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Abstract

Multimodal large language models (MLLMs) have shown promising capabilities
in reasoning tasks, yet still struggle significantly with complex problems requiring
explicit self-reflection and self-correction, especially compared to their unimodal
text-based counterparts. Existing reflection methods are simplistic and struggle to
generate meaningful, instructive feedback, as the reasoning ability and knowledge
limits of pre-trained models are largely fixed during initial training. To overcome
these challenges, we propose multimodal Self-Reflection enhanced reasoning
with Group Relative Policy Optimization SRPO, a two-stage reflection-aware
reinforcement learning (RL) framework explicitly designed to enhance multimodal
LLM reasoning. In the first stage, we construct a high-quality, reflection-focused
dataset under the guidance of an advanced MLLM, which generates reflections
based on initial responses to help the policy model to learn both reasoning and
self-reflection. In the second stage, we introduce a novel reward mechanism
within the GRPO framework that encourages concise and cognitively meaningful
reflection while avoiding redundancy. Extensive experiments across multiple
multimodal reasoning benchmarks—including MathVista, MathVision, Mathverse,
and MMMU-Pro—using Qwen-2.5-VL-7B and Qwen-2.5-VL-32B demonstrate
that SRPO significantly outperforms state-of-the-art models, achieving notable
improvements in both reasoning accuracy and reflection quality.

1 Introduction

Multimodal reasoning is central to numerous real-world scenarios, such as interpreting scientific
figures, geometric reasoning, and integrated complex image-text comprehension tasks [1H3]. Al-
though recent approaches have attempted to transfer effective RL-based reasoning methods [4H7]
from textual models to multimodal scenarios [8H11], these methods generally encounter considerable
limitations. Specifically, existing MLLMs typically follow a token-level Markov process [12} [13]
during generation, which relies on local dependencies. This often leads to redundant, repetitive, or
erroneous reasoning steps in their output [14]. Such issues hinder reasoning models from achieving
significant improvements over fast-thinking models; in some cases, their performance is even inferior.
For instance, GPT-o01, despite its explicitly structured reasoning pathways, achieves slightly lower

*Project Lead (work done during internship at ByteDance). TEqual Contribution.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).


https://srpo.pages.dev

BB The fencing costs £37 per metre. the BB The fencing costs £37 per metre. the Bl Jll Al the sloping(edgesiof the solidifigure 50
are 12 cm long. Find Y, the size of
£ 30 lengths of EF and CD are x metre and y £ 3 lengths of EF and CD are x metre and y + = [ CHE I e ; . SRPO-7B
metre....how much wil it cost... ? 3 metre....how much will it cost... 2 3 2 =
mages

Images Images Places. 75 GRPO-7B
Qwen-2.5-VL-78
{ < {
{V; {v; SRPO iz. SRPO
<think>To calculate the cost of ....the cost is 555

<think> <think>To find the size of angle PNM...Since P, N,
To determine the cost of building the fence. +37x, </think> <answer>The answer is 555 + and M are midpoints of...</think> <answer>The
\ltext{Perimeter} = AB + BG + GE + EF + 37x. <lanswer> answer is 69.30. </answer>

FD + DC + CE + EB...So, the perimeter <reflection> THe Iitial reasoning misidentified <reflection>The steps correctly identified...The
isAnW[ Wext{Perimeter} = 5 + 1 + 2 + x....the the structure of the perimeter...To correct the explanation could be more concise by avoiding
reasoning...</reflection>

cost is 555 + 37x repetition and summarizing the perimeter
<Jthink> <think>We need to re-compute the total length calculation more clearly. </reflection>
<lthink>

<think>To verify, we can use the fact that.
<Ithink>
<answer>The answer is 69.30.</answer> &/

Score

<answer>

<answer>The answeris 777. §/
<lanswer>

Reflecting on correct reasoning steps
The thinking steps lack autonomous o® 9 g step:
[ R i p ] [ Reflecting on and revising incorrect J [ and refining them yields a more concise 35

reflection and refinement, leading to
d reasoning steps leads to a correct answer.
incorrect answers. . reasoning process.

The answeris 555 + 37x. 9§
<lanswer>

MathVista  MathVerse  MMMU-Pro Physics
Benchmark

Figure 1: Left: Illustrative examples of reflection improving reasoning. Right: Quantitative comparison on
benchmark datasets.

accuracy (73.9%) on MathVista compared to Qwen2.5-VL-72B (74.8%) [1. [15]. The primary reason
lies in the presence of incorrect and redundant steps, which negatively affect final performance.

Previous studies have shown that self-reflection [[16} [17]] is an effective approach to address this issue.
By explicitly encouraging the model to review, evaluate, and revise its own reasoning process, self-
reflection helps eliminate unnecessary or incorrect steps, enhances logical coherence, and promotes
deeper understanding [[18]. However, recent empirical studies [[18-H20]] indicate that the upper bounds
of reasoning capabilities in pre-trained models are largely established during the initial pre-training
phase. Consequently, these studies indicate that reinforcement learning improves reasoning by
activating decision-making within fixed structures, rather than enabling the acquisition of new
knowledge or behaviors. To effectively surpass these inherent limitations, external interventions such
as advanced reflective experiences or cognitively guided techniques are required. While previous
approaches [18, |16/ 20]] have attempted to enhance self-reflective reasoning through direct prompting
or reinforcement learning, their effectiveness remains limited by the constraints imposed during
pre-training, making them insufficient for substantially improving reflective reasoning and overall
reasoning performance.

Therefore, designing effective enhancement strategies to improve the intrinsic reasoning capabilities
of MLLMs beyond the constraints established during pre-training remains a challenging problem.
To address this question, inspired by cognitive science emphasizes that robust human reasoning
involves active self-reflection and iterative self-correction steps [21-23|116], we integrate explicit
reflective methods within both multimodal Supervised Fine-Tuning (SFT) and RL, enabling models
to surpass their intrinsic reasoning boundaries established in the pre-training phase. Unlike previous
studies [24H26]], which focus solely on enhancing reasoning ability by aligning with extended chain-
of-thought supervision, our goals are not only strengthens the model’s reasoning performance but
also fosters its capacity for self-reflection.

Motivated by these insights, we introduce SRPO (multimodal Self-Reflection enhanced reasoning
with Group Relative Policy Optimization), a novel two-stage reflective training framework specifically
designed to promote explicit self-reflection and self-correction behaviors within MLLMs. (i) In the
first stage, we utilize an advanced MLLM to generate reflection content based on the discrepancies
between the policy model’s outputs and the ground truth. In this process, the model autonomously
evaluates its multiple generated responses, identifies errors, and iteratively revises them through
reflective reasoning. Subsequently, we leverage these high-quality reflection datasets to perform
multimodal reflection-based supervised fine-tuning (SFT), providing a cold-start initialization for
subsequent reinforcement learning. (ii) In the second stage, we further propose a reflection-aware RL
method built upon the Group Relative Policy Optimization (GRPO) algorithm [4]. Our specifically
designed reward function actively incentivizes concise, task-oriented reflection steps, explicitly
punishing overly verbose or redundant reflections, thus effectively encouraging MLLMs to adopt
meaningful reflective behaviors via RL stage. As illustrated in Figure [I] after two-stage training,
SRPO enables MLLMs to autonomously generate reflective reasoning, effectively refine intermediate
thinking steps, and consequently achieve improved reasoning performance across various benchmarks
compared to the GRPO.

We conduct comprehensive experiments across several widely adopted multimodal reasoning bench-
marks, including MathVista [1], MathVison [27]], and MMMU-Pro [3], utilizing representative
multimodal models (e.g., Qwen-2.5-VL-7B and Qwen-2.5-VL-32B [28]]). Results demonstrate that
SRPO consistently and significantly outperforms current state-of-the-art models, achieving notable



improvements in reasoning accuracy, reflection quality, and cross-task generalization. These empiri-
cal findings provide strong evidence that explicit reflection-oriented training can effectively extend
multimodal models’ reasoning capabilities beyond the inherent cognitive boundaries set during
pre-training. Our core contributions are summarized as follows:

* Novel reflection-oriented SFT construction. We introduce a novel reflective data generation
pipeline that leverages the original model’s responses. By using a large MLLM (e.g., GPT-04-
mini [[7]), we generate corresponding reflection processes aligned with the gold-standard answers.
This pipeline is designed to teach the policy model both effective reasoning and reflective thinking.

