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Abstract001

Large language models (LLMs) have recently002
demonstrated promising capabilities in chem-003
istry tasks while still facing challenges due to004
outdated pretraining knowledge and the diffi-005
culty of incorporating specialized chemical ex-006
pertise. To address these issues, we propose007
an LLM-based agent that synergistically inte-008
grates 137 external chemical tools created rang-009
ing from basic information retrieval to com-010
plex reaction predictions, and a dataset cura-011
tion pipeline to generate the dataset Chem-012
ToolBench that facilitates both effective tool013
selection and precise parameter filling during014
fine-tuning and evaluation. We introduce a015
Hierarchical Evolutionary Monte Carlo Tree016
Search (HE-MCTS) framework, enabling in-017
dependent optimization of tool planning and018
execution. By leveraging self-generated data,019
our approach supports step-level fine-tuning020
(FT) of the policy model and training task-021
adaptive PRM and ORM that surpass GPT-4o.022
Experimental evaluations demonstrate that our023
approach significantly improves performance024
in Chemistry QA and discovery tasks, offer-025
ing a robust solution to integrate specialized026
tools with LLMs for advanced chemical appli-027
cations. All datasets and code will be available028
at https://github.com.029

1 Introduction030

In recent years, Large Language Models (LLMs)031

have shown considerable promise in tackling032

chemistry-related tasks (Xue et al., 2020; Zhang033

et al., 2024b; Mirza et al., 2024), such as molecule034

generation and reaction prediction. However, the035

expert chemistry knowledge embedded in pre-036

trained models may become outdated and face037

challenges when applied to real-world scenarios.038

One potential solution is the development of LLM-039

based agents that integrate language models with040

external, specialized tools to utilize the latest chem-041

istry knowledge.042

Developing LLM-based agents for chemistry has 043

shown significant potential in recent years but there 044

still exists several challenges. First, existing chem- 045

ical toolkits rely on specialized cheminformatics 046

software, which is difficult to develop and deploy. 047

As a result, the number of available tools is limited, 048

which restricts their use in a wider range of chemi- 049

cal tasks. Additionally, current datasets suffer from 050

poor quality and lack proper evaluation settings. 051

Even when tools are available, agents struggle with 052

both selecting the right tools and generating accu- 053

rate parameters due to the specialized knowledge 054

required in chemistry. These limitations hinder the 055

effectiveness of chemistry-focused LLM agents. 056

To address these challenges, we collect a large 057

and diverse set of chemical tools to provide more 058

available tools for LLMs. The new toolkit supports 059

a variety of tasks, from simple information queries 060

to complex reaction predictions, which broadens 061

the potential applications of intelligent agents in 062

chemistry. The code implementation of tools is 063

also in a clear format that is easy to follow, which 064

means more tools can be added to toolpool easily. 065

A high-quality, diverse meta-dataset ChemTool- 066

Bench with above tools is then created for fine- 067

tuning the model and serving as the benchmark. To 068

construct the comprehensive dataset, we have de- 069

signed a dataset curation pipeline for self-instruct 070

chemistry Tool Learning data generation. The 071

dataset includes difficult examples for both tool se- 072

lection and parameter filling-in, which helps train 073

the model to perform better to call chemistry do- 074

main tools. 075

For better tool calling, we introduce an effi- 076

cient Hierarchical Evolutionary Monte Carlo Tree 077

Search (HE-MCTS) framework. The high-level 078

policy model iteratively explores and refines the 079

tool selection sequence, while the fine-tuned low- 080

level execution model iteratively reflects on exe- 081

cution feedbacks to enhance accuracy. Addition- 082

ally, we leverage self-generated HE-MCTS data 083
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Figure 1: Overview of our ChemAgent.

