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ABSTRACT

Data-Free Knowledge Distillation (DFKD) is an advanced technique that en-
ables knowledge transfer from a teacher model to a student model without re-
lying on original training data. While DFKD methods have achieved success
on smaller datasets like CIFAR10 and CIFAR100, they encounter challenges on
larger, high-resolution datasets such as ImageNet. A primary issue with previ-
ous approaches is their generation of synthetic images at high resolutions (e.g.,
224 × 224) without leveraging information from real images, often resulting in
noisy images that lack essential class-specific features in large datasets. Addi-
tionally, the computational cost of generating the extensive data needed for ef-
fective knowledge transfer can be prohibitive. In this paper, we introduce Key
Region Data-free Generation (K-Gen) to address these limitations. K-Gen gen-
erates only key region of images at lower resolutions while using class-activation
score to ensure that the generated images retain critical, class-specific features.
To further enhance model diversity, we propose multi-resolution generation and
embedding diversity techniques that strengthen latent space representations, lead-
ing to significant performance improvements. Experimental results demonstrate
that K-Gen achieves state-of-the-art performance across both small-, high- and
mega-resolution datasets, with notable performance gains of up to two digits
in nearly all ImageNet and subset experiments. Code is available at https:
//anonymous.4open.science/r/K-Gen-DFKD.

1 INTRODUCTION

Knowledge distillation (KD) Hinton et al. (2015); Zhao et al. (2022) is a technique aimed at training
a student model to replicate the capabilities of a pre-trained teacher model. Over the past decade,
KD has been applied across various domains, including image recognition Qiu et al. (2022), speech
recognition Yoon et al. (2021), and natural language processing Sanh et al. (2019). Traditional KD
methods typically assume that the student model has access to all or part of the teacher’s training
data. However, in many real-world scenarios, particularly in privacy-sensitive fields like healthcare,
accessing the original training data is not feasible due to legal, ethical, or proprietary constraints. In
such cases, conventional KD methods become impractical, necessitating alternative approaches that
do not rely on direct access to the original data.

To address this challenge, Data-Free Knowledge Distillation (DFKD) Yin et al. (2020); Fang et al.
(2021); Yu et al. (2023); Tran et al. (2024a); Patel et al. (2023); Do et al. (2022); Binici et al. (2022a)
has emerged as a promising solution. DFKD transfers knowledge from a teacher neural network (T )
to a student neural network (S) by generating synthetic data instead of using the original training
data. This synthetic data enables adversarial training between the generator and the student Nayak
et al. (2019); Micaelli & Storkey (2019), where the student aims to match the teacher’s predictions on
the synthetic data, while the generator’s objective is to create samples that maximize the discrepancy
between the teacher’s and student’s predictions.

Previous works Yin et al. (2020); Fang et al. (2021); Yu et al. (2023); Tran et al. (2024a); Patel
et al. (2023); Tran et al. (2024b) typically generate synthetic data at the same resolution as the
images used to train the teacher model, a technique that has proven effective on small-scale and
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Figure 1: (a) The previous model fails to capture class-specific features and contains a lot of noisy pixels. (b)
The visualization demonstrates that only a small set of key features is important for classifiers. (c) Our model
generates synthetic images at lower resolutions and leverages CAM to generate pixels in key region, which
contains important information. Comparison of K-Gen and SOTA methods on ImageNet1K: (d) performance
vs. training time and data memory ratio (note that the training time is positively correlated with the data memory
ratio); (e) Performance of K-Gen and NAYER Tran et al. (2024b) with the same image-per-class constraints.

low-resolution datasets like CIFAR10 and CIFAR100 Tran et al. (2024b); Fang et al. (2022). How-
ever, these approaches face significant challenges when applied to larger, high-resolution datasets
such as ImageNet. A primary issue with previous methods is their generation of synthetic images
at high resolutions (e.g., 224 × 224) without incorporating information from real images, leading
to substantial noise and a lack of nuanced, class-specific features critical for effective knowledge
transfer. Additionally, the computational cost of generating the large volumes of synthetic data re-
quired for knowledge transfer can be prohibitively high. For instance, previous methods Yin et al.
(2020) have demanded over 3,000 GPU hours to train on ImageNet1k, yet have achieved only mod-
erate results. As a result, while DFKD methods perform well on smaller datasets, they encounter
substantial limitations when scaled to real-world, large-scale applications.

In this paper, we introduce Key Region Data-free Generation (K-Gen) to tackle the limitations of
traditional DFKD methods. Inspired by the observation that only a small but crucial region of
real images is essential for effective classifier training Zhu et al. (2020); Selvaraju et al. (2017),
K-Gen introduces a strategy that synthesizes lower-resolution images while leveraging Class Acti-
vation Scores Zhou et al. (2016) to focus on the most informative pixels. By concentrating on the
most relevant areas, K-Gen ensures that the generated images retain critical class-specific features,
thereby improving the efficiency of knowledge transfer. Additionally, this approach helps reduce
computational costs, enhancing both the scalability and performance of DFKD, especially for large,
high-resolution datasets.

As shown in Figure 1a-c, the previous DFKD model generates 224× 224 resolution images, which
are often noisy and provide limited information for training the classifier. In contrast, our method
produces lower-resolution images that leverage a key region loss to retain discriminative features.
Moreover, as illustrated in Figure 1d-e, our method not only significantly speeds up training time but
also achieves improved accuracy. Specifically, under the same images-per-class setting and despite
generating lower-resolution images, our K-GEN still achieves better performance, demonstrating
both its efficiency and effectiveness.

Although using lower-resolution synthetic images improves training efficiency, it may limit the
model’s capacity to capture diverse and detailed feature representations, as lower resolutions con-
strain the available representational space. To overcome this limitation, we propose a Multi-
Resolution Data Generation strategy, in which images are generated at multiple resolutions to
capture both coarse and fine-grained features. In addition, we introduce an Embedding Diversity
Loss to preserve distinctiveness within the latent space, ensuring that rich feature representations are
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maintained even at lower resolutions. Together, these mechanisms enable the model to retain criti-
cal features across different levels of granularity, leading to enhanced performance and robustness
across a variety of tasks.

Our major contributions are summarized as follows:

• We propose Key Region Data-free Generation (K-Gen), which generates synthetic images at
lower resolutions, using Class Activation Maps to focus on critical regions, improving compu-
tational efficiency without sacrificing essential class-specific features.

• We also extend this to use for Vision Transformer architecture.
• We introduce Multi-Resolution Data Generation to capture both coarse and fine features and

Embedding Diversity Loss to maintain distinct embeddings at lower resolutions, boosting fea-
ture diversity and performance.

• K-Gen achieves state-of-the-art performance on both low- and high-resolution datasets, includ-
ing CIFAR10, CIFAR100, TinyImageNet, ImageNet, ImageNet subsets. Our method demon-
strates performance gains of up to two digits in nearly all experiments on ImageNet and its
subsets.

• K-Gen exhibits high performance on mega-resolution datasets (images >1M pixels), signifi-
cantly expanding the applicability of DFKD methods to ultra-high-resolution domains.

2 RELATED WORK

Data-Free Knowledge Distillation. DFKD methods Yin et al. (2020); Fang et al. (2021); Yu et al.
(2023); Do et al. (2022); Patel et al. (2023) generate synthetic images to facilitate knowledge transfer
from a pre-trained teacher model to a student model. These synthetic data are used to jointly train
the generator and the student in an adversarial manner Micaelli & Storkey (2019). Specifically, the
student aims to make predictions that closely align with the teacher’s on the synthetic data, while the
generator strives to create samples that match the teacher’s confidence while also maximizing the
mismatch between the student’s and teacher’s predictions. This adversarial process fosters a rapid
exploration of synthetic distributions that are valuable for knowledge transfer between the teacher
and the student.