* Reflection-aware reinforcement learning. We develop a tailored GRPO-based RL method
(SRPO) equipped with an explicit reward function to incentivize meaningful reflective reasoning.

* Empirical validation and insights. Extensive evaluations across various multimodal reasoning
benchmarks confirm that SRPO achieves state-of-the-art performance, clearly demonstrating the
effectiveness of self-reflection enhancements in multimodal reasoning contexts.

2 Related Works

Reinforcement Learning for LLM Reasoning. Recent advancements in large-scale RL, such
as DeepSeek-R1 [4]], have demonstrated substantial progress in enhancing complex, human-like
Chain-of-Thought (CoT) reasoning by utilizing result-oriented or formatting-specific reward signals.
In parallel, several studies, including Open-Reasoner-Zero [29], SimpleRL-Zoo [30], AlphaMed [31]],
and Logic-RL [32]], have explored directly fine-tuning base language models using RL without any
supplementary supervised fine-tuning stages. Additionally, methods such as Light-R1 [33] and
DeepScaler [34] introduce specially constructed cold-start datasets designed explicitly to encourage
detailed step-wise reasoning during initial training phases. Meanwhile, recent analyses [18} 20, |19]
have also shed light on intrinsic limitations of purely RL-based reasoning enhancement strategies.
Furthermore, complementary approaches such as VAPO [35], DAPO [[12]], and Dr. GRPO [36]]
have sought to refine the Group Relative Policy Optimization (GRPO) framework by optimizing
reward design and enhancing advantage estimation techniques, thus more effectively promoting
deeper reasoning behaviors within language models. In contrast, our work specifically targets
multimodal complex reasoning, explicitly emphasizing self-reflection or correction to enhance
reasoning performance during both multimodal SFT and RL training phases.

Reinforcement Learning for Multimodal LLM Reasoning. State-of-the-art multimodal reasoning
capabilities are largely dominated by proprietary models, such as GPT-03 and o4 [7], Gemini-2.5-
Pro-T [5]], and Seed1.5-VL-T [37]. Recent studies aim to close this gap via reinforcement learning
(RL) on open-source multimodal LLMs. LMM-R1 [9] introduces a two-stage, rule-based RL, though
mainly benefiting textual scenarios. Reason-RFT [38]] leverages supervised fine-tuning (SFT) with
Chain-of-Thought (CoT) data to initialize RL. Vision-R1 [26] enhances multimodal CoT datasets
using DeepSeek-R1 and employs progressive thinking suppression in GRPO training. MM-Eureka [8]
presents the MMK12 dataset alongside a two-stage RL method, while VL-Rethinker [15]] utilizes
selective sample replay and explicit textual rethinking triggers to refine multimodal reasoning. R1-
V [39] explores RL primarily within visual-centric reasoning tasks but has limited generalization to
broader multimodal domains. However, none of these approaches explicitly emphasize self-reflection
or correction during both SFT and RL training phases, resulting in suboptimal reasoning performance.
Furthermore, poorly designed reward functions leave these methods vulnerable to length redundancy.

3 Method of SRPO

In the following sections, we present the detailed methodology of our SRPO training framework,
emphasizing our two core contributions: (1) Novel reflection-oriented SFT data construction. In
this stage, we construct a reflection dataset to inject reflective capabilities into the policy model.
Through training on this dataset, we aimed to achieve two goals: first, to enhance the policy model’s
ability for self-reflection and self-correction during cold-start initialization; and second, to effectively
transfer the reflective knowledge of large-scale MLLMs into the policy model, enabling it to learn
how to reflect effectively gradually. (2) Reflection-aware reinforcement learning, where we propose
a tailored GRPO-based RL algorithm, SRPO, equipped with a reflection-aware reward function that
promotes reflective reasoning.
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Figure 2: Pipeline of Self-Reflection SFT data construction, including CoT and self-reflection generation.

3.1 Reflection-oriented Cold-start Initialization
3.1.1 Self-Reflection SFT data construction

Motivation. To address the limitations of local dependency in MLLM reasoning, often resulting
in redundant, incoherent, or incorrect outputs, self-reflection [[16] becomes essential for improving
reasoning quality. However, the absence of reflection knowledge and skills can lead to low-quality
or superficial self-correction. RL methods typically guide a model towards selecting high-reward
reasoning paths already represented within its intrinsic knowledge distribution, rather than inducing
genuinely novel cognitive capabilities or knowledge [19]. In contrast, by incorporating external
knowledge distillation, supervised fine-tuning (SFT) has been shown to effectively expand the
cognitive boundaries of reasoning [20]. To this end, we propose a supervised fine-tuning (SFT)
approach that explicitly injects reflection knowledge into the policy model. By learning from high-
quality reflective examples, the model acquires the ability to identify, diagnose, and revise flawed
reasoning, ultimately enhancing its coherence, efficiency, and self-awareness during the reasoning.

Less is More. To support effective reflection learning, we construct a high-quality dataset generated
by advanced MLLMs, containing two types of reflective examples: one for refining correct CoTs
by removing redundancy, and another for revising incorrect CoTs through error correction. While
prior SFT approaches [24H26] focus on mimicking correct reasoning, our reflection-oriented SFT
explicitly injects reflection knowledge, enabling the model to detect flaws and refine its reasoning.
These approaches are complementary—ours enhances reasoning correction and self-improvement.
As illustrated in Figure [2] we begin by curating a high-quality subset of N = 10,000 multimodal
reasoning samples from three large-scale datasets: LLaVA-CoT [25] (100K), Mulberry [24] (260K),
and MathV360K [40]. These samples cover diverse domains including physics, mathematics, and
general knowledge. Based on this subset, we construct our self-reflection dataset through two
complementary strategies: (1) Refinement of correct CoTs, and (2) Revision of incorrect CoTs.
For each sample, we first obtain the initial response generated by the policy model through CoT
prompting. Then, using the ground truth answer as guidance, we employ a larger MLLM (e.g.,
GPT-04-mini) to generate a self-reflection that either revises flawed reasoning or streamlines correct
but verbose outputs. Each final sample thus contains three components: the initial response, the
generated self-reflection, and the ground truth answer. In our curated data, approximately 30% of
initial responses are correct, while the remaining 70% contain reasoning errors, highlighting the
necessity of self-reflection for both wrong solution correction and right question refinement.

3.1.2 Cold-start Initialization of Policy Model

This phase equips the policy model 7y (initial MLLMs) with fundamental self-reflective reasoning
capabilities, ensuring it can generate proper reflection-aware reasoning paths before reinforcement
learning:

T
Leoldstart = —EruD Zlog (Tinitai(a1, < reflection > ... < /reflection >,as | q))| .

t=1

ey
Here, a; is the policy model’s initial response, (reflection)...(/reflection) denotes the reflec-
tion generated by a large LLM, and a5 is the ground truth answer. Given the input prompt ¢ and
the policy model a1, the objective is twofold: (1) to train the model to revise a; toward as using
the reflection (reflection), and (2) to leverage the reasoning and knowledge embedded in as
to guide future predictions. This reflection-driven learning process equips the policy model with
self-correction capabilities and improves alignment with correct reasoning trajectories.



3.2 Reflection-aware Reinforcement Learning

Under the reinforcement learning framework, complex reasoning tasks often leverage Chain of
Thought (CoT) steps to improve prediction accuracy and interpretability [4}|6]. However, simply
encouraging CoT generation can result in redundant or misleading reasoning [18H20]. To address
this, recent work introduces self-reflection, allowing models to revise their reasoning after generation
and improve overall quality. Yet without proper control, models may exploit reflection—e.g., by
inflating length or complexity for higher rewards without real gains. To counter this, we propose
SRPO, a framework that enhances both reasoning and reflection through carefully designed reward
signals that discourage superficial behaviors.