alongside the meta-dataset to perform step-level084

fine-tuning on the policy model, and train task-085

adaptive PRM and ORM as alternatives to GPT-086

4o. Crucially, this training process requires no087

manual annotation or curation. The self-evolving088

agent, guided by HE-MCTS, autonomously opti-089

mizes its performance, demonstrating superior rea-090

soning and execution capabilities.091

Our contributions are listed as follows:092

(1) We introduce the largest tool pool in the Chem-093

istry and Materials domain, consisting of 137 tools.094

An agent augmented with this pool demonstrates095

superior performance in Chemistry-related QA and096

discovery tasks.097

(2) We design a dataset curation pipeline tailored098

for domain-specific tool learning, enabling efficient099

data generation for fine-tuning. This pipeline sup-100

ports the construction of the new dataset Chem-101

ToolBench for detailed benchmarking.102

(3) We propose HE-MCTS, the Hierarchical Evo-103

lutionary Monte Carlo Tree Search framework, that104

decouples tool planning and execution into separate105

models. Our framework enables autonomous opti-106

mization without manual annotation by leveraging107

self-generated HE-MCTS data to adopt enhanced108

step-level FT for the policy model and train the109

PRM and ORM that surpass GPT-4o in domain-110

specific task.111

2 ChemAgent 112

Inspired by the success of LLM agents in general 113

scenarios, we attempt to construct an agent for 114

chemistry from scratch. The foundation LLM of 115

our agent could retrieve and call external tools, and 116

do deep reasoning on complex domain questions. 117

2.1 Tools Integration 118

This section introduces how to construct executable 119

chemistry toolpools as shown in Figure 6. For con- 120

venience in agent deployment and evaluation, we 121

hope the tool mainly executes in the local environ- 122

ment and requires slight free online services. The 123

procedure can be divided into 3 steps as follows. 124

2.1.1 Collect Tools from the Internet 125

We conduct a survey on former works about chem- 126

istry agents / tools(Bran et al., 2023; McNaughton 127

et al., 2024; Ong et al., 2013) and also investigate 128

relevant repositories in Github1. Finally we col- 129

lect tools from 5 sources listed in Table 1: Chem- 130

Crow, CACTUS, chemlib, pymatgen, and Chem- 131

istry Tools. 132

1https://github.com
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Source Amount

ChemCrow 2 8
CACTUS 3 10
chemlib 4 24
pymatgen 5 82
Chemistry Tools 6 13
In total: 137

Table 1: Chemistry Domain Tools Source: The number
of tools is counted after organization and rewriting in
Sections 2.1.2 and 2.1.3.

2.1.2 Organize Tools in Uniform Format133

To make the tool learning module of the agent134

extendable, we design a uniform file format for135

loading python tool packages. We count all the136

functions or methods in each package that can be137

used as tools. Then we list them in a new JSON file138

called "tools.json" in each package like in Figure 6.139

The code path for the implementation of the tool is140

also given in that file. With the uniform format of141

each packge, the agent can easily know which tools142

it has and where to call them. In the future, more143

and more chemistry tool packages can be added to144

our agent without refining the agent framework for145

compatibility issues as soon as they use the same146

package organization format as we do.147

2.1.3 Write Documentation & Refine Code148

To make the chemistry toolpool reliable, we also149

write tool documentation and refine code in the150

final step of tool integration like shown in Figure 6.151

We write documentation for each chemistry tool152

so that the agent can better understand the purpose153

of tools and how to use them. Besides, chemistry154

usually contains a variety of compounds, reactions,155

and other specialized knowledge, with which large156

models may not be familiar. So we summarize157

the input parameters of all the tools with uniform158

naming.159

In Addition, we refine the code implementation160

of tools to make them easy to use for the agent.161

Many tools rely on instances of classes defined in162

2ChemCrow:
https://github.com/ur-whitelab/chemcrow-public
https://github.com/ur-whitelab/chemcrow-runs

3CACTUS:
https://github.com/pnnl/cactus

4chemlib:
https://github.com/harirakul/chemlib

5pymatgen:
https://github.com/materialsproject/pymatgen

6Chemistry Tools:
https://github.com/domdfcoding/chemistry_tools

their original Python packages as inputs so it is dif- 163

ficult for the agent to only call the specific tool with- 164

out declaring other classes. In order to decouple the 165

tools from their original packages, we adopt two 166

approaches. (1) For inputs that can be represented 167

with common data types in Python, we convert the 168

original parameters into their corresponding types. 169

(2) For those can not be easily represented, we read 170

and write them using the pickle file format. 171

2.2 Dataset Construction 172

A high-quality dataset is the prerequisite for agent 173

fine-tuning and evaluation. In this section we talk 174

about how to construct the chemistry domain Tool 175

Learning dataset ChemToolBench, trying to design 176

corresponding construction methods by incorporat- 177

ing the characteristics of the chemistry discipline. 178

2.2.1 Preparation 179

In order to better construct data, we generate cases 180

for each kind of parameters. All parameter names 181

have been standardized in Section 2.1.3 so that they 182

can be easily categorized. 183

In our preliminary attempts, we find that LLMs 184

are not good at making up diverse input parameters. 185

Since the large amount of data constructed by the 186

requirements, the cases returned by the large model 187

over multiple inputs inevitably fall into homoge- 188

nization. Besides some parameters involve the user 189

personal privacy, and due to RLHF, the LLMs will 190

simply refuse to return the results, even if they are 191

ordered to generate some virtual examples. 192

To improve the situation, we find the way to pro- 193

vide some examples of input parameters in prompt 194

like in Figure 2. We use 3 approaches to gener- 195

ate examples for these parameters. (1) For those 196

chemistry-related concepts, we get examples from 197

the online chemistry database like PubChem7. (2) 198

For general parameters, we let LLMs to generate 199

as many examples as possible. (3) For those pa- 200

rameters involving personal privacy like api-key or 201

password, we write code to construct examples. 202

2.2.2 Single-Tool-Calling Data 203

For cases which only need to call single tool, it is 204

relatively easy to generate. We provide the LLM 205

with the tool and examples of input parameters then 206

the LLM makes up the tool calling as in Figure 207

2. For tools in packages ChemCrow, CACTUS, 208

chemlib and Chemistry Tools, we try to execute 209

these tool callings to examine the correctness. For 210

7https://pubchem.ncbi.nlm.nih.gov
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Figure 2: Domain-specific Tool Learning dataset construction pipeline.

