply batch norm regularization (LgN)
Yin et al.| (2020); Fang et al.|(2022), a standard DFKD loss, to align the mean and variance at the
BatchNorm layer with its running mean and variance. This adversarial setup facilitates the efficient
exploration of synthetic distributions for effective knowledge transfer between the teacher and the
student.

In comparison with previous works, our method first proposes generating key region data generation
at a lower resolution, which synthesize data with high class activation score (Section . Next, we
introduce two techniques to further improve the diversity of our models (Section ﬁrinally, the
overall process is summarized in Section [3.3]

3.2 KEY REGION DATA-FREE GENERATION AT LOWER-RESOLUTION

A major limitation of previous approaches is their generation of synthetic images at high resolutions
(224 x 224) without incorporating information from real images. This leads to images with signifi-
cant noise, lacking the class-specific features essential for effective knowledge transfer, as illustrated
in Figure Th-c.

Key Region Lower-Resolution Data Generation. To address these limitations, we propose gener-
ating synthetic images at lower resolutions.

z :g3><e><e(Z(fy))7 (4)

where & € R3*¢X¢ and e is the target resolution (i.e., e < I).
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To ensure that the synthetic images & capture important information, we propose maximizing their
CAM with the target map, which contains high values of class activation. First, we use the classic
CAM method Zhou et al.|(2016) to generate the matrix M (&, g) for the image & and class y:

M(&,9) =Y wiTe(@,9), 5)
k

where w is the k™ weight in the final classification head for class 9, and 7T}, is the k™ feature map
in the final layers of the model. Note that we only use the latent matrix of CAM, which is before the
normalization and interpolation into full-resolution images. Then, the loss function Lg is modified
with additional key region loss (L) as follows:

»Cg = aeelce + QadvLadv + wnLon + QprLir,

Ly = Z (max{0, Mgt — M (2, 9)}). ©)
h,weM

In this context, Mg is a predefined mask with high values at the center and lower values at the
borders, it like a Gaussian centered on the image, guiding the generator to produce the desired
activation map M (&, g). We conducted an ablation study in the appendix |G| demonstrating that the
Gaussian mask with maximum value at 1 and a standard deviation of 2 yield the best results.

By using a margin loss to define L., we encourage the values in M (&, §) to only sufficiently exceed
those in Mg, avoiding excessively high values that could negatively impact image quality while
concentrating the important values of M (&, §) near the center. Finally, the sum of all pixel values
in the tensor is used as L.

Thanks to the use of lower-resolution images with key region loss, as shown in Figure [Tk, generat-
ing lower-resolution images improves accuracy by enabling the generator to capture critical features
more effectively. Figure|ld further illustrates the substantial reduction in training time, highlighting
the efficiency gains of this approach. Together, these findings underscore the advantages of low-
resolution synthetic images in enhancing both performance and computational efficiency in DFKD
for high-resolution datasets. For example, with only 9 hours of training, our K-Gen achieves 24.25%
accuracy, significantly outperforming Deeplnv, which reaches only 3.15% after 61.2 hours of train-

ng.
3.3 KEY REGION GENERATION FOR VISION TRANSFORMER

A key challenge in our approach is training the student model with lower-resolution images, which
are then tested on full-resolution data. This is particularly challenging for patch-based models, such
as Vision Transformer (ViT) and its variants |Dosovitskiy| (2020); [Touvron et al.| (2021), that do not
rely on CNN architectures. Furthermore, the Class-Activation Map also cannot be extracted for
ViT-based model. To address this, we propose reducing the number of patches input into the Vision
Transformer. With the standard patch size of 16 x 16 used by ViT and our chosen image resolution
of 112 x 112, we generate a 7 x 7 grid of patches instead of the original 14 x 14. Details of this
technique are provided in the Appendix[A.1]

3.4 IMPROVED MODEL DIVERSITY

While lower-resolution synthetic images enhance computational efficiency, they can also limit the
model’s ability to capture diverse and detailed features, as lower resolutions reduce the space avail-
able for representing such diversity.

Multi-resolution Data Generation. To overcome this challenge, we propose a multi-resolution
generation strategy that synthesizes images at various resolutions, effectively capturing both coarse
and fine-grained features. Given a set of resolutions F, the synthetic data & is generated from each
resolution e ~ E:

T = gexe,eGE(Z(fy))a (7)

Embedding Diversity Loss. Additionally, we introduce embedding diversity techniques to preserve
distinct representations within the latent space, ensuring that rich feature representations are main-
tained even at lower resolutions. These techniques consist of two loss functions, which are used for
training the generator G and the student S, respectively.
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Algorithm 1: K-Gen

Input: pre-trained teacher 7o, student Sp g, generator Gy, , text encoder Ce,, list of labels y and list of
text of these labels Yy,;
Initializing P = {}, M = {};
Store all embeddings f,, = C(Yy) into P;
for & epochs do
for [ iterations do
Randomly reinitializing noisy layers Zy, and pseudo-label 3 for each iteration;
Query fg ~ P;
for g steps do
| Sampling & = Gexe,cer(Z(fy)) and update fg, 0z by minimizing Lg Eq.
M— MUz,

for S iterations do
L Sampling & ~ M and update s by minimizing Ls (Eq. ;

In the student training phase, given a pool of synthetic data & ~ M, the student network S is trained
using the following loss function:

£3 = EKL + aed£ed7 (8)
Leq = max{0, MSE(fs, f,) — i}, ©)

where a.q is a scaling factor, Ly; is computed by Eq. fs is the latent embedding of & in the
student model S, and f,, is the class-specific embedding representative. The purpose of the margin
term is to learn embeddings from the synthetic data pool M that are close to the class representative
embedding f, of the original data. Inspired by Tran et al|(2024a), we use the margin loss to

encourage fs to stay within an inner radius r;, while preserving its intrinsic distance characteristics.

In the generator training phase, on the other hand, the generator aims to produce a new batch of
synthetic data that is positioned far from the class embedding f,,. Similar to Ly, we apply a margin
loss to ensure that the embedding of & in the teacher model 7 does not deviate excessively from the
desired distribution.

EQ = acelce + QadvLadv + wnLon + QprLir + AaedLacd (10)

Loeq = max{0,7, — MSE(fs, fy)} (11)
where 7, > r; represents the outer radius, and « are scaling parameters.

We now explain how the cooperation between the generator and student in the embedding in-out
game, achieved by minimizing L£s and Lg, promotes embedding diversity. Specifically, by mini-
mizing L.4 during student training, the model learns to keep the latent embeddings of all previous
data within an inner radius around f,, positioning them closer to f, (Figure [2|(b)). In contrast,
Lqeq guides the generator G to produce new data with latent embeddings that are distant from f,
(Figure[2)(c)). This setup encourages the new data to differ from the old data in latent space, thereby
enhancing the diversity of the latent embeddings.