3.2.1 Group Relative Policy Optimization (GRPO)

We utilize Group Relative Policy Optimization (GRPO), following recent advances [4], to optimize
our RL-based training. Unlike SFT, which uses token-level losses, GRPO leverages policy gradients
calculated from reward losses for effective policy optimization. GRPO promotes exploration of richer
and more diverse reasoning solutions by comparing generated responses within sampled groups.
Formally, let ) be the question set, 7g,,, be the policy model, and {01, 02,...,0c} be a group
of responses from 7y, for question g. Let g, , denote the frozen reference model. The GRPO
optimization objective is defined as follows:

Jarpo (0) = EQNQ7{0z P~ oy

G loil
1 i . i
L3 min (Moath)A% clip (MOth)) a1t 6) Ai) _ 8Dy (o)

i—1 =1 T 0o1a (0i7t Q) TOo1a (Oi,t|q

(@)

Here, € and (3 are clipping hyper-parameters and KL-divergence penalty coefficients, respectively.
The advantage A; for each response is computed as:

A; = ri —mean({ry, 1y, .., v} ., where {r;}&, are rewards from the group.  (3)

Std({Tl,TQ, . ,Tg})

GRPO thus replaces the critic model traditionally required in PPO with a computationally efficient
intra-group advantage estimation.

3.2.2 Enhanced GRPO with Reflection-Aware Rewards (SRPO)

In SRPO, we aim to achieve two main goals: (1) enhance the policy model’s reasoning ability
through RL, and (2) strengthen its capacity for self-reflection. To realize these goals, we introduce an
enhanced reward function that specifically targets the reflection process within the CoT reasoning
framework. The format of this response can be summarized as first solution — reflection — second
refined solution. The total reward Ry, can be shown as:

Rtotal = Rtask + Rreﬂectiom (4)

Task Reward. The task-specific reward Ry combines a format reward and an accuracy re-
ward. The format reward Ryoma encourages the model to enclose its reasoning process within
<think>...</think> tags. The accuracy reward R,ccuracy Verifies whether the predicted answer
matches the ground truth, guiding the model to produce logically consistent and correct outputs for
the first solution. This repeated supervision helps enhance the model’s reasoning ability. Formally,
Riccuracy 1s defined as:

0, otherwise 0, otherwise

0.5, if format is correct 0.5, if first solution matches gt label
Rk = Rformar = accuracy —

)
Reflection Reward. Let I, € {0,0.25} indicates proper formatting of reflection segments (enclosed
with <reflect> tags) , Lresponse 15 the total response token length, Tiyee; is the optimal length for all
responses and Ti,.x 1S maximum response lengths respectively. It is noted that the response contains
the first solution, reflection and the second solution guided by reflection. The reward can be defined
as:

Rreiection = Lef + Trer + v flen(Lresponse)7 (6)



where the reflective brevity reward fien (Lresponse) is explicitly defined to encourage appropriate lengths
which can achieve exact and brief results:

L — Tharger] \\*
flen(Lresponse) = (eXP (_m . (7)

The reward fi., peaks at a target length, encouraging concise, informative reasoning, and decays
smoothly toward zero as length approaches a defined maximum. This softly constrains output
within a desirable range without hard cutoffs. We adopt this exponential form for its simplicity,
differentiability, and stable gradient behavior during training.

Additionally, the effectiveness indicator I.¢ provides extra rewards if the reflection genuinely improves
reasoning outcomes, measured by improvement in the correctness or accuracy of final answers post-
reflection:

0.25, if reflection keeps a corrected answer,

0.5, if reflection corrects the wrong answer,

0, if reflection fails to correct the wrong answer,

—0.25 if reflection misconducts the right into wrong answer.

(®)

Tegs =

The proposed reward function I ¢ focuses on the second solution results and assesses the reflection’s
impact on answer correctness in four cases: preserving a correct answer yields +0.25, successfully
correcting an incorrect answer results in +0.5, failing to fix a wrong answer receives no reward, and
misleading a correct answer incurs -0.25. This design encourages the model to treat reflection not as
a formality, but as a tool for improving reasoning quality and avoiding redundancy.

Advantages over Standard GRPO. Compared with standard GRPO—which primarily relies on
sparse task-level accuracy supervision—our enhanced reflection-aware SRPO framework introduces
several critical improvements: (i) By enforcing structured reflection formatting through the I,
indicator, the model is guided to produce consistently well-organized and identifiable reflection
segments. (ii) The introduction of a smooth, differentiable length reward fien(Lrer) encourages
the generation of reflections that are concise yet informative, avoiding hard cutoffs while softly
constraining verbosity. (iii) The effectiveness reward I directly aligns reward signals with functional
improvement, providing positive incentives only when the reflection corrects errors or preserves
correctness, and penalizing harmful reflections. (iv) By explicitly rewarding reflection utility rather
than mere presence, our approach discourages reward gaming behaviors such as empty or verbose
reflections, leading to more meaningful reasoning supervision. Together, these enhancements enable
SRPO to foster deeper self-correction capabilities, improve sample efficiency, and achieve superior
performance in complex reasoning tasks compared to standard GRPO.

4 Experiment

4.1 Experiment Settings

Training Dataset. (1) SFT: To construct the self-reflection SFT dataset for the cold-start initialization
phase, we first curate samples from several established multimodal reasoning sources, including the
Mulberry dataset (260K) [24]], MathV360K [40]], and LLaVA-CoT dataset (100K) [25]. We then
apply the data construction procedure detailed in Section [3.1.1] ultimately resulting in a refined
SFT dataset comprising approximately 10K samples. (2) RL: For the subsequent reinforcement
learning phase, we aggregate a diverse collection of multimodal reasoning samples from multiple
datasets, such as ScienceQA [41]], Geometric Math QA [42]], ChartQA [43]], DVQA [44]], AI2D [45]],
MATH [46], Virgo [47], R1-OneVision [11], MMKI12 [8], and PhyX [48]. These datasets collectively
encompass mathematical reasoning, general scientific reasoning, and general chart comprehension
tasks. The RL training dataset consists of diverse, cross-domain reasoning samples. More details
about SFT and RL training dataset collection are shown in Appendix [B.2}

Baselines and Benchmarks. To comprehensively evaluate SRPO, we compare against three groups of
baselines: (1) Closed-source MLLMs: General-purpose models GPT-40 [49], Claude3.7-Sonnet [50],
Gemini2-flash [51]], and the reasoning-optimized GPT-o1 [52]; (2) Open-source general MLLMs:
Instruction-tuned multimodal models InternVL2.5 [53]] and Qwen-2.5-VL [28]], ranging from 7B to
78B parameters; and (3) Open-source reasoning MLLMs: Explicitly fine-tuned reasoning models,



Table 1: Comparison between our 7B and 32B models, closed-source baselines, and other vision-language
models. T reproduced by us. The results of other baselines are obtained from their official reports. Bold indicates
the best-performing open-source model.

Model Math-Benchmark General-Benchmark
MathVista MathVerse MathVision OlympiadBench WeMath MMMU-Pro MMMU EMMA
Closed-Source MLLMs

Claude3.7-Sonnet 66.8 52.0 413 48.9 72.6 51.5 68.3 35.1
GPT-40 63.8 50.2 30.4 35.0 68.8 51.9 69.1 32.7
GPT-ol 73.9 57.0 60.3 68.0 98.7 62.4 78.2 45.7
Gemini2-flash 70.4 59.3 413 51.0 71.4 51.7 70.7 33.6
Seed1.5-VL-T 85.6 - 68.7 65.0 - 67.6 77.9 -
Open-Source General MLLMs (7B-16B)

InternVL2-8B 58.3 22.8 17.4 t10.1 1472 29.0 51.2 19.8
InternVL2.5-8B 64.4 39.5 19.7 12.3 53.5 343 56.0 120.6
QwenVL2-7B 58.2 19.7 16.3 9.7 51.6 30.5 54.1 20.2
Llava-OV-7B 63.2 26.2 t18.5 8.5 149.9 24.1 48.8 18.3
Kimi-VL-16B 68.7 44.9 21.4 - - - 55.7 -

QwenVL2.5-7B 68.2 46.3 25.1 20.2 62.1 36.9 54.3 21.5

Open-Source Reasoning MLLMs (7B)
MM-Eureka-8B* 67.1 40.4 222 8.6 55.7 27.8 492 21.5
RI1-VL-7B 63.5 40.0 24.7 10.8 53.8 7.8 44.5 8.3
R1-Onevision-7B 64.1 46.4 235 17.3 61.8 21.6 - 20.8
OpenVLThinker-7B 70.2 479 253 20.1 64.3 373 52.5 26.6
VL-Rethinker-7B 74.9 54.2 323 120.5 70.2 41.7 56.7 29.7
Vision-R1-7B 73.5 524 1272 t19.4 162.9 1377 1547 1224
MM-Eureka-7B? 73.0 50.3 26.9 20.1 66.1 137.6 1552 235
% (Ours - SRPO-7B) 75.8 55.8 32.9 22.8 71.6 2.3 57.1 29.6
Open-Source General and Reasoning MLLMs (32B)