tools in the package pymatgen, we do an exhaustive211

manual examination after generation. The same is212

true for tool calling chains in the next section 2.2.3.213

Then we fill in the tool calling and tool information214

in the prompt to let the LLM generate the user215

query. After final manual check, the generation of216

single-tool-calling data is completed.217

2.2.3 Multiple-Tool-Calling Data218

For cases which need to call multiple tools, we219

break down the goal into three steps to construct220

the data. The quality of the data obtained by letting221

LLM generate it directly is poor. The format of222

the output is often wrong, not to mention the logic223

of the tool calling chain. Splitting and subdivid-224

ing that data generation task as much as possible225

facilitates better LLMs.226

STEP 1: Candidate Tool Selection227

The first step is to select several tools from the228

whole tool pool. The tool documentation is put229

into prompt in a disorganized order, and the LLM230

picks the tools that are relevant from the prompt231

and generates a rough task description.232

STEP 2: Tool Calling Chain Generation233

Given candidate tool, input parameter examples234

and rough task description generated in the last235

step, the model is asked to generate the tool calling236

chain step-by-step like in Figure 2.237

STEP 3: User Query Generation238

The third step is to generate the user query ac- 239

cording to the tool calling chain and tool documen- 240

tation. Finally we do a manual check to examine 241

the correctness and logical soundness. 242

2.2.4 Dataset Analysis 243

To the best of our knowledge, we construct the 244

largest and most comprehensive Chemistry Tool 245

Learning dataset. Our dataset ChemToolBench 246

contains two main splits: 247

Comprehensive Chemistry split: It has 248

10441 single-calling data (8353/1044/1044 for 249

train/dev/test) and 2003 multiple-calling data 250

(1623/200/200 for train/dev/test). 251

Materials Science split: It has 15742 single- 252

calling data (14102/820/820 for train/dev/test) 253

and 1623 multiple-calling data (1187/436 for 254

train/test). 255

2.3 The HE-MCTS Framework 256

Our approach, HE-MCTS, is outlined in Figure 3 257

and developed using four main components. 258

• Policy Model, which treats tools as aids and 259

integrates tool invocation into a coherent decision 260

process, and Execution Model, which generates 261

specific parameters for each tool invocation, jointly 262

generate step-by-step solutions for each task. 263

• Hierarchical MCTS, which performs efficiently 264

under the guidance of PRM and ORM. 265

4



• Process Reward Model (PRM), which evalu-266

ates the quality of any reasoning step, and Outcome267

Reward Model (ORM), which assesses the quality268

of the final answer, jointly guide HE-MCTS.269

• LLM Self-Training, which leverages HE-270

MCTS to collect decision trajectories, trains Policy271

Model on enhanced positive samples, and trains272

both PRM and ORM on all generated trajectories.273

2.3.1 Policy Model and Execution Model274

Existing tool agents (Chen et al., 2024c; Schick275

et al., 2024) typically use a single model for both276

tool planning and execution, though these tasks are277

inherently different. Tool planning, guided by Tool-278

Augmented Learning (Parisi et al., 2022), requires279

high-level tasks and tool understanding, while tool280

execution, guided by Tool-Oriented Learning (Qin281

et al., 2024), demands precise operational knowl-282

edge. To address this, we decouple tool selection283

and execution into two components: Policy Model284

p and Execution Model u.285

At step i, Policy Model generates k actions286

aji ∼ p(ai|spi−1), for j = 1, . . . , k. The287

state spi−1 denotes a partial trajectory spi−1 =288

[xp, a1, o1, . . . , ai−1, oi−1]. The input xp com-289

prises tool selection task prompt, task examples,290

query q. The action ai comprises thought and291

tool invocation at step i. The valid action space292

is defined as A = {ai | ai ∈ T ∪ An}, where293

T = {t1, t2, . . . , tm} denotes the set of available294

tools, and An denotes an aggregated response de-295

rived from prefix trajectory.296

Given an action aji , the execution result oji is ob-297

tained via oji = u(aji , s
u
i−1), where the state sui−1298

is defined as sui−1 = [xu, a1, o1, . . . , ai−1, oi−1],299

the input xu comprises tool execution task prompt,300

task examples, query q. Execution Model is in-301

dependently fine-tuned on the dataset Du, which302

derived from meta-dataset. Only the log probability303

of parameter_token is computed.304

2.3.2 Search-Based Hierarchical Reasoning305

In our hierarchical evolutionary framework, we306

integrate Monte Carlo Tree Search (MCTS) into307

Policy Model, where each node denotes spi−1.308

Uniqueness Enforcement: Unlike Alp-309

hazero(Wan et al., 2024), which promotes diversity310

through clustering, we enforce uniqueness among311

sibling nodes by directly filtering out identical312

execution results, as each result is uniquely313

determined by the tool and its parameters.314

Explicit Promotion of Diversity: Instead of315

relying on temperature adjustments (Zhang et al., 316

2024a; Song et al., 2024; Chen et al., 2024b), we 317

enhance exploration by tracking historical sibling 318

nodes and incorporating diversity prompts. 319

Prioritization of Unexplored Branches: Fol- 320

