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Abstract

“The right to be forgotten” ensured by laws for user data privacy becomes increas-
ingly important. Machine unlearning aims to efficiently remove the effect of certain
data points on the trained model parameters so that it can be approximately the
same as if one retrains the model from scratch. We propose to leverage projected
noisy stochastic gradient descent for unlearning and establish its first approximate
unlearning guarantee under the convexity assumption. Our approach exhibits sev-
eral benefits, including provable complexity saving compared to retraining, and
supporting sequential and batch unlearning. Both of these benefits are closely re-
lated to our new results on the infinite Wasserstein distance tracking of the adjacent
(un)learning processes. Extensive experiments show that our approach achieves a
similar utility under the same privacy constraint while using 2% and 10% of the gra-
dient computations compared with the state-of-the-art gradient-based approximate
unlearning methods for mini-batch and full-batch settings, respectively.

1 Introduction

Machine learning models usually learn from user data where data privacy has to be respected. Certain
laws, such as European Union’s General Data Protection Regulation (GDPR), are in place to ensure
“the right to be forgotten”, which requires corporations to erase all information pertaining to a user
if they request to remove their data. It is insufficient to comply with such privacy regulation by
only removing user data from the dataset, as machine learning models can memorize training data
information and risk information leakage [1, 2]. A naive approach to adhere to this privacy regulation
is to retrain the model from scratch after every data removal request. Apparently, this approach
is prohibitively expensive in practice for frequent data removal requests and the goal of machine
unlearning is to perform efficient model updates so that the resulting model is (approximately)

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



the same as retraining statistically. Various machine unlearning strategies have been proposed,
including exact [3–6] and approximate approaches [7–11]. The later approaches allow a slight
misalignment between the unlearned model and the retraining one in distribution under a notion
similar to Differential Privacy (DP) [12].

The most popular approach for privatizing machine learning models with DP guarantee is arguably
noisy stochastic gradient methods including the celebrated DP-SGD [13]. Mini-batch training is one
of its critical components, which not only benefits privacy through the effect of privacy amplification
by subsampling [14] but also provides improved convergence of the underlying optimization process.
Several recent works [9, 11] based on full-batch (noisy) gradient methods may achieve certified
approximate unlearning. Unfortunately, their analysis is restricted to the full-batch setting and it
is non-trivial to extend these works to the mini-batch setting with tight approximate unlearning
guarantees. The main challenge is to incorporate the randomness in the mini-batch sampling into the
sensitivity-based analysis [9] or the Langevin-dynamics-based [11] analysis.

We aim to study mini-batch noisy gradient methods for certified approximate unlearning. The high-
level idea of our unlearning framework is illustrated in Figure 1. Given a training dataset D and
a fixed mini-batch sequence B, the model first learns and then unlearns given unlearning requests,
both via the projected noisy stochastic gradient descent (PNSGD). For sufficient learning epochs, we
prove that the law of the PNSGD learning process converges to a unique stationary distribution νD|B
(Theorem 3.1). When an unlearning request arrives, we update D to an adjacent dataset D′ so that
the data point subject to such request is removed. The approximate unlearning problem can then be
viewed as moving from the current distribution νD|B to the target distribution νD′|B until ε-close in
Rényi divergence for the desired privacy loss ε1.

Our key observation is that the results of Altschuler and Talwar [15, 16], which study the conver-
gence of PNSGD under the (strong) convexity assumption, can be leveraged after we formulate the
approximate unlearning as above. They show that the Rényi divergence of two PNSGD processes
with the same dataset but different initial distributions decays at a geometric rate, starting from the
infinite Wasserstein distance (W∞) of initial distributions (Figure 1, step 3). As a result, if the initial
W∞ distance can be properly characterized, we achieve the corresponding approximate unlearning
guarantee by further taking the randomness of the mini-batches B into account (Figure 1, step 4).
Therefore, the key step to establish the PNSGD-based unlearning guarantee is to characterize the
initial W∞ distance of the unlearning process tightly.

The projection set diameter 2R for this W∞ distance adopted in [15] for DP analysis, unfortunately,
leads to a vacuous unlearning guarantee, which cannot illustrate the computational advantage over the
retraining from scratch. To alleviate this issue, we perform a careful W∞ distance tracking analysis
along the adjacent PNSGD learning processes (Lemma 3.3), which leads to a much better bound
W∞(νD|B, νD′|B) ≤ ZB ≈ O(ηM/b) (Figure 1, step 2) for bounded gradient norm M , mini-batch
size b and step size η. This ultimately leads to our unlearning guarantee ε = O(Z2

Bc
2Kn/b) for K

unlearning epochs and some rate c < 1. The computational benefit compared to the retraining from
scratch naturally emerges by comparing two W∞ distances, O(R) for the retraining from scratch and
O(ηM/b) for our unlearning framework.

Our approach also naturally extends to multiple unlearning requests, including sequential and
batch unlearning settings (Theorem 3.11 and Corollary J.1), by extending the W∞-tracking analysis
(Lemma 3.4). Here, we may use the triangle inequality ofW∞ distance, which leads to a tigher privacy
loss bound (growing linearly to the number of unlearning requests) than that in the Langevin-dynamics-
based analysis [11] via weak triangle inequality of Rényi divergence (growing exponentially).

Our results highlight the insights into privacy-utility-complexity trade-off regarding the mini-batch
size b for approximate unlearning. A smaller batch size b leads to a better privacy loss decaying rate
O(c2Kn/b). However, an extremely small b may degrade the model utility and incur instability. It
also leads to a worse bound ZB ≈ O(ηM/b), which degrades the computational benefits compared to
retraining. We demonstrate such trade-off of our PNSGD unlearning results via experiments against
the state-of-the-art full-batch (b = n) gradient-based approximate unlearning solutions [9, 11]. Our
analysis provides a significantly better privacy-utility-complexity trade-off even when we restrict
ourselves to b = n, and further improves the results by adopting mini-batches. Under the same

1We refer privacy loss as two-sided Rényi divergence of two distributions, which we defined as Rényi
difference in Definition 2.1.
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Figure 1: The overview of PNSGD unlearning. (Left) Proof sketch for PNSGD unlearning guarantees.
(Right) PNSGD (un)learning processes on adjacent datasets. Given a mini-batch sequence B, the
learning process M induces a regular polyhedron where each vertex corresponds to a stationary
distribution νD|B for each dataset D. νD|B and νD|B′ are adjacent if D,D′ differ in one data point.
We provide an upper bound ZB for the infinite Wasserstein distance W∞(νD|B, νD|B′), which is
crucial for non-vacuous unlearning guarantees. Results of [16] allow us to convert the initial W∞
bound to Rényi difference bound dBα, and apply joint convexity of KL divergence to obtain the final
privacy loss ε, which also take the randomness of B into account.

privacy constraint, our approach achieves similar utility while merely requiring 10%, 2% of gradient
computations compared to baselines for full and mini-batch settings respectively.

1.1 Related Works

Machine unlearning with privacy guarantees. The concept of approximate unlearning uses a
probabilistic definition of (ϵ, δ)-unlearning motivated by differential privacy [12], which is studied
by [7, 8, 10]. Notably, the unlearning approach of these works involved Hessian inverse computation
which can be computationally prohibitive in practice for high dimensional problems. Ullah et
al. [5] focus on exact unlearning via a sophisticated version of noisy SGD. Their analysis is based
on total variation stability which is not directly applicable to approximate unlearning settings and
different from our analysis focusing on Rényi divergence. Neel et al. [9] leverage full-batch PGD for
(un)learning and achieve approximate unlearning by publishing the final parameters with additive
noise. Chien et al. [11] utilize full-batch PNGD for approximate unlearning with the analysis of
Langevin dynamics. The adaptive unlearning requests setting is studied in [6, 17, 18], where the
unlearning request may depend on the previous (un)learning results. It is possible to show that our
framework is also capable of this adaptive setting since we do not keep any non-private internal states,
though we only focus on non-adaptive settings in this work. We left a rigorous discussion for this as
future work.

2 Preliminaries

We consider the empirical risk minimization (ERM) problem. Let D = {di}ni=1 be a training dataset
with n data point di taken from the universe X . Let fD(x) = 1

n

∑n
i=1 f(x;di) be the objective

function that we aim to minimize with learnable parameter x ∈ CR, where CR = {x ∈ Rd | ∥x∥ ≤
R} is a closed ball of radius R. We denote ΠCR

: Rd 7→ CR to be an orthogonal projection to CR.
The norm ∥ · ∥ is standard Euclidean ℓ2 norm. P(C) is denoted as the set of all probability measures
over a closed convex set C. Standard definitions such as convexity are in Appendix D. We use x ∼ ν
to denote that a random variable x follows the probability distribution ν. We say two datasets D and
D′ are adjacent if they “differ” in only one data point. More specifically, we can obtain D′ from D by
replacing one data point. We next introduce a useful idea which we term as Rényi difference.

Definition 2.1 (Rényi difference). Let α > 1. For a pair of probability measures ν, ν′ with the same
support, the α Rényi difference dα(ν, ν′) is defined as dα(ν, ν′) = max (Dα(ν||ν′), Dα(ν

′||ν)) ,
where Dα(ν||ν′) is the α Rényi divergence defined as Dα(ν||ν′) = 1

α−1 log
(
Ex∼ν′( ν(x)

ν′(x) )
α
)
.
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Algorithm 1 (Un)learning with PNSGD

1: Parameters: stepsize η, noise standard deviation σ, dataset size n, mini-batch size b.
2: Minibatch Generation: randomly partition indices [n] into n/b mini-batches of size b:

B0, . . . ,Bn/b−1.
3: Learning process M(D): given a dataset D = {di}ni=1 ∈ Xn, sample initial parameter x00

from a given initialization distribution ν0 supported on CR. The output is the last iterate x0T .
4: for epoch t = 0, . . . , T − 1 do
5: for iteration j = 0, . . . , n/b− 1 do
6: xj+1

t = ΠCR

(
xjt − ηg(xjt ,Bj) +

√
2ησ2W j

t

)
, where g(xjt ,Bj) = 1

b

∑
i∈Bj ∇f(xjt ;di)

and W j
t

iid∼ N (0, Id).
7: end for
8: x0t+1 = x

n/b
t

9: end for
10: Unlearning process U(M(D),D′): given an updated dataset D′ = {d′

i}ni=1 ∈ Xn and current
parameter y00 , the output is the last iterate y0K .

11: for epoch k = 0, . . . ,K − 1 do
12: for iteration j = 0, . . . , n/b− 1 do
13: yj+1

k = ΠCR

(
yjk − ηg(yjk,Bj) +

√
2ησ2W j

k

)
, where g(yjk,Bj) = 1

b

∑
i∈Bj ∇f(yjk;d′

i)

and W j
k

iid∼ N (0, Id).
14: end for
15: y0k+1 = y

n/b
k

16: end for

We are ready to introduce the formal definition of differential privacy and unlearning.
Definition 2.2 (Rényi Differential Privacy (RDP) [19]). Let α > 1. A randomized algorithm
M : Xn 7→ Rd satisfies (α, ε)-RDP if for any adjacent dataset pair D,D′ ∈ Xn, the α Rényi
difference dα(ν, ν′) ≤ ε, where M(D) ∼ ν and M(D′) ∼ ν′.

It is known to the literature that an (α, ε)-RDP guarantee can be converted to the popular (ϵ, δ)-DP
guarantee [12] relatively tight [19]. As a result, we will focus on establishing results with respect to
α Rényi difference (and equivalently α Rényi difference). Next, we introduce our formal definition
of unlearning based on α Rényi difference as well.
Definition 2.3 (Rényi Unlearning (RU)). Consider a randomized learning algorithm M : Xn 7→ Rd

and a randomized unlearning algorithm U : Rd × Xn × Xn 7→ Rd. We say (M,U) achieves
(α, ε)-RU if for any α > 1 and any adjacent datasets D,D′, the α Rényi difference dα(ρ, ν′) ≤ ε,
where U(M(D),D′) ∼ ρ and M(D′) ∼ ν′.

Our Definition 2.3 can be converted to the standard (ϵ, δ)-unlearning definition defined in [7–9],
similar to RDP to DP conversion (see Appendix N). Since we work with the replacement definition of
dataset adjacency, to unlearn a data point di we can simply replace it with any data point d′

i ∈ X for
the updated dataset D′ in practice. One may also repeat the entire analysis with the objective function
being the summation of individual loss for the standard add/remove notion of dataset adjacency.
Finally, we will also leverage the infinite Wasserstein distance in our analysis.
Definition 2.4 (W∞ distance). The ∞-Wasserstein distance between distributions µ and ν on
a Banach space (Rd, ∥ · ∥) is defined as W∞(µ, ν) = infγ∈Γ(µ,ν) ess sup(x,y)∼γ ∥x − y∥, where
(x, y) ∼ γ means that the essential supremum is taken relative to measure γ over Rd×Rd parametrized
by (x, y). Γ(µ, ν) is the collection of couplings of µ and ν.