Data-Free Knowledge Distillation for High-Resolution Dataset. Data-free knowledge distillation
methods face significant challenges when scaled to larger, high-resolution datasets like ImageNet.
For instance, DeepInv Yin et al. (2020) required over 3000 NVIDIA V100 GPU hours to train on Im-
ageNet1k, highlighting the substantial computational demands. Although more recent methods Tran
et al. (2024b); Fang et al. (2022) provide faster solutions, they cannot achieve competitive perfor-
mance when training models from scratch without the pretrained data used by DeepInv. Therefore,
there is an urgent need for novel methods that can efficiently and effectively enable data-free transfer
on high-resolution datasets like ImageNet.

3 PROPOSED METHOD

3.1 PRELIMINARIES: DFKD FRAMEWORK

Consider a training dataset D = {(xi,yi)}mi=1, where each xi ∈ Rc×h×w is an input sample and
yi ∈ {1, 2, . . . ,K} denotes its label. Each pair (xi,yi) in D serves as a training example with
its corresponding label. Let T with parameters θT represent a pre-trained teacher network on D.
The objective of DFKD is to train a student network, S = SθS , to match the teacher’s performance
without access to the original dataset D.

To achieve this, inspired by Tran et al. (2024b), we begin by sampling a batch of random pseudo-
labels ŷ ∼ {1, . . . ,K}. We then obtain their corresponding text embeddings using a pre-trained
language model C, i.e., fy = C(ŷ). These embeddings fy are passed through a noisy layer Z ,
which is a single linear layer re-initialized at each iteration to introduce randomness and promote
diverse image generation. The output is then fed into a lightweight generator G to produce synthetic
images x̂.

x̂ = Gl×l(Z(fy)), (1)

3
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Figure 2: (a) Overview of the K-Gen architecture, illustrating the two-phase training process: generator training
and student training. The model generates lower-resolution images and enhances their quality using Key Region
Loss, while also promoting diversity through Embedding Diversity Loss (Led and Laed). (b) Led (Eq. 9) aims
to learn the embedding in S of all old data, bringing it closer to fy , while (c)Laed (Eq. 11) guides the generator
G to produce new data that is distant from fy , thus enhancing the model’s diversity.

where x̂ ∈ R3×l×l, with l representing the resolution of the training data (e.g., 224 × 224 for
ImageNet or 32× 32 for CIFAR10/CIFAR100). Note that we use Gl×l to specify the generator that
produces l× l resolution images. Subsequently, x̂ is stored in a memory pool M and used to jointly
train both the generator and the student network in an adversarial setup Micaelli & Storkey (2019).
In this setup, the student is trained to approximate the teacher’s predictions on synthetic data by
minimizing the Kullback-Leibler (KL) divergence loss between T (x̂) and S(x̂).

ŷS = S(x̂); ŷT = T (x̂) ,

LS = LKL = KL(ŷT , ŷS), (2)

while the generator aims to produce samples that not only align with the teacher’s confidence but
also maximize the discrepancy between the student’s and teacher’s predictions.

LG = αceLCE(ŷT , ŷ)− αadvKL(ŷT , ŷS) + αbnLBN(T (x̂)). (3)

In this framework, LCE represents the Cross-Entropy loss, training the student on images within
the teacher’s high-confidence regions. In contrast, the negative Ladv term encourages exploration
of synthetic distributions, enhancing knowledge transfer from the teacher to the student. Here, the
student network acts like a discriminator in GANs, guiding the generator to produce images that the
teacher has mastered but the student has yet to learn, thereby focusing the student’s development
on areas where it lags behind the teacher. Additionally, we apply batch norm regularization (LBN)
Yin et al. (2020); Fang et al. (2022), a standard DFKD loss, to align the mean and variance at the
BatchNorm layer with its running mean and variance. This adversarial setup facilitates the efficient
exploration of synthetic distributions for effective knowledge transfer between the teacher and the
student.

In comparison with previous works, our method first proposes generating key region data generation
at a lower resolution, which synthesize data with high class activation score (Section 3.2). Next, we
introduce two techniques to further improve the diversity of our models (Section 3.4). Finally, the
overall process is summarized in Section 3.5.

3.2 KEY REGION DATA-FREE GENERATION AT LOWER-RESOLUTION

A major limitation of previous approaches is their generation of synthetic images at high resolutions
(224× 224) without incorporating information from real images. This leads to images with signifi-
cant noise, lacking the class-specific features essential for effective knowledge transfer, as illustrated
in Figure 1a-c.

Key Region Lower-Resolution Data Generation. To address these limitations, we propose gener-
ating synthetic images at lower resolutions.

x̂ = G3×e×e(Z(fy)), (4)

where x̂ ∈ R3×e×e and e is the target resolution (i.e., e ≪ l).

4
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To ensure that the synthetic images x̂ capture important information, we propose maximizing their
CAM with the target map, which contains high values of class activation. First, we use the classic
CAM method Zhou et al. (2016) to generate the matrix M(x̂, ŷ) for the image x̂ and class ŷ:

M(x̂, ŷ) =
∑
k

wŷ
kTk(x̂, ŷ), (5)

where wŷ
k is the kth weight in the final classification head for class ŷ, and Tk is the kth feature map

in the final layers of the model. Note that we only use the latent matrix of CAM, which is before the
normalization and interpolation into full-resolution images. Then, the loss function LG is modified
with additional key region loss (Lkr) as follows:

LG = αceLce + αadvLadv + αbnLbn + αkrLkr,

Lkr =
∑

h,w∈M

(max{0,Mtarget −M(x̂, ŷ)}). (6)

In this context, Mtarget is a predefined mask with high values at the center and lower values at the
borders, it like a Gaussian centered on the image, guiding the generator to produce the desired
activation map M(x̂, ŷ). We conducted an ablation study in the appendix F demonstrating that the
Gaussian mask with maximum value at 1 and a standard deviation of 2 yield the best results.

By using a margin loss to define Lkr, we encourage the values in M(x̂, ŷ) to only sufficiently exceed
those in Mtarget, avoiding excessively high values that could negatively impact image quality while
concentrating the important values of M(x̂, ŷ) near the center. Finally, the sum of all pixel values
in the tensor is used as Lkr.

Thanks to the use of lower-resolution images with key region loss, as shown in Figure 1c, generat-
ing lower-resolution images improves accuracy by enabling the generator to capture critical features
more effectively. Figure 1d further illustrates the substantial reduction in training time, highlighting
the efficiency gains of this approach. Together, these findings underscore the advantages of low-
resolution synthetic images in enhancing both performance and computational efficiency in DFKD
for high-resolution datasets. For example, with only 9 hours of training, our K-Gen achieves 24.25%
accuracy, significantly outperforming DeepInv, which reaches only 3.15% after 61.2 hours of train-
ing.

3.3 KEY REGION GENERATION FOR VISION TRANSFORMER

A key challenge in our approach is training the student model with lower-resolution images, which
are then tested on full-resolution data. This is particularly challenging for patch-based models, such
as Vision Transformer (ViT) and its variants Dosovitskiy (2020); Touvron et al. (2021), that do not
rely on CNN architectures. Furthermore, the Class-Activation Map also cannot be extracted for
ViT-based model. To address this, we propose reducing the number of patches input into the Vision
Transformer. With the standard patch size of 16× 16 used by ViT and our chosen image resolution
of 112 × 112, we generate a 7 × 7 grid of patches instead of the original 14 × 14. Details of this
technique are provided in the Appendix A.1.

3.4 IMPROVED MODEL DIVERSITY

While lower-resolution synthetic images enhance computational efficiency, they can also limit the
model’s ability to capture diverse and detailed features, as lower resolutions reduce the space avail-
able for representing such diversity.

Multi-resolution Data Generation. To overcome this challenge, we propose a multi-resolution
generation strategy that synthesizes images at various resolutions, effectively capturing both coarse
and fine-grained features. Given a set of resolutions E, the synthetic data x̂ is generated from each
resolution e ∼ E:

x̂ = Ge×e,e∈E(Z(fy)), (7)
Embedding Diversity Loss. Additionally, we introduce embedding diversity techniques to preserve
distinct representations within the latent space, ensuring that rich feature representations are main-
tained even at lower resolutions. These techniques consist of two loss functions, which are used for
training the generator G and the student S, respectively.