lowing CPO(Zhang et al., 2024c), we prioritize 321

non-terminal nodes to encourage further explo- 322

ration of unfinished branches during selection. 323

Adaptive Pruning for Efficient Exploration: 324

Building on AlphaLLM(Tian et al., 2024), we intro- 325

duce an more adaptive pruning mechanism, which 326

dynamically evaluates nodes using score I(spi ) and 327

incorporates Hierarchical Pruning, Soft Pruning, 328

and Fast Recovery to balance search quality and 329

stability. Details are provided in the appendix. 330

Additionally, we integrate fast-rollout and 331

Global Reflection (Policy-Level), which refines 332

Policy Model by incorporating feedback across 333

multiple search iterations. 334

Execution Model is directly invoked by Pol- 335

icy Model during the expansion and simulation 336

of the H-MCTS. Upon execution failure, Execution 337

Model refines through (Tool-Level) Immediate 338

Reflection, incorporating real-time execution error 339

feedback. Once the iterative self-corrective reflec- 340

tion process concludes, the final execution results 341

are returned to Policy Model, which then proceeds 342

with the HE-MCTS evaluation. 343

2.3.3 Enhanced Self-Step-FT for Policy Model 344

Based on meta-dataset, we construct a step-level 345

dataset for tool selection, denoted as Dp = 346

{(spi−1, ai)}. Additionally, we construct an en- 347

hanced dataset D̃p = {(spi−1, a
j
i )} by two strate- 348

gies. 349

Multi-Path Reasoning and Noise Filtering 350

Strategy: For multi-step tool invocation tasks, 351

LLMs can exhibit multiple valid reasoning paths. It 352

is natural to apply a reward-based mechanism that 353

incorporates estimated values to select paths (Chen 354

et al., 2024b; Zhang et al., 2024a; Chen et al., 355

2024a) to extract multiple reasoning paths from 356

HE-MCTS trees for fine-tuned. However, such 357

mechanisms do not eliminate noisy actions, poten- 358

tially leading to errors in credit assignment. To 359

address this, we filter reasoning paths with meta- 360

dataset, enforcing consistency between each node 361

and the standard invocation chain, ensuring noise- 362

free training labels. Analysis of search trees re- 363

veals that multiplicity stems from the parallel exe- 364

cution of certain tools, with dependencies and inter- 365

changeability naturally forming a directed acyclic 366
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Figure 3: HE-MCTS pipeline.The left part presents the process of Search-Based Hierarchical inferring process. The
right part denotes the self-training.

Figure 4: contrast of Dp and D̃p

graph(DAG). Leveraging this structure, an alterna-367

tive approach is reordering interchangeable tools in368

meta-dataset, while using GPT to ensure coherent369

reasoning within each invocation chain.370

Robustness Reasoning and Noise Retention371

Strategy: In real-world scenarios, the Policy372

Model iteratively generates and corrects errors.373

Discarding paths with incorrect steps or final an-374

swers (Zhang et al., 2024c; Song et al., 2024; Tian375

et al., 2024) wastes valuable trajectories and weak-376

ens its robustness to real-world error patterns. To377

address this, we extract nodes from the HE-MCTS378

tree that follow the correct tool selection strategy,379

even if their reasoning paths are incomplete or con-380

tain errors. Specifically, spi−1 may contain incorrect381

tool invocations, erroneous execution results or per-382

turbed reasoning, while aji remain correct. Guided383

by this option, a complementary and more effi-384

cient approach perturbs Dp via rule-based modifi-385

cations while using GPT to generate corresponding386

thoughts, observations, or answers.387

The comparison between Dp and D̃p is pre-388

sented in Figure 4, where each highlighted node 389

can be used to construct a step-FT training sample. 390

The loss function for fine-tuning policy_model is: 391

L̃p = E
(spi−1,a

j
i )∼D̃p∪Dp

[
log p(aji |s

p
i−1)

]
. 392

2.3.4 Self-Training for PRM and ORM 393

We train two types of self-improving critic mod- 394

els to guide the search process. Both PRM and 395

ORM are initialized using Policy Model, and their 396

weights remain fixed throughout the HE-MCTS 397

iterations. 398

PRM The dataset for PRM is constructed as 399

DPRM = {(spi , vi)} , where spi is sampled from 400

nodes in HD-MCTS trees or the augmented syn- 401

thetic data. vi is determined on the correctness 402

of ai rather than the calibrated value of node spi 403

(Chen et al., 2024a; Zhang et al., 2024a; Chen 404

et al., 2024b). Specifically, if ai aligns with 405

the standard tool invocation chain, vi is 1; oth- 406

erwise, vi is 0. The loss function is: LPRM = 407

−E(spi ,vi)∼DPRM (V (spi )− vi)
2. 408

ORM The dataset for ORM is formulated 409

as DORM = {([q, aL], rL)}, where q and 410

aL originate from the terminal nodes spL = 411

[q, a1, o1, . . . , aL−1, oL−1, aL](aL ∈ An), sam- 412

pled from nodes in HD-MCTS trees or the 413

augmented synthetic data. rL is a weighted 414

average of two scores: (1) r1L, obtained by 415

prompting GPT to assess aL, (2) r2L, derived 416

from rule-based correctness evaluation of the 417

sequence [q, a1, o1, . . . , aL−1, oL−1] using meta- 418

dataset. The loss function is: LORM = 419

−E([q,aL],rL)∼DORM (RL − rL)
2. 420
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Model Format Tool Param Return Pass RateP R F1 P R F1 P R F1