2.1 Converting Initial W∞ Distance to Final Rényi Divergence Bound

An important component of our analysis is to leverage the result of [16], which is based on the
celebrated privacy amplification by iteration analysis originally proposed in [20] and also utilized
for DP guarantees of PNSGD in [15]. The goal of [16] is to analyze the mixing time of the PNSGD
process, which can be viewed as the contractive noisy iterations due to the contractiveness of the
gradient update under strong convexity assumption.
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Definition 2.5 (Contractive Noisy Iteration (c-CNI)). Given an initial distribution µ0 ∈ P(Rd),
a sequence of (random) c-contractive (equivalently, c-Lipschitz) functions ψk : Rd 7→ Rd, and a
sequence of noise distributions ζk, we define the c-Contractive Noisy Iteration (c-CNI) by the update
rule Xk+1 = ψk+1(Xk) +Wk+1, where Wk+1 ∼ ζk independently and X0 ∼ µ0. We denote the
law of the final iterate XK by CNIc(µ0, {ψk}, {ζk}).
Lemma 2.6 (Metric-aware privacy amplification by iteration bound [20], simplified by [16] in
Proposition 2.10). Suppose XK ∼ CNIc(µ0, {ψk}, {ζk}) and X ′

K ∼ CNIc(µ′
0, {ψk}, {ζk}) where

the initial distribution satisfy W∞(µ0, µ
′
0) ≤ Z, the update function ψk are c-contractive, and the

noise distributions ζk = N (0, σ2Id). Then we have

Dα(XK ||X ′
K) ≤ αZ2

2σ2

{
c2K if c < 1

1/K if c = 1
. (1)

Roughly speaking, Lemma 2.6 shows that if we have the W∞ distance of initial distributions of two
PNSGD processes on the same dataset, we have the corresponding Rényi difference bound after
K iterations. The projection set diameter 2R is a default upper bound for W∞ distance if we do
not care about the initial distributions as the case studied in [16] for mixing time analysis. In the
unlearning scenario, the initial distributions of the unlearning processes, denoted by νD|B, νD′|B, are
much more relevant. We can show a much tighter bound by analyzing W∞(νD|B, νD′|B) along the
adjacent PNSGD learning processes.

3 Certified Unlearning Guaranatee for PNSGD

We start with introducing the (un)learning process with PNSGD with a cyclic mini-batch strategy
(Algorithm 1). Note that this mini-batch strategy is not only commonly used for practical DP-SGD
implementations in privacy libraries [21], but also in theoretical analysis for DP guarantees [22].
For the learning mechanism M, we optimize the objective function with PNSGD on dataset D (line
3-8 in Algorithm 1). η, σ2 > 0 are hyperparameters of step size and noise variance respectively.
The initialization ν0 is an arbitrary distribution supported on CR if not specified. For the unlearning
mechanism U , we fine-tune the current parameter with PNSGD on the updated dataset D′ subject
to the unlearning request (line 10-15 in Algorithm 1) with y00 = x0T = M(D). For the rest of the
paper, we denote νjt , ρ

j
k as the probability density of xjt , y

j
k respectively. Furthermore, we denote

B = {Bj}n/b−1
j=0 the minibatch sequence described in Algorithm 1, where b is the step size and we

assume n is divided by b throughout the paper for simplicity2. We use ν·|B to denote the conditional
distribution of ν· given B.

3.1 Certified Unlearning Guarantees

Now we introduce the certified unlearning guarantees for PNSGD and the corresponding analysis
illustrated in Figure 1. We first prove that for any fixed mini-batch sequence B, the limiting distribution
νD|B of the learning process exists, is unique, and stationery. The proof is deferred to Appendix E
and is based on applying the results in [23] to establish the ergodicity of the learning process x0t .

Theorem 3.1. Suppose that the closed convex set C ⊂ Rd is bounded with C having a positive
Lebesgue measure and that ∇f(·;di) : C → Rd is continuous for all i ∈ [n]. The Markov
chain {xt := x0t} in Algorithm 1 for any fixed mini-batch sequence B admits a unique invariant
probability measure νD|B on the Borel σ-algebra of C. Furthermore, for any x ∈ C, the distribution
of xt conditioned on x0 = x converges weakly to νD|B as t → ∞, where νD|B is the conditional
distribution of νD given B.

Suppose the training epoch T is large enough so that the model is well-trained for now, which means
M(D) ∼ νD|B = ρ00|B and our target “retraining distribution” is νD′|B. Our goal is then to upper
bound the Rényi difference dα(ρ0K|B, νD′|B) after K unlearning epochs. In the case of insufficient

training, the privacy loss is dα(ρ0K|B, ν
0,′
T |B) where M(D′) ∼ ν0,′T |B for T training epochs. It can

be upper bounded in terms of dα(ρ0K|B, νD′|B) and dα(ν
0,′
T |B, νD′|B) via weak triangle inequality of

2When n is not divided by b, we can simply drop the last n− ⌊n/b⌋b points.
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Rényi divergence, which is provided in Theorem 3.2 below. We later provide a better bound by
considering the randomness of B.
Theorem 3.2 (RU guarantee of PNSGD unlearning, fixed B). Assume ∀d ∈ X , f(x;d) is L-smooth,
M -Lipchitz andm-strongly convex in x. Let the learning and unlearning processes follow Algorithm 1
with y00 = x0T = M(D). Given any fixed mini-batch sequence B, for any α > 1, let η ≤ 1

L , the
output of the Kth unlearning iteration satisfies (α, ε)-RU for any adjacent dataset D,D′, where

ε ≤ α− 1/2

α− 1
(ε1(2α) + ε2(2α)) , ε1(α) =

α(2R)2

2ησ2
c2Tn/b, ε2(α) =

αZ2
B

2ησ2
c2Kn/b,

ZB =W∞(ρ0K|B, νD′|B) ≤ 2RcTn/b +min

(
1− cTn/b

1− cn/b
2ηM

b
, 2R

)
,

and c = 1− ηm.

As we explained earlier, we need non-trivial W∞ bounds for adjacent PNSGD processes to obtain
better unlearning guarantees when applying Lemma 2.6. We provide such results below and the
proofs are deferred to Appendix L and M respectively.
Lemma 3.3 (W∞ between adjacent PNSGD learning processes). Consider the learning process in
Algorithm 1 on adjacent datasets D and D′ and a fixed mini-batch sequence B. Assume ∀d ∈ X ,
f(x;d) is L-smooth, M -Lipschitz and m-strongly convex in x. Let the index of different data point
between D,D′ belongs to mini-batch Bj0 . Then for η ≤ 1

L and let c = (1− ηm), we have

W∞(ν0T |B, ν
0,′
T |B) ≤ min

(
1− cTn/b

1− cn/b
cn/b−j0−1 2ηM

b
, 2R

)
.

Lemma 3.4 (W∞ between PNSGD learning process to its stationary distribution). Following the
same setting as in Theorem 3.2 and denote the initial distribution of the unlearning process as ν00 .
Then we have

W∞(ν0T |B, νD|B) ≤ (1− ηm)Tn/bW∞(ν00 , νD|B).

Remark 3.5. In [15], the authors used the default projection set diameter 2R as the W∞ distance
upper bound for their DP results, see equations (3.5) and (5.2) therein. However, it yields a vacuous
bound as an unlearning guarantee compared to retraining from scratch. Note that our tighter bound
for W∞ distance is also useful for deriving later sequential unlearning guarantees compared to the
prior work based on the analysis of Langevein dynamics [11]. Interestingly, this improved result can
also be utilized for tightening the DP guarantee in [15] and make it more practically useful, as 2R
can be very large in practice, which may be of independent interest.

We are ready to provide the sketch of proof for Theorem 3.2.

Sketch of proof. First note that the PNSGD update leads to a (1− ηm)-CNI process when η ≤ 1/L

for any mini-batch sequence. Recall that yjk is the unlearning process at epoch k at iteration j,
starting from y00 = x0T = M(D). Consider the “adjacent” process yj,′k starting from y0,′0 =

x0,′T = M(D′) but still fine-tune on D′ so that yjk, y
j,′
k only differ in their initialization. Now,

consider three distributions: νD|B, ν
0
T |B, ρ

0
K|B are the stationary distribution for the learning processes,

learning process at epoch T and unlearning process at epoch K respectively. Similarly, consider
the “adjacent” processes that learn on D′ and still unlearn on D′ (see Figure 1 for the illustration).
Denote distributions νD′|B, ν

0,′
T |B, ρ

0,′
K|B for these processes similarly. Note that our goal is to bound

dα(ρ
0
K|B, ν

0,′
T |B) for the RU guarantee. By weak triangle inequality [19], we can upper bound it

in terms of d2α(ρ0K|B, νD′|B) and d2α(νD′|B, ν
0,′
T |B), which are the ε2 and ε1 terms in Theorem 3.2

respectively. For dα(νD′|B, ν
0,′
T |B), we leverage the naive 2R bound for the W∞ distance between

νD′|B, ν
0,′
0|B and applying Lemma 2.6 leads to the desired result. For dα(ρ0K|B, νD′|B), by triangle

inequality of W∞ and Lemma 3.3, 3.4 one can show that the W∞ between ρ00|B, νD′|B is bounded by
ZB in Theorem 3.2. Further applying Lemma 2.6 again completes the proof.
Remark 3.6. Our proof only relies on the bounded gradient difference ∥∇f(x;d)−∇f(x;d′)∥ ≤ 2M
∀x ∈ Rd and ∀d,d′ ∈ X henceM -Lipchitz assumption can be replaced. In practice, we can leverage
the gradient clipping along with a ℓ2 regularization for the convex objective function [22].

6



The convergent case. In practice, one often requires the model to be “well-trained”, where a similar
assumption is made in the prior unlearning literature [7, 8]. Under this assumption, we can further
simplify Theorem 3.2 into the following corollary.
Corollary 3.7. Under the same setting as of Theorem 3.2. When we additionally assume T is
sufficiently large so that y00 =M(D) ∼ νD|B. Then for any α > 1 and η ≤ 1

L , the output of the Kth

unlearning iteration satisfies (α, ε)-RU with c = 1− ηm, where

ε ≤ αZ2
B

2ησ2
c2Kn/b, ZB = min

(
1

1− cn/b
2ηM

b
, 2R

)
.

For simplicity, the rest of the discussion on our PNSGD unlearning will based on the well-trained
assumption. From Corollary 3.7 one can observe that a smaller b leads to a better decaying rate
(c2Kn/b) but also a potentially worse initial distance ZB = O(1/((1− cn/b)b)). In general, choosing
a smaller b still leads to less epoch for achieving the desired privacy loss. In practice, choosing b too
small (e.g., b = 1) can not only degrade the utility but also incur instability (i.e., large variance) of the
convergent distribution νD|B, as νD|B depends on the design of mini-batches B. One should choose a
moderate b to balance between privacy and utility, which is the unique privacy-utility-complexity
trade-off with respect to b revealed by our analysis.

Computational benefit compared to retraining. In the view of Corollary 3.7 or Lemma 2.6, it is
not hard to see that a smaller initial W∞ distance leads to fewer PNSGD (un)learning epochs for
being ε-close to a target distribution νD′|B in terms of Rényi difference dα. For PNSGD unlearning,
we have provided a uniform upper bound ZB = O(ηM/((1− cn/b)b)) of such initial W∞ distance
in Lemma 3.3. On the other hand, even if both ν0, νD are both Gaussian with identical various and
mean difference norm of Ω(1), we have W∞(ν0, νD′|B) = Ω(1) for retraining from scratch. Our
results show that a larger mini-batch size b leads to more significant complexity savings compared to
retraining. As we discussed above, one should choose a moderate size b to balance between privacy
and utility. In our experiment, we show that for commonly used mini-batch sizes (i.e., b ≥ 32), our
PNSGD unlearning is still much more efficient in complexity compared to retraining.

Improved bound with randomized B. So far our results are based on a fixed (worst-case) mini-batch
sequence B. One can improve the privacy bound in Corollary 3.7 by taking the randomness of B into
account under a non-adaptive unlearning setting. That is, the unlearning request is independent of the
mini-batch sequence B. See also our discussion in the related work. By taking the average of the
bound in Corollary 3.7 in conjunction with an application of joint convexity of KL divergence [22],
we can derive an improved guarantee beyond the worst-case of B.
Corollary 3.8. Under the same setting as of Theorem 3.2 but with random mini-batch sequences
described in Algorithm 1. Then for any α > 1, and η ≤ 1

L , the output of the Kth unlearning iteration

satisfies (α, ε)-RU with c = 1− ηm, where ε ≤ 1
α−1 log

(
EB exp

(
α(α−1)Z2

B
2ησ2 c2Kn/b

))
and ZB is

the bound described in Lemma 3.3.