Choosing Class Representative Embedding f,. The embedding f, plays a crucial role in pro-
moting embedding diversity, and we consider two options for selecting f,. First, since we use
the generator from NAYER [Tran et al.| (2024b) as our baseline, we propose using the label text
embedding as f,. Second, when the label text embedding is unavailable, we use the mean of the
embeddings in 7 from the first batch as f,,. Both options serve as class representative embeddings.
We conducted an ablation study Appendix |G| showing that both methods are comparable, with the
label text embedding yielding slightly better performance.

3.5 OVERALL ARCHITECTURE

The overall architecture of K-Gen is shown in Figure [2] and the pseudo code can be found in Algo-
rithm|[1] First, K-Gen embeds all label text using either via text encoder or as the mean of T. Then,
our method undergoes training for £ epochs. Each epoch consists of two distinct phases:

(i) The first phase involves training the generator. In each iteration I, as described in Algorithm
the noisy layer Z is reinitialized (line 5) before being used to learn the label text embedding
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Table 1: Distillation results of our K-Gen (multi-resolution) and K-Gen-S (single-resolution) are compared
with SOTA DFKD methods—NAYER [Tran et al.| (2024b), Fast100 Fang et al.| (2022) (100 generation steps),
and Deeplnv |Yin et al.|(2020)—across datasets (Imagenette, Imagewoof, ImageNet1k) at various data memory
ratios. Evaluations cover two common distillation pairs: ResNet50 to MobileNetV2 and ResNet34 to ResNet18.
Bold and underlined numbers denote the highest and second-highest accuracies, respectively. Results report
the mean accuracy over 3 runs.

Dataset | Tmagenetee
Teacher - Student ‘ ResNet50 (92.86) - MobileNetV2 (90.42) ResNet34 (94.06) - ResNet18 (93.53)
Data Memory Ratio | 1% 5% 10% 20% | 1% 5% 10% 20%

Deeplnv|Yin ctal|(2020] | 6.71(4.8h)  26.02(6.1h)  3531(8.7h)  47.02(13.6h) | 6.03(3.2h) 2508 (4.9h)  34.04 (6.4h)  44.65(9.5h)
Fast100[Fang et al. (2022} | 8.92(0.5h)  29.18(0.5h)  39.12(0.8h)  51.43(1.4h) | 8.51(0.3h)  2832(0.5h)  38.25(0.6h)  49.11(1.0h)
NAYER(Tran et al.|(2024b] | 9.54(0.5h)  31.28(0.5h) 4224 (0.8h) 5426 (1.4h) | 9.35(0.3h)  32.17(0.5h) 4257 (0.6h)  52.72(1.0h)

K-Gen-S (Ours) 35.32(0.5h)  80.11 (0.5h) 87.21 (0.8h) 88.53 (1.4h) | 34.52(0.3h)  80.32 (0.5h) 86.67 (0.6h) 88.25 (1.0h)
K-Gen (Ours) 36.16 (0.8h)  81.21 (0.8h) 88.12 (1.2h) 89.21 (2.1h) | 35.21(0.5h)  82.21 (0.8h) 87.21 (1.1h) 88.72 (1.5h)
Dataset | Imagewoof

Teacher - Student ‘ ResNet50 (86.84) - MobileNetV2 (82.69) ResNet34 (83.02) - ResNet18 (82.59)

Data Memory Ratio 1% 5% 10% 20% 1% 5% 10% 20%

Deeplnv|Yin et al.|(2020} 3.68 (2.7h) 13.26 (5.4h) 21.34 (7.9h) 36.01 (14.9h) | 3.42(2.8h) 12.62 (5.1h) 20.97 (7.8h) 32.42 (10.8h)
Fast100|Fang et al. (2022} 5.42 (0.3h) 15.11 (0.5h) 23.45 (0.8h) 38.92 (1.4h) 5.21 (0.3h) 14.24 (0.5h) 23.54 (0.8h) 35.72 (1.1h)
NAYER[Iran et al.|(2024b} | 6.99 (0.3h) 16.72 (0.5h) 27.43 (0.8h) 40.21 (1.4h) 6.72 (0.3h) 15.62 (0.5h) 25.27 (0.8h) 38.25 (1.1h)

K-Gen-S (Ours) 21.25(0.3h)  36.24 (0.5h) 71.42 (0.8h) 74.53 (1.4h) | 20.52(0.3h)  36.25 (0.5h) 59.85 (0.8h) 73.74 (1.1h)
K-Gen (Ours) 22.43(0.5h)  37.51(0.8h) 72.11 (1.2h) 75.12 (2.1h) | 21.12(0.5h)  37.31 (0.8h) 60.04 (1.2h) 74.52 (1.5h)
Dataset | ImageNet1k

Teacher - Student ‘ ResNet50 (80.86) - MobileNetV2 (71.88) ResNet34 (73.31) - ResNet18 (69.76)

Data Memory Ratio 1% 5% 10% 20% 1% 5% 10% 20%

Deeplnv|Yin et al.|(2020] | 3.15(61.2h)  14.07 (226.3h)  19.01 (385.0n) 22.17 (642.7h) | 1.84 (49.6h) 13.06 (183.1h) 17.41 (308.3h) 23.03 (517.9h)
Fast100[Fang ct al. (2022} | 4.78 (6.3h) 1658 (23.5h)  22.12(39.2h)  25.25(65.6h) | 3.63 (5.1h)  1552(18.8h)  20.12(31.4h)  25.96 (52.5h)
NAYER(Tran et al.|(2024b] | 6.32(6.3h)  19.78 (23.5h)  25.43(39.2h)  28.12(65.6h) | 5.81 (5.1h)  18.86(18.8h)  23.98 (31.4h)  28.11 (52.5h)
K-Gen-S (Ours) 2241(6.3h) 40.63(235h) 4625 (39.2h)  53.24 (65.6h) | 22.32(5.1h)  40.82 (18.8h)  45.95 (31.4h)  53.96 (52.5h)
K-Gen (Ours) 2425(9.3h) 4224 (30.1h) 47.12(58.5h) 54.41(80.4h) | 24.16 (7.5h) 42.84 (24.1h)  47.13(46.8h)  54.98 (64.3h)

fy. The generator and noisy layer are then trained over g steps using Eq. to optimize their
performance (line 8).

(i) The second phase involves training the student network. To mitigate the risk of forget-
ting—which arises in prior DFKD methods like MAD and KAKR that generate, use, and
discard synthetic data in each iteration—all generated samples are stored in the memory mod-
ule M (line 9), following the strategy proposed in [Fang et al.| (2022). The student model is
then trained using Eq. [§]over S iterations, utilizing samples from M (lines 10 and 11).