GPT-4o-mini 99.83 83.22 78.86 80.98 76.04 72.19 74.06 77.05 73.13 75.04 58.00
Claude-3.5-S 97.42 83.64 85.37 84.50 76.03 77.53 76.77 74.96 78.54 76.71 57.00
ChemLLM* 98.10 76.84 88.08 82.07 68.22 80.20 73.72 68.84 80.45 74.19 53.00
Qwen-2.5-7B-I 51.25 64.15 41.81 50.63 56.48 37.36 44.97 29.25 37.20 32.75 22.50
Llama-3.1-8B-I 75.99 59.95 38.31 46.75 52.98 33.71 41.20 40.83 34.34 37.31 15.00
Llama-3.1-8B-I* 99.20 93.10 92.21 92.65 83.85 83.15 83.50 85.03 84.90 84.96 55.00

GPT-4o-mini-M / 85.06 83.57 84.31 88.47 / / 75.97 74.64 75.30 62.30
Claude-3.5-S-M / 89.80 86.27 88.00 86.36 / / 77.55 74.51 76.00 57.06
Qwen-2.5-7B-M3 / 91.14 90.45 90.80 89.32 / / 81.41 80.79 81.10 67.32
Llama-3.1-8B-M0 / 75.45 78.45 76.92 85.25 / / 65.09 67.68 66.36 29.19
Llama-3.1-8B-M1 / 87.74 87.32 87.53 85.92 / / 75.81 75.44 75.62 69.50
Llama-3.1-8B-M2 / 93.18 88.39 90.79 95.12 / / 88.64 84.07 86.36 72.30
Llama-3.1-8B-M3 / 93.22 91.73 92.47 92.36 / / 86.09 84.72 85.41 72.20

Table 2: Main Results on the Multiple-Tool-Calling Comprehensive Chemistry Benchmark. * represents the model
fine-tuned with ChemToolBench Comprehensive Chemistry split.

3 Experiments421

3.1 Experimental Setup422

To evaluate the reasoning capabilities of our tool423

agent in the field of chemistry, we conduct experi-424

ments on the ChemToolBench. Given a user query,425

the tool retriever would first search relevant tools426

from the whole tool pool. Then the LLM judges427

whether to call these candidate tools. With the428

tool calling executed, the LLM takes all return429

values into consideration and generates the final430

answer. For multi-tool calling tasks, we evaluate431

the performance of the agent under both the Chain-432

of-Thought (CoT) paradigm and the HE-MCTS433

paradigm(-M). Since the -M agent essentially op-434

erates as a multi-agents system, we provide de-435

tailed training configurations of each model in Ap-436

pendix Table 5. For LLMs, we evaluate both com-437

mercial models, such as GPT-4o-mini and Claude-438

3.5-Sonnet, as well as open-source models, includ-439

ing Qwen-2.5, ChemLLM8 and the Llama series.440

For tool retriever, we take dense retrievers like all-441

MiniLM-L6-v29 and NV-Embed v210.442

3.2 Evaluation Metric443

We conduct a comprehensive evaluation of the444

agent’s process reasoning accuracy and result ac-445

curacy. Process reasoning accuracy is assessed in446

terms of tool selection and tool execution (parame-447

ter generation). To provide a fine-grained analysis448

of the agent’s reasoning capability, we compute449

8https://huggingface.co/AI4Chem/
ChemLLM-20B-Chat-DPO

9https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

10https://huggingface.co/nvidia/NV-Embed-v2

Precision, Recall, and F1-score of tool selection 450

and parameter filling-in. Result accuracy is mea- 451

sured using the Pass Rate, which, in the context of 452

question-answering tasks, denotes the proportion 453

of final answers generated by the agent that GPT-4o 454

deems consistent with the reference answers. 455

3.3 Results & Discussion 456

3.3.1 Main Results 457

Table 2 presents the main experimental results. For 458

the HE-MCTS, GPT-4o-mini-M and Claude-3.5-S- 459

M exhibit superior than GPT-4o-mini and Claude- 460

3.5-S, primarily due to enhanced tool selection ca- 461

pabilities. Our empirical evaluations reveal key 462

advantages of the proposed decoupled hierarchi- 463

cal framework: (1) Enhanced Tool Execution 464

Capability: Compared to end-to-end inference, 465

independently optimizing the Execution Model sig- 466

nificantly improves parameter generation accuracy. 467

We attribute this improvement to the substantial 468

reduction in action space enabled by the decoupled 469

framework, allowing the model to focus on specific 470

tasks without unnecessary reasoning over an exces- 471

sively large search space. (2) Positive Impact of 472

Tool Selection on Execution: As the performance 473

of the Policy Model improves, we observe a mi- 474

nor yet consistent enhancement in the Execution 475

Model. This suggests that more precise tool selec- 476

tion provides a more reliable context for parameter 477

generation, ultimately leading to better execution. 478

3.3.2 Ablation Analysis 479

For the Policy Model, tool selection capabilities 480

of -M0, -M1, and -M2 models exhibit a consis- 481

tent upward trend, with the -M2 models surpassing 482
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GPT-4o-mini-M and Claude-3.5-S-M. This result483