Different mini-batch sampling strategies. We remark that our analysis can be extended to other
mini-batch sampling strategies, such as sampling without replacement for each iteration. However,
this strategy leads to a worse ZB in our analysis of Lemma 3.3, which may seem counter-intuitive at
first glance. This is due to the nature of the essential supremum taken in W∞. Although sampling
without replacement leads to a smaller probability of sampling the index that gets modified due to
the unlearning request, it is still non-zero for each iteration. Thus the worst-case difference 2ηM/b
between two adjacent learning processes in the mini-batch gradient update occurs at each iteration,
which degrades the factor 1/(1− cn/b) to 1/(1− c) in Lemma 3.3. As a result, we choose to adopt
the cyclic mini-batch strategy so that such a difference is guaranteed to occur only once per epoch
and thus a better bound on W∞.

Discussion on utility bound. One can leverage the utility analysis in section 5 of [24] to derive the
utility guarantee for the full batch setting b = n. We relegate the proof to Appendix K.
Proposition 3.9. Under the same setting as Corollary 3.7 with b = n, η ≤ m

2L2 and assume the
minimizer of any fD is in the relative interior of CR ⊆ Rd, for any given adjacent dataset pair D,D′

the output of the Kth unlearning iteration y0K satisfies

E[fD′(y0K)− inf
x∈CR

fD′(x)] ≤McK min(
1

1− c

2ηM

n
, 2R) +

2Ldσ2

m
. (2)
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Note that a similar analysis applies to both the mini-batch (i.e., b ≤ n) and non-convergent case (i.e.,
Theorem 3.2) but the result is more complicated. We leave the rigorous analysis as future work. An
important remark is that the second term 2Ldσ2

m is the excess risk of νD′ , which is controlled by the
noise scale σ. This presents the privacy-utility trade-off as demonstrated in the DP scenario in [24].

Without strong convexity. Since Lemma 2.6 also applies to the convex-only case (i.e., m = 0 so
that c = 1), repeating the same analysis leads to the following extension.

Corollary 3.10. Under the same setting as of Theorem 3.2 but without strong convexity (i.e., m = 0).
When we additionally assume T is sufficiently large so that y00 =M(D) ∼ νD|B. Then for any α > 1,
and η ≤ 1

L , the output of the Kth unlearning iteration satisfies (α, ε)-RU, where

ε ≤ αZ2
B

2ησ2

b

Kn
,ZB = min

(
2ηMT

b
, 2R

)
.

There are several remarks for Corollary 3.10. First, the privacy loss now only decays linearly instead
of exponentially as opposed to the strongly convex case. Second, ZB now can grow linearly in
training epoch T . As a result, the computational benefit of our approach compared to retraining
may vanish for large T such that 2ηMT

b ≥ 2R. Nevertheless, the computational benefit against
retraining persists for moderate T such that 2ηMT

b < 2R. This condition can be met if the model
learns reasonably well with moderate T and the projection diameter 2R is not set to be extremely
small. For example, with 2R = 10, b = 128, η = 1 and M = 1, any training epoch T < 640 will
lead to 2ηMT

b < 2R. Still, we conjecture a better analysis is needed beyond strong convexity.

3.2 Unlearning Multiple Data Points

So far we have focused on one unlearning request and unlearning one point. In practice, multiple
unlearning requests can arrive sequentially (sequential unlearning) and each unlearning request may
require unlearning multiple points (batch unlearning). Below we demonstrate that our PNSGD
unlearning naturally supports sequential and batch unlearning as well.

Sequential unlearning. As long as we can characterize the initial W∞ distance for any mini-batch
sequences, we have the corresponding (α, ε)-RU guarantee due to Corollary 3.7. Thanks to our
geometric view of the unlearning problem (Figure 2) and W∞ is indeed a metric, applying triangle
inequality naturally leads to an upper bound on the initial W∞ distance. By combining Lemma 3.3
and Lemma 3.4, we have the following sequential unlearning guarantee.

Theorem 3.11 (W∞ bound for sequential unlearning). Under the same assumptions as in Corol-
lary 3.7. Assume the unlearning requests arrive sequentially such that our dataset changes from
D = D0 → D1 → . . . → DS , where Ds,Ds+1 are adjacent. Let yj,(s)k be the unlearned pa-
rameters for the sth unlearning request at kth unlearning epoch and jth iteration following Al-
gorithm (1) on Ds and y0,(s+1)

0 = y
0,(s)
Ks

∼ ν̄Ds|B, where y0,(0)0 = x∞ and Ks is the unlearning

steps for the sth unlearning request. For any s ∈ [S], we have W∞(ν̄Ds−1|B, νDs|B) ≤ Z
(s)
B , where

Z
(s+1)
B = min(cKsn/bZ

(s)
B + ZB, 2R), Z

(1)
B = ZB, ZB and c are described in Corollary 3.7.
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Figure 2: Illustration of (a) sequential unlearning and (b)
batch unlearning. The key idea is to establish an upper
bound on the initial W∞ distance. (a) For sequential un-
learning, the initial W∞ distance bound Z(s)

B for each sth
unlearning request can be derived with triangle inequality.
(b) For batch unlearning, we analyze the case that two
learning processes can differ in S ≥ 1 points.

By combining Corollary 3.7 and Theo-
rem 3.11, we can establish the least un-
learning iterations of each unlearning re-
quest {Ks}Ss=1 to achieve (α, ε)-RU si-
multaneously. Notably, our sequential un-
learning bound is much better than the
one in [11], especially when the num-
ber of unlearning requests is large. The
key difference is that [11] have to lever-
age weak triangle inequality for Rényi
divergence, which double the Rényi di-
vergence order α for each sequential un-
learning request. In contrast, since our
analysis only requires tracking the initial
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Figure 3: Main experiments, where the top and bottom rows are for MNIST and CIFAR10 respectively.
(a) Compare to baseline for unlearning one point using limited K unlearning epoch. For PNSGD,
we use only K = 1 unlearning epoch. For D2D, we allow it to use K = 1, 5 unlearning epochs. (b)
Unlearning 100 points sequentially versus baseline. For LU, since their unlearning complexity only
stays in a reasonable range when combined with batch unlearning of size S sufficiently large, we
report such a result only. (c,d) Noise-accuracy-complexity trade-off of PNSGD for unlearning 100
points sequentially with various mini-batch sizes b, where all methods achieve (ϵ, 1/n)-unlearning
guarantee with ϵ = 0.01. We also report the required accumulated epochs for retraining for each b.

W∞ distance, where the standard triangle inequality can be applied. As a result, our analysis can
better handle the sequential unlearning case. We also demonstrate in Section 4 that the benefit offered
by our results is significant in practice.

Batch unlearning. We can extend Lemma 3.3 to the case that adjacent dataset D,D′ can differ in
S ≥ 1 points, which further leads to batch unlearning guarantee. We relegate the result in Appendix J.

4 Experiments

Benchmark datasets. We consider binary logistic regression with ℓ2 regularization. We conduct
experiments on MNIST [25] and CIFAR10 [26], which contain 11,982 and 10,000 training instances
respectively. We follow the setting of [7, 11] to distinguish digits 3 and 8 for MNIST so that the
problem is a binary classification. For the CIFAR10 dataset, we distinguish labels 3 (cat) and 8 (ship)
and leverage the last layer of the public ResNet18 [27] embedding as the data features, which follows
the setting of [7] with public feature extractor.

Baseline methods. Our baseline methods include Delete-to-Descent (D2D) [9] and Langevin Un-
learning (LU) [11], which are the state-of-the-art full-batch gradient-based approximate unlearning
methods. Note that when our PNSGD unlearning chooses b = n (i.e., full batch), the learning
and unlearning iterations become PNGD which is identical to LU. Nevertheless, the corresponding
privacy bound is still different as we leverage the analysis different from those based on Langevin
dynamics in [11]. Hence, we still treat these two methods differently in our experiment. For D2D,
we leverage Theorem 9 and 28 in [9] for privacy accounting depending on whether we allow D2D
to have an internal non-private state. Note that allowing an internal non-private state provides a
weaker notion of privacy guarantee [9] and both PNSGD and LU by default do not require it. We
include those theorems for D2D and a detailed explanation of its possible non-privacy internal state
in Appendix O. For LU, we leverage their Theorem 3.2, and 3.3 for privacy accounting [11], which
are included in Appendix P.

All experimental details can be found in Appendix N, including how to convert (α, ε)-RU to the
standard (ϵ, δ)-unlearning guarantee. Our code is publicly available3. We choose δ = 1/n for each
dataset and require all tested unlearning approaches to achieve (ϵ, δ)-unlearning with different ϵ.
We report test accuracy for all experiments as the utility metric. We set the learning iteration T =
10, 20, 50, 1000 to ensure PNSGD converges for mini-batch size b = 32, 128, 512, n respectively.
All results are averaged over 100 independent trials with standard deviation reported as shades in
figures.

3https://github.com/Graph-COM/SGD_unlearning
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Unlearning one data point with K = 1 epoch. We first consider the setting of unlearning one
data point using only one unlearning epoch (Figure 3a). For both LU and PNSGD, we use only
K = 1 unlearning epoch. Since D2D cannot achieve a privacy guarantee with only limited (i.e.,
less than 10) unlearning epoch without a non-private internal state, we allow D2D to have it and set
K = 1, 5 in this experiment. Even in this case, PNSGD still outperforms D2D in both utility and
unlearning complexity. Compared to LU, our mini-batch setting either outperforms or is on par with
it. Interestingly, we find that LU gives a better privacy bound compared to full-batch PNSGD (b = n)
and thus achieves better utility under the same privacy constraint, see Appendix P for the detailed
comparisons. Nevertheless, due to the use of weak triangle inequality in LU analysis, we will see that
our PNSGD can outperform LU significantly for multiple unlearning requests.

Unlearning multiple data points. Let us consider the case of multiple (100) unlearning requests
(Figure 3b). We let all methods achieve the same (1, 1/n)-unlearning guarantee for a fair comparison.
We do not allow D2D to have an internal non-private state anymore in this experiment for a fair
comparison. Since the privacy bound of LU only gives reasonable unlearning complexity with a
limited number of sequential unlearning updates [11], we allow it to unlearn S = 10 points at once.
We observe that PNSGD requires roughly 10% and 2% of unlearning epochs compared to D2D
and LU for b = n and b = 128 respectively, where all methods exhibit similar utility (0.9 and 0.98
for MNIST and CIFAR10 respectively). It shows that PNSGD is much more efficient compared
to D2D and LU. Notably, while both PNSGD with b = n and LU (un)learn with PNGD iterations,
the resulting privacy bound based on our PABI-based analysis is superior to the one pertaining to
Langevin-dynamic-based analysis in [11]. See our discussion in Section 3.2 for the full details.

Privacy-utility-complexity trade-off. We now investigate the inherent utility-complexity trade-off
regarding noise standard deviation σ and mini-batch size b for PNSGD under the same privacy con-
straint, where we require all methods to achieve (0.01, 1/n)-unlearning guarantee for 100 sequential
unlearning requests (Figure 3c and 3d). We can see that smaller σ leads to a better utility, yet more
unlearning epochs are needed for PNSGD to achieve ϵ = 0.01. On the other hand, smaller mini-batch
size b requires fewer unlearning epochs K as shown in Figure 3d, since more unlearning iterations
are performed per epoch. Nevertheless, we remark that choosing b too small may lead to degradation
of model utility or instability. Decreasing the mini-batch size b from 32 to 1 reduces the average
accuracy of training from scratch from 0.87 to 0.64 and 0.97 to 0.81 on MNIST and CIFAR10
respectively for σ = 0.03. In practice, one should choose a moderate mini-batch size b to ensure both
good model utility and unlearning complexity. Finally, we also note that PNSGD achieves a similar
utility while much better complexity compared to retraining from scratch, where PNSGD requires at
most 1, 5 unlearning epochs per unlearning request for b = 32, 512 respectively.

5 Limitations and Conclusion

Limitation. Since our analysis is built on the works of [15, 16], we share the same limitation
that the (strong) convexity assumption is required. It is an open problem on how to extend such
analysis beyond convexity assumption as stated in [15, 16]. While we resolve this open problem for
establishing DP properties of PNSGD in our recent work [28], it is still unclear whether the same
success can be generalized to the unlearning problem. One interesting direction is to leverage the
Langevin dynamic analysis [29] instead as in [11], which can deal with non-convex problems in
theory yet we conjecture the resulting bounds can be loose, and more complicated.

Conclusion. We propose to leverage projected noisy stochastic gradient descent (PNSGD) for
machine unlearning problem. We provide its unlearning guarantees as well as many other algorithmic
benefits of PNSGD for unlearning under the convexity assumption. Our results are closely related
to our new results on infinite Wasserstein distance tracking of the adjacent (un)learning processes,
which is also leveraged in our concurrent work for studying DP-PageRank algorithms [30]. Extensive
experiments show that our approach achieves a similar utility under the same privacy constraint while
using 2% and 10% of the gradient computations compared with the state-of-the-art gradient-based
approximate unlearning methods for mini-batch and full-batch settings, respectively.