InternVL2.5-VL-38B 71.9 49.4 31.8 32.0 67.5 46.0 57.6 -

Qwen-2.5-VL-32B 74.7 48.5 38.4 30.0 69.1 49.5 59.4 31.1
InternVL2.5-38B-MPO 73.8 46.5 323 25.6 66.2 - - -

MM-Eureka-32B 74.8 56.5 34.4 35.9 73.4 150.4 162.3 34,5
% (Ours - SRPO-32B) 78.5 58.9 39.6 38.5 76.4 51.3 66.1 38.2

including InternVL2.5-MPO [54], OpenVLThinker-7B [55], MM-Eureka-7B [56], VL-Rethinker-
7B [15], R1-Onevision-7B [11]], and R1-VL-7B [39]]. We evaluate SRPO across three categories of
multimodal reasoning benchmarks: mathematical reasoning (MathVista [1]], MathVerse [2], MathVi-
sion [27], OlympiadBench [57]], WeMath [58]]), general reasoning (MMMU-Pro [3], MMMU [59],
EMMA [60]), and cross-disciplinary reasoning (MMK12 [8]]), covering physics, chemistry, and
biology tasks.

Implementation Setup. For self-reflection cold-start SFT  Tuple 2: Performance comparison across
and subsequent RL training, Qwen2.5-VL-7B-Instruct and gifferent disciplines in MMK12.
Qwen2.5-VL-32B-Instruct models are trained on 8 and 32

NVIDIA H100 GPUs, respectively. We adopt 1 epoch for ~_Model Math Phys Chem Bio
SFT to avoid overfitting. During RL, we adopt the Open- e Models 4 534 554 550
RLHF framework [61]], training for 3 epochs on 30K sam-  Gpr40 558 412 470 554
; i : _ ol 816 688 714 740
ples with rollout and training batch sizes set to 128 (8 roll Cremin2 768 36 6de 6o
outs per sample), a samplmg temperaturﬁe of 1.0, and Adgm Open General MLLMs
optimizer with a learning rate of 1 x 10™°. For the reflection ~ mvL25-88 468 350 500 508
reward parameter o, we set it to 0.1 to ensure training stabil- 2RI P DA
ity. Regarding the reflective brevity reward fien(Lyresponse), ~ Qwen-25-32B 7.6 594 696 666
Qwen-2.5-72B 756 648  69.6 720

to discourage excessively verbose outputs, we define Tiyroet

. . . ~g Open Reasoning MLLMs
as 2x the length of the original response (i.e., reflection  |,yi25.88.MPO 266 250 424 440
plus new reasoning equals the first think length), and set ~ IntVL25-38B-MPO 414 428 558 532

.. . . R1-OneVision 448 338 39.8  40.8

Thax to 2.5% the original length (i.e., reflection plus new v Eureka.78 712 562 652 652
reasoning equals 1.5% the first think length). Additional = OpenVLThinker 630 538 606 650
. . MM-Eureka-32B 746  62.0 754  76.8

hyper-parameter settings and detailed prompt configura- | srpo-78 753 606 703 695
tions are provided in Appendix [B.3]and Appendix[B.4] BRECI (7B VRS M-

4.2 Main Results of Benchmarks

Multimodal General Reasoning. We further evaluate our approach on general multimodal reasoning
tasks to assess the effectiveness of our reflection-enhanced training strategy beyond mathematical



Table 3: Ablation study of SRPO-7B on RL training data size and self-reflection components.

Model Components RL Data Size MathVista MathVerse MathVision MMMU-Pro Physics Avg.
Qwen-2.5-VL-7B - 68.2 46.3 25.1 36.9 454 44.4
+ GRPO 37K 72.3 529 30.3 39.9 53.5 49.8
* (Ours - SRPO-7B) 37K 75.8 55.8 32.9 42.3 60.6 53.5
SRPO-7B 15K 74.5 54.9 322 414 60.1 52.6
SRPO-7B 5K 73.7 53.6 31.2 40.3 571 51.3
w/o Self-Reflection SFT 37K 74.2 53.3 30.3 39.7 58.6 51.2
w/o Self-Reflection RL 37K 70.3 48.2 272 38.7 48.5 46.6
- no Length Reward (fien(+)) 37K 75.3 56.2 324 41.7 60.1 53.1
- no Effectiveness Reward (Zefr) 37K 73.9 54.7 31.6 40.9 58.8 52.0

reasoning. As shown in Table[I] SRPO-7B consistently outperforms existing open-source MLLMs
on three general-domain benchmarks: MMMU-Pro, MMMU, and EMMA. Notably, compared to
state-of-the-art closed-source reasoning models, SRPO-32B still demonstrates highly competitive
performance, exceeding Gemini2-flash by 4.6 on the EMMA benchmark. These results underscore
the broader generalizability of reflection-enhanced training in improving multimodal reasoning
capabilities.

Multimodal Mathematical Reasoning. As presented in Table [T} SRPO achieves highly competitive
performance on multiple mathematical reasoning benchmarks, even when compared to leading
closed-source MLLMs. For instance, on the MathVista benchmark, SRPO obtains a score of 78.5%,
trailing the widely acknowledged state-of-the-art model, OpenAl GPT-01, by only 73.9%. Moreover,
SRPO consistently outperforms open-source general multimodal baselines by a clear margin. Notably,
when compared to state-of-the-art open-source reasoning models such as VL-Rethinker-7B and
MM-Eureka-7B, SRPO demonstrates obvious advantages, even on complex, graduate-level reasoning
datasets like OlympiadBench. These results strongly validate our claim that explicitly enhancing
the model’s self-reflection capabilities during both the SFT and RL stages positively contributes to
improved complex reasoning performance.

Cross-disciplinary Reasoning. Beyond evaluating our model on widely-used multimodal mathe-
matical and general reasoning benchmarks, we also investigate its capability for cross-disciplinary
generalization to novel tasks not included in the training data, such as physics, chemistry, and biology.
Results presented in Table [2]demonstrate that SRPO achieves superior cross-disciplinary reasoning
performance, surpassing MM-Eureka-7B (trained solely via RL without self-reflection incentiviza-
tion) by 5.1 points on Physics and OpenVLThinker-7B (SFT-enhanced reasoning) by 9.7 points
on Chemistry. These findings highlight that integrating both reflection-enhanced SFT during the
cold-start stage and employing a reflection-aware reward function during the RL stage significantly
improves the model’s generalization to previously unseen reasoning domains.

4.3 Ablation Study

RL Train-Set Size. We analyze SRPO’s performance sensitivity to the RL training set size by
sampling subsets of 15K and 7K from our original 37K dataset. As shown in Table SRPO consis-
tently improves with more data. Remarkably, even at SK samples, SRPO significantly outperforms
Qwen-2.5-VL-7B and standard GRPO, exceeding GRPO by 7.1 points on the Physics benchmark.
Thus, enhancing self-reflection within RL efficiently boosts reasoning even under limited data.

Effectiveness of Self-Reflection. We further investigate individual self-reflection components
within SRPO. Table shows that removing Self-Reflection SFT notably reduces performance,
yet still maintains a 5.1-point advantage over standard GRPO on Physics. Conversely, eliminating
Self-Reflection RL yields minimal improvements over Qwen-2.5-VL-7B, indicating that reflection
training solely in the SFT stage is insufficient. Hence, explicitly incentivizing reflection behavior
during RL is essential for ehancing multimodal reasoning.

Effectiveness of Reflection-Aware RL. Components. We also observe that omitting any specific
Self-Reflection RL component can degrade performance, especially when the Effectiveness Reward
(Iefr) is removed, resulting in a drop in average performance from 53.5 to 52.0. It indicates that the
model critically relies on reward signals that explicitly evaluate the quality of reflective responses to
achieve optimal reasoning. Similarly, reducing the Length Reward (fi.,) also leads to a decline in
reasoning performance, suggesting that overly redundant thinking steps can interfere with the model’s
accurate reasoning.