validates the effectiveness of the method we pro-484

posed in Section 2.3.3.485

For PRM and ORM, -M3 models outperform486

-M2 models, indicating that the PRM and ORM487

models we trained surpass GPT-4o and Policy488

Model. This advantage is primarily attributed to489

the improvement of tool execution, as the more spe-490

cialized critic models reduce redundant sampling491

in erroneous exploration regions.492

3.3.3 Generalization Verification493

Model Format Tool Param
ACC P R F1

GPT-4o-mini 99.75 88.41 93.80 90.75 92.25
Qwen-2.5-7B-I 54.53 43.17 85.54 44.00 58.11
Llama-3.1-8B-I 98.91 75.37 88.89 81.94 85.27
Llama-3.1-8B-I* 97.93 79.51 91.32 87.50 89.37

Table 3: Single-Calling Results on the Materials Science
Benchmark. * represents the model fine-tuned with
ChemToolBench Comprehensive Chemistry split.

Model Format Tool Param
P R F1 P R F1

GPT-4o-mini 99.90 61.37 41.31 49.38 55.91 40.21 46.78
Qwen-2.5-7B-I 87.37 47.91 33.02 39.10 40.31 33.10 36.35
Llama-3.1-8B-I 60.52 64.35 19.18 29.56 60.34 19.51 29.49
Llama-3.1-8B-I* 94.25 76.91 73.26 75.04 71.60 65.02 68.15

Table 4: Multiple-Calling Results on the Materials Sci-
ence Benchmark. * is the same as in Table 3.

As shown in Table 3 and 4, we also evaluate494

LLMs on the Materials Science split. The LLM495

trained with Comprehensive Chemistry split is also496

compatible with the other split. It may suggest that497

LLMs can learn general chemistry tool knowledge498

from our dataset ChemToolBench.499

4 Related Works500

The LLM agent with equipped tools has become501

a hit because it fully extends the application sce-502

narios of the LLMs like science discovery and em-503

bodied intelligence. Tool Learning is one of the504

important components in an agent.505

Several studies focus on constructing tools and506

datasets for tool learning. ToolLLM (Qin et al.,507

2023) collects APIs from RapidAPI Hub 11 and em-508

ploys bottom-up instruction generation, releasing509

dataset ToolBench. API-Bank (Li et al., 2023) sets510

various types of evaluation settings and explores511

the self-instruct method to construct the dataset.512

11https://rapidapi.com/hub

Seal-Tools (Wu et al., 2024a) tries to generate tools 513

and datasets with LLM from scratch to test the scal- 514

ing law of tool learning. ToolACE (Liu et al., 2024) 515

introduces a self-evolving API synthesis method 516

and a multi-agent interaction-driven data genera- 517

tion approach, producing 26,507 APIs. ToolPrefer- 518

ence (Chen et al., 2024c) trains models using DPO 519

enhances tool usage proficiency. 520

In general scenarios, many Tool Learning works 521

have gained success in recent years. Toolformer 522

(Schick et al., 2024) demonstrates that LLMs can 523

autonomously learn to use external tools. Hug- 524

gingGPT (Shen et al., 2024) takes domain-specific 525

language models from Huggingface Hub as tools 526

to solve professional problems. ToolkenGPT (Hao 527

et al., 2024) encodes tools as special tokens in the 528

LLM to decide whether to call a tool during gen- 529

eration. ToolPlanner (Wu et al., 2024b) simulates 530

real-world user behaviors through multi-granularity 531

instructions and optimizes via path planning. 532

In scientific scenarios, related explorations are 533

just beginning. SciAgent (Ma et al., 2024) proposes 534

the scientific reasoning method with domain tools 535

and evaluates it on the new benchmark SciTool- 536

Bench. Pymatgen (Ong et al., 2013) builds robust 537

and fast python package for material analysis with 538

many extensions. ChemCrow (Bran et al., 2023) 539

integrates 18 expert-designed chemistry tools in 540

the LLM engine to solve tasks like drug analysis 541

and materials design. It performs better than GPT4 542

across a range of chemistry tasks while its tools 543

and evaluation questions are limited in amount. 544

CACTUS(McNaughton et al., 2024) integrates 10 545

cheminformatics tools to give precise answer in 546

chemistry and molecular discovery questions. 547

5 Conclusion 548

In this work, we have presented a novel LLM-based 549

agent specifically tailored for chemical applications 550

by integrating a comprehensive tool pool, an inno- 551

vative dataset curation pipeline, and an advanced 552

reasoning framework. Our approach addresses two 553

major challenges in applying large language mod- 554

els to the chemistry domain: incorporating spe- 555

cialized chemical knowledge and calling multiple 556

tools to solve complex chemistry tasks. Further- 557

more, the introduction of HE-MCTS framework, 558

guided by trained critic models and integrated with 559

an enhanced STEP-FT paradigm, allows our agent 560

to overcome the inherent limitations of the token- 561

by-token decision process in LLMs. 562
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Limitations563