10



Acknowledgments and Disclosure of Funding

The authors thank Sinho Chewi, Wei-Ning Chen, and Ayush Sekhari for the helpful discussions. E.
Chien, H. Wang and P. Li are supported by NSF awards OAC-2117997 and JPMC faculty award.

References

[1] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D. Song, “The secret sharer: Evaluating and
testing unintended memorization in neural networks,” in 28th USENIX Security Symposium
(USENIX Security 19), pp. 267–284, 2019.

[2] C. Guo, F. Bordes, P. Vincent, and K. Chaudhuri, “Do ssl models have d\’ej\a vu? a case of
unintended memorization in self-supervised learning,” arXiv preprint arXiv:2304.13850, 2023.

[3] Y. Cao and J. Yang, “Towards making systems forget with machine unlearning,” in 2015 IEEE
symposium on security and privacy, pp. 463–480, IEEE, 2015.

[4] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia, A. Travers, B. Zhang, D. Lie,
and N. Papernot, “Machine unlearning,” in 2021 IEEE Symposium on Security and Privacy
(SP), pp. 141–159, IEEE, 2021.

[5] E. Ullah, T. Mai, A. Rao, R. A. Rossi, and R. Arora, “Machine unlearning via algorithmic
stability,” in Conference on Learning Theory, pp. 4126–4142, PMLR, 2021.

[6] E. Ullah and R. Arora, “From adaptive query release to machine unlearning,” in International
Conference on Machine Learning, pp. 34642–34667, PMLR, 2023.

[7] C. Guo, T. Goldstein, A. Hannun, and L. Van Der Maaten, “Certified data removal from machine
learning models,” in International Conference on Machine Learning, pp. 3832–3842, PMLR,
2020.

[8] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh, “Remember what you want to forget:
Algorithms for machine unlearning,” Advances in Neural Information Processing Systems,
vol. 34, pp. 18075–18086, 2021.

[9] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete: Gradient-based methods for
machine unlearning,” in Algorithmic Learning Theory, pp. 931–962, PMLR, 2021.

[10] E. Chien, C. Pan, and O. Milenkovic, “Efficient model updates for approximate unlearning of
graph-structured data,” in The Eleventh International Conference on Learning Representations,
2022.

[11] E. Chien, H. Wang, Z. Chen, and P. Li, “Langevin unlearning: A new perspective of noisy
gradient descent for machine unlearning,” Advances in neural information processing systems,
2024.

[12] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to sensitivity in private
data analysis,” in Theory of Cryptography: Third Theory of Cryptography Conference, TCC
2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284, Springer, 2006.

[13] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang, “Deep
learning with differential privacy,” in Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pp. 308–318, 2016.

[14] B. Balle, G. Barthe, and M. Gaboardi, “Privacy amplification by subsampling: Tight analyses
via couplings and divergences,” Advances in neural information processing systems, vol. 31,
2018.

[15] J. Altschuler and K. Talwar, “Privacy of noisy stochastic gradient descent: More iterations
without more privacy loss,” Advances in Neural Information Processing Systems, vol. 35,
pp. 3788–3800, 2022.

[16] J. M. Altschuler and K. Talwar, “Resolving the mixing time of the langevin algorithm to its
stationary distribution for log-concave sampling,” arXiv preprint arXiv:2210.08448, 2022.

[17] V. Gupta, C. Jung, S. Neel, A. Roth, S. Sharifi-Malvajerdi, and C. Waites, “Adaptive machine
unlearning,” Advances in Neural Information Processing Systems, vol. 34, pp. 16319–16330,
2021.

11



[18] R. Chourasia and N. Shah, “Forget unlearning: Towards true data-deletion in machine learning,”
in International Conference on Machine Learning, pp. 6028–6073, PMLR, 2023.

[19] I. Mironov, “Rényi differential privacy,” in 2017 IEEE 30th computer security foundations
symposium (CSF), pp. 263–275, IEEE, 2017.

[20] V. Feldman, I. Mironov, K. Talwar, and A. Thakurta, “Privacy amplification by iteration,” in
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 521–532,
IEEE, 2018.

[21] A. Yousefpour, I. Shilov, A. Sablayrolles, D. Testuggine, K. Prasad, M. Malek, J. Nguyen,
S. Ghosh, A. Bharadwaj, J. Zhao, et al., “Opacus: User-friendly differential privacy library in
pytorch,” arXiv preprint arXiv:2109.12298, 2021.

[22] J. Ye and R. Shokri, “Differentially private learning needs hidden state (or much faster conver-
gence),” Advances in Neural Information Processing Systems, vol. 35, pp. 703–715, 2022.

[23] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability. Springer Science &
Business Media, 2012.

[24] R. Chourasia, J. Ye, and R. Shokri, “Differential privacy dynamics of langevin diffusion and
noisy gradient descent,” Advances in Neural Information Processing Systems, vol. 34, pp. 14771–
14781, 2021.

[25] L. Deng, “The mnist database of handwritten digit images for machine learning research,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[26] A. Krizhevsky et al., “Learning multiple layers of features from tiny images,” 2009.
[27] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[28] E. Chien and P. Li, “Convergent privacy loss of noisy-sgd without convexity and smoothness,”
2024.

[29] Chewi, Sinho, “Log-Concave Sampling.” https://chewisinho.github.io/main.pdf,
2023. Online; accessed September 29, 2023.

[30] R. Wei, E. Chien, and P. Li, “Differentially private graph diffusion with applications in person-
alized pageranks,” Advances in neural information processing systems, 2024.

[31] A. Ganesh and K. Talwar, “Faster differentially private samplers via rényi divergence analysis
of discretized langevin mcmc,” Advances in Neural Information Processing Systems, vol. 33,
pp. 7222–7233, 2020.

[32] T. Ryffel, F. Bach, and D. Pointcheval, “Differential privacy guarantees for stochastic gradient
langevin dynamics,” arXiv preprint arXiv:2201.11980, 2022.

[33] S. Vempala and A. Wibisono, “Rapid convergence of the unadjusted langevin algorithm:
Isoperimetry suffices,” Advances in neural information processing systems, vol. 32, 2019.

[34] T. maintainers and contributors, “Torchvision: Pytorch’s computer vision library.” https:
//github.com/pytorch/vision, 2016.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural Information Processing Systems
32, pp. 8024–8035, Curran Associates, Inc., 2019.

[36] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,
L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” 2017.

[37] C. R. Harris, K. J. Millman, S. J. Van Der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, et al., “Array programming with numpy,” Nature,
vol. 585, no. 7825, pp. 357–362, 2020.

[38] P. Kairouz, B. McMahan, S. Song, O. Thakkar, A. Thakurta, and Z. Xu, “Practical and pri-
vate (deep) learning without sampling or shuffling,” in International Conference on Machine
Learning, pp. 5213–5225, PMLR, 2021.

12

https://chewisinho.github.io/main.pdf
https://github.com/pytorch/vision
https://github.com/pytorch/vision


A Additional related works

Differential privacy of noisy gradient methods. DP-SGD [13] is arguably the most popular method
for ensuring a DP guarantee for machine learning models. Since it leverages the DP composition
theorem and thus the privacy loss will diverge for infinite training epochs. Recently, researchers
have found that if we only release the last step of the trained model, then we can do much better
than applying the composition theorem. A pioneer work [31] studied the DP properties of Langevin
Monte Carlo methods. Yet, they do not propose to use noisy GD for general machine learning
problems. A recent line of work [22, 32] shows that PNSGD training can not only provide DP
guarantees, but also the privacy loss is at most a finite value even if we train with an infinite number
of iterations. The main analysis therein is based on the analysis of Langevin Monte Carlo [29, 33]. In
the meanwhile, [15] also provided the DP guarantees for PNSGD training but with analysis based on
privacy amplification by iteration [20]. None of these works study how PNSGD can also be leveraged
for machine unlearning.

B Limitations

Since our analysis is built on the works of [15, 16], we share the same limitation that the (strong)
convexity assumption is required. It is an open problem on how to extend such analysis beyond
convexity assumption as stated in [15, 16]. While we resolve this open problem for the DP properties
of PNSGD in our recent work [28], it is still unclear whether the same success can be generalized to
the unlearning problem. One interesting direction is to leverage the Langevin dynamic analysis [29]
instead as in [11], which can deal with non-convex problems in theory yet we conjecture the resulting
bounds can be loose, and more complicated.

C Broader Impact

Our work study the theoretical unlearning guarantees of projected stochastic noisy gradient descent
algorithm for convex problems. We believe our work is a foundational research and does not have a
direct path to any negative applications.

D Standard definitions

Let f : Rd 7→ R be a mapping. We define smoothness, Lipschitzness, and strong convexity as
follows:

L-smooth: ∀ x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥ (3)

m-strongly convex: ∀ x, y ∈ Rd, ⟨x− y,∇f(x)−∇f(y)⟩ ≥ m∥x− y∥2 (4)

M -Lipschitzs: ∀ x, y ∈ Rd, ∥f(x)− f(y)∥ ≤M∥x− y∥. (5)

Furthermore, we say f is convex means it is 0-strongly convex.

E Existence of limiting distribution

Theorem. Suppose that the closed convex set C ⊂ Rd is bounded with C having a positive Lebesgue
measure and that ∇f(·;di) : C → Rd is continuous for all i ∈ [n]. The Markov chain {xt := x0t} in
Algorithm 1 for any fixed mini-batch sequence B = {Bj}n/b−1

j=1 admits a unique invariant probability
measure νD|B on the Borel σ-algebra of C. Furthermore, for any x ∈ C, the distribution of xt
conditioned on x0 = x converges weakly to νD|B as t→ ∞.

The proof is almost identical to the proof of Theorem 3.1 in [11] and we include it for completeness.
We start by proving that the process {xt := x0t} admits a unique invariant measure (Proposition E.1)
and then show that the process converges to such measure which is in fact a probability measure
(Theorem E.2). Combining these two results completes the proof of Theorem 3.1.
Proposition E.1. Suppose that the closed convex set C ⊂ Rd is bounded with Leb(C) > 0 where Leb
denotes the Lebesgue measure and that ∇f(·;di) : C → Rd is continuous for all i ∈ [n]. Then the
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Markov chain {xt := x0t} defined in Algorithm 1 for any fixed mini-batch sequence B = {Bj}n/b−1
j=1

admits a unique invariant measure (up to constant multiples) on B(C) that is the Borel σ-algebra of
C.

Proof. This proposition is a direct application of results from [23]. According to Proposition 10.4.2
in [23], it suffices to verify that {xt} is recurrent and strongly aperiodic.

1. Recurrency. Thanks to the Gaussian noise Wt, {xt} is Leb-irreducible, i.e., it holds for any
x ∈ C and any A ∈ B(C) with Leb(A) > 0 that

L(x,A) := P(τA < +∞ | x0 = x) > 0,

where τA = inf{t ≥ 0 : xt ∈ A} is the stopping time. Therefore, there exists a Borel
probability measure ψ such that that {xt} is ψ-irreducible and ψ is maximal in the sense
of Proposition 4.2.2 in [23]. Consider any A ∈ B(C) with ψ(A) > 0. Since {xt} is
ψ-irreducible, one has L(x,A) = P(τA < +∞ | x0 = x) > 0 for all x ∈ C. This
implies that there exists T ≥ 0, δ > 0, and B ∈ B(C) with Leb(B) > 0, such that
P(xT ∈ A | x0 = x) ≥ δ, ∀ x ∈ B. Therefore, one can conclude for any x ∈ C that

U(x,A) :=
∞∑
t=0

P(xt ∈ A | x0 = x)

≥
∞∑
t=1

P(xt+T ∈ A | xt ∈ B, x0 = x) · P(xt ∈ B | x0 = x)

≥
∞∑
t=1

δ · inf
y∈C

P(xt ∈ B | xt−1 = y)

= +∞,

where we used the fact that infy∈C P(xt ∈ B | xt−1 = y) = infy∈C P(x1 ∈ B | x0 = y) >
0 that is implies by Leb(B) > 0 and the boundedness of C and

⋃
i∈Bn/b ∇f(C;di). Let us

remark that we actually have compact
⋃

i∈Bn/b ∇f(C;di) since C is compact and ∇f(·;di)
is continuous. The arguments above verify that {xt} is recurrent (see Section 8.2.3 in [23]
for definition).

2. Strong aperiodicity. Since C and
⋃

i∈Bn/b ∇f(C;di) are bounded and the density of Wt has
a uniform positive lower bound on any bounded domain, there exists a non-zero multiple of
the Lebesgue measure, say ν1, satisfying that

P(x1 ∈ A | x0 = x) ≥ ν1(A), ∀ x ∈ C, A ∈ B(C).
Then {xt} is strongly aperiodic by the equation above and ν1(C) > 0 (see Section 5.4.3
in [23] for definition).

The proof is hence completed.