Table 4: Comparison between SRPO and GRPO with 2-Step Thinking.

Methods MathVista MathVerse MathVision MMMU-Pro Physics Avg.
* (Ours - SRPO-7B) 75.8 55.8 329 42.3 60.6 535
GRPO 72.3 529 30.3 39.9 535 49.8
GRPO + 2-Step Thinking 73.5 53.6 30.6 40.3 53.6 50.3

Comparative Study of Reflective and Two-Step Thinking. To assess the effectiveness of our
proposed reflection pattern—comprising thinking, reflection, and rethinking—we compare
it against a GRPO-based 2-step thinking paradigm, where the model generates two consecutive
<think>...</think> steps. Training uses the task reward from Equation [5]and a relational reward
inspired by Equation [§]that captures consistency between the two steps. As shown in Table [d] GRPO
+ 2-Step Thinking offers no significant gains over vanilla GRPO, except on MathVerse. In contrast,
SRPO’s explicit reflection on prior thinking substantially improves reasoning, underscoring the
importance of combining Self-Reflection SFT with Reflection-aware RL.

Disentangling the Effect of Reflection Format vs. Teacher Distillation To examine whether the
SFT improvement stems from teacher distillation or the proposed reflection structure, we conduct
controlled experiments on the 7B model. All models share the same teacher (GPT-4-mini), dataset
size (10k), optimizer, and number of training epochs. The only differences lie in the inclusion of
<reflection> segments and whether reflection-aware RL is applied. The results are shown in
Table[5] Adding explicit reflection segments in SFT yields an average gain of +1.3 over plain CoT
SFT, indicating that structured reflection rather than teacher distillation contributes to better reasoning
performance. When both models undergo RL, SRPO achieves an additional +2.1 gain by aligning
rewards with reflection effectiveness, which highlights the benefit of reflection-aware reward design.

Table 5: Ablation of Self-Reflection SFT on the 7B model.

Methods MathVista MathVerse MathVision MMMU-Pro Physics \ Avg.
Qwen-2.5-VL-7B 68.2 46.3 25.1 36.9 454 44.4
Plain-CoT SFT 69.1 47.2 26.4 37.2 47.6 453
Reflection-SFT (ours) 70.3 48.2 27.2 38.7 48.5 46.6
Plain-CoT SFT + GRPO 73.6 54.2 30.6 40.6 58.0 514
Reflection-SFT + Reflection-RL 75.8 55.8 329 42.3 60.6 53.5

Question:  |Sample generated during RL training ] "\ Question: [Sample generated for real test case ]
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Figure 3: Generated samples in RL training (left) and generated samples in real test case (right).

4.4 Reasoning Qualitative Analysis

Self-Reflection in RL Training.  Figure [3] The left part compares samples generated during
RL training with SRPO and standard GRPO using Qwen-2.5-VL-7B, specifically highlighting the
intermediate reasoning steps. We observe that SRPO explicitly guides the model to engage in
effective self-reflection on its initial reasoning paths and answers. During the reflection process,
SRPO corrects wrong reasoning steps and provides concise revisions, leading to refined final answers.
In contrast, GRPO-generated samples typically contain reasoning steps without explicit reflective



corrections, rarely revising the initial reasoning paths. We provide the complete version of samples in
Appendix [B.3]
Self-Reflection in Test Case. Futhermore, figure [3]right part illustrates examples of reasoning
outputs during inference. Responses generated by SRPO exhibit clear self-reflection patterns acquired
during RL training, actively refining or correcting flawed reasoning steps and answers to improve
overall accuracy. Conversely, models trained without self-reflection rarely adjust or rectify incorrect
reasoning paths, resulting in persistent reasoning errors and reduced final performance.
Train/Reward Train/Response Length Train/Ratio Clip Upper
GRPO SRPO = SRPO w/o Self-reflection SFT H GRPO SRPO = SPRO w/o Self-reflection SFT v GRPO SRPO = SRPO w/o Self-reflection SFT H
1 ) 900 0.014

0.9 800 0.012

0.8 0.01
700
07 0.008

06 600 0.006

0.004

0% 500 0.002
Train/Global Steps Train/Global Steps . Train/Global Steps

50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300

Figure 4: Training curves for SRPO and baselines: (a) training reward, (b) response length, and (c) upper
clipping ratio.

4.5 Further Analysis

RL Training Dynamics Analysis. We analyze training dynamics to highlight SRPO’s advantages
(Figure ). SRPO and SRPO w/o self-reflection SFT converge faster and outperform standard GRPO,
illustrating that reflection-enhanced initialization accelerates reflection skill acquisition and improves
reasoning. Moreover, SRPO consistently generates longer responses (Figure[d(b)), indicating effective
early-stage reflection training from cold-start initialization. Interestingly, SRPO’s lower, smoother
ratio clip upper curve (Figure[d[c)) reflects stable policy updates, avoiding excessively large gradients
or step sizes, confirming enhanced training consistency from reflection-based RL. More training
visualizations are shown in Appendix [B.6

Combining Self-Reflection with Alternative RL Methods. To o = orporseietecion 1 areo
validate the generality of our self-reflection strategy, we incor- = ciro =g
porate it into PPO and DAPO algorithms within the OpenRLHF *
framework, following identical cold-start SFT initialization and
evaluating checkpoints at 500 training steps. Figure [5]shows
consistent improvements from self-reflection integration across
all RL algorithms. Reflection-enhanced DAPO achieves per-
formance comparable to SRPO, while SRPO slightly surpasses 52
reflection-enhanced PPO. The result highlights the advantage 5
of GRPO’s group-based advantage estimation and reflection-
oriented rewards over PPO’s single-trajectory reward signals Figure 5: Performance of various
for effectively incentivizing self-reflection. RL methods with and without self-

reflection.
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5 Conclusion

In this paper, we introduced SRPO, a reflection-aware reinforcement learning framework designed to
enhance multimodal reasoning capabilities in mutlimodal large language models. By systematically
generating high-quality reflection-focused training data and employing a novel reward mechanism
that explicitly incentivizes concise and effective self-reflection, our method successfully addresses
the limitations of previous approaches, including insufficient data quality and lack of self-reflective
behavior for refining response. Comprehensive experiments across multiple multimodal reasoning
benchmarks demonstrated the significant effectiveness of SRPO, surpassing existing state-of-the-art
models in both reasoning accuracy and reflection quality. Our results highlight the critical role of
reflection-driven training strategies for robust multimodal reasoning.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly present our contribution in abstract and introduction. And we list
our contribution at the end of the introduction part.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section[A.]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] .
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Justification: As discussed in the introduction. This paper mainly focus on the dataset
construction, learning algorithm design and empirical studies.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the algorithm formula in Section [3] and experiment setups in
Section[4.1] We have outlined all details about our dataset (Appendix[B.2)), hyperparame-
ters (Appendix [B.3), and prompt templates (Appendix [B.4) in Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide experiment setup description in Section 4.1 We have outlined
all details about our dataset (Appendix [B.2)), hyperparameters (Appendix [B.3), and prompt
templates (Appendix [B.4) in Appendix B}

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have presented the details of experiments in the main paper (Section[4.T])
and Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: All reinforcement learning experiments were performed with a single fixed
random seed. For downstream tasks, we adhere to the official benchmark protocols and

utilize GPT-40 as the standardized API-based evaluator to ensure consistency across all
reported results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide implementation setup in [4.1)and include all details in Appendix[B.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We have carefully checked the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts of the paper in Section
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We have clarified the source of our data (Appendix [B.2)), and the benchmark is
intended solely for academic research purposes.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited and notified the works such as Mulberry Dataset and
MathV360K (Appendix [B.2)).