3.6 DATA MEMORY RATIO AND COMPARISON FAIRNESS IN DFKD

Training on high-resolution datasets like ImageNet is computationally intensive, particularly with
synthetic data generation |Yin et al.[(2020); Tran et al.| (2024b)). To manage this, we cap the amount
of synthetic data used to train the student model [Liu et al.|(2024), following practices in Continual
Learning |Li et al.| (2023ajb) and Federated Learning Tran et al.| (2024a)); Zhu et al| (2021). We
evaluate various data memory ratios on ImageNetlk and its subsets; for instance, a 10% ratio yields
100k samples over 1 million training samples at 224 x 224 resolution.

Lower-Resolution Images for Efficiency. We propose generating lower-resolution images (e.g.,
112 x 112, 96 x 96), which reduces storage and computation. For example, one 224 x 224 image is
equivalent to four 112 x 112 or five 96 x 96 images in terms of resource usage. This allows K-Gen
to generate more samples, for example, 40k 112 x 112 images in a 10% ratio, without increasing
memory or training time.

Single vs. Multi-Resolution Variants. K-Gen can use mixed resolutions (e.g., 25k 96 x 96 +
20k 112 x 112) at the same compute cost as 40k 112 x 112 images. However, due to PyTorch
inefficiencies, multi-resolution training is slower. Thus, we report both K-Gen (multi-resolution) and
K-Gen-S (single-resolution) results. Further details and ablation studies are provided in Appendix.

Is Using More Labels and Lower-Resolution Images in DFKD Fair? We argue that utilizing a
larger number of lower-resolution images and labels, while keeping the total Data Memory Ratio
constant, is entirely fair. For example, using 40k synthetic images at 112 x 112 resolution instead of
10k images at 224 x 224 maintains equivalent memory usage and computational cost. This is because
the image generation process operates at the pixel level, and generating four 112 x 112 images
involves similar time, training effort, and memory consumption as generating one 224 x 224 image.
Furthermore, all data and labels are synthetically generated by our model, without requiring
any external data collection or manual annotation. The increase in the number of labels does not
translate to additional supervision or unfair advantage. Indeed, several prior works have employed
significantly more labels—up to ten times as many—without such concerns being raised |Yu et al.
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Table 2: The distillation results for the CIFAR10, CIFAR100 and TinylmageNet datasets compare various
methods, following the setup of [Tran et al. (2024b). The table presents the accuracy achieved by different
student models with various architectures, such as ResNet (R) He et al.| (2016)), VGG (V) [Simonyan & Zisser-
man| (2014), and WideResNet (W) |Zagoruyko & Komodakis|(2016)). The results from compared methods are
collected at(Tran et al.| (2024b).

CIFAR10 CIFAR100 TinyImageNet

Method R34  W402 W402 W402 V11 R34 W402 W402 W402 Vil R34

R18 WI162 WI161 W401 R18 R18 WI162 WI161 W401 RI18 R18
Teacher 9570 9487 9487 94.87 9225 7794 7783 7583 75.83 71.32 66.44
Student 9520 9395 91.12 9394 9520 77.10 7356 6531 7219 77.10 64.87
Deeplnv|Yin et al.|(2020) 9326 89.72 83.04 86.85 9036 61.32 61.34 53777 6858 54.13
DFQ|Chot et al.|(2020) 94.61 92.01 86.14 91.69 90.84 77.01 6479 5127 5443 66.21
ZSKTMicaelli & Storkey|(2019)  93.32  89.66 83.74 86.07 89.46 67.74 5459 36.60 53.60 54.31 -
CMIFang et al.|(2021) 9484 9252 90.01 9278 91.13 77.04 6875 5791 68.88 70.56 64.01
PREKD Binici et al.|(2022b) 93.41 - - - - 76.93 - - - - 49.94
MBDFKD|Binici et al.|(2022c) 93.03 - - - - 76.14 - - - - 47.96
FM |Fang et al.|(2022) 94.05 9245 8929 9251 90.53 7434 6512 5402 6391 6744 -
MAD|Do et al.|(2022) 9490 92.64 - - - 77.31  64.05 - - - 62.32
KAKR_MB |Patel et al.|(2023) 93.73 - 77.11 - 47.96
KAKR_GR |Patel et al.|(2023) 94.02 - - - - 7721 - - - - 49.88
SpaceshipNet|Yu et al.|(2023) 95.39 9325 9038 93.56 9227 7741 6995 5806 68.78 71.41 64.04
NAYER Tran et al.|(2024b) 9521 9407 9194 9415 9237 7754 7172 6223 71.80 7175 64.17
K-Gen-S 9536 9435 9227 9437 93.02 77.64 7221 62.87 72.01 71.94 64.41
K-Gen 9541 9439 9232 9444 9320 77.78 7231 6292 7213 7211 64.54

(2023); [Patel et al.| (2023). Hence, we affirm that our comparison adheres to fair and consistent
evaluation standards.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

For high-resolution datasets, we evaluated our method using two commonly used backbone pairs:
ResNet34/ResNet18 He et al.| (2016) and ResNet50/MobileNetV2 Sandler et al. (2018), on Ima-
geNetlk Deng et al.| (2009), which comprises 1,000 object categories and over 1.2 million labeled
training images. We also included its subsets, ImageNette and ImageWoof |Howard| (2019b), each
consisting of 10 specific subclasses. For low-resolution datasets, we conducted experiments using
ResNet, VGG |Simonyan & Zisserman| (2014), and WideResNet (WRN) [Zagoruyko & Komodakis
(2016) across CIFAR-10, CIFAR-100 |Krizhevsky et al| (2009), and Tiny ImageNet |Le & Yang
(2015). Additional details on all datasets used in this paper, the architectures, parameter settings,
parameter sensitivity and further analysis can be found in the Appendix|[C]

4.2 RESULTS AND ANALYSIS

Comparison on High-resolution Datasets (> 100k Pixels). Table[T|presents the distillation results
across multiple datasets, including Imagenette, Imagewoof, and ImageNetlk (3 x 224 x 224 pixels),
comparing the performance of K-Gen-S and K-Gen with existing methods such as Deeplnv |Yin
et al.[ (2020), Fast100 [Fang et al.| (2022), and NAYER |Tran et al.[| (2024b) at varying data memory
ratios. Overall, both K-Gen and K-Gen-S consistently achieve superior performance, with at least
a two-digit improvement in all comparison cases, while still maintaining low training time. This
performance gain can be attributed to the use of multi-resolution strategies and key region generation
techniques, which are particularly beneficial for high-resolution datasets like ImageNetlk and its
subsets. These results clearly demonstrate the effectiveness of our proposed approach.