5
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Algorithm 1: K-Gen
Input: pre-trained teacher TθT , student SθS , generator GθG , text encoder CθC , list of labels y and list of

text of these labels Yy;
1 Initializing P = {},M = {};
2 Store all embeddings fy = C(Yy) into P;
3 for E epochs do
4 for I iterations do
5 Randomly reinitializing noisy layers ZθZ and pseudo-label ŷ for each iteration;
6 Query fŷ ∼ P;
7 for g steps do
8 Sampling x̂ = Ge×e,e∈E(Z(fy)) and update θG , θZ by minimizing LG Eq. 10;

9 M←M∪ x̂;

10 for S iterations do
11 Sampling x̂ ∼M and update θS by minimizing LS (Eq. 8);

In the student training phase, given a pool of synthetic data x̂ ∼ M, the student network S is trained
using the following loss function:

LS = LKL + αedLed, (8)

Led = max{0,MSE(f̂S ,fy)− ri}, (9)

where αed is a scaling factor, Lkl is computed by Eq. 2, f̂S is the latent embedding of x̂ in the
student model S, and fy is the class-specific embedding representative. The purpose of the margin
term is to learn embeddings from the synthetic data pool M that are close to the class representative
embedding fy of the original data. Inspired by Tran et al. (2024a), we use the margin loss to
encourage f̂S to stay within an inner radius ri, while preserving its intrinsic distance characteristics.

In the generator training phase, on the other hand, the generator aims to produce a new batch of
synthetic data that is positioned far from the class embedding fy . Similar to Lkr, we apply a margin
loss to ensure that the embedding of x̂ in the teacher model T does not deviate excessively from the
desired distribution.

LG = αceLce + αadvLadv + αbnLbn + αkrLkr + αaedLaed (10)

Laed = max{0, ro − MSE(f̂S ,fy)} (11)

where ro > ri represents the outer radius, and α are scaling parameters.

We now explain how the cooperation between the generator and student in the embedding in-out
game, achieved by minimizing LS and LG , promotes embedding diversity. Specifically, by mini-
mizing Led during student training, the model learns to keep the latent embeddings of all previous
data within an inner radius around fy , positioning them closer to fy (Figure 2 (b)). In contrast,
Laed guides the generator G to produce new data with latent embeddings that are distant from fy

(Figure 2 (c)). This setup encourages the new data to differ from the old data in latent space, thereby
enhancing the diversity of the latent embeddings.

Choosing Class Representative Embedding fy . The embedding fy plays a crucial role in pro-
moting embedding diversity, and we consider two options for selecting fy . First, since we use
the generator from NAYER Tran et al. (2024b) as our baseline, we propose using the label text
embedding as fy . Second, when the label text embedding is unavailable, we use the mean of the
embeddings in T from the first batch as fy . Both options serve as class representative embeddings.
We conducted an ablation study Appendix F showing that both methods are comparable, with the
label text embedding yielding slightly better performance.

3.5 OVERALL ARCHITECTURE

The overall architecture of K-Gen is shown in Figure 2, and the pseudo code can be found in Algo-
rithm 1. First, K-Gen embeds all label text using either via text encoder or as the mean of T. Then,
our method undergoes training for E epochs. Each epoch consists of two distinct phases:

(i) The first phase involves training the generator. In each iteration I , as described in Algorithm
1, the noisy layer Z is reinitialized (line 5) before being used to learn the label text embedding

6
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Table 1: Distillation results of our K-Gen (multi-resolution) and K-Gen-S (single-resolution) are compared
with SOTA DFKD methods—NAYER Tran et al. (2024b), Fast100 Fang et al. (2022) (100 generation steps),
and DeepInv Yin et al. (2020)—across datasets (Imagenette, Imagewoof, ImageNet1k) at various data memory
ratios. Evaluations cover two common distillation pairs: ResNet50 to MobileNetV2 and ResNet34 to ResNet18.
Bold and underlined numbers denote the highest and second-highest accuracies, respectively. Results report
the mean accuracy over 3 runs.

Dataset Imagenetee

Teacher - Student ResNet50 (92.86) - MobileNetV2 (90.42) ResNet34 (94.06) - ResNet18 (93.53)

Data Memory Ratio 1% 5% 10% 20% 1% 5% 10% 20%

DeepInv Yin et al. (2020) 6.71 (4.8h) 26.02 (6.1h) 35.31 (8.7h) 47.02 (13.6h) 6.03 (3.2h) 25.08 (4.9h) 34.04 (6.4h) 44.65 (9.5h)
Fast100 Fang et al. (2022) 8.92 (0.5h) 29.18 (0.5h) 39.12 (0.8h) 51.43 (1.4h) 8.51 (0.3h) 28.32 (0.5h) 38.25 (0.6h) 49.11 (1.0h)
NAYER Tran et al. (2024b) 9.54 (0.5h) 31.28 (0.5h) 42.24 (0.8h) 54.26 (1.4h) 9.35 (0.3h) 32.17 (0.5h) 42.57 (0.6h) 52.72 (1.0h)
K-Gen-S (Ours) 35.32 (0.5h) 80.11 (0.5h) 87.21 (0.8h) 88.53 (1.4h) 34.52 (0.3h) 80.32 (0.5h) 86.67 (0.6h) 88.25 (1.0h)
K-Gen (Ours) 36.16 (0.8h) 81.21 (0.8h) 88.12 (1.2h) 89.21 (2.1h) 35.21 (0.5h) 82.21 (0.8h) 87.21 (1.1h) 88.72 (1.5h)
Dataset Imagewoof

Teacher - Student ResNet50 (86.84) - MobileNetV2 (82.69) ResNet34 (83.02) - ResNet18 (82.59)

Data Memory Ratio 1% 5% 10% 20% 1% 5% 10% 20%
DeepInv Yin et al. (2020) 3.68 (2.7h) 13.26 (5.4h) 21.34 (7.9h) 36.01 (14.9h) 3.42 (2.8h) 12.62 (5.1h) 20.97 (7.8h) 32.42 (10.8h)
Fast100 Fang et al. (2022) 5.42 (0.3h) 15.11 (0.5h) 23.45 (0.8h) 38.92 (1.4h) 5.21 (0.3h) 14.24 (0.5h) 23.54 (0.8h) 35.72 (1.1h)
NAYER Tran et al. (2024b) 6.99 (0.3h) 16.72 (0.5h) 27.43 (0.8h) 40.21 (1.4h) 6.72 (0.3h) 15.62 (0.5h) 25.27 (0.8h) 38.25 (1.1h)
K-Gen-S (Ours) 21.25 (0.3h) 36.24 (0.5h) 71.42 (0.8h) 74.53 (1.4h) 20.52 (0.3h) 36.25 (0.5h) 59.85 (0.8h) 73.74 (1.1h)
K-Gen (Ours) 22.43 (0.5h) 37.51 (0.8h) 72.11 (1.2h) 75.12 (2.1h) 21.12 (0.5h) 37.31 (0.8h) 60.04 (1.2h) 74.52 (1.5h)
Dataset ImageNet1k

Teacher - Student ResNet50 (80.86) - MobileNetV2 (71.88) ResNet34 (73.31) - ResNet18 (69.76)

Data Memory Ratio 1% 5% 10% 20% 1% 5% 10% 20%
DeepInv Yin et al. (2020) 3.15 (61.2h) 14.07 (226.3h) 19.01 (385.0h) 22.17 (642.7h) 1.84 (49.6h) 13.06 (183.1h) 17.41 (308.3h) 23.03 (517.9h)
Fast100 Fang et al. (2022) 4.78 (6.3h) 16.58 (23.5h) 22.12 (39.2h) 25.25 (65.6h) 3.63 (5.1h) 15.52 (18.8h) 20.12 (31.4h) 25.96 (52.5h)
NAYER Tran et al. (2024b) 6.32 (6.3h) 19.78 (23.5h) 25.43 (39.2h) 28.12 (65.6h) 5.81 (5.1h) 18.86 (18.8h) 23.98 (31.4h) 28.11 (52.5h)
K-Gen-S (Ours) 22.41 (6.3h) 40.63 (23.5h) 46.25 (39.2h) 53.24 (65.6h) 22.32 (5.1h) 40.82 (18.8h) 45.95 (31.4h) 53.96 (52.5h)
K-Gen (Ours) 24.25 (9.3h) 42.24 (30.1h) 47.12 (58.5h) 54.41 (80.4h) 24.16 (7.5h) 42.84 (24.1h) 47.13 (46.8h) 54.98 (64.3h)

fy . The generator and noisy layer are then trained over g steps using Eq. 10 to optimize their
performance (line 8).