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We explain our data construction pipeline in Section[3.1.1]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We don’t include crowdsourcing or any research with human subjects in this
paper.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: We use LLM to generate and refine our dataset sample (Section [3.1.1] We
use LLM results as baselines to compare our proposed reflective reinforcement learn-
ing approach (Section {f.T). We adapt our reflective reinforcement learning approach on
Qwen2.5-VL (Section 4.1}

Guidelines:
* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.
¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We clearly present our contribution in abstract and introduction. And we list
our contribution at the end of the introduction part.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.
Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section[A.T]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: As discussed in the introduction. This paper mainly focus on the dataset
construction, learning algorithm design and empirical studies.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the algorithm formula in Section [3| and experiment setups in
Section 4.1l We have outlined all details about our dataset, hyperparameters, and prompt
templates in Appendix

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
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instructions for how to replicate the results, access to a hosted model (e.g., in the case

of a large language model), releasing of a model checkpoint, or other means that are

appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

21. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide experiment setup description in Section 4.1 We have outlined
all details about our dataset (Appendix [B.2)), hyperparameters (Appendix [B.3), and prompt
templates (Appendix [B.4) in Appendix B}

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

22. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have presented the details of experiments in the main paper (Section[4.T])
and Appendix
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Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification:
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide implementation setup in [4.1]and include all details in Appendix[B.3]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: We have carefully checked the code of ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

26. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the broader impacts of the paper in Section[A.2]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

27. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We have clarified the source of our data (Appendix [B.2)), and the benchmark is
intended solely for academic research purposes.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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28.

29.

30.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited and notified the works such as Mulberry Dataset and
MathV360K (Appendix [B.2)).

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We explain our data construction pipeline in Section[3.1.1]
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We don’t include crowdsourcing or any research with human subjects in this
paper.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

31. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

A Limitation and Social Impacts

A.1 Limitation

Our experiments primarily evaluated the effectiveness of SRPO on dense MLLMs at 7B and 32B
scales, without conducting scaling experiments on Mixture-of-Experts (MoE) [62}63]] or diffusion
LM [64H66] architectures. Additionally, the reinforcement learning training data utilized in our
experiments were selected exclusively from publicly available multimodal reasoning datasets, without
exploration of larger-scale commercial reasoning datasets. Extending our method to MoE-based
models and incorporating larger-scale RL training datasets remain promising avenues for future work,
potentially leading to even broader improvements in multimodal reasoning capabilities.

A.2 Social Impacts

Our work offers clear positive contributions by significantly enhancing MLLMSs’ capabilities in
complex reasoning tasks. These advances can enable more accurate and reliable Al assistance in
education, scientific discovery, and decision-making scenarios, ultimately contributing to broader
accessibility of high-quality reasoning support. However, improved reasoning capabilities also
carry potential risks, such as generating more convincing yet inaccurate or biased content if models
reflect on misleading data. Consequently, careful curation of training datasets and explicit efforts in
mitigating potential biases remain essential. Additionally, deploying advanced multimodal reasoning
models without adequate safeguards might inadvertently reinforce existing societal inequalities if
access to these advanced technologies remains restricted. Overall, responsible and transparent use of
these enhanced multimodal reasoning frameworks is crucial to ensure positive societal outcomes.

B Appendix

In this appendix, we provide supplementary details and extended analyses supporting the main
findings presented in our paper. Specifically, we describe the datasets employed for self-reflection SFT
and RL training (§B.2), present detailed hyper-parameter settings used throughout our experiments
(§B.3)), and provide explicit prompt templates for self-reflection SFT, RL training, and evaluation
(§B.4). Additionally, we illustrate training dynamics, including convergence trends and key metrics
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during the reinforcement learning phase (§B.6). Finally, we offer qualitative analyses through
representative samples generated during RL training and inference, demonstrating the effectiveness
of our reflection-based strategies (§B.3).

B.1 Further Experiment

Sensitivity to the Reflection Length Reward Coefficient . To evaluate the robustness of SRPO to
the reflection-length reward coefficient, we additionally trained models with & = 0.05 and o« = 0.3,
using the same setup as in the main experiments. The results are shown in Table[§] All experiments
were performed under identical optimization and data settings, with only the length-reward coefficient
varied. Results indicate that o = 0.05 performs similarly to o = 0.1, while o = 0.3 slightly degrades
accuracy. This suggests that over-emphasizing length reward weakens the reflection signal, whereas
values near 0.1 offer a balanced trade-off, helping to control response length and stabilize training
with limited impact on accuracy.

Table 6: Sensitivity of SRPO to the reflection length reward coefficient .

Ratio MathVerse MMMU-Pro Physics | Avg.
«=0.05 55.7 41.9 61.1 529
a=0.1 (Ours) 55.8 42.3 60.6 53.5
a=0.3 55.1 42.0 59.7 522

Qualitative & quantitative reflection analysis. To quantitatively assess reflection effectiveness, we
conducted both human and LLM-based evaluations on SRPO-7B’s generated reflections.

a. Human Expert Evaluation. We randomly sampled 100 MathVista test questions (answered
by SRPO-7B). Two senior PhD students specializing in NLP and LLMs independently rated each
reflection on a 0-3 scale: 3 = highly effective, 2 = partially effective, 1 = redundant, and 0 =
detrimental. We also measured the Wrong Answer Fix Rate, i.e., how often an initially incorrect
answer was corrected after reflection. The results are summarized in Table [7)

Table 7: Human Expert Evaluation of Reflection Quality.

Metric Human Expert 1 Human Expert 2
Effective Reflection Rate (score > 2) 73% 69%
Redundancy Rate (score = 1) 9% 11%
Detrimental Rate (score = 0) 3% 1%
Wrong Answer Fix Rate 39% 39%

Seventy percent of reflections were judged to be effective. Among 100 questions, the initial solution
was incorrect in 33 cases, of which 13 were corrected after reflection, resulting in a 39% wrong-answer
fix rate.

b. LLM-as-a-Judge (GPT-40) Evaluation. Each reflection was further scored by GPT-40 on four
0-5 dimensions—Ilogical flaws, missing assumptions, clarity, and actionable suggestions—following
the prompt format described in Appendix B.3. The average reflection quality is shown in Table[§]

Table 8: LLM-as-a-Judge Evaluation (GPT-40).
Model Logic Missing Clarity Suggestions | Avg. Quality
SRPO-7B (Ours) 4.1 39 4.0 3.6 \ 3.9

These results confirm that SRPO produces high-quality reflections from both human and LLM
perspectives, validating the effectiveness of its self-reflection design.

Training and Inference Efficiency

We report the measured wall-clock time for each SRPO training stage under both 7B and 32B settings
using the OpenRLHF framework. All settings share the same data size and optimization schedule as
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Figure 6: Statistics of reasoning-type distribution in different stages of training.

in the main experiments; only the model size and stage differ. Table [0 summarizes training efficiency,
and Table [I0] summarizes inference efficiency on the MathVista test-mini split ( 1k samples) using a
single H100-80G GPU with vLLM. SRPO requires only modest additional wall-time compared with
GRPO, while delivering substantially better reasoning quality in the main results.

Table 9: Training efficiency overview. Wall-clock time for each stage under 7B and 32B settings.

Training Stage GPUs Wall-Time Notes

Reflection-SFT (7B) 8xH100 3.5 hours 10k samples, 1 epoch
Reflection-RL (7B, SRPO) 8xH100 31.2 hours 37k samples, 500 steps
GRPO-RL (7B) 8xH100 25.8 hours 37k samples, 500 steps
Reflection-SFT (32B) 4 x 8xH100 4.7 hours 10k samples, 1 epoch

Reflection-RL (32B, SRPO) 4 x 8xH100 45.1 hours 37k samples, 500 steps

Table 10: Inference efficiency overview. Latency on MathVista test-mini using a single H100-80G
with vVLLM.

Inference Stage = GPUs  Wall-Time Notes
GRPO-RL (7B) 1xH100  45.6 min 1k test samples, avg response = 355.4 tokens
SRPO (7B) 1xH100  60.5min 1k test samples, avg response = 502.3 tokens

B.2 Training Dataset

Self-reflection SFT Dataset. We primarily select samples from three established multimodal
reasoning datasets:

* Mulberry Dataset (260K) [24]: A multimodal reasoning dataset enriched through collective
Monte Carlo tree search, specifically designed to enhance reflection and reasoning capabilities of
multimodal LLMs. It features diverse reasoning problems requiring explicit cognitive processes.

* MathV360K [40]: The dataset focuses on mathematical reasoning for multimodal LLMs. It sys-
tematically bootstraps multimodal reasoning by constructing high-quality mathematical reasoning
prompts paired with visual contexts.

* LLaVA-CoT Dataset (100K) [25]: A vision-language reasoning dataset explicitly designed for
chain-of-thought (CoT) prompting. It consists of multimodal problems that encourage step-by-step
logical reasoning aligned with visual inputs.