Comparison on Low-resolution Datasets (= 1k Pixels). We also conducted experiments on low-
resolution datasets such as CIFAR-10, CIFAR-100, and TinyImageNet, in Table @ The results
demonstrate the strong performance of both K-Gen and K-Gen-S compared to existing methods.
However, the performance gains in these tasks are less pronounced than those observed on high-
resolution datasets. This can be attributed to two main factors: (1) the current accuracy on these
low-resolution datasets is already close to the upper bound defined by the teacher model, and (2) our
proposed techniques are primarily designed to enhance distillation performance on high-resolution
data, making them less effective for lower-resolution datasets like CIFAR-10.

Comparison on Mega-resolution Datasets (> 1M Pixels). To further assess the generalizabil-
ity of our method, we evaluate K-Gen on two additional mega-resolution datasets: Traffic Sign
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Table 3: Additional results on mega-resolution Table 4: Ablation studies for all combinations of the
datasets. K-Gen outperforms NAYER across all set- proposed components with the Data Memory Ratio at

tings under varying data memory ratios. 5%.

Method Traffic Sign Recognition Megapixel MNIST Method Imagenette Imagewoof ImageNetlk

(1200 x 1600 pixels) (1500 x 1500 pixels) NAYER 32.17 15.62 18.86

10% 20% 10% 20% +SRG 41.13 19.71 23.87

- +SRG+KR 77.62 3322 37.41

Teacher/Student  CNN (84.1)/CNN (84.) CNN 919)/CNN(919)  [epctiep kD (K-GenS) 8032 3625 1082

Fast100 41.67 54.12 49.12 58.21 +MRG 46.25 22.14 24.95

NAYER 4823 57.32 52.47 63.91 +MRG+KR 79.92 36.92 39.81

K-Gen 7243 77.56 78.24 84.12 +MSG+KR+ED (K-Gen) 82.21 37.31 42.84

Recognition (3 x 1200 x 1600 pixels) [Katharopoulos & Fleuret| (2019) and Megapixel MNIST
(1 x 1500 x 1500 pixels)|Katharopoulos & Fleuret| (2019). As shown in Table K-Gen consistently
outperforms the baseline method NAYER across both datasets and under varying data memory ra-
tios (10% and 20%). On the Traffic Sign Recognition task, K-Gen achieves notable improvements
of over 20% in nearly all cases. These results demonstrate that K-Gen scales effectively to complex,
mega-resolution visual tasks, opening the door to broader applications of the field in high-resolution
vision domains.

4.3 FURTHER ANALYSIS

Ablation Study: Components Analysis. To better understand the contribution of each component
in our proposed method, we conduct a comprehensive ablation study under a consistent Data Mem-
ory Ratio of 5%, as shown in Table[d] Starting from the baseline (NAYER), we incrementally add
our proposed modules: SRG (Smaller-Resolution Generation) which only generate smaller resolu-
tion image with KR loss, KR (Key Region Data Generation, Section[3.2), ED (Embedding Diversity
Loss, Section @ and MSG (Multi-Resolution Data Generation, Section @]) The experiment
demonstrate that: (1) each component individually enhances performance across all datasets. (2)
the Key Region module plays a crucial role, significantly boosting performance—for example, from
41.13% (+SRG) to 77.62% (+SRG+KR), and from 46.25% (+MRG) to 79.92% (+MRG+KR).

Comparison for ViT Model. To demonstrate the effectiveness of our approach on ViT-based
models, we conducted experiments comparing our K-Gen with NAYER, using DeiT-B (Teacher)
and DeiT-Tiny (Student) on ImageNet-1K. As shown in Table [5] K-Gen outperforms the original
NAYER training, achieving double-digit improvements.

Table 5: Performance Comparison Our K-Gen and NAYER in DeiT-B (Teacher) and DeiT-Tiny (Student) on
ImageNet-1K.

Data Memory Ratio | 1% | 5%

Metric (Accuracy) | Top1(%) Top5 (%) | Top1(%) Top5 (%)
NAYER 4.52 19.45 16.24 43.24
K-Gen 15.24 36.52 28.24 60.24

5 CONCLUSION

In this paper, we propose K-Gen, a novel approach to overcome the limitations of traditional DFKD
methods on high-resolution datasets. K-Gen synthesizes lower-resolution images guided by Class
Activation Maps to preserve class-specific features, reducing noise and computational cost, partic-
ularly on large-scale datasets like ImageNet1K. Through multi-resolution synthesis and embedding
diversity, K-Gen enriches learned representations and boosts student model performance. Experi-
ments show that K-Gen achieves state-of-the-art results with double-digit gains on ImageNet1K and
remains effective on mega-resolution datasets (over one million pixels), enabling broader applica-
tions in vision field.

Limitation and Future work: Our paper employs a customized version of the classic CAM, de-
signed to facilitate backpropagation in obtaining the activation matrix. This approach opens the
door to exploring other techniques, such as Grad-CAM [Selvaraju et al.| (2017)) or attention-based
scores |[Leem & Seol (2024), to further enhance the task. Additionally, optimizing multi-resolution
techniques for faster processing times presents another promising direction for improvement.
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A APPENDIX

A.1 LOWER-RESOLUTION IMAGE FOR VISION TRANSFORMER

A key challenge in our approach is training the student model with lower-resolution images, which
are then tested on full-resolution data. This is particularly challenging for patch-based models, such
as Vision Transformer (ViT) and its variants Dosovitskiy| (2020); [Touvron et al. (2021), that do
not rely on CNN architectures. Furthermore, the Class-Activation Map also cannot be extracted
for ViT-based model. To address this, we propose reducing the number of patches input into the
Vision Transformer. With the standard patch size of 16 x 16 used by ViT and our chosen image
resolution of 112 x 112, we generate a 7 x 7 grid of patches instead of the original 14 x 14.
By focusing on the center position embedding, our method, as shown in Table [5] outperforms the
original NAYER training, achieving improvements of over two percentage points. Details of this
technique are provided in the Appendix [A.T]

To illustrate the patch-reduction strategy mathematically, consider the input image resolution H x
W. The Vision Transformer (ViT) splits the image into patches of size P x P, resulting in a grid
of % X % patches. For the standard ViT, with P = 16, and full-resolution images H = 224 and
W = 224, the number of patches is:

H W 224 224
NpatChes - F . F = E . E =14-14 = 196. (12)
For our approach, we reduce the resolution to H = 112 and W = 112, while maintaining P = 16.
This results in:

H W 112 112
= 2.2 =7.7=49. (13)

Npalches = f ' F = ﬁ 16

Position Embedding. Let the index matrix Z be a 10 x 10 grid, where both row and column values
range from 2 to 12:

12
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ZT={(re)|2<r<12,2<¢< 12}

We randomly select the center index peenter = (Plenters Plenter) from this grid with a bias toward the
center, particularly around indices 7 and 8 for both rows and columns. The probability of selecting
the center indeX Pcenter 1S given by:

1

P(peenter) ¢
comer 1 + )\ : (|p€CntCr - 7|2 + |pgenter - 7|2)7

where:

* (Plenters Plenter) are the indices in the grid,

e )\ is a parameter that controls the steepness of the decay, influencing how strongly the
selection is biased toward the center,

| Plenier — 712 + [PConier — 7| Tepresents the squared Euclidean distance from the center index

)

This formulation ensures that the selection probability decreases as the distance from the center
increases, making the center indices (7, 7) and (8, 8) more likely to be chosen.