(ii) The second phase involves training the student network. To mitigate the risk of forget-
ting—which arises in prior DFKD methods like MAD and KAKR that generate, use, and
discard synthetic data in each iteration—all generated samples are stored in the memory mod-
ule M (line 9), following the strategy proposed in Fang et al. (2022). The student model is
then trained using Eq. 8 over S iterations, utilizing samples from M (lines 10 and 11).

3.6 DATA MEMORY RATIO AND COMPARISON FAIRNESS IN DFKD

Training on high-resolution datasets like ImageNet is computationally intensive, particularly with
synthetic data generation Yin et al. (2020); Tran et al. (2024b). To manage this, we cap the amount
of synthetic data used to train the student model Liu et al. (2024), following practices in Continual
Learning Li et al. (2023a;b) and Federated Learning Tran et al. (2024a); Zhu et al. (2021). We
evaluate various data memory ratios on ImageNet1k and its subsets; for instance, a 10% ratio yields
100k samples over 1 million training samples at 224× 224 resolution.

Lower-Resolution Images for Efficiency. We propose generating lower-resolution images (e.g.,
112× 112, 96× 96), which reduces storage and computation. For example, one 224× 224 image is
equivalent to four 112× 112 or five 96× 96 images in terms of resource usage. This allows K-Gen
to generate more samples, for example, 40k 112 × 112 images in a 10% ratio, without increasing
memory or training time.

Single vs. Multi-Resolution Variants. K-Gen can use mixed resolutions (e.g., 25k 96 × 96 +
20k 112 × 112) at the same compute cost as 40k 112 × 112 images. However, due to PyTorch
inefficiencies, multi-resolution training is slower. Thus, we report both K-Gen (multi-resolution) and
K-Gen-S (single-resolution) results. Further details and ablation studies are provided in Appendix.

Is Using More Labels and Lower-Resolution Images in DFKD Fair? We argue that utilizing a
larger number of lower-resolution images and labels, while keeping the total Data Memory Ratio
constant, is entirely fair. For example, using 40k synthetic images at 112×112 resolution instead of
10k images at 224×224 maintains equivalent memory usage and computational cost. This is because
the image generation process operates at the pixel level, and generating four 112 × 112 images
involves similar time, training effort, and memory consumption as generating one 224× 224 image.
Furthermore, all data and labels are synthetically generated by our model, without requiring
any external data collection or manual annotation. The increase in the number of labels does not
translate to additional supervision or unfair advantage. Indeed, several prior works have employed
significantly more labels—up to ten times as many—without such concerns being raised Yu et al.
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Table 2: The distillation results for the CIFAR10, CIFAR100 and TinyImageNet datasets compare various
methods, following the setup of Tran et al. (2024b). The table presents the accuracy achieved by different
student models with various architectures, such as ResNet (R) He et al. (2016), VGG (V) Simonyan & Zisser-
man (2014), and WideResNet (W) Zagoruyko & Komodakis (2016). The results from compared methods are
collected at Tran et al. (2024b).

CIFAR10 CIFAR100 TinyImageNet

Method R34 W402 W402 W402 V11 R34 W402 W402 W402 V11 R34
R18 W162 W161 W401 R18 R18 W162 W161 W401 R18 R18

Teacher 95.70 94.87 94.87 94.87 92.25 77.94 77.83 75.83 75.83 71.32 66.44
Student 95.20 93.95 91.12 93.94 95.20 77.10 73.56 65.31 72.19 77.10 64.87

DeepInv Yin et al. (2020) 93.26 89.72 83.04 86.85 90.36 61.32 61.34 53.77 68.58 54.13 -
DFQ Choi et al. (2020) 94.61 92.01 86.14 91.69 90.84 77.01 64.79 51.27 54.43 66.21 -
ZSKT Micaelli & Storkey (2019) 93.32 89.66 83.74 86.07 89.46 67.74 54.59 36.60 53.60 54.31 -
CMI Fang et al. (2021) 94.84 92.52 90.01 92.78 91.13 77.04 68.75 57.91 68.88 70.56 64.01
PREKD Binici et al. (2022b) 93.41 - - - - 76.93 - - - - 49.94
MBDFKD Binici et al. (2022c) 93.03 - - - - 76.14 - - - - 47.96
FM Fang et al. (2022) 94.05 92.45 89.29 92.51 90.53 74.34 65.12 54.02 63.91 67.44 -
MAD Do et al. (2022) 94.90 92.64 - - - 77.31 64.05 - - - 62.32
KAKR MB Patel et al. (2023) 93.73 - - - - 77.11 - - - - 47.96
KAKR GR Patel et al. (2023) 94.02 - - - - 77.21 - - - - 49.88
SpaceshipNet Yu et al. (2023) 95.39 93.25 90.38 93.56 92.27 77.41 69.95 58.06 68.78 71.41 64.04
NAYER Tran et al. (2024b) 95.21 94.07 91.94 94.15 92.37 77.54 71.72 62.23 71.80 71.75 64.17

K-Gen-S 95.36 94.35 92.27 94.37 93.02 77.64 72.21 62.87 72.01 71.94 64.41
K-Gen 95.41 94.39 92.32 94.44 93.20 77.78 72.31 62.92 72.13 72.11 64.54

(2023); Patel et al. (2023). Hence, we affirm that our comparison adheres to fair and consistent
evaluation standards.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

For high-resolution datasets, we evaluated our method using two commonly used backbone pairs:
ResNet34/ResNet18 He et al. (2016) and ResNet50/MobileNetV2 Sandler et al. (2018), on Ima-
geNet1k Deng et al. (2009), which comprises 1,000 object categories and over 1.2 million labeled
training images. We also included its subsets, ImageNette and ImageWoof Howard (2019b), each
consisting of 10 specific subclasses. For low-resolution datasets, we conducted experiments using
ResNet, VGG Simonyan & Zisserman (2014), and WideResNet (WRN) Zagoruyko & Komodakis
(2016) across CIFAR-10, CIFAR-100 Krizhevsky et al. (2009), and Tiny ImageNet Le & Yang
(2015). Additional details on all datasets used in this paper, the architectures, parameter settings,
parameter sensitivity and further analysis can be found in the Appendix C.

4.2 RESULTS AND ANALYSIS

Comparison on High-resolution Datasets (> 100k Pixels). Table 1 presents the distillation results
across multiple datasets, including Imagenette, Imagewoof, and ImageNet1k (3×224×224 pixels),
comparing the performance of K-Gen-S and K-Gen with existing methods such as DeepInv Yin
et al. (2020), Fast100 Fang et al. (2022), and NAYER Tran et al. (2024b) at varying data memory
ratios. Overall, both K-Gen and K-Gen-S consistently achieve superior performance, with at least
a two-digit improvement in all comparison cases, while still maintaining low training time. This
performance gain can be attributed to the use of multi-resolution strategies and key region generation
techniques, which are particularly beneficial for high-resolution datasets like ImageNet1k and its
subsets. These results clearly demonstrate the effectiveness of our proposed approach.