Despite the promising results and substantial im-564

provements demonstrated by our approach, several565

limitations must be acknowledged:566

• Computational Overhead: Although our HE-567

MCTS employs various mechanisms to enhance568

iterative accuracy and efficiency, it inevitably intro-569

duces additional computational complexity. This570

overhead can hinder real-time applications and may571

require further optimization to balance efficiency572

with decision-making accuracy.573

• Reliance on Pretrained Knowledge: As with574

many large language models, our agent effective-575

ness is partly limited by the potential obsolescence576

of its pretraining knowledge. Continuous updates577

and domain-specific fine-tuning are necessary to578

mitigate this issue and maintain reliability over579

time.580

Addressing these limitations in future research581

will be crucial for further refining the agent’s per-582

formance, ensuring broader applicability, and ad-583

vancing the integration of specialized tools with584

large language models in chemical research.585
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A More Experimental Details 724

A.1 HE-MCTS Model Settings 725

Model Policy Model Execution Model PRM ORM

GPT-4o-mini-M / / / gpt-4o
Claude-3.5-S-M / / / Claude-3.5-S
Qwen-2.5-7B-M1 Dp Du Dp gpt-4o
Qwen-2.5-7B-M2 D̃p ∪Dp Du D̃p ∪Dp gpt-4o
Qwen-2.5-7B-M3 D̃p ∪Dp Du DPRM DORM

Llama-3.1-8B-M0 / Du / gpt-4o
Llama-3.1-8B-M1 Dp Du Dp gpt-4o
Llama-3.1-8B-M2 D̃p ∪Dp Du D̃p ∪Dp gpt-4o
Llama-3.1-8B-M3 D̃p ∪Dp Du DPRM DORM

Table 5: Training dataset for Different Models

A.2 Results of Single-Calling Dataset 726

Model Format Tool Param Return Pass RateACC P R F1 ACC

GPT-4o-mini 100.00 93.20 96.24 94.74 95.48 90.71 86.88
Claude-3.5-S 98.08 92.34 97.24 95.08 96.15 90.52 80.27
ChemLLM-1* 93.97 88.31 97.06 89.02 92.86 88.12 70.98
Qwen-2.5-7B-I 64.08 56.70 91.15 61.79 73.65 54.50 49.23
Llama-2-7B-C 41.11 9.29 42.64 15.43 22.66 6.51 12.16
Llama-3.1-8B-I 98.80 83.62 93.60 87.67 90.54 81.23 63.22
Llama-3.1-8B-I* 97.89 93.87 98.08 92.79 95.36 94.54 69.25

Table 6: Single-Calling Results
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A.3 Fine-tuning Results Comparison727

Model Format Tool Param Return Pass RateACC P R F1 ACC

ChemLLM-1*
- v1 93.97 88.31 97.06 89.02 92.86 88.12 70.98
- v2 86.21 79.89 97.49 83.69 90.07 79.98 64.37
- v3 88.79 82.66 97.22 84.97 90.69 82.47 63.98

Llama-3.1-8B-I*
- v1 97.89 93.87 97.93 92.65 95.22 94.25 68.30
- v2 97.99 93.49 97.80 92.65 95.16 94.16 72.41
- v3 97.89 93.87 98.08 92.79 95.36 94.54 69.25

Table 7: Results of LLMs with different fine-tuning model settings on the single-calling benchmark.

Model Format Tool Param Return Pass RateP R F1 P R F1 P R F1

ChemLLM-1*
- v1 98.50 56.98 89.51 69.64 50.43 81.60 62.34 51.74 82.51 63.60 46.00
- v2 86.46 68.19 89.98 77.59 59.42 81.04 68.57 53.85 82.19 65.07 46.50
- v3 98.10 76.84 88.08 82.07 68.22 80.20 73.72 68.84 80.45 74.19 53.00

Llama-3.1-8B-I*
- v1 99.18 60.25 93.00 73.13 51.60 83.57 63.81 55.06 85.69 67.04 57.50
- v2 96.81 94.56 91.26 92.88 85.03 82.16 83.57 84.21 83.94 84.08 57.00
- v3 99.20 93.10 92.21 92.65 83.85 83.15 83.50 85.03 84.90 84.96 55.00

Table 8: Results of LLMs with different fine-tuning model settings on the multiple-calling benchmark.

v1 means the fine-tuning dataset contains no negative cases. v2 means the fine-tuning dataset contains728

negative cases for both single and multiple callings. v3 means the fine-tuning dataset contains negative729

cases for only multiple callings.730

12



B Algorithm Details of H-MCTS 731

B.1 Process of H-MCTS 732

Hierarchical Monte Carlo Tree Search (H-MCTS) is a sampling-based search algorithm. It iteratively 733

constructs a search tree by repeating six phases as illustrated in Figure 5: Expansion, Evaluation, Selection, 734