Patch Index Mapping. After selecting the center index peener = (7, ), the synthetic image patches
are indexed relative tO Deenter- Let p; represent the index of the patch. The patch indices p; are
determined by an offset from pceneer. For a patch size of P x P, the patch index p; is defined as:

pi = (pgenter + AT& pgenter + AC),

where Ar, Ac € {—P,0, P} and are the offsets applied to the center index peener- This allows the
selection of patches in a surrounding area around the center index peenter- This approach ensures that
patch indices closer to the center are more likely to be selected, with the probability decreasing as
the distance from the center increases.

Attention Map as a Replacement for CAM: In ViT-based models, the attention map with respect
to the [CLS] token can serve as a substitute for Class Activation Maps (CAM), which typically
do not function effectively in ViT architectures. In fact, they share a similar ability to highlight
class-relevant regions, enabling effective visual explanations.

B DATASETS

Table [6] summarizes all the datasets used in our paper, including three low-resolution, three high-
resolution, and two mega-resolution datasets.

Table 6: Overview of benchmark datasets categorized by resolution.
Dataset Image Size  #Classes #Train Images #Test Images

Low-Resolution Datasets

CIFAR-10|Krizhevsky et al.|(2009) 32x32x3 10 50,000 10,000

CIFAR-100|Krizhevsky et al.|(2009) 32x32x3 100 50,000 10,000

Tiny ImageNet|Le & Yang|(2015) 64x64x3 200 100,000 10,000
High-Resolution Datasets

ImageNette Howard |(2019a) 224x224%3 10 9,469 3,925

ImageWoof|Howard|(2019b) 224x224x3 10 9,902 3,926

ImageNet-1k|Deng et al.|(2009) 224x224x3 1,000 1,281,167 50,000
Mega-Resolution Datasets

Traffic Sign Recognition|Katharopoulos & Fleuret|(2019) 1200x1600x3 4 747 684

Megapixel MNIST (Max Digit Recognition)|Katharopoulos & Fleuret|(2019)  1500x1500x1 10 5000 1000

C TRAINING DETAILS

In this section, we provide the details of model training for our methods, including Teacher Training,
Generator, and Student Training.

13
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C.1 TEACHER MODEL TRAINING DETAILS

In this work, we utilized the pretrained ResNet-50 and ResNet-34 models from PyTorch, trained
on ImageNetlk, and trained them from scratch on the ImageNette and ImageWoof datasets. For
CIFAR-10/CIFAR-100, we employed pretrained ResNet-34 and WideResNet-40-2 teacher models
from [Fang et al.| (2022)); Tran et al.| (2024b). The teacher models were trained using the SGD opti-
mizer with an initial learning rate of 0.1, momentum of 0.9, and weight decay of 5e-4, with a batch
size of 128 for 200 epochs. The learning rate decay followed a cosine annealing schedule.

C.2 GENERATOR TRAINING DETAILS

To ensure fair comparisons, we adopt the generator architecture outlined in |[Fang et al.| (2022); [Tran
et al.|(2024b)) and the Noisy Layer (BatchNormlD, Linear) as described in|Iran et al.|(2024b)
for all experiments. This architecture has been proven effective in prior work and provides a solid
foundation for evaluating the performance of our model. The generator network is designed to learn
rich feature representations while maintaining computational efficiency. The details of the generator
architecture, including layer specifications and output sizes, are provided in Table [/} Additionally,
we use the Adam optimizer with a learning rate of 4e-3 to optimize the generator, ensuring stable
convergence during training.

Table 7: Architecture of the Generator Network (G), detailing the sequence of operations and layer sizes from
input to output. The network includes linear transformations, spectral normalization in convolution layers,
batch normalization, leaky ReLU activations, upsampling, and a sigmoid activation for the output. Output
dimensions at each layer are shown in relation to the input height (h) and width (w), with intermediate feature
maps gradually upscaled to the final 3 X h X w generated image.

Output Size Layers

1000 Input

128 x h/4 x w/4 Linear

128 x h/4 x w/4 BatchNormlD

128 x h/4 x w/4 Reshape

128 x h/2 x w/2 SpectralNorm (Conv (3 x 3))
128 x h/2 x w/2 BatchNorm2D

128 x h/2 x w/2 LeakyReLU

128 x h/2 x w/2 UpSample (2x)

64 X h X w SpectralNorm (Conv (3 x 3))
64 x h x w BatchNorm2D

64 X h x w LeakyReLU

64 X h X w UpSample (2x)

3Xxhxw SpectralNorm (Conv (3 x 3))
3X hxw Sigmoid

3X hxw BatchNorm2D

C.3 STUDENT MODEL TRAINING DETAILS

In all experiments, we adopt a consistent approach for training the student model. The batch size is
set to match the Synthetic Batch Size, and the AdamW optimizer is used with a momentum of 0.9
and an initial learning rate of le-3. To further optimize training, a lambda scheduler is employed to
adjust the learning rate dynamically throughout the training process.

C.4 OTHER SETTINGS

We trained the model for £ epochs, incorporating a warm-up phase during the first 10% of &, as
outlined in the settings defined in |[Fang et al.| (2022); [Tran et al.,| (2024b)). This warm-up phase
gradually increases the learning rate to stabilize training early on. Additionally, the model was
trained with the specified batch size and other hyperparameters, which were carefully selected to
ensure optimal performance. Further details regarding these parameters, including their values and
any adjustments made during the training process, are provided in Table
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Table 8: The hyperparameters used in our methods across five different datasets are detailed below. Image
Resolution and Synthetic Batch Size refer to the resolution and batch size of synthetic images generated by
our methods. Notably, in the case of K-Gen, two different resolutions are used, and their batch sizes are adjusted
based on their scales. Other key parameters include: S, the number of training steps for optimizing the student
model, scaled based on the data memory ratio (d,); I, the number of times a batch of images is generated per
epoch; and g, the training steps for optimizing the generators. Additionally, the following hyperparameters
were fixed for all experiments: ace = 0.5, apn, = 10, agqr = 1.3 (as in|Iran et al.|(2024b)). Furthermore,
in our paper, we propose the following parameters, which are also fixed for all experiments (their parameter
sensitivity analysis can be found in Section [D.7): axr = 0.1 (for Key Region Loss); ceq = 10, dtaea = 5,
r; = 0.015, and r, = 0.03 (for Embedding Diversity).