Comparison on Low-resolution Datasets (≈ 1k Pixels). We also conducted experiments on low-
resolution datasets such as CIFAR-10, CIFAR-100, and TinyImageNet, in Table 2. The results
demonstrate the strong performance of both K-Gen and K-Gen-S compared to existing methods.
However, the performance gains in these tasks are less pronounced than those observed on high-
resolution datasets. This can be attributed to two main factors: (1) the current accuracy on these
low-resolution datasets is already close to the upper bound defined by the teacher model, and (2) our
proposed techniques are primarily designed to enhance distillation performance on high-resolution
data, making them less effective for lower-resolution datasets like CIFAR-10.

Comparison on Mega-resolution Datasets (> 1M Pixels). To further assess the generalizabil-
ity of our method, we evaluate K-Gen on two additional mega-resolution datasets: Traffic Sign

8
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Table 3: Additional results on mega-resolution
datasets. K-Gen outperforms NAYER across all set-
tings under varying data memory ratios.
Method Traffic Sign Recognition Megapixel MNIST

(1200× 1600 pixels) (1500× 1500 pixels)

10% 20% 10% 20%
Teacher/Student CNN (84.1) / CNN (84.1) CNN (91.9) / CNN (91.9)

Fast100 41.67 54.12 49.12 58.21
NAYER 48.23 57.32 52.47 63.91
K-Gen 72.43 77.56 78.24 84.12

Table 4: Ablation studies for all combinations of the
proposed components with the Data Memory Ratio at
5%.
Method Imagenette Imagewoof ImageNet1k
NAYER 32.17 15.62 18.86
+SRG 41.13 19.71 23.87
+SRG+KR 77.62 33.22 37.41
+SRG+KR+ED (K-Gen-S) 80.32 36.25 40.82
+MRG 46.25 22.14 24.95
+MRG+KR 79.92 36.92 39.81
+MSG+KR+ED (K-Gen) 82.21 37.31 42.84

Recognition (3 × 1200 × 1600 pixels) Katharopoulos & Fleuret (2019) and Megapixel MNIST
(1×1500×1500 pixels) Katharopoulos & Fleuret (2019). As shown in Table 3, K-Gen consistently
outperforms the baseline method NAYER across both datasets and under varying data memory ra-
tios (10% and 20%). On the Traffic Sign Recognition task, K-Gen achieves notable improvements
of over 20% in nearly all cases. These results demonstrate that K-Gen scales effectively to complex,
mega-resolution visual tasks, opening the door to broader applications of the field in high-resolution
vision domains.

4.3 FURTHER ANALYSIS

Ablation Study: Components Analysis. To better understand the contribution of each component
in our proposed method, we conduct a comprehensive ablation study under a consistent Data Mem-
ory Ratio of 5%, as shown in Table 4. Starting from the baseline (NAYER), we incrementally add
our proposed modules: SRG (Smaller-Resolution Generation) which only generate smaller resolu-
tion image with KR loss, KR (Key Region Data Generation, Section 3.2), ED (Embedding Diversity
Loss, Section 3.4), and MSG (Multi-Resolution Data Generation, Section 3.4). The experiment
demonstrate that: (1) each component individually enhances performance across all datasets. (2)
the Key Region module plays a crucial role, significantly boosting performance—for example, from
41.13% (+SRG) to 77.62% (+SRG+KR), and from 46.25% (+MRG) to 79.92% (+MRG+KR).

Comparison for ViT Model. To demonstrate the effectiveness of our approach on ViT-based
models, we conducted experiments comparing our K-Gen with NAYER, using DeiT-B (Teacher)
and DeiT-Tiny (Student) on ImageNet-1K. As shown in Table 5, K-Gen outperforms the original
NAYER training, achieving double-digit improvements.

Table 5: Performance Comparison Our K-Gen and NAYER in DeiT-B (Teacher) and DeiT-Tiny (Student) on
ImageNet-1K.

Data Memory Ratio 1% 5%

Metric (Accuracy) Top 1 (%) Top 5 (%) Top 1 (%) Top 5 (%)

NAYER 4.52 19.45 16.24 43.24
K-Gen 15.24 36.52 28.24 60.24

5 CONCLUSION

In this paper, we propose K-Gen, a novel approach to overcome the limitations of traditional DFKD
methods on high-resolution datasets. K-Gen synthesizes lower-resolution images guided by Class
Activation Maps to preserve class-specific features, reducing noise and computational cost, partic-
ularly on large-scale datasets like ImageNet1K. Through multi-resolution synthesis and embedding
diversity, K-Gen enriches learned representations and boosts student model performance. Experi-
ments show that K-Gen achieves state-of-the-art results with double-digit gains on ImageNet1K and
remains effective on mega-resolution datasets (over one million pixels), enabling broader applica-
tions in vision field.

Limitation and Future work: Our paper employs a customized version of the classic CAM, de-
signed to facilitate backpropagation in obtaining the activation matrix. This approach opens the
door to exploring other techniques, such as Grad-CAM Selvaraju et al. (2017) or attention-based
scores Leem & Seo (2024), to further enhance the task. Additionally, optimizing multi-resolution
techniques for faster processing times presents another promising direction for improvement.
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A APPENDIX

A.1 LOWER-RESOLUTION IMAGE FOR VISION TRANSFORMER

A key challenge in our approach is training the student model with lower-resolution images, which
are then tested on full-resolution data. This is particularly challenging for patch-based models, such
as Vision Transformer (ViT) and its variants Dosovitskiy (2020); Touvron et al. (2021), that do
not rely on CNN architectures. Furthermore, the Class-Activation Map also cannot be extracted
for ViT-based model. To address this, we propose reducing the number of patches input into the
Vision Transformer. With the standard patch size of 16 × 16 used by ViT and our chosen image
resolution of 112 × 112, we generate a 7 × 7 grid of patches instead of the original 14 × 14.
By focusing on the center position embedding, our method, as shown in Table 5, outperforms the
original NAYER training, achieving improvements of over two percentage points. Details of this
technique are provided in the Appendix A.1.

To illustrate the patch-reduction strategy mathematically, consider the input image resolution H ×
W . The Vision Transformer (ViT) splits the image into patches of size P × P , resulting in a grid
of H

P × W
P patches. For the standard ViT, with P = 16, and full-resolution images H = 224 and

W = 224, the number of patches is:

Npatches =
H

P
· W
P

=
224

16
· 224
16

= 14 · 14 = 196. (12)

For our approach, we reduce the resolution to H = 112 and W = 112, while maintaining P = 16.
This results in:

Npatches =
H

P
· W
P

=
112

16
· 112
16

= 7 · 7 = 49. (13)

Position Embedding. Let the index matrix I be a 10× 10 grid, where both row and column values
range from 2 to 12:

I = {(r, c) | 2 ≤ r ≤ 12, 2 ≤ c ≤ 12}.

We randomly select the center index pcenter = (prcenter, p
c
center) from this grid with a bias toward the

center, particularly around indices 7 and 8 for both rows and columns. The probability of selecting
the center index pcenter is given by:

12
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P (pcenter) ∝
1

1 + λ · (|prcenter − 7|2 + |pccenter − 7|2)
,

where:

• (prcenter, p
c
center) are the indices in the grid,

• λ is a parameter that controls the steepness of the decay, influencing how strongly the
selection is biased toward the center,

• |prcenter −7|2+ |pccenter −7|2 represents the squared Euclidean distance from the center index
(7, 7).

This formulation ensures that the selection probability decreases as the distance from the center
increases, making the center indices (7, 7) and (8, 8) more likely to be chosen.

Patch Index Mapping. After selecting the center index pcenter = (r, c), the synthetic image patches
are indexed relative to pcenter. Let pi represent the index of the patch. The patch indices pi are
determined by an offset from pcenter. For a patch size of P × P , the patch index pi is defined as:

pi = (prcenter +∆r, pccenter +∆c),

where ∆r,∆c ∈ {−P, 0, P} and are the offsets applied to the center index pcenter. This allows the
selection of patches in a surrounding area around the center index pcenter. This approach ensures that
patch indices closer to the center are more likely to be selected, with the probability decreasing as
the distance from the center increases.