Theorem E.2. Under the same assumptions as in Proposition E.1, the Markov chain {xt} admits a
unique invariant probability measure νD|B on B(C). Furthermore, for any x ∈ C, the distribution of
xt = x0t generated by the learning process in Algorithm 1 conditioned on x0 = x converges weakly
to νD|B as t→ ∞.

Proof. It has been proved in Proposition E.1 that {xt} is strongly aperiodic and recurrent with an
invariant measure. Consider any A ∈ B(C) with ψ(A) > 0 and use the same settings and notations
as in the proof of Proposition E.1. There exists T ≥ 0, δ > 0, and B ∈ B(C) with Leb(B) > 0, such
that P(xT ∈ A | x0 = x) ≥ δ, ∀ x ∈ B. This implies that for any t ≥ 0 and any x ∈ C,

P(xt+T+1 ∈ A | xt = x) = P(xT+1 ∈ A | x0 = x)

≥ P(xT+1 ∈ A | x1 ∈ B, x0 = x) · P(x1 ∈ B | x0 = x) ≥ ϵ,

where
ϵ = δ · inf

y∈C
P(x1 ∈ B | x0 = y) > 0,
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which then leads to
Q(x,A) := P(xt ∈ A, infinitely often) = +∞.

This verifies that the chain {xt} is Harris recurrent (see Section 9 in [23] for definition). It can be
further derived that for any x ∈ C,

E(τA | x0 = x) =

∞∑
t=1

P(τA ≥ t | x0 = x) ≤ (T + 1)

∞∑
k=0

P(τA > (T + 1)k | x0 = x)

≤ (T + 1)

∞∑
k=1

(1− ϵ)k < +∞.

The bound above is uniform for all x ∈ C and this implies that C is a regular set of {xt} (see Section
11 in [23] for definition). Finally, one can apply Theorem 13.0.1 in [23] to conclude that there exists
a unique invariant probability measure νD on B(C) and that the distribution of xt converges weakly
to νD|B conditioned on x0 = x for any x ∈ C.

F Proof of Theorem 3.2

Theorem (RU guarantee of PNSGD unlearning, fixed B). Assume ∀d ∈ X , f(x;d) is L-smooth, M -
Lipchitz and m-strongly convex in x. Let the learning and unlearning processes follow Algorithm 1
with y00 = x0T = M(D). Given any fixed mini-batch sequence B, for any α > 1, let η ≤ 1

L , the
output of the Kth unlearning iteration satisfies (α, ε)-RU with c = 1− ηm, where

ε ≤ α− 1/2

α− 1
(ε1(2α) + ε2(2α)) ,

ε1(α) =
α(2R)2

2ησ2
c2Tn/b, ε2(α) =

αZ2
B

2ησ2
c2Kn/b,

ZB = 2RcTn/b +min

(
1− cTn/b

1− cn/b
2ηM

b
, 2R

)
.

We first introduce an additional definition and a lemma needed for the our analysis.
Definition F.1 (Shifted Rényi divergence). Let µ and ν be distributions defined on a Banach space
(Rd, ∥ · ∥). For parameters z ≥ 0 and α ≥ 1, the z-shifted Rényi divergence between µ and ν is
defined as

D(z)
α (µ||ν) = inf

µ′:W∞(µ,µ′)≤z
Dα(µ

′||ν). (6)

Lemma F.2 (Data-processing inequality for Rényi divergence, Lemma 2.6 in [16]). For any α ≥ 1,
any (random) map h : Rd 7→ Rd and any distribution µ, ν with support on Rd,

Dα(h#µ||h#ν) ≤ Dα(µ||ν), (7)

where h#µ denotes the pushforward operation for a function h and distribution µ.
Proposition F.3 (Weak Triangle Inequality of Rényi divergence, Corollary 4 in [19]). For any α > 1,
p, q > 1 satisfying 1/p+ 1/q = 1 and distributions P,Q,R with the same support:

Dα(P ||R) ≤
α− 1

p

α− 1
Dpα(P ||Q) +Dq(α−1/p)(Q||R).

Proof. Recall that from the sketch of proof of Theorem 3.2, we have defined the six distributions:
νD|B, ν

0
T |B, ρ

0
K|B are the stationary distribution of the learning process, distribution at epoch T of the

learning process and distribution at epoch K of the unlearning process. Note that we learn on dataset
D and fine-tune on D′. On the other hand, the corresponding distributions of “adjacent” processes
that learn on D′ and still unlearn on D′ are denoted as νD′|B, ν

0,′
T |B, ρ

0,′
K|B similarly. Note that ν0,′T |B is

the distribution of retraining from scratch on D′, and we aim to bound dα(ρ0K|B, ν
0,′
T |B) for all possible

D,D′ pairs. By Proposition F.3, we know that for any α > 1, by choosing p = q = 2, we have

dα(ρ
0
K|B, ν

0,′
T |B) ≤

α− 1/2

α− 1

(
d2α(νD′|B, ν

0,′
T |B) + d2α(νD′|B, ρ

0
K|B)

)
. (8)
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Recall the Definition 2.1 that dα(P,Q) = max(Dα(P ||Q), Dα(Q||P )) for distributions P,Q. The
above inequality is correct since consider any distributions P,Q,R, by Proposition F.3 we have

Dα(P ||R) ≤
α− 1

2

α− 1
D2α(P ||Q) +D2α−1(Q||R) (9)

(a)

≤
α− 1

2

α− 1
d2α(P,Q) + d2α−1(Q,R) (10)

(b)

≤
α− 1

2

α− 1
d2α(P,Q) + d2α(Q,R) (11)

(c)

≤
α− 1

2

α− 1
(d2α(P,Q) + d2α(Q,R)) (12)

(13)

where (a) is due to the definition of Rényi difference, (b) is due to the monotonicity of Rényi
divergence in α, and (c) is due to the fact that for all α > 1, α− 1

2

α−1 ≥ 1.

Similarly, we have

Dα(R||P ) ≤
α− 1

2

α− 1
(d2α(P,Q) + d2α(Q,R)) . (14)

Combining these two bounds leads to the weak triangle inequality for Rényi difference.

Now we establish the upper bound of dα(νD′|B, ν
0,′
T |B), which we denoted as ε1(α) in Theorem 3.2.

We first note that due to the projection operator ΠCR
, we trivially have W∞(νD′|B, ν

0
0) ≤ 2R. On

the other hand, note that ν0,′T |B is the distribution of the learning process at epoch T with respect
to dataset D′, where νD′|B is the corresponding stationary distribution. Let us “unroll” iterations
so that v = tnb + j. We apply Lemma 2.6 for these two processes, where the initial distribution
are µ0 = ν00 and µ′

0 = νD′|B. The updates ψv(x) = ΠC(x) − η
b

∑
i∈Bj ∇f(ΠC(x);d

′
i) are with

respect to the dataset D′, and ζv = N (0, ησ2Id). First, note that we have ησ2 instead of σ2 as in the
Lemma 2.6, hence we need to apply a change of variable. The only thing we are left to prove is that
ψv is c-contractive for c = 1− ηm and any t, j. This is because for any mini-batch Bj and any data
point d′

i ∈ X , i ∈ Bj of size b, we have

∥ψv(x)− ψv(x
′)∥ = ∥ΠC(x)−

η

b

∑
i∈Bj

∇f(ΠC(x);d
′
i)−ΠC(x

′) +
η

b

∑
i∈Bj

∇f(ΠC(x
′);d′

i)∥

(15)

≤ 1

b

∑
i∈Bj

∥ (ΠC(x)− η∇f(ΠC(x);d
′
i))− (ΠC(x

′)− η∇f(ΠC(x
′);d′

i)) ∥ (16)

(a)

≤ (1− ηm)∥ΠC(x)−ΠC(x
′)∥ (17)

≤ (1− ηm)∥x− x′∥, (18)

Finally, due to data-processing inequality for Rényi divergence (Lemma F.2), applying the final
projection step does not increase the corresponding Rényi divergence. As a result, by Lemma 2.6 we
have

Dα(νD′|B||ν0,′T |B) ≤
αW∞(νD′|B, ν

0,′
T |B)

2

2ησ2
c2Tn/b ≤ α(2R)2

2ησ2
c2Tn/b, (19)

where the last inequality is due to our naive bound on W∞(νD′|B, ν
0
0). One can repeat the same anal-

ysis for the direction Dα(ν
0,′
T |B||νD′|B), which leads to the same bound by symmetry of Lemma 2.6.

Together we have shown that

dα(νD′|B||ν0,′T |B) ≤
α(2R)2

2ησ2
c2Tn/b = ε1(α). (20)
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Now we focus on bounding the term dα(νD′|B, ρ
0
K|B). We once again note that νD′|B is the stationary

distribution of the process ρ0K|B, since we fine-tune with respect to the dataset D′ for the unlearning
process. As a result, the same analysis above can be applied, where the only difference is the initial
W∞ distance between νD′|B, ρ

0
0|B.

dα(νD′|B, ρ
0
K|B) ≤

αW∞(νD′|B, ρ
0
0|B)

2

2ησ2
c2Kn/b. (21)

We are left with establish an upper bound of W∞(νD′|B, ρ
0
0|B). Note that since W∞ is indeed a

metric, we can apply triangle inequality which leads to the following upper bound.

W∞(νD′|B, ρ
0
0|B) ≤W∞(νD′|B, νD|B) +W∞(νD|B, ρ

0
0|B) (22)

From Lemma 3.3, we have that

W∞(ν0T |B, ν
0,′
T |B) ≤ min

(
1− cTn/b

1− cn/b
cn/b−j0−1 2ηM

b
, 2R

)
≤ min

(
1

1− cn/b
2ηM

b
, 2R

)
, (23)

where the last inequality is simply due to the fact that c < 1. Since the upper bound is independent of
T , by letting T → ∞, and the definition that νD|B, νD′|B are the limiting distribution of ν0T |B, ν

0,′
T |B

respectively, we have

W∞(νD|B, νD′|B) ≤ min

(
1

1− cn/b
2ηM

b
, 2R

)
. (24)

On the other hand, note that by definition we know that ρ00|B = ν0T |B. Thus by Lemma 3.4 we have
(recall that c = 1− ηm)

W∞(νD|B, ρ
0
0|B) =W∞(ν0T |B, νD|B) ≤ cTn/bW∞(ν00 , νD|B) ≤ 2R× cTn/b, (25)

where the last inequality is again due to the naive bound induced by the projection to CR for
W∞(ν00 , νD|B). Together we have that

W∞(νD′|B, ρ
0
0|B) ≤ 2R× cTn/b +min

(
1

1− cn/b
2ηM

b
, 2R

)
= ZB. (26)

Combining things we complete the proof.

G Proof of Theorem 3.11

Theorem. Under the same assumptions as in Corollary 3.7. Assume the unlearning requests arrive
sequentially such that our dataset changes from D = D0 → D1 → . . .→ DS , where Ds,Ds+1 are
adjacent. Let yj,(s)k be the unlearned parameters for the sth unlearning request at kth unlearning epoch
and jth iteration following Algorithm (1) on Ds and y0,(s+1)

0 = y
0,(s)
Ks

∼ ν̄Ds|B, where y0,(0)0 = x∞
and Ks is the unlearning steps for the sth unlearning request. For any s ∈ [S], we have

W∞(ν̄Ds−1|B, νDs|B) ≤ Z
(s)
B ,

where Z(s+1)
B = min(cKsn/bZ

(s)
B + ZB, 2R), Z

(1)
B = ZB, ZB is described in Corollary 3.7 and

c = 1− ηm.

The proof is a direct application of triangle inequality, Lemma 3.4 and 3.3. We will prove it by
induction. For the base case s = 1 it trivial, since ν̄D0

= νD0
as we choose y0,(0)0 = x0∞. Thus

by our definition that ZB is the upper bound of W∞(νD|B, νD′|B) for any adjacent dataset D,D′.
Apparently, we also have

W∞(ν̄D0|B, νD1|B) =W∞(νD0|B, νD1|B) ≤ ZB = Z
(1)
B (27)
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For the induction step, suppose our hypothesis is true until s step. Then for the s+ 1 step we have

W∞(ν̄Ds|B, νDs+1|B)
(a)

≤ W∞(ν̄Ds|B, νDs|B) +W∞(νDs|B, νDs+1|B) (28)
(b)

≤ W∞(ν̄Ds|B, νDs|B) + ZB (29)
(c)

≤ cKs−1n/bW∞(ν̄Ds−1|B, νDs|B) + ZB (30)
(d)

≤ cKs−1n/bZ
(s)
B + ZB (31)

where (a) is due to triangle inequality as W∞ is a metric. (b) is due to Corollary 3.7, where ZB is
an upper bound of W∞ distance between any two adjacent stationary distributions. (c) is due to
Lemma 3.4 and (d) is due to our hypothesis. Finally, note that 2R is a natural universal upper bound
due to our projection on CR, which has diameter 2R. Together we complete the proof.