From these datasets, we randomly sample 100K data points. For each sampled multimodal problem,
we apply a specialized CoT-generation template, feeding both the visual inputs and associated
questions to two pretrained models: Qwen-2.5-VL-7B-Instruct and Qwen-2.5-VL-32B-Instruct [28]],
respectively, to generate corresponding reasoning steps. Subsequently, we use the DeepSeek-V3 [67]
API to assess the quality of these generated reasoning paths, selecting a high-quality subset of 10K
samples containing approximately 30% correctly solved and 70% incorrectly solved reasoning paths.
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Next, leveraging these selected CoT samples and their associated ground truths, we utilize GPT-04-
mini [[7]] with a specifically designed self-reflection generation prompt. This approach yields concise,
meaningful self-reflective feedback regarding the generated reasoning steps. Finally, we structure
these samples into our self-reflection enhanced SFT dataset following the proposed Self-reflection
SFT template.

Self-reflection RL Dataset. We curate our reinforcement learning (RL) dataset by selectively sam-
pling from several multimodal reasoning benchmarks, each featuring distinct reasoning characteristics
and data modalities. These datasets include:

* ScienceQA [41]: Contains 21K multimodal science questions, encouraging explicit reasoning
chains through visual contexts, textual explanations, and multiple-choice tasks.

* Geometric Math QA (GeoQA) [42]: Consists of 5K geometry-focused multimodal problems
designed to evaluate numerical reasoning over geometric concepts.

* ChartQA [43]: Provides 9.6K questions for visual and logical reasoning based on diverse chart
types such as bar, line, and pie charts.

* DVQA [44]: Includes 3.5K questions requiring comprehensive reasoning to interpret data visual-
izations effectively.

» AI2D [435]: Features 5K diagram-based science questions aimed at evaluating visual and conceptual
understanding through diagrams.

* MATH [46]: Comprises 12.5K challenging mathematical problems across various difficulty levels,
extensively utilized to measure mathematical reasoning capabilities.

* Virgo [47]: Offers around 10K multimodal reasoning examples intended to emulate the reasoning
complexity of state-of-the-art models like OpenAI O1.

* R1-OneVision [11]: Contains SK multimodal reasoning instances specifically designed for cross-
modal reasoning and generalization.

* MMK12 [8]: Provides a curated set of around 12K multimodal problems that involve rigorous
rule-based reasoning across diverse domains.

* PhyX [48]]: Comprises 3K carefully designed multimodal physics questions spanning thermody-
namics, electromagnetism, mechanics, modern physics, optics, and acoustics, aimed at evaluating
physical reasoning capabilities in realistic visual contexts.

By systematically combining and sampling from these datasets, we obtain a comprehensive self-
reflection RL dataset containing high-quality multimodal reasoning instances for our experiments.

B.3 Hyper-parameters

In the reinforcement learning phase of SRPO, we highlight several critical hyper-parameters: we set
both the rollout and training batch sizes to 128, generating 8 samples per prompt to ensure response
diversity. Sampling is performed with a temperature of 1.0. The learning rate is fixed at 1 x 10~©
using the Adam optimizer with parameter offloading enabled, and training is conducted using bf16
mixed-precision. We adopt group-normalized advantage estimation (specific to GRPO) to stabilize
training and utilize the "k3" KL divergence estimator for controlled policy updates. Additionally,
we freeze the visual encoder parameters during training, enable gradient checkpointing and flash
attention for memory efficiency, and perform accuracy filtering (retaining samples with accuracy
scores between 0.1 and 0.9) to maintain data quality throughout the RL process.
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B.4 Prompt Template

System: "You are a precise Al assistant and must strictly follow the following rules:
« First reason step-by-step, and wrap the thought process in <think> tags.
» The final answer must be wrapped in <answer> tags.
* Formatting requirements:
— Choice answers must be uppercase letters (A/B/C/D).
— Fill-in-the-blank answers should be digits.
DO NOT EXPLAIN ANYTHING IN <answer>.

* You must provide both <think> and <answer>.

Please strictly follow the formatting requirements and do not add any extra content!

User: [type: "text", content: question,
type: ‘"image_url", image_url: image_url]

System: "You are a helpful math reasoning assistant. Think carefully. Output only JSON."
User:

You are an expert visual reasoning assistant. Your task is to reflect on the quality
of a chain-of-thought (CoT) reasoning given for a visual question. The goal is to
improve the CoT by identifying weaknesses and offering suggestions for refinement.
Please follow this structure strictly:

1. "reflection": Provide a detailed critique of the original CoT, pointing out:
» Logical flaws or inconsistencies
* Missing assumptions or information
¢ Any correct reasoning that could be made clearer or more robust
* Suggestions for improving the reasoning process

Only return a valid JSON object with a "reflection" field.

-- Input --

Question: {query}

Image: {image_url}

Original Chain of Thought: {cot}

Predicted Answer (Based on CoT): {answer}
Correct Answer (ground truth): {ground truth}
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System: You are a reasoning expert. Given an image and a question, please generate two rounds of
step-by-step reasoning:

* First, provide your initial chain of thought and answer.
* Then reflect on it.

* Finally, based on your reflection, give your final reasoning and answer.

User:
{
"messages": [

{
"role": "system",
"content": "You are a reasoning expert. Given an image and a question,
please generate two rounds of step-by-step reasoning: First,
provide your initial chain of thought and answer. Then reflect
on it, and finally, based on your reflection,
give your final reasoning and answer."

{
"role": "user",
"content": "Question: <question>{query}</question>\nImage: <image>"

}’

{
"role": "assistant",
"content": "<think>{cot}</think>\n<answer>{answer}</answer>
\n<reflection>{reflection}</reflection>
\n<answer>{ground_truth}</answer>"

}

]7

"images": ["{image_url}"]

}

System: Solve the user’s question step by step.

First, think about the reasoning process internally and write it inside <think>...</think> tags. Then,
provide the first answer in LaTeX format wrapped with $. . . $, and the final result must be enclosed
with \boxed{}. Wrap this answer inside <answer>...</answer> tags.

After that, perform a critical self-reflection on the previous reasoning and answer, writing the reflection
inside <reflection>...</reflection> tags.

Then, based on the reflection, generate a new reasoning process and a new answer:

e The new reasoning is again placed inside <think>...</think>.

¢ The new answer is written inside <answer>...</answer> and uses LaTeX $...$ with
\boxed{} for the final output.

Make sure both reasoning steps are clear and detailed. Even if the final answer does not change, the
second reasoning must incorporate improvements based on the reflection.

Format Example:

<think> Since $1+1=2$, so the answer is $2$. </think>

<answer> The answer is $\boxed{2}$. </answer>

<reflection> The reasoning is correct but too brief;

I could have explained the addition more explicitly. </reflection>

<think> Adding $1$ and $1$ together results in $2$ because

$1$ plus $1$ means taking one and adding another one, leading to $2$. </think>
<answer> The answer is $\boxed{2}$. </answer>

All reasoning, answer, and reflection steps must be included without omission and in the
exact sequence: <think>..</think> <answer>..</answer> <reflection>..</reflection>
<think>...</think> <answer>...</answer>.
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B.5 Generated Samples Analysis

In this section, we present generated samples during RL training (Sample 1 and Sample 2) and
from real test cases (Sample 3 and Sample 4). In the training examples (Sample 1 and 2), we
observe that Qwen-2.5-VL-7B, under our proposed SRPO framework, exhibits the ability to perform
self-reflection and subsequently revise its reasoning steps. Similarly, in downstream evaluation tasks,
the model demonstrates reflective adjustments when answering incorrectly, and when answering
correctly, it further refines and simplifies its reasoning through self-reflection.

Question: Given that the measure of angle 1 is 123 degrees in the figure, what is the measure of angle
11?