Attention Map as a Replacement for CAM: In ViT-based models, the attention map with respect
to the [CLS] token can serve as a substitute for Class Activation Maps (CAM), which typically
do not function effectively in ViT architectures. In fact, they share a similar ability to highlight
class-relevant regions, enabling effective visual explanations.

B DATASETS

Table 6 summarizes all the datasets used in our paper, including three low-resolution, three high-
resolution, and two mega-resolution datasets.

Table 6: Overview of benchmark datasets categorized by resolution.
Dataset Image Size #Classes #Train Images #Test Images

Low-Resolution Datasets
CIFAR-10 Krizhevsky et al. (2009) 32×32×3 10 50,000 10,000
CIFAR-100 Krizhevsky et al. (2009) 32×32×3 100 50,000 10,000
Tiny ImageNet Le & Yang (2015) 64×64×3 200 100,000 10,000

High-Resolution Datasets
ImageNette Howard (2019a) 224×224×3 10 9,469 3,925
ImageWoof Howard (2019b) 224×224×3 10 9,902 3,926
ImageNet-1k Deng et al. (2009) 224×224×3 1,000 1,281,167 50,000

Mega-Resolution Datasets
Traffic Sign Recognition Katharopoulos & Fleuret (2019) 1200×1600×3 4 747 684
Megapixel MNIST (Max Digit Recognition) Katharopoulos & Fleuret (2019) 1500×1500×1 10 5000 1000

C TRAINING DETAILS

In this section, we provide the details of model training for our methods, including Teacher Training,
Generator, and Student Training.

C.1 TEACHER MODEL TRAINING DETAILS

In this work, we utilized the pretrained ResNet-50 and ResNet-34 models from PyTorch, trained
on ImageNet1k, and trained them from scratch on the ImageNette and ImageWoof datasets. For
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CIFAR-10/CIFAR-100, we employed pretrained ResNet-34 and WideResNet-40-2 teacher models
from Fang et al. (2022); Tran et al. (2024b). The teacher models were trained using the SGD opti-
mizer with an initial learning rate of 0.1, momentum of 0.9, and weight decay of 5e-4, with a batch
size of 128 for 200 epochs. The learning rate decay followed a cosine annealing schedule.

C.2 GENERATOR TRAINING DETAILS

To ensure fair comparisons, we adopt the generator architecture outlined in Fang et al. (2022); Tran
et al. (2024b) and the Noisy Layer (BatchNorm1D, Linear) as described in Tran et al. (2024b)
for all experiments. This architecture has been proven effective in prior work and provides a solid
foundation for evaluating the performance of our model. The generator network is designed to learn
rich feature representations while maintaining computational efficiency. The details of the generator
architecture, including layer specifications and output sizes, are provided in Table 7. Additionally,
we use the Adam optimizer with a learning rate of 4e-3 to optimize the generator, ensuring stable
convergence during training.

Table 7: Architecture of the Generator Network (G), detailing the sequence of operations and layer sizes from
input to output. The network includes linear transformations, spectral normalization in convolution layers,
batch normalization, leaky ReLU activations, upsampling, and a sigmoid activation for the output. Output
dimensions at each layer are shown in relation to the input height (h) and width (w), with intermediate feature
maps gradually upscaled to the final 3× h× w generated image.

Output Size Layers
1000 Input
128× h/4× w/4 Linear
128× h/4× w/4 BatchNorm1D
128× h/4× w/4 Reshape
128× h/2× w/2 SpectralNorm (Conv (3 × 3))
128× h/2× w/2 BatchNorm2D
128× h/2× w/2 LeakyReLU
128× h/2× w/2 UpSample (2×)
64× h× w SpectralNorm (Conv (3 × 3))
64× h× w BatchNorm2D
64× h× w LeakyReLU
64× h× w UpSample (2×)
3× h× w SpectralNorm (Conv (3 × 3))
3× h× w Sigmoid
3× h× w BatchNorm2D

C.3 STUDENT MODEL TRAINING DETAILS

In all experiments, we adopt a consistent approach for training the student model. The batch size is
set to match the Synthetic Batch Size, and the AdamW optimizer is used with a momentum of 0.9
and an initial learning rate of 1e-3. To further optimize training, a lambda scheduler is employed to
adjust the learning rate dynamically throughout the training process.

C.4 OTHER SETTINGS

We trained the model for E epochs, incorporating a warm-up phase during the first 10% of E , as
outlined in the settings defined in Fang et al. (2022); Tran et al. (2024b). This warm-up phase
gradually increases the learning rate to stabilize training early on. Additionally, the model was
trained with the specified batch size and other hyperparameters, which were carefully selected to
ensure optimal performance. Further details regarding these parameters, including their values and
any adjustments made during the training process, are provided in Table 8.
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Table 8: The hyperparameters used in our methods across five different datasets are detailed below. Image
Resolution and Synthetic Batch Size refer to the resolution and batch size of synthetic images generated by
our methods. Notably, in the case of K-Gen, two different resolutions are used, and their batch sizes are adjusted
based on their scales. Other key parameters include: S, the number of training steps for optimizing the student
model, scaled based on the data memory ratio (dr); I , the number of times a batch of images is generated per
epoch; and g, the training steps for optimizing the generators. Additionally, the following hyperparameters
were fixed for all experiments: αce = 0.5, αbn = 10, αadv = 1.3 (as in Tran et al. (2024b)). Furthermore,
in our paper, we propose the following parameters, which are also fixed for all experiments (their parameter
sensitivity analysis can be found in Section D.7): αkr = 0.1 (for Key Region Loss); αed = 10, αaed = 5,
ri = 0.015, and ro = 0.03 (for Embedding Diversity).

Method Image Resolution Synthetic Batch Size S I g Epoch E

ImageNettee/ImageWoof
K-Gen-S 96× 96 100

50×dr 5 100 100
K-Gen [96× 96, 112× 112] [50, 40]

ImageNet1k
K-Gen-S 112× 112 200

200×dr 20 100 400
K-Gen [112× 112, 128× 128] [200, 150]

CIFAR10/CIFAR100
K-Gen-S 28× 28 260

2×dr 20 40 400
K-Gen [28× 28, 32× 32] [130, 100]

TinyImageNet
K-Gen-S 32× 32 200

50×dr 5 100 100
K-Gen [32× 32, 48× 48] [200, 100]

Traffic Sign Recognition/Megapixel MNIST
K-Gen-S 112× 112 260

50×dr 5 100 100
K-Gen [112× 112, 128× 128] [200, 150]

D FURTHER ABALATION STUDY

D.1 COMPARASION IN HIGHER DATA MEMORY RATIOS.

To further demonstrate the benefits of our methods, we also conducted experiments on higher data
memory ratio settings, as shown in Figure 3a-b. The results indicate that our methods achieve higher
accuracy across all ratio settings on both the Imagenette and Imagewoof datasets. Particularly at
lower ratios, the difference is significant. For example, at a ratio of 20% on Imagenette, our K-Gen
method achieves an accuracy approximately 40% higher than the compared methods. These results
demonstrate the effectiveness of our models.

(a) Imagenette (b) Imagewoof

K-Gen K-Gen

Figure 3: The accuracy at data ratios from 10% to 100% is shown for the teacher (ResNet34) and student
(ResNet18) models.

D.2 TRAINING TIME FOR LOW-RESOLUTION DATASET

As shown in Table 9, while achieving SOTA accuracy, our K-Gen (9.45h) and K-Gen-S (6.84h) also
have comparable runtimes to previous methods like NAYER (6.78h) and Fast10 (7.02h), while being
significantly faster than DeepInv (31.24h) and CMI (24.01h).
Table 9: Comparing training times in hours using a single NVIDIA A100 for DFKD methods on CIFAR-10
and CIFAR-100 with the teacher/student models WRN40-2/WRN16-2.