H Proof of Corollary 3.7

Note that under the training convergent assumption, the target retraining distribution is directly νD′|B
so that we do not need the weak triangle inequality for Rényi difference. Similarly, we do not need
the triangle inequality for the term ZB. Directly using ε2(α) with ZB = min

(
1

1−cn/b

2ηM
b , 2R

)
from Theorem 3.2 leads to the result.

I Improved bound with randomized B

Corollary. Under the same setting as of Theorem 3.2 but with random mini-batch sequences described
in Algorithm 1. Then for any α > 1, and η ≤ 1

L , the output of the Kth unlearning iteration satisfies
(α, ε)-RU with c = 1− ηm, where

ε ≤ 1

α− 1
log

(
EB exp

(
α(α− 1)Z2

B
2ησ2

c2Kn/b

))
,

where ZB is the bound described in Lemma 3.3.

We first restate the lemma in [22], which is an application of the joint convexity of KL divergence.
Lemma I.1 (Lemma 4.1 in [22]). Let ν1, · · · , νm and ν′1, · · · , ν′m be distributions over Rd. For any
α ≥ 1 and any coefficients p1, · · · , pm ≥ 0 such that

∑m
i=1 pi = 1, the following inequality holds.

exp((α− 1)Dα(

m∑
i=1

piνi||
m∑
i=1

piν
′
i)) (32)

≤
m∑
i=1

pi exp((α− 1)Dα(νi||ν′i)). (33)

The proof of Corollary 3.8 directly follows by repeating the proof of Lemma 3.7 but with the B
dependent ZB described in Lemma 3.3. Then leverage Lemma I.1 leads to the result.

J W∞ bound for batch unlearning

Corollary J.1 (W∞ bound for batch unlearning). Consider the learning process in Algorithm 1 on
adjacent dataset D and D′ that differ in 1 ≤ S points and a fixed mini-batch sequence B. Assume
∀d ∈ X , f(x;d) is L-smooth, M -Lipschitz and m-strongly convex in x. Let the index of different
data point between D,D′ belongs to mini-batches Bj0 ,Bj1 , . . . ,BjG−1 , each of which contains
1 ≤ Sjg ≤ b such that

∑G−1
g=0 Sjg = S. Then for η ≤ 1

L and c = (1− ηm), we have

W∞(ν0T |B, ν
0,′
T |B) ≤ min

(
1− cT

1− c

G−1∑
g=0

cn/b−jg−1 2ηMSjg

b
, 2R

)
.
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Proof. The proof is a direct generalization of Lemma 3.3. Recall that for the per-iteration bound
within an epoch, there are two possible cases: 1) we encounter the mini-batch Bj that contains indices
of replaced points 2) or not. This is equivalently to 1) j ∈ {jg}G−1

g=0 or 2) j /∈ {jg}G−1
g=0 .

Let us assume that case 1) happens and j = jg for g ∈ {0, . . . , G− 1}. Also, let us denote the set of
those indices as Sjg with a slight abuse of notation. By the same analysis, we know that

∥ψj(x
j
t )− ψ′

j(x
j,′
t )∥ (34)

≤ 1

b

∑
i∈Bj\Sjg

∥xjt − xj,′t + η(∇f(xjt ;di)−∇f(xj,′t ;di))∥ (35)

+
1

b

∑
i∈Sjg

∥xjt − xj,′t + η(∇f(xjt ;di)−∇f(xj,′t ;d′
i))∥. (36)

For the first term, note that the gradient mapping (with respect to the same data point) is contractive
with constant (1− ηm) for η ≤ 1

L , thus we have

∥xjt − xj,′t + η(∇f(xjt ;di)−∇f(xj,′t ;di))∥ ≤ (1− ηm)∥xjt − xj,′t ∥. (37)

For the second term, by triangle inequality and the M -Lipschitzness of f we have

∥xjt − xj,′t + η(∇f(xjt ;di)−∇f(xj,′t ;d′
i))∥ (38)

= ∥xjt − xj,′t + η(∇f(xjt ;di)−∇f(xj,′t ;di) +∇f(xj,′t ;di)−∇f(xj,′t ;d′
i))∥ (39)

≤ (1− ηm)∥xjt − xj,′t ∥+ η∥∇f(xj,′t ;di)∥+ η∥∇f(xj,′t ;d′
i)∥ (40)

≤ (1− ηm)∥xjt − xj,′t ∥+ 2ηM. (41)

Note that there are Sjg terms above. Combining things together, we have

∥ψj(x
j
t )− ψ′

j(x
j,′
t )∥ ≤ (1− ηm)∥xjt − xj,′t ∥+

2ηMSjg

b
. (42)

Iterate this bound over all n/b iterations within this epoch, we have

∥ψj(x
0
t+1)− ψ′

j(x
0,′
t+1)∥ ≤ (1− ηm)n/b∥ψj(x

0
t )− ψ′

j(x
0,′
t )∥+

G−1∑
g=0

(1− ηm)n/b−jg−1 2ηMSjg

b
.

(43)

The rest analysis is the same as those in Lemma 3.3, where we iterate over T epochs, infimum over
all possible coupling, and then simplify the expression using geometric series. Thus we complete the
proof.

K Proof of Proposition 3.9

Proposition. Under the same setting as Corollary 3.7 with b = n, η ≤ m
2L2 and assume the minimizer

of any fD is in the relative interior of CR ⊆ Rd, for any given adjacent dataset pair D,D′ the output
of the Kth unlearning iteration y0K satisfies

E[fD′(y0K)− inf
x∈CR

fD′(x)] ≤McK min(
1

1− c

2ηM

n
, 2R) +

2Ldσ2

m
. (44)

The proof is based on the following key lemma from [24].
Lemma K.1. For M -Lipschitz, m-strongly convex and L-smooth loss function fD(x) over the closed
bounded convex set CR ⊆ Rd with radius R, step size η ≤ m

2L2 and initial parameter x0 ∼ ν0, the
excess empirical risk of the learning process of Algorithm 1 for T epoch is bounded by

E[fD(x0T )− fD(x
⋆)] ≤ L

2
exp(−mηT )Ex0∼ν0

[∥x0 − x⋆∥2] + 2Ldσ2

m
, (45)

where x⋆ is the minimizer of fD(x) in the relative interior of CR and d is the dimension of parameter.
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Clearly, we can see that under the convergent assumption of Corollary 3.7, the excess risk of y00 = x∞
is

E[fD(y00)− fD(x
⋆)] ≤ 2Ldσ2

m
. (46)

This is true since ∥x0 − x⋆∥ ≤ 2R is finite by the boundedness of CR.

Now we are ready to prove Proposition 3.9.

Proof. Start by observing that

E[fD′(y0K)− fD′(y⋆)] = E[fD′(y0K)− fD′(y0,′K )] + E[fD′(y0,′K )− fD′(y⋆)], (47)

where we recall that y0,′K is the “adjacent process” of y0K that running noisy gradient descent on D′

for both learning and unlearning processes. As a result, we have y0,′K = x0,′T+K for T learning epoch.
By taking T → ∞ under the convergent assumption and utilizing Lemma K.1, we have

E[fD′(y0,′K )− fD′(y⋆)] ≤ 2Ldσ2

m
. (48)

Hence we are left with analyzing the first term. We will bound it in terms of ∥y0K − y0,′K ∥. Note
that we choose a particular coupling between y0K , y

0,′
K as in Lemma 3.3, where the Gaussian noise in

y0K , y
0,′
K are identical almost surely. Also for simplicity, we drop 0 in the superscript since we are

analyzing the full batch case. By M -Lipschitzness of fD′ , we have

∥fD′(yK)− fD′(y′K)∥ ≤M∥y0K − y0,′K ∥. (49)

For ∥y0K − y0,′K ∥, we have

∥yK − y′K∥ (50)

= ∥ΠCR
[yK−1 − η∇fD′(yK−1) +

√
2ησ2WK−1]−ΠCR

[y′K−1 − η∇fD′(y′K−1) +
√
2ησ2WK−1]∥

(51)

≤ ∥yK−1 − η∇fD′(yK−1)− (y′K−1 − η∇fD′(y′K−1))∥ (52)

≤ (1− ηm)∥yK−1 − y′K−1∥, (53)

where the first inequality is due to the fact that ΠCR
is a contraction map and noise cancels out

due to our coupling of y0K , y
0,′
K . The second inequality is due to the fact that gradient update is

(1−mη)-contraction map when fD′ is L-smooth, m-strongly convex and η ≤ 1
L . By iterating this

bound, we have

∥fD′(yK)− fD′(y′K)∥ ≤M(1−mη)K∥y0 − y′0∥ (54)

≤McK min(
1

1− c

2ηM

n
, 2R), (55)

where c = 1−mη and the last inequality is due to Lemma 3.3 for the case b = n and taking the limit
T → ∞. Combining all results together, we have

E[fD′(y0K)− fD′(y⋆)] (56)

≤ E[fD′(y0K)− fD′(y0,′K )] +
2Ldσ2

m
(57)

≤ E[∥fD′(y0K)− fD′(y0,′K )∥] + 2Ldσ2

m
(58)

≤McK min(
1

1− c

2ηM

n
, 2R) +

2Ldσ2

m
. (59)

Together we complete the proof.
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L Proof of Lemma 3.3

Lemma (W∞ between adjacent PNSGD learning processes). Consider the learning process in
Algorithm 1 on adjacent dataset D and D′ and a fixed mini-batch sequence B. Assume ∀d ∈ X ,
f(x;d) is L-smooth, M -Lipschitz and m-strongly convex in x. Let the index of different data point
between D,D′ belongs to mini-batch Bj0 . Then for η ≤ 1

L and let c = (1− ηm), we have

W∞(ν0T |B, ν
0,′
T |B) ≤ min

(
1− cTn/b

1− cn/b
cn/b−j0−1 2ηM

b
, 2R

)
.

Proof. We prove the bound of one iteration and iterate over that result under a specific coupling of the
adjacent PNSGD learning processes, which is by definition an upper bound for taking infimum over
all possible coupling. Given an mini-batch sequence B, assume the adjacent dataset D,D′ differ at
index i0 ∈ [n] and i0 belongs to jth0 mini-batch (i.e., i0 ∈ Bj0 . For simplicity, we drop the condition
on B for all quantities in the proof as long as it is clear that we always condition on a fixed B. Let us
denote ψj(x) = x− η

b

∑
i∈Bj ∇f(x;d′

i) and similar for ψ′
j on D′. Note that for some coupling of

νjt , ν
j,′
t denoted as γjt ,

esssup(xj+1
t ,xj+1,′

t )∼γj+1
t

∥xj+1
t − xj+1,′

t ∥ (60)

= esssup((xj
t ,W

j
t ),(x

j,′
t ,W j,′

t ))∼γj
t
∥ψj(x

j
t )− ψ′

j(x
j,′
t ) +

√
2ησ2W j

t −
√
2ησ2W j,′

t ∥ (61)

≤ esssup((xj
t ,W

j
t ),(x

j,′
t ,W j,′

t ))∼γj
t
∥ψj(x

j
t )− ψ′

j(x
j,′
t )∥+ ∥

√
2ησ2W j

t −
√

2ησ2W j,′
t ∥. (62)

Now, note that by definition the noise W j
t is independent of xjt , we can simply choose the coupling γ

so that W j
t = W j,′

t for all t, j and x00 = x0,′0 due to the same initialization distribution. So the last
term is 0. For the first term, there are two possible cases: 1) j = j0 and 2) j ̸= j0. For case 1), we
have

∥ψj(x
j
t )− ψ′

j(x
j,′
t )∥ (63)

≤ 1

b

∑
i∈Bj\{i0}

∥xjt − xj,′t + η(∇f(xjt ;di)−∇f(xj,′t ;di))∥ (64)

+
1

b
∥xjt − xj,′t + η(∇f(xjt ;di0)−∇f(xj,′t ;d′

i0))∥. (65)

For the first term, note that the gradient mapping (with respect to the same data point) is contractive
with constant (1− ηm) for η ≤ 1

L , thus we have

∥xjt − xj,′t + η(∇f(xjt ;di)−∇f(xj,′t ;di))∥ ≤ (1− ηm)∥xjt − xj,′t ∥. (66)

For the second term, by triangle inequality and the M -Lipschitzness of f we have

∥xjt − xj,′t + η(∇f(xjt ;di0)−∇f(xj,′t ;d′
i0))∥ (67)

= ∥xjt − xj,′t + η(∇f(xjt ;di0)−∇f(xj,′t ;di0) +∇f(xj,′t ;di0)−∇f(xj,′t ;d′
i0))∥ (68)

≤ (1− ηm)∥xjt − xj,′t ∥+ η∥∇f(xj,′t ;di0)∥+ η∥∇f(xj,′t ;d′
i0)∥ (69)

≤ (1− ηm)∥xjt − xj,′t ∥+ 2ηM. (70)

Combining things together, we have

∥ψj(x
j
t )− ψ′

j(x
j,′
t )∥ ≤ (1− ηm)∥xjt − xj,′t ∥+ 2ηM

b
. (71)

On the other hand, for case 2) we can simply use the contrativity of the gradient update for all b terms,
which leads to

∥ψj(x
j
t )− ψ′

j(x
j,′
t )∥ ≤ (1− ηm)∥xjt − xj,′t ∥. (72)

Combining these two cases, we have

esssupγ∥x
j+1
t − xj+1,′

t ∥ ≤ esssupγ(1− ηm)∥xjt − xj,′t ∥+ 2ηM

b
1[j = j0] (73)

(74)
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where 1[j = j0] is the indicator function of the event j = j0. Now we iterate this bound within the
epoch t, which leads to an epoch-wise bound

esssupγ∥x0t+1 − x0,′t+1∥ ≤ esssupγ(1− ηm)n/b∥x0t − x0,′t ∥+ (1− ηm)n/b−j0−1 2ηM

b
(75)

(76)

We can further iterate this bound over all iterations T , which leads to

esssupγ∥x0T − x0,′T ∥ ≤ esssupγ(1− ηm)Tn/b∥x00 − x0,′0 ∥+
T−1∑
t=0

(1− ηm)(t+1)n/b−j0−1 2ηM

b

(77)

=

T−1∑
t=0

(1− ηm)(t+1)n/b−j0−1 2ηM

b
, (78)

(79)

where the last equality follows by our choice of coupling γ such that x00 = x0,′0 due to the same
initialization distribution. Now by taking the infimum overall possible coupling γ and simply the
expression, we have

W∞(ν0T |B, ν
0,′
T |B) ≤

1− cTn/b

1− cn/b
cn/b−j0−1 2ηM

b
. (80)

Finally, note that there is also a naive bound W∞(ν0T |B, ν
0,′
T |B) ≤ 2R due to the projection ΠCR

.
Combine these two we complete the proof.