Choices: (A)57 B)67 (C)113 (D) 123 Ground truth: (D) 123

<think>

Since angle 1 and angle 11 are corresponding angles formed by a transversal intersecting two parallel
lines, they are congruent. Therefore, the measure of angle 11 is the same as the measure of angle 1.
</think>

<Answer>

The answer is (Incorrect due to flawed assumptions)
</Answer>

<reflection>

The original reasoning has a significant flaw: it incorrectly identifies angle 1 and angle 11 as correspond-
ing angles formed by a transversal intersecting parallel lines. This assumption is unfounded given the
image description, which does not specify that the lines are parallel. Moreover, the reasoning does not
consider the possibility that angle 11 might be obtained from a different relationship, such as a vertical
angle or an alternate interior angle formed by a non-parallel configuration. To improve the reasoning,
one should: 1) analyze the given visual elements more carefully rather than relying on assumptions about
parallel lines; 2) re-evaluate the geometric relationships present in the figure, including the possibility of
vertical angles or other angle pairs that could be equal; and 3) include intermediate steps or calculations
that confirm why the measure of angle 11 should be different from angle 1. Clarifying these points
would lead to a more robust and accurate conclusion.

</reflection>

<think> (Generate the right answer after effective self-reflection)

The correct approach here would be to notice that if angle 1 and angle 11 were somehow related in a
way that the sum of their measures was a specific constant (for example, if they were supplementary
or complementary in context), we could deduce the measure of angle 11 by subtracting from 180
degrees (since supplementary angles add up to 180 degrees). But since the problem does not specify
this relationship, and considering the answer choices, the most logical deduction is that angle 11 is the
same as angle 1 due to a specific geometric configuration not detailed in the problem statement.Thus,
the measure of angle 11 is 123°.

</think>
<Answer> The answer is
</Answer>
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Question: Based on the upper image, what task is the robotic arm most likely performing?

o |
/ ,\— :

< %

Options: (A) Sorting playing cards based on a predefined algorithm.

(B) Performing a magic trick with the cards.

(C) Playing a card game against a human opponent.

(D) Conducting an experiment on object recognition. Ground truth: (D)

<think>

The image shows a robotic arm with a camera mounted on it, which suggests that it is involved in a
task that requires visual input and processing. The presence of playing cards on the table and the arm’s
position above them indicate that the robot might be interacting with the cards in some way. Given the
context of the setup, the most logical task for the robotic arm would be to sort the playing cards based
on a predefined algorithm, as this is a common application for robotic arms equipped with cameras for
visual recognition.

</think>

<answer> The answer is . (Incorrect)

</answer>

<reflection>

The original reasoning is overall correct in observing the camera and the cards, but it overlooks deeper
experimental context. The red and yellow point clouds and structured laser-like patterns shown in the
lower part of the image are indicative of 3D perception or object localization, which are typical in object
recognition experiments. Additionally, there’s no evidence of sorting mechanisms or card repositioning.
The reflection should thus account for the experimental nature of the setup, making option D more
consistent with the evidence provided.

</reflection>

<think> (Generate the right answer after effective self-reflection)

Let’s rethink, the image shows a robotic arm with a camera, indicating a task that involves visual data
collection or processing. The presence of playing cards on the table suggests an interaction with objects,
and the alignment of the dots and lines might represent data points collected for object recognition or
spatial analysis. Given these observations, the most likely task for the robotic arm is related to object
recognition, where the camera would be used to identify and analyze the cards’ features.

</think>

<answer>

The answer is @

</answer>
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Question: A farmer wants to build a fence around the entire perimeter of his land, as shown in the
diagram. The fencing costs £37 per metre. The lengths of EF and C'D are x metres and y metres
respectively. At £37 per metre, how much will it cost him to build the fence along the entire perimeter?
Ground truth: 777

i _1m f
L

<think>

To determine the cost of building the fence around the entire perimeter of the land, we first need to find
the total perimeter of the land. The perimeter is the sum of the lengths of all the sides of the shapes
forming the land.

Given: - The height of the rectangle ABGF is 5 m. - The width of the rectangle ABGF is 1 m. - The
height of the rectangle BCDE is 7 m. - The width of the rectangle BCDE is 2 m. - The length of EF is «
m. - The length of CD is y m.

The perimeter of the land is the sum of the lengths of all the sides:

Perimeter = AB+ BG+GE +EF +FD+ DC+ CE + EB
From the diagram:

Perimeter=5+1+2+2z+1+2+3+1=15+=x

Fencing cost is:

</think>

<answer>

The answer is . (Incorrect)
</answer>

<reflection>

The initial reasoning misidentified the structure of the perimeter by incorrectly including internal
segments such as BG, GE, and EB. These are auxiliary construction lines used solely to form right
triangles for computing the diagonal lengths EF' and C'D, not actual parts of the outer boundary of the
land that require fencing. This led to an overestimation of the total perimeter.

To correct the reasoning, one must focus strictly on the visual geometry and trace only the external
contour of the land—specifically, the true fencing path comprises segments AB, AF, EF, ED, DC,
and C' A. The diagonal lengths EF' and C'D should be computed using the Pythagorean theorem based
on right triangle constructions derived from the diagram. This corrected understanding yields the true
perimeter and thus the accurate total fencing cost.

</reflection> <think> (Generate the right answer after effective self-reflection)

Tracing only the external boundary gives segments

AB=5,AF =1, FE=2, ED=2, DC=y, CB=2.
Therefore the total perimeter is
54+14+z+2+y+2=10+ (z+y).

From the diagram’s length proportions (and the single “11 m” label spanning the two slanted edges), we
see directly that
z+y=11.

Hence the full perimeter is 10 4+ 11 = 21 m, and the fencing cost is

37 x 21 =[777].

</think>
<answer>
The answer is .

</answer> 36



27X

M*[ Y‘"w”x—% ]
NX

Question: M, W, X, Y, and Z are main-group elements in the same period. The number of valence
electrons in X is three times the number of electrons in the penultimate shell of W. The element R is a
key player in inorganic non-metal materials. The structure of the compound formed by M, W, X, Y, and
Z is shown. Which of the following statements is incorrect?

Choices:

¢ A. Elemental M is usually stored under kerosene.

* B. The oxide of R dissolves in aqueous solution of Y’s hydride.

¢ C. Every atom in the anion shown satisfies an octet.

* D. The boiling points of the simplest hydrides of X, Y, Z follow X >Y > Z.

<think>

Determine the period: all elements are in period 3. W’s penultimate shell contains 8 electrons, so X has
3 x 8 = 24 valence electrons; therefore, X = Cl. Using known oxidation states: M = Na, W = Mg, Y
= Al, Z = P. R is most likely Si. Now evaluate the options: A. Sodium is not stored under kerosene but
under oil; therefore, this statement is incorrect.

B, C, and D are chemically consistent. Therefore, the incorrect statement is .

</think>

<answer>
The answer is .
</answer>

<reflection> Reflect on the redundancy of the prior reasoning and generate a simplified version.
The initial reasoning is correct but can be simplified. Instead of step-by-step element identification, we
can streamline the logic into three clear steps: (1) From W’s inner shell (8 electrons), deduce that X has
24 valence electrons, hence X = CI.

(2) Identify M = Na, W = Mg, Y = Al, Z = P from standard main-group patterns. (3) Eliminate each
option: only A fails (Na is not stored under kerosene). This improved structure yields the same answer
more directly.

</reflection>

<think>

From periodic positions and common valences: M = Na, W = Mg, Y = Al, Z = P. Only statement A is

chemically incorrect. Answer: .
</think>

<answer>

The answer is .

</answer>

B.6 Training Dynamics

We provide additional visualizations of RL training curves, including total response length, correct
and incorrect response lengths, ratio clip lower, policy loss, and accuracy reward. Several key
observations can be made: First, due to the explicit emphasis on self-reflection during training, SRPO
consistently generates longer total responses and exhibits notably greater growth in response length
compared to GRPO and SRPO without self-reflection. This is attributable to the model’s active
engagement in self-reflection and subsequent correction of prior reasoning steps. Additionally, SRPO
consistently achieves higher accuracy reward values than baselines, confirming that reinforcement of
reflective reasoning effectively enhances the model’s reasoning capabilities. Furthermore, from the
ratio clip lower and policy loss curves, we observe that SRPO—whether employing self-reflection in
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both SFT and RL phases or solely in the RL phase—maintains stable clip lower values consistently
below 0.005. This indicates that the integration of self-reflection contributes to stable policy updates
with moderate gradient adjustments throughout training.

Train/Total Length Train/Correct Response Length
= GRPO SRPO = SRPO w/o Self-reflection SFT

= GRPO SRPO = SRPO w/o Self-reflection SFT

500
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Figure 7: More training dynamics of SRPO, GRPO, and SRPO w/o Self-reflection SFT.
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