DeepInv CMI DFQ ZSKT MAD SpaceshipNet Fast10 NAYER K-Gen-S K-Gen

CIFAR10 89.72 (31.23h) 92.52 (24.01h) 92.01 (3.31h) 89.66 (3.44h) 92.64 (13.13h) 93.25 (14.48h) 92.31 (7.02h) 94.07 (6.78h) 94.15 (6.84h) 94.25 (9.45h)
CIFAR100 61.34 (31.23h) 68.75 (24.01h) 64.79 (3.31h) 54.59 (3.44h) 64.05 (26.45h) 69.95 (29.24h) 68.25 (7.56h) 71.72 (7.22h) 72.12 (7.25h) 72.32 (9.86h)
Avergaing Speed Up 1.00× 1.30× 9.73× 9.08× 1.78× 14.17× 7.46× 4.29× 4.47× 3.17×

D.3 EFFECTIVENESS OF EMBEDDING DIVERSITY LOSS.

Figure 4a shows that K-Gen with Embedding Diversity Loss consistently outperforms without ED
at all data memory ratios, especially at lower ratios (1% and 5%), emphasizing ED’s crucial role.
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Additionally, Figure 4b illustrates that new data typically occupies a distinct region in latent space,
enhancing model diversity.

(a) Comparison of K-Gen with/without ED (b) t-SNE Diagram

K-Gen without ED
K-Gen with ED

Figure 4: (a) Accuracy of our K-Gen method with and without Embedding Diversity (ED) for ResNet34 and
ResNet18. (b) t-SNE visualization of the embeddings: synthetic data from the M pool (blue) and newly
generated data (red).

D.4 EFFECTIVENESS OF LOWER-RESOLUTION.

In Table 10, we present the accuracy of our methods with different image resolutions. The results
clearly show that the accuracy of models decreases significantly when the resolution is either too
small (64 × 64) or too large (224 × 224), with the highest accuracy achieved at 96 × 96. This
illustrates the importance of selecting an appropriate resolution for synthetic data, balancing both
computational efficiency and model performance.

Resolution (R×R) 224 192 144 128 112 96 80 64

With Lkr 37.27 40.65 65.25 70.21 78.21 80.32 77.21 40.21
Without Lkr 32.17 34.26 58.21 65.21 72.25 75.12 71.23 34.91

Table 10: Performance comparison across multiple data resolutions in Imagenette (ResNet34/ResNet18 case)
with the same Data Memory Ratio at 5%.

D.5 EFFECTIVENESS OF KEY REGION DATA GENERATION.

As shown in Table 10, adding the key region loss term, Lkr, improves performance, particularly at
intermediate resolutions like 128 × 128 and 112 × 112. At these resolutions, the model achieves
70.21% and 78.21% accuracy, outperforming settings without Lkr by 5-6 percentage points, high-
lighting its effectiveness, especially at lower resolutions.

D.6 EFFECTIVENESS OF MULTI-RESOLUTION DATA GENERATION.

Tables 1 and 2 demonstrate that K-Gen, using multi-scale data generation, outperforms other distilla-
tion methods in both accuracy and efficiency across various datasets. For instance, on CIFAR10, K-
Gen achieves 94.51% accuracy, surpassing NAYER and SSD-KD. Similarly, on CIFAR100, K-Gen
reaches 75.21%, outperforming K-Gen-S and NAYER, while also delivering superior performance
on Imagenette, showcasing its robustness.

D.7 PARAMETER SENSITIVITY ANALYSIS

All experiments in this section were conducted in ImageNette and ImageWoof (Resnet34/Resnet18)
with ratios at 5% and 10%.

Parameter αkr. In Table 11, we compare the impact of different scale factors on Key Region Loss.
The results show that our methods perform well, achieving higher accuracy with smaller scaling
factors, peaking at a scale factor of 0.1. This can be attributed to the fact that the value of the key
region generation function is high due to direct subtract function, and a smaller scale factor is more
effective for normalizing it.

Parameters αed and αaed. Tables 12 and 13 compare the performance of different values of αed
and αaed on the ImageNette and ImageWoof datasets at 5% and 10% data memory ratio.In both

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 11: Comparison of the impact of various scale factors on Key Region Loss, highlighting the optimal
performance achieved with smaller scale factors, peaking at a scale factor of 0.1.

αkr 0.05 0.1 0.2 0.5 1 2

ImageNette (5%) 79.77 80.32 80.2 79.69 78.26 78.63
ImageNette (10%) 86.32 86.67 86.18 85.64 85.16 85.41
ImageWoof (5%) 36.03 36.25 35.67 35.66 35.13 35.11
ImageWoof (10%) 59.83 59.85 59.75 59.75 58.17 57.92

tables, the highest accuracy is typically observed at intermediate values of α, with αed = 10 and
αaed = 5 yielding the best results in most cases. his can be attributed to the fact that at these values,
the mean squared error (MSE) distance between embeddings is significantly small. For instance,
the minimum distance between two label text embeddings is just 0.03, which necessitates a higher
scaling factor to amplify the impact of this term.
Table 12: Performance comparison of different αed values on the ImageNette and ImageWoof datasets at 5%
and 10% sampling rates. The highest accuracy is achieved at αed = 10, highlighting the importance of balanc-
ing the scaling factor to minimize MSE distance between embeddings.

αed 1 2 5 10 20 50

ImageNette (5%) 80.02 79.62 79.59 80.12 79.79 80.27
ImageNette (10%) 86.18 86.36 86.52 86.77 85.91 86.64
ImageWoof (5%) 35.77 35.69 36.12 36.31 35.37 36.13
ImageWoof (10%) 59.52 59.54 59.82 59.91 58.60 59.70

Table 13: Performance comparison of different αaed values on the ImageNette and ImageWoof datasets at 5%
and 10% sampling rates. Peak accuracy is observed at αaed = 5, emphasizing the role of scaling to optimize
the MSE distance between embeddings.

αaed 1 2 5 10 20 50

ImageNette (5%) 79.85 79.56 80.42 79.88 80.27 80.25
ImageNette (10%) 86.58 86.01 86.68 85.56 86.17 85.67
ImageWoof (5%) 35.72 35.28 36.31 35.83 35.04 35.96
ImageWoof (10%) 59.35 58.88 59.88 59.54 59.47 59.52

Inner Radius ri and Outer Radius ro. In this approach, we follow the method proposed in Tran
et al. (2024a) to determine the most effective radius. Based on this, we found that the minimum
distance between two label text embeddings is 0.03. Therefore, we define the inner and outer radii
around this value. As shown in Table 14, the pair of 0.015 (ri) for the inner radius and 0.03 (ro) for
the outer radius yields the highest accuracy. This demonstrates that half of the minimum distance is
optimal for the inner radius of Bounding Loss, similar to Tran et al. (2024a), while the full minimum
distance serves as the most effective outer radius.
Table 14: Comparison of different inner (ri) and outer (ro) radius pairs for Bounding Loss and Marging Loss
for Embedding Diversity terms. The pair of 0.015 for the inner radius and 0.03 for the outer radius achieves
the highest accuracy, demonstrating that half of the minimum distance between embeddings works best for the
inner radius, while the full minimum distance is optimal for the outer radius.

ro
ri 0.05 0.015 0.03 0.05 0.1

0.01 76.30 80.21 80.20 80.13 76.33
0.03 77.33 80.44 80.24 79.08 76.32
0.1 79.17 79.07 79.16 77.46 76.42
0.3 78.09 78.19 78.02 77.41 76.36
1 76.37 76.32 76.46 76.43 76.37

D.8 MIXED RESOLUTION ANALYSIS.