M Proof of Lemma 3.4

Lemma (W∞ between PNSGD learning process to its stationary distribution). Following the same
setting as in Theorem 3.2 and denote the initial distribution of the unlearning process as ν00 . Then we
have

W∞(ν0T |B, νD|B) ≤ (1− ηm)Tn/bW∞(ν00 , νD|B).

Proof. We follow a similar analysis as in Lemma 3.3 but with two key differences: 1) our initial W∞
distance is not zero and 2) we are applying the same c-CNI. Let us slightly abuse the notation to
denote the process xj,′t ∼ νj,′t be the process of learning on D as well but starting with ν0,′0 = νD|B.
As before, we first establish one iteration bound with epoch t, then iterate over n/b iterations, and
then iterate over T to complete the proof. Consider the two CNI processes xjt , x

j,′
t with the same

update ψj(x) = x− η
b

∑
i∈Bj ∇f(x;di), where x00 ∼ ν00 and x0,′0 ∼ νD|B. We will use the similar

coupling construction as in the proof of Lemma 3.3 (i.e., W j
t =W j,′

t ). However, note that we will not
restrict the coupling between the two initial distributions ν00 = ν0|B and ν0,′0 = νD|B. Let us denote
the coupling for W as γW and the coupling for the initial distributions ν00 = ν0|B and ν0,′0 = νD|B as
γI . We denote the overall coupling as γ = (γI , γW ). For our specific choice of coupling γW , we
have

∥xj+1
t − xj+1,′

t ∥
(a)

≤ ∥ψj(x
j
t )− ψj(x

j,′
t ) +

√
2ησ2(W j

t −W j,′
t )∥

(b)

≤ ∥ψj(x
j
t )− ψj(x

j,′
t )∥+ 0

(c)

≤ (1− ηm)∥xjt − xj,′t ∥,
(81)

where (a) is due to the fact that projection ΠCR
is 1-contractive, (b) is due to our coupling choice

on the noise distribution, and (c) is due to the fact that ψj is (1− ηm) contractive and the coupling
choice on the mini-batch.

Now we iterate the bound above within the epoch and then over T epoch similar as before, which
leads to the per epoch bound as follows

esssupγ∥x0T − x0,′T ∥ ≤ esssupγ(1− ηm)Tn/b∥x00 − x0,′0 ∥ = esssupγI
(1− ηm)Tn/b∥x00 − x0,′0 ∥.

(82)
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Note that this holds for all coupling γI for initial distributions. Let us now choose a specific (tie
break arbitrary) γI so that the W∞(ν0|B, νD|B) = esssupγI

∥x00 − x0,′0 ∥ is attained. For this specific
coupling γI , we have

esssup(γI ,γW )∥x0T − x0,′T ∥ ≤ (1− ηm)Tn/bW∞(ν0|B, νD|B). (83)

Finally, by the definition of infimum and observe that x0,′T ∼ νD|B due to the stationary property of
νD|B (which is independent of our choice of coupling), we have

W∞(ν0T |B, νD|B) ≤ esssup(γI ,γW )∥x0T − x0,′T ∥ ≤ (1− ηm)Tn/bW∞(ν0|B, νD|B). (84)

Hence we complete the proof.

N Experiment Details

N.1 (α, ε)-RU to (ϵ, δ)-Unlearning Conversion

Let us first state the definition of (ϵ, δ)-unlearning from prior literature [7–9].

Definition N.1. Consider a randomized learning algorithm M : Xn 7→ Rd and a randomized
unlearning algorithm U : Rd × Xn × Xn 7→ Rd. We say (M,U) achieves (ϵ, δ)-unlearning if for
any adjacent datasets D,D′ and any event E, we have

P (U(M(D),D,D′) ⊆ E) ≤ exp(ϵ)P (M(D′) ⊆ E) + δ, (85)

P (M(D′) ⊆ E) ≤ exp(ϵ)P (U(M(D),D,D′) ⊆ E) + δ. (86)

Following the same proof of RDP-DP conversion (Proposition 3 in [19]), we have the following
(α, ε)-RU to (ϵ, δ)-unlearning conversion as well.
Proposition N.2. If (M,U) achieves (α, ε)-RU, it satisfies (ϵ, δ)-unlearning as well, where

ϵ = ε+
log(1/δ)

α− 1
. (87)

N.2 Datasets

MNIST [25] contains the grey-scale image of number 0 to number 9, each with 28× 28 pixels. We
follow [9] to take the images with the label 3 and 8 as the two classes for logistic regression. The
training data contains 11264 instances in total and the testing data contains 1984 samples. We spread
the image into an x ∈ Rd, d = 724 feature as the input of logistic regression.

CIFAR-10 [26] contains the RGB-scale image of ten classes for image classification, each with
32 × 32 pixels. We also select class #3 (cat) and class #8 (ship) as the two classes for logistic
regression. The training data contains 9728 instances and the testing data contains 2000 samples. We
apply data pre-processing on CIFAR-10 by extracting the compact feature encoding from the last layer
before pooling of an off-the-shelf pre-trained ResNet18 model [27] from Torch-vision library [34,35]
as the input of our logistic regression. The compact feature encoding is x ∈ Rd, d = 512.

All the inputs from the datasets are normalized with the ℓ2 norm of 1. Note that We drop some date
points compared with [11] to make the number of training data an integer multiple of the maximum
batch size in our experiment, which is 512.

N.3 Experiment Settings

Hardware and Frameworks All the experiments run with PyTorch=2.1.2 [36] and
numpy=1.24.3 [37]. The codes run on a server with a single NVIDIA RTX 6000 GPU with AMD
EPYC 7763 64-Core Processor.

Problem Formulation Given a binary classification task D = {xi ∈ Rd, yi ∈ {−1,+1}}ni=1, our
goal is to obtain a set of parameters w that optimizes the objective below:

L(w;D) =
1

n

n∑
i=1

l(w⊤xi, yi) +
λ

2
||w||22, (88)
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where the objective consists of a standard logistic regression loss l(w⊤xi, yi) = − log σ(yiw⊤xi),
where σ(t) = 1

1+exp(−t) is the sigmoid function; and a ℓ2 regularization term where λ is a hyperpa-
rameter to control the regularization, and we set λ as 10−6 × n across all the experiments. By simple
algebra one can show that [7]

∇l(w⊤xi, yi) = (σ(yiw⊤xi)− 1)yixi + λw, (89)

∇2l(w⊤xi, yi) = σ(yiw⊤xi)(1− σ(yiw⊤xi))xixT
i + λId. (90)

Due to σ(yiw⊤xi) ∈ [0, 1], it is not hard to see that we have smoothness L = 1/4 + λ and strong
convexity λ. The constant meta-data of the loss function in equation (88) above for the two datasets
is shown in the table below:

Table 1: The constants for the loss function and other calculation on MNIST and CIFAR-10.
expression MNIST CIFAR10

smoothness constant L 1
4 + λ 1

4 + λ 1
4 + λ

strongly convex constant m λ 0.0112 0.0097
Lipschitz constant M gradient clip 1 1

RDP constant δ 1/n 8.8778e-5 0.0001

The per-sample gradient with clipping w.r.t. the weights w of the logistic regression loss function is
given as:

∇clipl(w⊤xi, yi) = ΠCM

(
(σ(yiw⊤xi)− 1)yixi

)
+ λw, (91)

where ΠCM
denotes the gradient clipping projection into the Euclidean ball with the radius of M , to

satisfy the Lipschitz constant bound. According to Proposition 5.2 of [22], the per-sampling clipping
operation still results in a L-smooth, m-strongly convex objective. The resulting stochastic gradient
update on the full dataset is as follows:

1

n

n∑
i=1

∇clipl(w
Txi, yi), (92)

Finally, we remark that in our specific case since we have normalized the features of all data points
(i.e., ∥x∥ = 1), by the explicit gradient formula we know that ∥(σ(yiw⊤xi)− 1)yixi∥ ≤ 1.

Learning from scratch set-up For the baselines and our PNSGD unlearning framework, we all
sample the initial weight w randomly sampled from i.i.d Gaussian distribution N (µ0,

2σ2

m ), where µ0

is a hyper-parameter denoting the initialization mean and we set as 0. For the PNSGD unlearning
method, the burn-in steps T w.r.t. different batch sizes are listed in Table. 2. we follow [11] and set
T = 10, 000 for the baselines (D2D and Langevin unlearning) to converge.

Table 2: The Burn-in step T set for different batch sizes for the PNSGD unlearning framework
batch size 32 128 512 full-batch

burn-in steps 10 20 50 1000

Unlearning request implementation. In our experiment, for an unlearning request of removing
data point i, we replace its feature with random features drawn from N (0, Id) and its label with a
random label drawn uniformly at random drawn from all possible classes. This is similar to the DP
replacement definition defined in [38], where they replace a point with a special null point ⊥.

General implementation of baselines

D2D [9]:

• Across all of our experiments involved with D2D, we follow the original paper to set the step size
as 2/(L+m).
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• For the experiments in Fig. 3a, we calculate the noise to add after gradient descent with the non-
private bound as illustrated in Theorem. O.1 (Theorem 9 in [9]); For experiments with sequential
unlearning requests in Fig. 3b, we calculate the least step number and corresponding noise with the
bound in Theorem. O.2(Theorem 28 in [9]).

• The implementation of D2D follows the pseudo code shown in Algorithm 1,2 in [9] as follows:

Algorithm 2 D2D: learning from scratch

1: Input: dataset D
2: Initialize w0

3: for t = 1, 2, . . . , 10000 do
4: wt = wt−1 − 2

L+m × 1
n

∑n
i=1(∇clipl(w

T
t−1xi, yi))

5: end for
6: Output: ŵ = wT

Algorithm 3 D2D: unlearning

1: Input: dataset Di−1, update ui; model wi

2: Update dataset Di = Di−1 ◦ ui
3: Initialize w′

0 = wi

4: for t = 1, . . . , I do
5: w′

t = w′
t−1 − 2

L+m × 1
n

∑n
i=1 ∇clipl((w

′
t−1)

Txi, yi))
6: end for
7: Calculate γ = L−m

L+m

8: Draw Z ∼ N (0, σ2Id)
9: Output ŵi = w′

Ti
+ Z

The settings and the calculation of I, σ in Algorithm. 3 are discussed in the later part of this section
and could be found in Section. O.

Langevin unlearning [11]

We follow exactly the experiment details described in [11].

General Implementation of PNSGD Unlearning (ours)

• We set the step size η for the PNSGD unlearning framework across all the experiments as 1/L.

• The pseudo-code for PNSGD unlearning framework is shown in Algorithm. 1.

N.4 Implementation Details for Fig. 3a

In this experiment, we first train the methods on the original dataset D from scratch to obtain the
initial weights w0. Then we randomly remove a single data point (S = 1) from the dataset to get
the new dataset D′, and unlearn the methods from the initial weights ŵ and test the accuracy on the
testing set. We follow [11] and set the target ϵ̂ with 6 different values as [0.05, 0.1, 0.5, 1, 2, 5]. For
each target ϵ̂:

• For D2D, we set two different unlearning gradient descent step budgets as I = 1, 5, and calculate the
corresponding noise to be added to the weight after gradient descent on D according to Theorem. O.1.