Simulation, Reflection, and Backpropagation. 735

Figure 5: H-MCTS process

Expansion: Policy Model generates k child nodes. To enhance the efficiency of exploration, T is 736

constrained to retrieved tools. To mitigate redundancy, uniqueness is enforced among child nodes, ensuring 737

parent node does not generate duplicate children. Furthermore, to enhance the distinctions between sibling 738

nodes, leverage diversity prompts. 739

Evaluation: The PRM initializes a scalar score Vi for newly expanded nodes: 740

Vi = V (spi ) = PRM(spi ) (1) 741

This score is used in the Selection phase to compute the Upper Confidence Bound for Trees (UCT) value 742

of nodes and serves as a reference for choosing starting points in the subsequent Simulation phase. 743

Selection: It recursively selects nodes from the root based on the Upper Confidence Bound(Kocsis and 744

Szepesvári, 2006) (UCB) which allows the search to prioritize high-value nodes while still encouraging 745

the discovery of new solutions: 746

UCT (spi−1, a
j
i ) = V j

i + C ·

√
ln(N(spi−1))

1 +N(spi−1, a
j
i )

(2) 747

where N(spi−1),N(spi−1, a
j
i ) denote visit counts. V j

i is initialized by PRM. The hyperparameter C is an 748

exploration coefficient. To promotes exploration of unfinished branches, prioritize non-terminal nodes 749

over terminal ones. To maintain efficient search space, nodes with low information gain and value are 750

adaptively pruned before selection. 751

Simulation: The Policy Model predicts subsequent actions from selected leaf node until reaching a 752

terminal node spL, where spL = [q, a1, o1, . . . , aL−1, oL−1, aL](aL ∈ An). The reward RL is assigned by 753

ORM(q, aL). To expedite trajectory simulation and expansion, a single node is sampled at this stage. 754

Global Reflection(Policy-Level): If agent fails to yield a correct answer, the Policy Model performs 755

failure analysis and generates recommendations to guide subsequent iterations. 756

Backpropagation: Starting from spL, updates propagate along the path back to sp0: 757

N(spi )← N(spi ) + 1 (3) 758

759

V (spi )← V (spi ) +
RL − V (spi )

N(spi )
(4) 760

where final reward RL can source heuristic rule or external reward function, like ORM: 761

RL = ORM(q, aL), aL ∈ An (5) 762
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B.2 Details of Adaptive Pruning mechanism763

Scoring Mechanism The core of pruning is the evaluation of node importance. We compute a compre-764

hensive node score:765

I(spi ) = αV (spi ) + βU(spi ) (6)766

where V (spi ) is the value of node si, measuring the historical search gains, U(spi ) is the uncertainty esti-767

mation of node spi , based on Information Gain (Pearl, 1984)(IG), which quantifies the node’s importance768

in the overall search strategy.769

For a node spi with visit count N(spi ) and a child set C(spi ), Information Gain (IG) is defined as:770

U(spi ) = H(spi )−
∑

c∈C(si)

N(c)

N(spi )
H(c) (7)771

where H(spi ) represents the entropy(Silver et al., 2016) of node spi , computed based on search trajectory,772

indicating the uncertainty of decision-making at that node. A higher information gain suggests a greater773

impact on the search strategy.774

Pruning is guided by an adaptive threshold τ(i), such that nodes with scores below the threshold are775

pruned.776

Hierarchical Pruning The pruning threshold τ(i) dynamically adjusts based on search depth i:777

• Shallow search(i < Dearly): A lower pruning threshold encourages broader exploration, reducing778

premature pruning effects779

τ(i) = τ0 ·
(
1− λ

i

Dmax

)
(8)780

• Deep search(i > Dearly): The pruning threshold increases, prioritizing high-value paths781

τ(i) = τ0 ·
(
1 + λ

i

Dmax

)
(9)782

where τ0 is the initial pruning threshold controlling overall pruning intensity, λ is a hyperparame-783

ter regulating threshold variation, Dmax is the maximum search depth, ensuring progressive pruning784

refinement.785

Soft Pruning To mitigate search loss from mispruning, Soft Pruning(Gelly and Silver, 2011) retains786

pruned nodes with a certain probability. If I(spi ) < τ(i), the node is retained with probability:787

Pretain = e−κ(τ(i)−I(spi )) (10)788

where κ controls the pruning probability decay rate, allowing nodes close to the threshold to have a higher789

retention probability.790

Fast Recovery To prevent excessive pruning from limiting search effectiveness, we introduce a Fast791

Recovery mechanism(Spirtes and Glymour, 1991) :792

• Pruned Node Logging: Maintain records of pruned nodes, including Score I(spi ), Pruning depth i,793

Visit count N(spi ).794

• Detect Search Degradation: If the search reward drops significantly compared to the best path:795

Vbest − Vcurrent

Vbest
> ϵ (11)796

where Vbest is the average value of the best search path, Vcurrent is the average value of the current search797

path, ϵ is the recovery threshold.798

Restore recently pruned high-score nodes from history records to reintroduce potentially valuable799

search directions.800
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C Tool Integration Procedure 801

Figure 6: Tool Integration Procedure in 3 steps.
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