To analyze the robustness of K-Gen under mixed-resolution training, we evaluate its performance
across a wide range of resolution combinations on Imagenette and ImageNet1k with a fixed 5%
data memory ratio, as reported in Tables 15 and 16. Each row corresponds to the base training
resolution, while each column indicates the testing resolution. On Imagenette (Table 15), we ob-
serve a consistent increase in accuracy as the training resolution decreases from 224 to 112, with
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peak performance (82.21%) achieved at 112× 112. This suggests that training on moderately lower
resolutions can enhance the generalization capability of K-Gen, particularly in data-scarce settings.
Similarly, on ImageNet1k (Table 16), the model achieves its highest accuracy of 42.25% when
trained at 128 × 128, demonstrating that K-Gen remains effective even when scaling to more com-
plex and high-resolution datasets. These results highlight K-Gen’s adaptability and efficiency in
handling resolution variability—an essential trait for practical deployment in resource-constrained
or dynamically changing environments.

Table 15: Accuracy of K-Gen with ResNet34/ResNet18 on Imagenette (5% Data Ratio) across various mixed
resolutions. Rows represent training resolution; columns represent testing resolution.

Resolution 192 144 128 112 96 80 64
224 39.86 42.15 50.60 56.18 68.58 58.64 39.32
192 – 44.99 58.16 65.17 77.55 68.95 44.52
144 – – 65.37 68.78 78.32 72.27 48.67
128 – – – 70.71 80.32 71.75 53.92
112 – – – – 82.21 81.67 62.42
96 – – – – – 78.18 55.45
80 – – – – – – 40.99

Table 16: Accuracy of K-Gen with ResNet34/ResNet18 on ImageNet1k (5% Data Memory Ratio) across vari-
ous mixed resolutions. Rows represent training resolution; columns represent testing resolution.

Resolution 192 144 128 112 96 80 64
224 19.25 22.80 32.16 30.76 29.27 27.76 21.67
192 – 23.38 37.46 35.73 34.90 32.09 27.91
144 – – 41.11 38.35 37.73 34.86 33.99
128 – – – 42.25 40.75 37.93 35.60
112 – – – – 38.19 36.88 33.73
96 – – – – – 34.76 28.65
80 – – – – – – 22.40

E OTHER RESULTS

E.1 RESULTS ON SEMANTIC SEGMENTATION.

We further examine the generalization capability of K-Gen by conducting experiments on the
NYUv2 dataset. Unlike prior DFKD methods that generate data at a resolution of 256×256, K-Gen
operates at a lower resolution of 128 × 128. Despite this, it consistently delivers better semantic
segmentation performance, as shown in Table 17.

Although segmentation is widely used to evaluate DFKD methods, its effectiveness is often limited
by poor-quality synthetic data and the difficulty of generating reliable labels. Nevertheless, K-
Gen achieves state-of-the-art results, demonstrating its ability to generalize well even under such
challenging conditions.

Table 17: Performance comparison of K-Gen with existing DFKD methods on the NYUv2 dataset.

Method DFAD DAFL Fast NAYER K-Gen

Synthetic Time 6.0h 3.99h 0.82h 0.82h 0.82h
mIoU 0.364 0.105 3.66 3.85 4.01

E.2 ERROR BAR

Table 18 show that our method consistently achieves higher accuracy across three runs with only
minor standard deviation, demonstrating its robustness. Notably, most prior works (except NAYER)
did not report such statistics, and due to their high computational cost, we were unable to reproduce
their results.
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Table 18: Averaging accuracy and standard deviation in three runs.
CIFAR10 CIFAR100

R34/R18 W402/W162 W402/W161 R34/R18 W402/W162 W402/W161
SpaceshipNet 95.39 93.25 90.38 77.41 69.95 58.06
NAYER 95.21 ± 0.15 94.11 ± 0.18 91.94 ± 0.15 77.56 ± 0.12 71.72 ± 0.14 62.23 ± 0.21
K-Gen-S 95.25 ± 0.12 94.12 ± 0.13 92.11 ± 0.09 77.58 ± 0.10 72.01 ± 0.16 62.78 ± 0.17
K-Gen 95.28 ± 0.11 94.19 ± 0.11 92.20 ± 0.14 77.70 ± 0.09 72.15 ± 0.18 62.84 ± 0.20

F FURTHER DISCUSSION

Choosing Target Mask Mtarget. In this section, we compared the performance of different target
masks (Mtarget) across various sampling ratios (1%, 5%, 10%, and 20%). The target masks include
Full(n), where the matrix is filled with the value n, and G(i, j), representing Gaussian matrices
with a maximum value of i and a standard deviation of j. As shown in Table 19, the ”G(1,2)”
matrix consistently outperforms other configurations, achieving the highest accuracy at all sampling
ratios. While the ”Full(1)” and ”G(1,3)” matrices exhibit similar performance, they are generally
outperformed by ”G(1,2)” at most ratios. This indicates that gaussian the matrix is the most effective
approach for this task.
Table 19: Performance Comparison Between Different Target Mask Mtarget. In that, Full(n) indidate matrix
is fill by n and G(i,j) mean the Gaussian Matrix with max value of i and σ = j

Ratio G(1,2) G(1,3) G(2,2) G(2,3) G(3,2) G(3,3) Full(1) Full(2) Full(3)

1% 34.52 34.4 33.11 34.32 34.26 33.3 33.3 34.49 33.94
5% 80.32 79.99 78.68 80.11 79.39 79.52 78.6 79.67 79.96
10% 86.67 86.53 86.24 86.31 86.44 85.7 86.56 86.12 85.88
20% 88.25 88.11 87.63 88.25 87.38 87.45 88.07 87.84 87.85

Choosing Class Representative Embedding fy .We evaluate the impact of using Label Text Em-
bedding (LTE) and Class Center (CC) as the Class Representative Embedding fy . The results in
Table 20 show that K-Gen consistently outperforms NAYER across all settings. Furthermore, the
performance of LTE and CC is comparable, with LTE exhibiting a slight advantage in some cases.
This demonstrates the effectiveness of both configurations, providing flexibility in selecting between
Class Center and Label Text Embedding representations.

Table 20: Performance comparison of K-Gen (using Class Center (CC) and Label Text Embedding (LTE)).

Dataset Imagenetee Imagewoof
Teacher Resnet34 (94.06) Resnet34 (83.02)
Student Resnet18 (93.53) Resnet18 (82.59)

Ratio 1% 5% 10% 1% 5% 10%
NAYER 9.35 32.17 42.57 6.72 15.62 25.27
K-Gen (CC) 34.43 80.22 86.43 20.35 36.21 59.35
K-Gen (LTE) 34.51 80.36 86.61 20.47 36.41 59.62

G VISUALIZATION

Figure 5 shows synthetic images generated by NAYER (a) at 224×224 and K-Gen (b) at 112×112,
both after 100 generator training steps on ImageNet using ResNet-50 as the teacher. While chal-
lenging for human recognition and differing from real datasets, K-Gen’s lower-resolution images
capture key class-level features, showing superior quality over NAYER Tran et al. (2024b). In (c),
the CAM for K-Gen’s images reveals high CAM ratios across most pixels, highlighting the benefit
of Key Region Loss

H FUTURE WORK

Our paper employs a customized version of the classic CAM, designed to facilitate backpropagation
in obtaining the activation matrix. This approach opens the door to exploring other techniques,
such as Grad-CAM Selvaraju et al. (2017) or attention-based scores Leem & Seo (2024), to further
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(a) NAYER’s Image (b) K-Gen’s Image (c) CAM for K-Gen’s Image
Figure 5: (a-b) Synthetic data generated from the ’cassette player’, ’tench’, ’church’, and ’English springer’
classes of ImageNet1k, with NAYER (at 224 × 224 resolution) and our K-Gen (at 112 × 112 resolution). (c)
Class activation map for our K-Gen’s images. Please note that the values of the class activation map are shown
before normalization.

enhance the task. Additionally, optimizing multi-resolution techniques for faster processing times
presents another promising direction for improvement.

I THE USE OF LARGE LANGUAGE MODELS

We used a large language model (ChatGPT) to help with editing this paper. It was only used for
simple tasks such as fixing typos, rephrasing sentences for clarity, and improving word choice. All
ideas, experiments, and analyses were done by the authors, and the use of LLMs does not affect the
reproducibility of our work.
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