• For the Langevin unlearning framework [11], we set the unlearning fine-tune step budget as K̂ = 1
only, and calculate the smallest σ that could satisfy the fine-tune step budget and target ϵ̂ at the same
time. The calculation follows the binary search algorithm described in the original paper.

• For the stochastic gradient descent langevin unlearning framework, we also set the unlearning
fine-tune step budget as K̂ = 1, and calculate the smallest σ that could satisfy the fine-tune step
budget and target ϵ̂ at the same time. The calculation follows the binary search algorithm as follows:
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Algorithm 4 PNSGD Unlearning: binary search σ that satisfy K̂ and target ϵ̂ budget

1: Input:target ϵ̂, unlearn step budget K, lower bound σlow, upper bound σhigh
2: while σhigh − σlow > 1e− 8 do
3: σmid = (σlow + σhigh)/2
4: call Alg. 5 to find the least K that satisfies ϵ̂ with σ = σmid

5: if K ≤ K̂ then
6: σhigh = σmid
7: else
8: σlow = σmid
9: end if

10: end while
11: return K

Algorithm 5 PNSGD Unlearning [non-convergent]: find the least K satisfying ϵ̂

1: Input:target ϵ̂, σ, burn-in T , projection radius R
2: Initialize K = 1, ϵ > ϵ̂
3: while ϵ > ϵ̂ do
4: c = 1− ηm

5: ε1(α) =
α(2R)2

2ησ2 c2Tn/b

6: Z = 1
1−cn/b

2ηM
b

7: ε2(α) =
αZ2

2ησ2 c
2kn/b + 2RcTn/b

8: ε(α) = α−1/2
α−1 (ε1(2α) + ε2(2α))

9: ϵ = minα>1[ε(α) + log(1/δ)/(α− 1)]
10: K = K + 1
11: end while
12: Return K

We set the projection radius as R = 100, and the σ found is listed in Table. 3.

Table 3: σ of PNSGD unlearning.
0.05 0.1 0.5 1 2 5

CIFAR-10 b=128 0.2165 0.1084 0.0220 0.0112 0.0058 0.0025
full batch 1.2592 0.6308 0.1282 0.0653 0.0338 0.0148

MNIST b=128 0.0790 0.0396 0.0080 0.0041 0.0021 0.0009
full batch 0.9438 0.4728 0.0960 0.0489 0.0253 0.0111
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N.5 Implementation Details for Fig. 3b

In this experiment, we fix the target ϵ̂ = 1, we set the total number of data removal as 100. We show
the accumulated unlearning steps w.r.t. the number of data removed. We first train the methods from
scratch to get the initial weight w0, and sequentially remove data step by step until all the data points
are removed. We count the accumulated unlearning steps K needed in the process.

• For D2D, According to the original paper, only one data point could be removed at a time. We
calculate the least required steps and the noise to be added according to Theorem. O.2.

• For Langevin unlearning, we fix the σ = 0.03, and we let the model unlearn [5, 10, 20] per time.
The least required unlearning steps are obtained following [11].

• For Stochastic gradient descent langevin unlearning, we replace a single point per request and
unlearn for 100 requests. We obtain the least required unlearning step K following Corollary 3.7.
The pseudo-code is shown in Algorithm. 6.

Algorithm 6 PNSGD Unlearning: find the least unlearn step K in sequential settings

1: Input:target ϵ̂, σ, total removal S
2: Klist = []
3: for i in range(S) do
4: Initialize Klist[i− 1] = 1, ϵ > ϵ̂
5: while ϵ > ϵ̂ do
6: ϵ = minα>1[ε(α, σ, b,Klist[i− 1]) + log(1/δ)

α−1 ]

7: Klist[i− 1] = Klist[i− 1] + 1
8: end while
9: end for

10: Return Klist

Algorithm 7 ε(α, σ, b,K)

1: Input:target α, σ, removal batch size b per time, i-th removal in the sequence
2: c = 1− ηm

3: Return αZB(b)2

2ησ2 c2Kn/b

Algorithm 8 ZB(b)

1: c = 1− ηm
2: return 1

1−cn/b

2ηM
b

N.6 Implementation Details for Fig. 3c and 3d

In this study, we fix S = 100 to remove, set different σ = [0.05, 0.1, 0.2, 0.5, 1] and set batch size
as b = [32, 128, 512, full batch]. We train the PNSGD unlearning framework from scratch to get the
initial weight, then remove some data, unlearn the model, and report the accuracy. We calculate the
least required unlearning steps K by calling Algorithm. 6.

O Unlearning Guarantee of Delete-to-Descent [9]

The discussion is similar to those in [11], we include them for completeness.

Theorem O.1 (Theorem 9 in [9], with internal non-private state). Assume for all d ∈ X , f(x;d)
is m-strongly convex, M -Lipschitz and L-smooth in x. Define γ = L−m

L+m and η = 2
L+m . Let the

learning iteration T ≥ I + log( 2Rmn
2M )/ log(1/γ) for PGD (Algorithm 1 in [9]) and the unlearning

algorithm (Algorithm 2 in [9], PGD fine-tuning on learned parameters before adding Gaussian noise)
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run with I iterations. Assume ϵ = O(log(1/δ)), let the standard deviation of the output perturbation
gaussian noise σ to be

σ =
4
√
2MγI

mn(1− γI)(
√
log(1/δ) + ϵ−

√
log(1/δ))

. (93)

Then it achieves (ϵ, δ)-unlearning for add/remove dataset adjacency.

Theorem O.2 (Theorem 28 in [9], without internal non-private state). Assume for all d ∈ X , f(x;d)
is m-strongly convex, M -Lipschitz and L-smooth in x. Define γ = L−m

L+m and η = 2
L+m . Let the

learning iteration T ≥ I + log( 2Rmn
2M )/ log(1/γ) for PGD (Algorithm 1 in [9]) and the unlearning

algorithm (Algorithm 2 in [9], PGD fine-tuning on learned parameters after adding Gaussian noise)
run with I + log(log(4di/δ))/ log(1/γ) iterations for the ith sequential unlearning request, where I
satisfies

I ≥
log

( √
2d(1−γ)−1√

2 log(2/δ)+ϵ−
√

2 log(2/δ)

)
log(1/γ)

. (94)

Assume ϵ = O(log(1/δ)), let the standard deviation of the output perturbation gaussian noise σ to
be

σ =
8MγI

mn(1− γI)(
√
2 log(2/δ) + 3ϵ−

√
2 log(2/δ) + 2ϵ)

. (95)

Then it achieves (ϵ, δ)-unlearning for add/remove dataset adjacency.

Note that the privacy guarantee of D2D [9] is with respect to add/remove dataset adjacency and ours
is the replacement dataset adjacency. However, by a slight modification of the proof of Theorem O.1
and O.2, one can show that a similar (but slightly worse) bound of the theorem above also holds for
D2D [9]. For simplicity and fair comparison, we directly use the bound in Theorem O.1 and O.2 in
our experiment. Note that [38] also compares a special replacement DP with standard add/remove
DP, where a data point can only be replaced with a null element in their definition. In contrast,
our replacement data adjacency allows arbitrary replacement which intuitively provides a stronger
privacy notion.

The non-private internal state of D2D. There are two different versions of the D2D algorithm
depending on whether one allows the server (model holder) to save and leverage the model parameter
before adding Gaussian noise. The main difference between Theorem O.1 and O.2 is whether their
unlearning process starts with the “clean” model parameter (Theorem O.1) or the noisy model
parameter (Theorem O.2). Clearly, allowing the server to keep and leverage the non-private internal
state provides a weaker notion of privacy [9]. In contrast, our PNSGD unlearning approach by default
only keeps the noisy parameter so that we do not save any non-private internal state. As a result, one
should compare the PNSGD unlearning to D2D with Theorem O.2 for a fair comparison.

P Unlearning Guarantees of Langevin Unlearning [11]

In this section, we restate the main results of Langevin unlearning [11] and provide a detailed
comparison and discussion for the case of strongly convex objective functions.
Theorem P.1 (RU guarantee of PNGD unlearning, strong convexity). Assume for all D ∈ Xn, fD is
L-smooth, M -Lipschitz, m-strongly convex and νD satisfies CLSI-LSI. Let the learning process follow
the PNGD update and choose σ2

m < CLSI and η ≤ min( 2
m (1− σ2

mCLSI
), 1

L ). Given M is (α, ε0)-RDP
and y0 = x∞ = M(D), for α > 1, the output of the Kth PNGD unlearning iteration achieves
(α, ε)-RU, where

ε ≤ exp

(
− 1

α

2σ2ηK

CLSI

)
ε0. (96)

Theorem P.2 (RDP guarantee of PNGD learning, strong convexity). Assume f(·;d) be L-smooth,
M -Lipschitz and m-strongly convex for all d ∈ X . Also, assume that the initialization of PNGD
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satisfies 2σ2

m -LSI. Then by choosing 0 < η ≤ 1
L with a constant, the PNGD learning process is

(α, ε
(S)
0 )-RDP of group size S ≥ 1 at T th iteration with

ε
(S)
0 ≤ 4αS2M2

mσ2n2
(1− exp(−mηT )). (97)

Furthermore, the law of the PNGD learning process is 2σ2

m -LSI for any time step.

Combining these two results, the (α, ε)-RU guarantee for Langevin unlearning is

ε ≤ exp

(
−mηK

α

)
4αS2M2

mσ2n2
. (98)

On the other hand, combining our Theorem 3.2, 3.3 and using the worst case bound on ZB along
with some simplification, we have

ε ≤ c2Kn/b α

2ησ2

(
2ηM

(1− c)b

)2

= (1− ηm)2Kn/b α

2ησ2

(
2M

mb

)2

= (1− ηm)2Kn/b 2αM2

ηm2σ2b2
.

(99)

To make an easier comparison, we further simplify the above bound with b = n and 1−x < exp(−x)
which holds for all x > 0:

ε ≤ (1− ηm)2Kn/b 2αM2

ηm2σ2b2
< exp(−2Knηm

b
)
4αM2

mσ2b2
× 1

2mη
= exp(−2Kηm)

4αM2

mσ2n2
× 1

2mη
.

(100)

Now we compare the bound (98) obtained by Langevin dynamic in [11] and our bound (100) based on
PABI analysis. First notice that the “initial distance” in (100) has an additional factor 1/(2mη). When
we choose the largest possible step size η = 1

L , then this factor is L
2m which is most likely greater

than 1 in a real-world scenario unless the objective function is very close to a quadratic function. As
a result, when K is sufficiently small (i.e., K = 1), possible that the bound (98) results in a better
privacy guarantee when unlearning one data point. This is observed in our experiment, Figure 3a.
Nevertheless, note that the decaying rate of (100) is independent of the Rényi divergence order α,
which actually leads to a much better rate in practice. More specifically, for the case n = 104 (which
is roughly our experiment setting). To achieve (1, 1/n)-unlearning guarantee the corresponding
α is roughly at scale α ≈ 10, since log(n)/(α − 1) needs to be less than 1 in the (α, ε)-RU to
(ϵ, δ)-unlearning conversion (Proposition N.2). As a result, the decaying rate of (100) obtained by
PABI analysis is superior by a factor of 2α, which implies a roughly 20x saving in complexity for K
large enough.

Comparing sequential unlearning. Notably, another important benefit of our bound obtained by
PABI analysis is that it is significantly better in the scenario of sequential unlearning. Since we only
need standard triangle inequality for the upper bound Z(s+1)

B = min(cKsn/bZ
(s)
B + ZB, 2R) of the

(s+ 1)th unlearning request, only the “initial distance” is affected and it grows at most linearly in s
(i.e., for the convex only case). In contrast, since Langevin dynamic analysis in [11] requires the use
of weak triangle inequality of Rényi divergence, the α in their bound will roughly grow at scale 2s

which not only affects the initial distance but also the decaying rate. As pointed out in our experiment
and by the author [11] themselves, their result does not support many sequential unlearning requests.
This is yet another important benefit of our analysis based on PABI for unlearning.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claimed theoretical results are provided in Section 3 and empirical studies
are provided in 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation in section B.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: All assumptions are stated for each theorem and proof for every theoretical
statement is provided in the Appendix E to M.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The code is provided in the supplementary material and all experimental details
are stated in Appendix N.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All data used in the experiments are publicly available with open-access
licenses. The code is provided in the supplementary material and all experimental details
are stated in Appendix N.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are stated in Appendix N.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results are reported with one standard deviation gathered
from 100 independent trials, which is stated in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The compute resources used for our experiments are detailed in Appendix N.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have read the NeurIPS Code of Ethics and affirm that this work
conforms with it in every respect.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We briefly discuss why our work does not have any negative societal impact in
Section C
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All used datasets are provided with citations to the original authors and works,
where all of them have proper open access license.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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