Method Image Resolution Synthetic Batch Size S I g Epoch &
K-Gen-S 96 x 96 100
ImageNettee/ImageWoof cn 50xd, 5 100 100
K-Gen [96 x 96, 112 x 112] [50, 40]
K-Gen-S 112 x 112 200
ImageNetlk 200xd, | 20 100 400
K-Gen [112 x 112, 128 x 128] [200, 150]
K-Gen- 2 2 2
CIFAR10/CIFAR100 Gen-S 8 x 28 60 2xd, | 20 | 40 | 400
K-Gen [28 x 28, 32 x 32] [130, 100]
. K-Gen-S 32 x 32 200
TinyImageNet 50xd, 5 100 100
K-Gen [32 x 32, 48 x 48] [200, 100]
. L. X K-Gen-S 112 x 112 260
Traffic Sign Recognition/Megapixel MNIST 50xd, 5 100 100
K-Gen [112 x 112, 128 x 128] [200, 150]

D FURTHER ABALATION STUDY

D.1 COMPARASION IN HIGHER DATA MEMORY RATIOS.

To further demonstrate the benefits of our methods, we also conducted experiments on higher data
memory ratio settings, as shown in Figure [3p-b. The results indicate that our methods achieve higher
accuracy across all ratio settings on both the Imagenette and Imagewoof datasets. Particularly at
lower ratios, the difference is significant. For example, at a ratio of 20% on Imagenette, our K-Gen
method achieves an accuracy approximately 40% higher than the compared methods. These results
demonstrate the effectiveness of our models.

90 80
~80 ~70
X X
> 70 <60
3 @
5 60 530
E —o— Fast §40 Fast
50 NAYER 30 NAYER
40 K-Gen o K-Gen
20 40 60 80 100 20 40 60 80 100
Ratio (%) Ratio (%)
(a) Imagenette (b) Imagewoof

Figure 3: The accuracy at data ratios from 10% to 100% is shown for the teacher (ResNet34) and student
(ResNet18) models.

D.2 TRAINING TIME FOR LOW-RESOLUTION DATASET

As shown in Table@], while achieving SOTA accuracy, our K-Gen (9.45h) and K-Gen-S (6.84h) also
have comparable runtimes to previous methods like NAYER (6.78h) and Fast10 (7.02h), while being
significantly faster than Deeplnv (31.24h) and CMI (24.01h).

Table 9: Comparing training times in hours using a single NVIDIA A100 for DFKD methods on CIFAR-10
and CIFAR-100 with the teacher/student models WRN40-2/WRN16-2.

Deeplnv CMI DFQ ZSKT MAD SpaceshipNet Fast10 NAYER K-Gen-S K-Gen
CIFARIO 89.72(31.23h)  92.52(24.01h) 92.01 (3.31h) 89.66 (3.44h) 92.64 (13.13h) 93.25 (14.48h) 92.31(7.02h) 94.07 (6.78h)  94.15 (6.84h)  94.25 (9.45h)
CIFAR100 61.34 (31.23h)  68.75(24.01h)  64.79 (3.31h)  54.59 (3.44h)  64.05 (26.45h)  69.95 (29.24h)  68.25 (7.56h) ~ 71.72(7.22h)  72.12(7.25h)  72.32(9.86h)
Avergaing Speed Up 1.00x 1.30x 9.73x 9.08x 1.78x 14.17x 7.46x 4.29x 4.47x 3.17x

D.3 EFFECTIVENESS OF EMBEDDING DIVERSITY LOSS.

Figure dp shows that K-Gen with Embedding Diversity Loss consistently outperforms without ED
at all data memory ratios, especially at lower ratios (1% and 5%), emphasizing ED’s crucial role.
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Additionally, Figure [@p illustrates that new data typically occupies a distinct region in latent space,
enhancing model diversity.
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(a) Comparison of K-Gen with/without ED (b) t-SNE Diagram

Figure 4: (a) Accuracy of our K-Gen method with and without Embedding Diversity (ED) for ResNet34 and
ResNet18. (b) t-SNE visualization of the embeddings: synthetic data from the M pool (blue) and newly
generated data (red).

D.4 EFFECTIVENESS OF LOWER-RESOLUTION.

In Table [T0] we present the accuracy of our methods with different image resolutions. The results
clearly show that the accuracy of models decreases significantly when the resolution is either too
small (64 x 64) or too large (224 x 224), with the highest accuracy achieved at 96 x 96. This
illustrates the importance of selecting an appropriate resolution for synthetic data, balancing both
computational efficiency and model performance.

Resolution (R x R) 224 192 144 128 112 96 80 64

With Ly, 37.27 40.65 65.25 7021 7821 80.32 77.21 40.21

Without Ly, 32.17 3426 5821 6521 7225 7512 7123 3491
Table 10: Performance comparison across multiple data resolutions in Imagenette (ResNet34/ResNet18 case)
with the same Data Memory Ratio at 5%.

D.5 EFFECTIVENESS OF KEY REGION DATA GENERATION.

As shown in Table[T0] adding the key region loss term, Ly, improves performance, particularly at
intermediate resolutions like 128 x 128 and 112 x 112. At these resolutions, the model achieves
70.21% and 78.21% accuracy, outperforming settings without L, by 5-6 percentage points, high-
lighting its effectiveness, especially at lower resolutions.

D.6 EFFECTIVENESS OF MULTI-RESOLUTION DATA GENERATION.

Tables|[T]and[2]demonstrate that K-Gen, using multi-scale data generation, outperforms other distilla-
tion methods in both accuracy and efficiency across various datasets. For instance, on CIFAR10, K-
Gen achieves 94.51% accuracy, surpassing NAYER and SSD-KD. Similarly, on CIFAR100, K-Gen
reaches 75.21%, outperforming K-Gen-S and NAYER, while also delivering superior performance
on Imagenette, showcasing its robustness.

D.7 PARAMETER SENSITIVITY ANALYSIS

All experiments in this section were conducted in ImageNette and ImageWoof (Resnet34/Resnet18)
with ratios at 5% and 10%.

Parameter «,. In Table[T1] we compare the impact of different scale factors on Key Region Loss.
The results show that our methods perform well, achieving higher accuracy with smaller scaling
factors, peaking at a scale factor of 0.1. This can be attributed to the fact that the value of the key
region generation function is high due to direct subtract function, and a smaller scale factor is more
effective for normalizing it.

Parameters o4 and «,.4. Tables @ and@ compare the performance of different values of g
and a,eq on the ImageNette and ImageWoof datasets at 5% and 10% data memory ratio.In both
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Table 11: Comparison of the impact of various scale factors on Key Region Loss, highlighting the optimal
performance achieved with smaller scale factors, peaking at a scale factor of 0.1.

Oy 0.05 0.1 0.2 0.5 1 2

ImageNette (5%)  79.77 80.32 802 79.69 7826 78.63
ImageNette (10%) 86.32 86.67 86.18 85.64 85.16 8541
ImageWoof (5%)  36.03 36.25 35.67 35.66 35.13 35.11
ImageWoof (10%) 59.83 59.85 59.75 59.75 58.17 57.92

tables, the highest accuracy is typically observed at intermediate values of «, with aeg = 10 and
aed = D yielding the best results in most cases. his can be attributed to the fact that at these values,
the mean squared error (MSE) distance between embeddings is significantly small. For instance,
the minimum distance between two label text embeddings is just 0.03, which necessitates a higher
scaling factor to amplify the impact of this term.

Table 12: Performance comparison of different ceq values on the ImageNette and ImageWoof datasets at 5%

and 10% sampling rates. The highest accuracy is achieved at ceq = 10, highlighting the importance of balanc-
ing the scaling factor to minimize MSE distance between embeddings.

Ced 1 2 5 100 20 50
ImageNette (5%)  80.02 79.62 7959 80.12 79.79 80.27
ImageNette (10%) 86.18 8636 86.52 86.77 8591 86.64
ImageWoof (5%) 3577 35.69 36.12 3631 3537 36.13
ImageWoof (10%) 59.52 59.54 59.82 59.91 58.60 59.70

Table 13: Performance comparison of different cv.ca values on the ImageNette and ImageWoof datasets at 5%
and 10% sampling rates. Peak accuracy is observed at c,ed = 5, emphasizing the role of scaling to optimize
the MSE distance between embeddings.

lged 1 2 5 10 20 50

ImageNette (5%)  79.85 79.56 80.42 79.88 80.27 80.25
ImageNette (10%) 86.58 86.01 86.68 85.56 86.17 85.67
ImageWoof (5%) 3572 3528 36.31 35.83 35.04 3596
ImageWoof (10%) 59.35 58.88 59.88 59.54 5947 59.52

Inner Radius ; and Outer Radius r,. In this approach, we follow the method proposed in [Tran
et al. (2024a) to determine the most effective radius. Based on this, we found that the minimum
distance between two label text embeddings is 0.03. Therefore, we define the inner and outer radii
around this value. As shown in Table[T4] the pair of 0.015 (r;) for the inner radius and 0.03 (r,) for
the outer radius yields the highest accuracy. This demonstrates that half of the minimum distance is
optimal for the inner radius of Bounding Loss, similar toTran et al.|(2024al), while the full minimum
distance serves as the most effective outer radius.

Table 14: Comparison of different inner (r;) and outer (r,) radius pairs for Bounding Loss and Marging Loss
for Embedding Diversity terms. The pair of 0.015 for the inner radius and 0.03 for the outer radius achieves
the highest accuracy, demonstrating that half of the minimum distance between embeddings works best for the
inner radius, while the full minimum distance is optimal for the outer radius.

r, i1 0.05 | 0.015 | 0.03 | 0.05 0.1
0.01 76.30 | 80.21 | 80.20 | 80.13 | 76.33
0.03 77.33 | 80.44 | 80.24 | 79.08 | 76.32

0.1 79.17 | 79.07 | 79.16 | 77.46 | 76.42
0.3 78.09 | 78.19 | 78.02 | 77.41 | 76.36
1 76.37 | 76.32 | 76.46 | 76.43 | 76.37

D.8 MIXED RESOLUTION ANALYSIS.

To analyze the robustness of K-Gen under mixed-resolution training, we evaluate its performance
across a wide range of resolution combinations on Imagenette and ImageNetlk with a fixed 5%
data memory ratio, as reported in Tables [I5] and [I6] Each row corresponds to the base training
resolution, while each column indicates the testing resolution. On Imagenette (Table [I3), we ob-
serve a consistent increase in accuracy as the training resolution decreases from 224 to 112, with

17



Under review as a conference paper at ICLR 2026

peak performance (82.21%) achieved at 112 x 112. This suggests that training on moderately lower
resolutions can enhance the generalization capability of K-Gen, particularly in data-scarce settings.
Similarly, on ImageNetlk (Table [I6), the model achieves its highest accuracy of 42.25% when
trained at 128 x 128, demonstrating that K-Gen remains effective even when scaling to more com-
plex and high-resolution datasets. These results highlight K-Gen’s adaptability and efficiency in
handling resolution variability—an essential trait for practical deployment in resource-constrained
or dynamically changing environments.

Table 15: Accuracy of K-Gen with ResNet34/ResNet18 on Imagenette (5% Data Ratio) across various mixed
resolutions. Rows represent training resolution; columns represent testing resolution.

Resolution 192 144 128 112 96 80 64

224 39.86 42.15 50.60 56.18 68.58 58.64 39.32
192 - 4499 58.16 65.17 77.55 68.95 4452
144 - - 65.37 68.78 7832 7227 48.67
128 - - - 70.71 80.32 71.75 53.92
112 - - - - 82.21 81.67 6242
96 - - - - - 78.18 55.45
80 - - - - - - 40.99

Table 16: Accuracy of K-Gen with ResNet34/ResNet18 on ImageNetlk (5% Data Memory Ratio) across vari-
ous mixed resolutions. Rows represent training resolution; columns represent testing resolution.

Resolution 192 144 128 112 96 80 64

224 19.25 2280 32.16 30.76 29.27 27.76 21.67
192 - 2338 37.46 35773 3490 32.09 2791
144 - - 41.11 3835 37773 3486 33.99
128 - - - 42.25 40.75 3793 35.60
112 - - - - 38.19 36.88 33.73
96 - - - - - 3476  28.65
80 - - - - - - 22.40

E OTHER RESULTS

E.1 RESULTS ON SEMANTIC SEGMENTATION.

We further examine the generalization capability of K-Gen by conducting experiments on the
NYUv2 dataset. Unlike prior DFKD methods that generate data at a resolution of 256 x 256, K-Gen
operates at a lower resolution of 128 x 128. Despite this, it consistently delivers better semantic
segmentation performance, as shown in Table[I7}

Although segmentation is widely used to evaluate DFKD methods, its effectiveness is often limited
by poor-quality synthetic data and the difficulty of generating reliable labels. Nevertheless, K-
Gen achieves state-of-the-art results, demonstrating its ability to generalize well even under such
challenging conditions.

Table 17: Performance comparison of K-Gen with existing DFKD methods on the NYUv2 dataset.

Method DFAD DAFL Fast NAYER K-Gen
Synthetic Time  6.0h 399h 0.82h  0.82h 0.82h
mloU 0364 0.105 3.66 3.85 4.01

E.2 ERROR BAR

Table [18[ show that our method consistently achieves higher accuracy across three runs with only
minor standard deviation, demonstrating its robustness. Notably, most prior works (except NAYER)
did not report such statistics, and due to their high computational cost, we were unable to reproduce
their results.
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Table 18: Averaging accuracy and standard deviation in three runs.

CIFAR10 CIFAR100
R34/R18 W402/W162  W402/W161 R34/R18 W402/W162  W402/W161
SpaceshipNet 95.39 93.25 90.38 77.41 69.95 58.06
NAYER 9521 £0.15 94.11£0.18 91.94+£0.15 77.56+0.12 71.724+0.14 62.23 £0.21
K-Gen-S 9525+0.12 94.12£0.13 92.11+£0.09 77.58+0.10 72.01 £0.16 62.78+0.17
K-Gen 9528 £0.11 94.19+£0.11 9220+£0.14 77.70£0.09 72.15+0.18 62.84 +0.20

F ADDITIONAL RESULTS ON X-RAY DATASET (3000 x 3000 PIXELS)

To further assess the generalizability of K-Gen under large domain shift, we evaluate it on a chest
X-ray classification task using a ResNet-18 teacher that attains 71.96% accuracy. In that we keep
all hyperparameter as similar with the experiments in ImageNet. As reported in Table [[9] K-Gen
consistently outperforms both Fast100 and NAYER across 10% and 20% data memory ratios, sub-
stantially narrowing the gap to the full-data teacher despite using only a fraction of the original
images. We also vary the distilled image resolution from 96 x 96 to 112 x 112 and 128 x 128,
and observe that K-Gen remains stable and competitive across these settings, without re-tuning the
loss weights. These results indicate that K-Gen is robust not only to significant domain shift from
natural images to medical X-rays, but also to moderate changes in spatial resolution, supporting its
applicability to real-world medical imaging scenarios.

Table 19: Results on X-ray dataset (3000 x 3000 pixels) [Karargyris et al.|(2021).

Method X-ray Classification

10% 20%
Teacher/Student ResNet-18 (71.96) / ResNet-18 (71.96)
Fast100 48.73 55.10
NAYER 52.84 58.92
K-Gen 66.15 69.84

G FURTHER DISCUSSION

Choosing Target Mask M;q,4¢;. In this section, we compared the performance of different target
masks (Miarger) across various sampling ratios (1%, 5%, 10%, and 20%). The target masks include
Full(n), where the matrix is filled with the value n, and G(z, j), representing Gaussian matrices
with a maximum value of ¢ and a standard deviation of j. As shown in Table 20] the "G(1,2)”
matrix consistently outperforms other configurations, achieving the highest accuracy at all sampling
ratios. While the “Full(1)” and ”G(1,3)” matrices exhibit similar performance, they are generally
outperformed by ”G(1,2)” at most ratios. This indicates that gaussian the matrix is the most effective
approach for this task.

Table 20: Performance Comparison Between Different Target Mask Miqrge¢. In that, Full(n) indidate matrix
is fill by n and G(i,j) mean the Gaussian Matrix with max value of i and 0 = j

Ratio | G(1,2) G(1,3) G(2,2) G(23) G(3,2) G(3,3) Full(l) Full(2) Full(3)
1% 34.52 34.4 33.11 3432  34.26 33.3 33.3 3449 3394
5% 80.32 79.99 78.68 80.11 7939 79.52 78.6 79.67  79.96
10% | 86.67 86.53 86.24 8631 86.44 85.7 86.56  86.12  85.88
20% | 88.25 88.11 87.63 88.25 8738 8745 88.07 87.84 87.85

Choosing Class Representative Embedding f,.We evaluate the impact of using Label Text Em-
bedding (LTE) and Class Center (CC) as the Class Representative Embedding f,. The results in
Table 21| show that K-Gen consistently outperforms NAYER across all settings. Furthermore, the
performance of LTE and CC is comparable, with LTE exhibiting a slight advantage in some cases.
This demonstrates the effectiveness of both configurations, providing flexibility in selecting between
Class Center and Label Text Embedding representations.
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Table 21: Performance comparison of K-Gen (using Class Center (CC) and Label Text Embedding (LTE)).

Dataset Imagenetee Imagewoof
Teacher Resnet34 (94.06) Resnet34 (83.02)
Student Resnet18 (93.53) Resnet18 (82.59)
Ratio 1% 5% 10% 1% 5% 10%
NAYER 9.35 3217 4257 | 6.72 15.62 2527
K-Gen (CC) | 3443 80.22 86.43 | 2035 36.21 59.35
K-Gen (LTE) | 34.51 80.36 86.61 | 2047 36.41 59.62

H VISUALIZATION

Figure[5]shows synthetic images generated by NAYER (a) at 224 x 224 and K-Gen (b) at 112 x 112,
both after 100 generator training steps on ImageNet using ResNet-50 as the teacher. While chal-
lenging for human recognition and differing from real datasets, K-Gen’s lower-resolution images
capture key class-level features, showing superior quality over NAYER [Tran et al| (2024b). In (c),
the CAM for K-Gen’s images reveals high CAM ratios across most pixels, highlighting the benefit
of Key Region Loss.

In addition, Figure[6]provides further qualitative examples of K-Gen on randomly selected ImageNet
classes at 112 x 112 resolution. Across a wide variety of object categories, the generated images
remain low-resolution and abstract, yet consistently preserve class-defining structures (e.g., charac-
teristic shapes, silhouettes, and textures), while backgrounds and non-discriminative regions vary
more freely. Together with Figure[3] these visualizations support our claim that K-Gen concentrates
generative capacity on key regions that are most relevant for the teacher, enabling compact synthetic
datasets that still convey rich class-level information.

e A e -
(a) NAYER’s Image (b) K-Gen’s Image (c) CAM for K-Gen’s Image

Figure 5: (a-b) Synthetic data generated from the ’cassette player’, 'tench’, ’church’, and *English springer’
classes of ImageNetlk, with NAYER (at 224 x 224 resolution) and our K-Gen (at 112 x 112 resolution). (c)
Class activation map for our K-Gen’s images. Please note that the values of the class activation map are shown
before normalization.
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Figure 6: Further visualizations of our K-Gen on randomly selected ImageNet classes at a resolution of 112 x
112 pixels.

I FUTURE WORK

Our paper employs a customized version of the classic CAM, designed to facilitate backpropagation
in obtaining the activation matrix. This approach opens the door to exploring other techniques,
such as Grad-CAM |Selvaraju et al.|(2017) or attention-based scores |Leem & Seo| (2024)), to further
enhance the task. Additionally, optimizing multi-resolution techniques for faster processing times
presents another promising direction for improvement.

J  THE USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) to help with editing this paper. It was only used for
simple tasks such as fixing typos, rephrasing sentences for clarity, and improving word choice. All
ideas, experiments, and analyses were done by the authors, and the use of LLMs does not affect the
reproducibility of our work.
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